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Abstract This study introduces a compressible diffuse interface method to treat flow dynamics for regimes
ranging from subcritical two-phase flows to supercritical flows. The model relies on a cubic equation of state to
take advantage of its wide domain of validity. This choice requires a careful treatment in areas where the fluid
state lies in the binodal region. In this case, thermodynamic equilibrium is computed, yielding a two-phase stable
fluid state. The model can be related to the family of multifluid methods such as Baer and Nunziato’s 7-equation
model (1986), considering speed, mechanical, thermal and thermodynamic relaxations. The model is integrated
in the AVBP solver, jointly developed by CERFACS and IFPEN. This paper details the modified thermodynamics
and derivation of the consistent boundary conditions and numerical schemes. Numerical validations are finally
provided.

Keywords Real Gas · Transcritical flows · Two-phase flows · Diffuse Interface Model · Homogeneous
Equilibrium Method · Hyperbolic Systems

1 Introduction

Many propulsion devices, such as liquid rocket engines (during ignition), Diesel engines (during compression) or
aeronautical engines operate over a wide range of chamber pressure. As a consequence, they are likely to involve
thermodynamic states that can range from subcritical to supercritical conditions. In particular, transition from one
regime to the other is encountered. The question of supercritical flows in combustion chambers has been and still
is widely studied [2,10,13,28]. Such flows require a description of the non-idealities in the molecular interactions,
adressed by the Real-Gas (RG) thermodynamics. Among RG closures, cubic Equations of States (EoS), such as
Van der Waals [27], Peng-Robinson [16] or Soave Redlich Kwong [24], have been deeply studied and prove to
be relevant for supercritical simulations [7, 14, 22, 25, 26]. However, in the subcritical domain, phase transitions
occur and models are needed to handle both liquid-gas interfaces and atomization. Interface models can be split in
two classes: Sharp Interface Models (e.g. Level-Set Method [5, 15]), representing the interface as a discontinuity
and Diffuse Interface Models (e.g. Multifluid Methods [1, 8, 17]), for which the interface takes a diffuse form.
In the following, a diffuse interface approach is chosen as it offers a convenient framework for multispecies
compressible flows on unstructured grids. Also, as the interface is not explicitely tracked, the extension from
subcritical two-phase flows to supercritical flows is expected to be more natural. The challenge here is then to
blend the subcritical diffuse interface model with the supercritical-adapted cubic EoS to provide a description of
the flow in the whole range of thermodynamic states encountered in industrial devices.

The objective of this work is to extend the use of cubic EoS to the subcritical regime. This is done by
computing Homogeneous Equilibrium in the binodal region. This paper describes the extended thermodynamics
in detail and its integration in a compressible solver.
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The present paper is structured as follows: section 2 presents the flow model and the thermodynamic closure.
In section 3, the derivation of important thermo-mechanical quantities will be presented, that allow the use of
Taylor-Galerkin [4] numerical methods and Navier-Stokes Characteristic Boundary Conditions. Eventually, in
section 4, one-dimensional and two-dimensional test cases are detailed to validate theoretical developments and
implementation of the method.

2 Flow Model

2.1 System of Equations

The flow model is based on classical Euler equations. For the sake of conciseness, the developments are pre-
sented using a one-dimensional formulation, as they can be extended to multiple dimensions without difficulty
(tridimensional developments are given in appendix B. The partial differential equation writes:

∂U
∂ t

+
∂F (U)

∂x
= 0, (1)

where U and F (U) represent respectively the vector of conserved variables and their fluxes, given by:

U =




ρ

ρu
ρetot


 and F (U) =




ρu
ρu2 +P

(ρetot +P)u


. (2)

The usual notations are used here, with ρ the density, u the velocity, P the pressure and total specific energy
etot = es + ec, es being the sensible energy and indicating the kinetic energy ec =

u2

2 . This system of equations
must be closed by an EoS.

2.2 Thermodynamic Closure

Among the possible choices, cubic EoS have proven to be a good trade-off between simplicity, accuracy and
ability to handle phase change for multispecies mixtures [19, 28]. In the monospecies case, such EoS writes:

P =
ρrT

1−ρbEoS
− aEoS(T )ρ2

1+ ε1ρ + ε2ρ2 , (3)

with T the temperature, aEoS and bEoS the EoS coefficients, r = R
W , R being the perfect gas constant and W

the species molar mass and (ε1,ε2) the EoS parameters. The present work is based on Soave-Redlich-Kwong
EoS [24], which corresponds to ε1 = b and ε2 = 0.

