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), considering speed, mechanical, thermal and thermodynamic relaxations. The model is integrated in the AVBP solver, jointly developed by CERFACS and IFPEN. This paper details the modified thermodynamics and derivation of the consistent boundary conditions and numerical schemes. Numerical validations are finally provided.

Introduction

Many propulsion devices, such as liquid rocket engines (during ignition), Diesel engines (during compression) or aeronautical engines operate over a wide range of chamber pressure. As a consequence, they are likely to involve thermodynamic states that can range from subcritical to supercritical conditions. In particular, transition from one regime to the other is encountered. The question of supercritical flows in combustion chambers has been and still is widely studied [START_REF] Candel | Structure and dynamics of cryogenic flames at supercritical pressure[END_REF][START_REF] Matheis | Multi-component vapor-liquid equilibrium model for LES and application to ECN Spray A[END_REF][START_REF] Müller | Large-eddy simulation of nitrogen injection at trans-and supercritical conditions[END_REF][START_REF] Yang | Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[END_REF]. Such flows require a description of the non-idealities in the molecular interactions, adressed by the Real-Gas (RG) thermodynamics. Among RG closures, cubic Equations of States (EoS), such as Van der Waals [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[END_REF], or Soave Redlich Kwong [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF], have been deeply studied and prove to be relevant for supercritical simulations [START_REF] Hakim | Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation[END_REF][START_REF] Oefelein | Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure[END_REF][START_REF] Schmitt | Large-Eddy Simulation of oxygen/methane flames under transcritical conditions[END_REF][START_REF] Urbano | Study of flame response to transverse acoustic modes from the les of a 42-injector rocket engine[END_REF][START_REF] Urbano | Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector Liquid Rocket Engine[END_REF]. However, in the subcritical domain, phase transitions occur and models are needed to handle both liquid-gas interfaces and atomization. Interface models can be split in two classes: Sharp Interface Models (e.g. Level-Set Method [START_REF] Desjardins | An accurate conservative level set/ghost fluid method for simulating turbulent atomization[END_REF][START_REF] Osher | Fronts Propagating with Curvature Dependent Speed[END_REF]), representing the interface as a discontinuity and Diffuse Interface Models (e.g. Multifluid Methods [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF][START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Perigaud | A compressible flow model with capillary effects[END_REF]), for which the interface takes a diffuse form. In the following, a diffuse interface approach is chosen as it offers a convenient framework for multispecies compressible flows on unstructured grids. Also, as the interface is not explicitely tracked, the extension from subcritical two-phase flows to supercritical flows is expected to be more natural. The challenge here is then to blend the subcritical diffuse interface model with the supercritical-adapted cubic EoS to provide a description of the flow in the whole range of thermodynamic states encountered in industrial devices.

The objective of this work is to extend the use of cubic EoS to the subcritical regime. This is done by computing Homogeneous Equilibrium in the binodal region. This paper describes the extended thermodynamics in detail and its integration in a compressible solver.

The present paper is structured as follows: section 2 presents the flow model and the thermodynamic closure. In section 3, the derivation of important thermo-mechanical quantities will be presented, that allow the use of Taylor-Galerkin [START_REF] Colin | Development of High-Order Taylor-Galerkin Schemes for LES[END_REF] numerical methods and Navier-Stokes Characteristic Boundary Conditions. Eventually, in section 4, one-dimensional and two-dimensional test cases are detailed to validate theoretical developments and implementation of the method.

Flow Model

System of Equations

The flow model is based on classical Euler equations. For the sake of conciseness, the developments are presented using a one-dimensional formulation, as they can be extended to multiple dimensions without difficulty (tridimensional developments are given in appendix B. The partial differential equation writes:

∂U ∂t + ∂ F (U) ∂ x = 0, (1) 
where U and F (U) represent respectively the vector of conserved variables and their fluxes, given by:

U =    ρ ρu ρe tot    and F (U) =    ρu ρu 2 + P (ρe tot + P)u   .
(

) 2 
The usual notations are used here, with ρ the density, u the velocity, P the pressure and total specific energy e tot = e s + e c , e s being the sensible energy and indicating the kinetic energy e c = u 2 2 . This system of equations must be closed by an EoS.