Although cubic EoS closures guarantee the strict hyperbolicity of Euler’s equations in supercritical and tran-
scritical regimes, this is not always verified in subcritical regimes. More precisely, in the spinodal region, the
speed of sound becomes imaginary, as it appears in Figure 1a. This is actually a consequence of the instability of
the fluid in this thermodynamic region.

In the case where the thermodynamic state lies in the binodal region, the strategy used here is to consider
phase separation of the unstable fluid following the Homogeneous Equilibrium Method, as it is done for example
in [3] with the Stiffened-Gas EoS [9]. This thermodynamic closure consists in considering that the fluid is at
mechanical, thermal and thermodynamic equilibrium at all time. More precisely, it corresponds to taking into
account the phase change whenever the fluid state (ρ,es) is within the binodal region (see Figure 1b). In this
case, as the one-phase fluid state is either metastable or unstable, the two-phase stable mixture is computed so
that both phase have the same temperature, pressure and Gibbs free energy g, that is:

P̀ = Pv = P, (4)

T` = Tv = T, (5)

g` = gv = g, (6)

respecting mixture density and specific sensible energy. Subscripts ` and v indicate respectively the liquid and
vapour phases.

At this point, it is interesting to mention that this flow model together with the Homogeneous Equilibrium
thermodynamic closure for subcritical points, can be related to the family of multifluid models derived from Baer
and Nunziato’s seven-equation model [1]. This model represents two phase flows by allowing vapour and liquid
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(a) Grey area represents the binodal region, delimited by the
saturation curve. C indicates the critical point. Hatched area
shows the spinodal region, where isotherms (dotted lines) have
a positive slope. In this area, the speed of sound may become
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(b) Solutions of the cubic EoS are shown for a given couple
(Pm,Tm). In this case, the stable solution, ρ1 is pure liquid. ρ2
is unstable as it lies in the spinodal region. ρ3 is in the binodal
region, hence the metastability of this solution

Fig. 1: Clapeyron diagrams for a cubic EoS.

phases to take different velocities, temperatures and chemical potentials, bound together by relaxation terms.
Various models have then been derived from this one by considering infinitely fast relaxation of either one [20],
two [8, 12] or all of these parameters [3, 6].

The model studied here then corresponds to Baer and Nunziato’s with homogeneous equilibrium. The most
common models of this form found in the literature use different EoS to describe the thermodynamics of each
phase. This may allow more accurate behaviour in the pure phases, especially in the lower pressure domain.
Yet, it would require a specific treatment to extend this representation to the supercritical and stable-single-phase
domains, where the fluid stable state no longer consists in an equilibrium of two separate phases. This is the main
reason why this methodology is considered here.

2.3 Practical implementation

Let ρ p and ep
s be the density and energy predicted by the numerical scheme. In the first place, the one-phase

temperature Tm is determined finding the zero of function θ defined by:

θ(ρ p,T ) =
ep

s − eEoS
s (ρ p,T )
ep

s
, (7)

where eEoS
s is the sensible energy computed from the EoS.

Once this temperature is obtained, one-phase pressure is computed as Pm = PEoS(ρ p,Tm). The densities that
satisfy the cubic EoS for the obtained (Pm,Tm) are computed from the EoS. If multiple roots are found, their
fugacity is compared. The minimal fugacity solution being the stable one, the flow state is kept as single-phase if
the predicted density is the one of minimal fugacity. Otherwise, a two-phase equilibrium must be computed.

To achieve this, the algorithm consists in cancelling the fugacities imbalance between both phases. First, one
can introduce the two-phase mixture definitions:

{
ρ = α`ρ`+(1−α`)ρv

ρes = α`ρ`es,`+(1−α`)ρves,v,

(8a)

(8b)

where α` represents the liquid volume fraction. These expressions can lead to two formulations of the volume
fraction, which are equivalent at equilibrium:





α`,ρ =
ρ−ρv

ρ`−ρv

α`,e =
ρes−ρves,v

ρ`es,`−ρves,v
.

(9a)

(9b)

It is convenient to introduce, for each phase k ∈ {`,v} the quantity Fk defined from the fugacity fk as:

Fk = ln( fk). (10)
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For a given set of values (T i,Pi,ρ i
`,ρ

i
v,e

i
s,`,e

i
s,v), supposedly not at equilibrium, one can compute the correspond-

ing (α`,ρ ,α`,e). The iterative process then consists in computing the step of temperature ∆T i and pressure ∆Pi

so that the updated values (T i+1,Pi+1) and corresponding values of (ρ i+1
` ,ρ i+1

v ,ei+1
s,` ,e

i+1
s,v ) minimize both the

difference
(

F i+1
` −F i+1

v

)
between liquid and vapour phases and the difference (α i+1

`,ρ −α
i+1
`,e ). In this respect,

steps are built as: {
F i
` +∆F i

` = F i
v +∆F i

v

α
i
`,ρ +∆α

i
`,ρ = α

i
`,e +∆α

i
`,e.

(11a)

(11b)

The detail of thermodynamic quantities such as the fugacity for cubic EoS is recalled in appendix A). The varia-
tions of both α`,ρ and α`,e can be expressed from (∆P,∆T ) using a first-order approximation:

∆α` ≈
∂α`

∂P

∣∣∣∣
T

∆P+
∂α`

∂T

∣∣∣∣
P

∆T (12)

The pressure step is then computed as

∆Pi =

∂α`,ρ

∂T

∣∣∣∣
P
− ∂α`,e

∂T

∣∣∣
P

∂α`,ρ

∂P

∣∣∣∣
T
− ∂α`,e

∂P

∣∣∣
T︸ ︷︷ ︸

ηT

∆T i−
α i
`,ρ −α i

`,e

∂α`,ρ

∂P

∣∣∣∣
T
− ∂α`,e

∂P

∣∣∣
T︸ ︷︷ ︸

ηα

, (13)

with ∆T i given by

∆T i =

(
F i

v −F i
`

)
+

(
∂ F̀
∂P

∣∣∣
T
− ∂Fv

∂P

∣∣∣
T

)
ηα

(
∂ F̀
∂T

∣∣∣
P
− ∂Fv

∂T

∣∣∣
P

)
−
(

∂ F̀
∂P

∣∣∣
T
− ∂Fv

∂P

∣∣∣
T

)
ηT

. (14)

Partial derivatives that appear in the previous expressions are detailed in appendix A.
These steps of pressure and temperature are made until a certain level of convergence is reached towards the

cancellation of the two errors
∣∣α`,ρ −α`,e

∣∣ and |F̀ −Fv|.
The initialization is designed to give the best possible estimate for (T,P). To do this, one tries to compute a

two-phase equilibrium verified by the values of transported density and previous time step temperature (ρ,Told). If
this couple corresponds to a two-phase state, Told together with the computed pressure are taken as the first-guess.
Otherwise, a two phase equilibrium is computed from the couple (ρ,Tm) and is used as the first guess.

Along the iterations, it is necessary to make a few verifications to ensure that the loop evolves properly.
First, if the pressure step computed from (13) yields a negative pressure, it is reduced until it provides a positive
pressure. This is likely to happen near pure liquid states, especially at low temperatures, where the pressure
sensitivity to density variations is strong. It is also important to ensure that pressure and temperature steps do not
yield a one-phase state. Otherwise, the steps are reduced until a two-phase point is reached.

3 Mathematical Properties

This section aims at providing the derivation of the important mathematical properties of the Homogeneous Equi-
librium Model. This is particularly interesting towards the implementation into the solver AVBP (see for exam-
ple [11], for more details). AVBP is a multispecies compressible unsteady solver jointly developed by CERFACS

and IFPEN.

3.1 Jacobian Matrices

Among the numerical methods available in this solver, Two-Step Taylor-Galerkin methods (TTGC, TTG4A [4])
are particularly interesting as they provide a third-order convergence in space and time for a limited computational
cost. Their derivation uses the so-called Cauchy-Kowalevski process, which requires to compute the Jacobian
matrix of the flux function (2), given by:

JF (U) =




∂F (U)i
∂U j

∣∣∣∣∣
Uk, k 6= j




i, j

. (15)
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After some developments, this matrix reduces to the following form:

JF (U) =




0 1 0(
b
2 −1

)
u2−ab (2−b)u b

(
b u2

2 −abu−hs

)
u hs−bu2 (1+b)u


 (16)

with coefficients a and b defined by:




a =
∂ρes

∂ρ

∣∣∣∣
P

b =
∂P

∂ρes

∣∣∣∣
ρ

(17a)

(17b)

Expression (16) is valid for any thermodynamic closure. In the supercritical or one-phase domain, the usual
form of the Jacobian matrix for cubic EoS naturally applies [18]. For points lying in the binodal region, as phase
separation is considered by the equilibrium model, the derivation of partial derivatives at saturation is necessary.

First, the calculation of ∂ (ρes)
∂ρ

∣∣∣
P

is presented. To achieve this, it is worth mentioning that the single-phase
quantities ρ`,ρv,es,`,es,v are function of the pressure only. Hence the derivative of liquid volume fraction with
respect to mixture density, from (9a), which writes:

∂α`

∂ρ

∣∣∣∣
P
=

1
ρ`−ρv

. (18)

Then the calculation can be achieved by differentiating (8b), which eventually yields:

a =
ρ`es,`−ρves,v

ρ`−ρv
. (19)

To treat the derivation of the other term ∂ (ρes)
∂ρ

∣∣∣
P

, it is necessary to introduce saturation derivatives, which,
for a thermodynamic quantity ψ usually expressed as a function of pressure and temperature, write:

∂ψ

∂P

∣∣∣∣
sat

=
∂ψ

∂P

∣∣∣∣
T
+

∂ψ

∂T

∣∣∣∣
P

∂T
∂P

∣∣∣∣
sat
. (20)

The derivative of temperature with respect to pressure at saturation is given by the well-known Clausius-Clapeyron
relation [19] and is denoted here ϑ :

ϑ =
∂T
∂P

∣∣∣∣
sat

=
T (ρ`−ρv)

ρvρ`(hs,v−hs,`)
. (21)

One can then differentiate (8b) with respect to pressure, which writes:

∂ρes

∂P

∣∣∣∣
ρ

= (ρ`es,`−ρves,v)
∂α`

∂P

∣∣∣∣
ρ,sat

+ ∑
k∈{`,v}

[
αkρk

∂es,k

∂P

∣∣∣∣
sat

+αkes,k
∂ρk

∂P

∣∣∣∣
sat

]
(22)

In this expression, saturation derivatives for single-phase thermodynamic quantities appear and can be com-
puted using (20) and the cubic EoS for each phase. This writes eventually:

b =

(
∂ρes

∂P

∣∣∣∣
ρ

)−1

=
1

ϑCp,mix +
(

βmix
ϑ
−2αT

mix

)
T

(23)

where Cp,mix = α`ρ`cp,`+(1−α`)ρvcp,v is the mixture volume-specific isobaric heat capacity, αT
mix = α`α

T
` +

(1−α`)α
T
v is a mixture thermal expansion coefficient and βmix = α`β`+(1−α`)βv a mixture isothermal com-

pressibility coefficient. In the previous expressions, for each phase k ∈ {`,v} appear the thermal expansion
and isothermal compressibility coefficients (defined in appendix A.1) and the specific isobaric heat capacity
cp,k =

∂hs,k
∂T

∣∣∣
P

, with sensible enthalpy hs,k = es,k + P
ρk

.
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3.2 Speed of Sound and Characteristic Boundary Conditions

Once the Jacobian matrix has been calculated, its diagonalization yields important mathematical properties of the
model. This allows to compute the speed of sound and verify the hyperbolicity of the PDE and also to derive the
so-called Characteristic Boundary Conditions introduced by Poinsot and Lele [18].

In the first place, it is helpful to write system (1) in its non-conservative pseudo-linearized form, in terms of
primitive variables V = (ρ,u,P)T . This reads:

∂V
∂ t

+ Jp
F (V )

∂V
∂x

= 0, (24)

with the Jacobian matrix expressed this time in primitive variables (after change of basis):

Jp
F (V ) =




u ρ 0
0 u 1

ρ

0 ρb(hs−a) u


. (25)

This form once again stands for any thermodynamic closure. hs here indicates the specific sensible enthalpy
hs = es +P/ρ . The term b(hs−a) can be expressed under the form:

b(hs−a) =
∂P
∂ρ

∣∣∣∣
s
+

∂P
∂es

∣∣∣∣
ρ

(
P
ρ2 −

∂es

∂ρ

∣∣∣∣
s

)
, (26)

where s is the specific entropy of the two-phase mixture. In order for this term to reduce to ∂P
∂ρ

∣∣∣
s
, Gibbs relation

must be verified by the thermodynamic closure. This is obviously true for cubic EoS and is also verified by the
homogeneous equilibrium closure, as shown in the following. Euler theorem and Gibbs-Duhem relations for each
phase k ∈ {`,v} write:

{
Es,k = TSk−PVk +gmk

Sk dT −Vk dP+mk dg = 0

(27a)

(27b)

where Es,k, Sk, Vk and mk are respectively the extensive sensible energy, entropy, volume and mass of phase k.
Summing over both phases, one gets

{
Es = TS −PV +gm

S dT −V dP+mdg = 0

(28a)

(28b)

with Es, S , V and m respectively the extensive sensible energy, entropy, volume and mass of the thermodynamic
system that constitute the ensemble of both phases. One observes that Gibbs-Duhem relation (28b) is immedi-
ately verified by the two-phase mixture at equilibrium. Dividing (28a) and (28b) by the mixture mass m and
differentiating the first relation yield Gibbs relation for the two-phase mixture at homogeneous equilibrium :

des = T ds+
P
ρ2 dρ (29)

Thus, the well-known form of the Jacobian matrix in primitive variables is still valid for the two-phase mixture:

Jp
F (V ) =




u ρ 0
0 u 1

ρ

0 ρc2 u


, (30)

where the speed of sound appears to have the same definition

c =

√
∂P
∂ρ

∣∣∣∣
s
, (31)

except that ρ and s are, in the binodal region, variables of the two-phase mixture at equilibrium. The mixing law
for specific entropy is:

ρs = α`ρ`s`+(1−α`)ρvsv. (32)

The calculation of the speed of sound in the two-phase case can be achieved by expressing the differential of
specific entropy from density and pressure differentials. These developments provide the following form for the
speed of sound to the square:

c2 =
1

ρ

(
ϑ 2

T Cp,mix−2αT
mixϑ +βmix

) . (33)



Implementation of a diffuse interface method in an LES solver 7

Although this compact form does not directly show the positivity of c2, it is actually verified, as shown in [6]. As
expected, this thermodynamic closure effectively allows the flow model to be hyperbolic in both subcritical and
supercritical regions.

Diagonalization of the Jacobian Jp
F (V ) yields the so-called characteristic form. The characteristic Jacobian

Matrix Jc
F (W ) can be expressed using transformation matrices LU = R−1

U as:

Jc
F (W ) = LU JF (U)RU , (34)

these transformation matrices allowing to change basis between conservative and characteristic variables:

{
∂W = LU ∂U ,

∂U = RU ∂W .

(35a)

(35b)

As a consequence of Jp
F (V ) taking the usual form despite the two phase closure, its diagonalized form remains

similar to its one-phase counterpart, as diagonalization yields:

Jc
F (W ) =




u 0 0
0 u+ c 0
0 0 u− c


 (36)

with

LU =
b

ρc




ρc(−u2/2+1+a) ρcu ρc

u2/2+ uc
b −a −

(
u+ c

b

)
1

u2/2− uc
b −a −

(
u− c

b

)
1


,

RU =
ρ

2c




2c
ρ

1 1
2cu
ρ

u+ c u− c

2c
ρ

(
u2

2 +a
)

u2

2 +a+ c
(

c
b +u

)
u2

2 +a+ c
(

c
b −u

)


.

(37a)

(37b)

One observes that the modifications needed to write the Characteristic Boundary Conditions in the two-phase
case reduce to modifying thermodynamic coefficients a, b and c (the speed of sound), according to (19), (23) and
(33). From this point, test cases are run to observe the behaviour of the homogeneous equilibrium model.

4 Test Cases, Results and Discussion

This section is dedicated to the different test cases that have been studied. All computations were performed on
the solver AVBP-RG (see [21–23,25,26] among others), the real-gas version of AVBP. The numerical method used
here is TTG4A, a two-step Taylor-Galerkin method [4]. The fluid considered in the following is pure nitrogen
with tabulated isochoric heat capacity.

4.1 One-dimensional test cases

In order to validate the formulations of the Jacobian matrix and the corresponding characteristic boundary con-
ditions, it is interesting to study the behaviour of acoustic and entropy perturbations in a 1D domain, bounded by
fully reflecting boundary conditions or fully non-reflecting boundary conditions.

Case 1 - Acoustic Waves with Fully Reflecting Boundary Conditions: a uniform 100-node mesh is used, on
a domain Ω = [0,L] of length L = 10−2 m. The initial condition used in this case is built by adding gaus-
sian perturbations on the characteristic variables associated to the forward and backward acoustic eigenvalues
∂W+(x) = ∂W−(x) = exp

(
−200

(
x−L/2

)2
)

to the homogeneous two-phase solution U0. U0 is the set of con-

servative variables corresponding to density ρ0 = 100 kg/m3, pressure P0 = 10 bar and velocity u0 = 0 m/s.
Initial solution is then

U(x, t = 0) =U0 +RU0 ·




0
∂W+(x)
∂W−(x)


. (38)
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Fig. 2: Test case 1 – Initially superimposed backward and forward acoustic waves with fully reflecting boundary
conditions. Density and pressure snapshots of the solution. From left to right: initial time, before, during and after
interaction with domain boundaries.

The boundary conditions considered here are a fully reflecting inlet with u and ρ imposed on the left-hand
side and a fully reflecting outlet with pressure imposed on the right hand side. Their formulation is described in
appendix B.

The results are displayed in Fig. 2. Acoustic waves follow the expected behaviour, as their amplitude is
preserved. As observed, imposing pressure on the outlet results in reflecting into the domain an acoustic wave
of opposite sign. On the contrary, imposing velocity at the inlet results in reflecting into the domain an acoustic
wave of same sign.

Case 2 - Entropy Wave with Fully Reflecting Boundary Conditions: This case is built on the same setup as the pre-
vious one. The initial condition is now an entropy perturbation ∂W s(x) = 10exp

(
−200

(
x−L/2

)2
)

added to the

homogeneous solution U0. U0 is now the set of conservative variables corresponding to density ρ0 = 50 kg/m3,
pressure P0 = 10 bar and velocity u0 = 40 m/s. Initial solution is then computed as:

U(x, t = 0) =U0 +RU0 ·




∂W s(x)
0
0


. (39)
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Fig. 3: Test case 2 – Entropy wave transport with fully reflecting characteristic boundary conditions. Density and
pressure snapshots of the solution. From left to right: initial time, before, during and after interaction with domain
boundaries.

Results are displayed on Fig. 3. The entropy wave is well convected and evacuated by the outlet boundary
condition, without generating any acoustic noise.
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Case 3 - Acoustic Wave with Non-Reflecting Outlet and Fully Reflecting Inlet: For this test case, the initial
solution (38) is used, as for Case 1. Here, boundary conditions are the relaxed outlet for pressure on the right-
hand side and a fully-reflecting inlet with imposed density and velocity on the left-hand side.
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Fig. 4: Test case 3 – Acoustic wave transport with non-reflecting characteristic boundary condition on the right-
hand side. Density and pressure snapshots of the solution. From left to right: initial time, before, during and after
interaction with domain boundaries.

The results for this test case are shown in Fig. 4. Once again, the expected behaviour is observed, as the wave
hitting the outlet is evacuated, the backward acoustic wave being reflected on the inlet.

The present section allowed to validate the derivation and implementation of the boundary conditions in one
dimension. The following section is then dedicated to multidimensional computations.

4.2 Two-dimensional test cases

In this section, the behaviour of the thermodynamic closure is investigated in a multidimensional framework.
Extending previous developments to multidimensional systems presents no difficulty, as the modifications of the
Jacobian matrices remain constrained to the thermodynamic coefficients. The form of the useful matrices can be
found in Appendix B.

Case 4 - Fully two-phase "droplet" evacuation: For this test case, pressure and velocity are initially homogeneous
in a square domain Ω = [−L/2,L/2]× [−L/2,L/2], with respective values P0 = 10 bar, u0 = 40 m/s and v0 =
0 m/s. Length of the domain is L = 10−2m, discretized over 100×100 points. Density profile is built as

ρ0(x,y) =
ρmax +ρmin

2
+

(
ρmin−ρmax

2

)
tanh

(
70
(√

x2 + y2 +0.3
))

, (40)

with ρmin = 50kg/m3 and ρmax = 600kg/m3. These parameters correspond to a liquid-phase mass fraction ranging
from Y`,min = 0.188 to Y`,max = 0.996.

Results are displayed in Fig. 5. The density perturbation exits the domain, as no acoustic noise is generated.

Case 5 - Enforcing Velocity Profile: This test case aims at validating the behaviour of characteristic boundary
conditions with relaxation towards a given value. In the same domain as case 4, the solution is initialized with
values ρ0 = 300 kg/m3, P0 = 10 bar, u0 = 30 m/s,v0 = 0 m/s. At time t = 0s, horizontal velocity and density
profiles are enforced on the inlet. To do this, on the left side of the domain, an inlet with relaxation towards im-
posed density and velocity is used together with an outlet, on the right boundary, with relaxation towards imposed
pressure (see appendix B). Top and bottom boundary conditions are no-slip walls. Relaxation coefficients at the
boundaries, on ρ , u and P are set to 40. Velocity and density profiles are defined by the following formula, the
resulting values being centered on the homogeneous field values ρ0 and u0:





uinlet = u0

(
1+

1
2

tanh(103y)
)

ρinlet = ρ0

(
1− 1

2
tanh(103y)

)
(41a)

(41b)
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(a) Density snapshots, taken before, during and after the droplet hits the outlet.
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(b) Temporal evolution of minimum (dashed lines) and maximum (solid lines) values of density, pressure
and temperature. Pressure and temperature remain constant and homogeneous in the domain, as the density
perturbation is evacuated.

Fig. 5: Test case 4 – Transport of a droplet-like solution.

Results are displayed in Figure 6. After a transient regime, each flow quantity stabilizes towards its expected
value. The final profile of velocity corresponds to the prescribed form.

5 Conclusion and Prospects

The present article presents the Homogeneous Equilibrium Method as a thermodynamic closure to extend the use
of Cubic EoS to a subcritical region, in the case of a monospecies fluid. The practical implementation of the equi-
librium computation has been described and the mathematical properties have been investigated, to provide the
flow model’s Jacobian matrix together with its corresponding Characteristic Boundary Conditions implementa-
tion. In particular, it has been observed that the form of the resulting flow model is similar to the usual one-phase
case, which makes its implementation more simple. Test cases were presented to validate both the derivation and
implementation of the thermodynamic closure. These test cases illustrate that the obtained flow model is suited
for computations using classical hyperbolic PDEs numerical methods, in particular of the Taylor-Galerkin family.

Current and future developments focus on the extension of the thermodynamic closure and its mathematical
properties to multispecies mixtures, assuming one-fluid mixture using the Corresponding States Principle [19].
Then, implementation of a surface tension model is the next step towards the development of a solver able to
handle the whole range of pressure encountered in industrial combustors such as rocket and Diesel engines.

Acknowledgements The authors acknowledge funding from ANR through project ANR-14-CE22-0014 (SUBSUPERJET)
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Fig. 6: Test case 5 – Relaxation towards prescribed density and velocity profiles at the inlet. Final time is 0.2 s.
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Appendix

A Thermodynamic developments

A.1 Thermodynamic Definitions

Useful thermodynamic definitions for cubic EoS are recalled in this appendix.

Thermal expansion coefficient αT is defined by:

α
T =− 1

ρ

∂ρ

∂T

∣∣∣∣
P

(42)

Isothermal compressibility coefficient β is defined by:

β =
1
ρ

∂ρ

∂P

∣∣∣∣
T

(43)

Entropy is defined by adding a residual value to sPG, the entropy predicted by the Perfect-Gas EoS, through the relation:

s(T,P) = sPG(T,P)+
∫ P

P0

[
1

ρ2
∂ρ

∂T

∣∣∣∣
P∗
− r

P∗

]
dP∗. (44)

Fugacity f is defined by the relation:

rT ln
(

f (ρ,T )
P

)
=
∫

ρ

ρ0

[
P
ρ2∗
− rT

ρ∗

]
dρ∗− rT ln

(
P

ρrT

)
+

P
ρ
− rT = gres(ρ,T ), (45)

where gres(ρ,T ) is the residual Gibbs free energy, representing the difference between the value of g(ρ,T ) predicted by the considered
cubic EoS and the one predicted by the Perfect-Gas EoS.

A.2 Useful Partial Derivatives

In order to derive the pressure (13) and temperature (14) steps used in the iterative loop, partial derivatives of the quantity F are needed.
They write: 




∂F
∂T

∣∣∣∣
P
=

1
T


ln(ρrT )−F +

∫
ρ

0

(
1

rρ2∗

αT

β
− 1

ρ∗

)
dρ∗




∂F
∂P

∣∣∣∣
T
=

1
ρrT

(46a)

(46b)

For the computation of mixture fraction α`,e derivatives with respect to temperature and pressure, the following relations are needed:




∂es

∂P

∣∣∣∣
T
=

1
ρ

(
βP−α

T T
)

∂es

∂T

∣∣∣∣
P
= cv +

αT

ρβ

(
α

T T −βP
)

(47a)

(47b)

B Characteristic boundary conditions

In this appendix are recalled the derivation and implementation of characteristic boundary conditions.

B.1 Transformation Matrices

Transformation matrices between the different sets of flow variables are recalled here. First, transformation matrices to change basis
from a primitive variation ∂V to characteristic perturbation ∂W are given by:

LV =




1 0 0 0 − 1
c2

0 nx ny nz
1

ρc

0 −nx −ny −nz
1

ρc

0 t1x t1y t1z 0
0 t2x t2y t2z 0




(48)

RV =




1 ρ

2c
ρ

2c 0 0
0 nx

2 − nx
2 t1x t2x

0 ny
2 − ny

2 t1y t2y

0 nz
2 − nz

2 t1z t2z
ρc
2

ρc
2 0 0 0




(49)
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These matrices include the rotation of the frame in order to express velocities in a frame that includes the normal to the boundary
n =

[
nx,ny,nz

]t . t1 =
[
t1x, t1y, t1z

]t and t2 =
[
t2x, t2y, t2z

]t denote the two vectors of the basis that are tangential to the boundary. The
velocity writes u = [u,v,w]t

Eventually, the transformation matrices to change basis from conservative to characteristic including rotation of the frame for
boundary condition applications, in three dimensions, write:

LU =




1+ b(a−ec)

c2
bu
c2

bv
c2

bw
c2 − b

c2

− u·t1
ρ

t1x
ρ

t1y
ρ

t1z
ρ

0

− u·t2
ρ

t2x
ρ

t2y
ρ

t2z
ρ

0

1
ρ

(
b(ec−a)

c −u ·n
)
− bu−cnx

ρc − bv−cny
ρc − bw−cnx

ρc
b

ρc

1
ρ

(
b(ec−a)

c +u ·n
)
− bu+cnx

ρc − bv+cny
ρc − bw+cnx

ρc
b

ρc




(50)

RU =




1 0 0 ρ

2c
ρ

2c

u ρt1x ρt2x
ρ

2c (u+ cnx)
ρ

2c (u− cnx)

v ρt1y ρt2y
ρ

2c

(
v+ cny

)
ρ

2c

(
v− cny

)

w ρt1z ρt2z
ρ

2c (w+ cnz)
ρ

2c (w− cnz)

ec +a ρu · t1 ρu · t2
ρ

2c

(
ec +a+ cu ·n+ c2

b

)
ρ

2c

(
ec +a− cu ·n+ c2

b

)




(51)

B.2 Inlets with prescribed density and velocity

In the following, fully reflecting characteristic boundary conditions are briefly described in the case of subsonic flows, in one dimen-
sion. More details about characteristic boundary conditions can be found in [18]. In order to impose velocity and density on an inlet,
one would modify the flow quantities predicted by the numerical transport (denoted here with superscript p) to ensure that the cor-
rected values (denoted with superscript c) of ρc and uc are equal to the target values ρ t and ut . If the previous values at the boundaries
are ρ0 and u0, the variations ∂ρ = ρc− ρ0 and ∂u = uc− u0 must be cancelled. In terms of characteristic variables, applying the
transformations mentioned in previous section B.1, one gets:





(
∂W s

)p
= (∂ρ)p +

1
c2 (∂P)p

(
∂W+

)p
= (∂u)p +

1
ρc

(∂P)p

(
∂W−

)p
=−(∂u)p +

1
ρc

(∂P)p

(52a)

(52b)

(52c)

At a subsonic inlet, only the inward acoustic wave ∂W− information is known from inside of the domain. Thus, the entropy
wave ∂W s and outward acoustic wave ∂W+ must be corrected in order to ensure that density and velocity remain constant. Hence the
corrected values: 




(
∂W+

)c
=
(

∂W−
)p

(
∂W s

)c
=−ρ

c

(
∂W−

)p

(53a)

(53b)

Actually, to prevent density and velocity drift at the boundary, the correction is defined as





(
∂W+

)c
=
(

∂W−
)p

+2(ut −up)
(

∂W s
)c

=−ρ

c

(
∂W−+(ut −u)

)p
+(ρ t −ρ

p)

(54a)

(54b)

B.3 Outlet with prescribed pressure

To build up a subsonic fully reflecting pressure outlet, one would modify the predicted flow quantities to ensure that the corrected
value Pc is equal to the target value Pt . If the previous values at the boundaries are P0, the variation ∂P = Pc−P0 has to be cancelled.

At a subsonic outlet, only the outward acoustic wave ∂W+ information may be corrected, as the two other waves carry information
from inside the domain. From equations 52, correction writes:

(
∂W−

)c
=−

(
∂W+

)p
(55)

Actually, to ensure that no boundary pressure drift is observed, correction is defined as

(
∂W+

)c
=
(

∂W−
)p

+2
(Pt −Pp)

ρc
. (56)
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