Thermodynamic Closure

Among the possible choices, cubic EoS have proven to be a good trade-off between simplicity, accuracy and ability to handle phase change for multispecies mixtures [19,[START_REF] Yang | Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[END_REF]. In the monospecies case, such EoS writes:

P = ρrT 1 -ρb EoS - a EoS (T )ρ 2 1 + ε 1 ρ + ε 2 ρ 2 , (3) 
with T the temperature, a EoS and b EoS the EoS coefficients, r = R W , R being the perfect gas constant and W the species molar mass and (ε 1 , ε 2 ) the EoS parameters. The present work is based on Soave-Redlich-Kwong EoS [START_REF] Soave | Equilibrium constants from a modified redlich-kwong equation of state[END_REF], which corresponds to ε 1 = b and ε 2 = 0.

Although cubic EoS closures guarantee the strict hyperbolicity of Euler's equations in supercritical and transcritical regimes, this is not always verified in subcritical regimes. More precisely, in the spinodal region, the speed of sound becomes imaginary, as it appears in Figure 1a. This is actually a consequence of the instability of the fluid in this thermodynamic region.

In the case where the thermodynamic state lies in the binodal region, the strategy used here is to consider phase separation of the unstable fluid following the Homogeneous Equilibrium Method, as it is done for example in [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF] with the Stiffened-Gas EoS [START_REF] Métayer | Elaboration des Lois d'Etat d'un Liquide et de sa Vapeur pour les Modeles d'Ecoulements Diphasiques[END_REF]. This thermodynamic closure consists in considering that the fluid is at mechanical, thermal and thermodynamic equilibrium at all time. More precisely, it corresponds to taking into account the phase change whenever the fluid state (ρ, e s ) is within the binodal region (see Figure 1b). In this case, as the one-phase fluid state is either metastable or unstable, the two-phase stable mixture is computed so that both phase have the same temperature, pressure and Gibbs free energy g, that is:

P = P v = P, (4) 
T = T v = T, (5) 
g = g v = g, (6) 
respecting mixture density and specific sensible energy. Subscripts and v indicate respectively the liquid and vapour phases. At this point, it is interesting to mention that this flow model together with the Homogeneous Equilibrium thermodynamic closure for subcritical points, can be related to the family of multifluid models derived from Baer and Nunziato's seven-equation model [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF]. This model represents two phase flows by allowing vapour and liquid In this case, the stable solution, ρ 1 is pure liquid. ρ 2 is unstable as it lies in the spinodal region. ρ 3 is in the binodal region, hence the metastability of this solution Fig. 1: Clapeyron diagrams for a cubic EoS.

phases to take different velocities, temperatures and chemical potentials, bound together by relaxation terms. Various models have then been derived from this one by considering infinitely fast relaxation of either one [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF], two [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF][START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF] or all of these parameters [START_REF] Chiapolino | A simple phase transition relaxation solver for liquid-vapor flows[END_REF][START_REF] Flåtten | Relaxation Two-Phase Flow Models and the Subcharacteristic Condition[END_REF]. The model studied here then corresponds to Baer and Nunziato's with homogeneous equilibrium. The most common models of this form found in the literature use different EoS to describe the thermodynamics of each phase. This may allow more accurate behaviour in the pure phases, especially in the lower pressure domain. Yet, it would require a specific treatment to extend this representation to the supercritical and stable-single-phase domains, where the fluid stable state no longer consists in an equilibrium of two separate phases. This is the main reason why this methodology is considered here.

Practical implementation

Let ρ p and e p s be the density and energy predicted by the numerical scheme. In the first place, the one-phase temperature T m is determined finding the zero of function θ defined by:

θ (ρ p , T ) = e p s -e EoS s (ρ p , T ) e p s , (7) 
where e EoS s is the sensible energy computed from the EoS. Once this temperature is obtained, one-phase pressure is computed as P m = P EoS (ρ p , T m ). The densities that satisfy the cubic EoS for the obtained (P m , T m ) are computed from the EoS. If multiple roots are found, their fugacity is compared. The minimal fugacity solution being the stable one, the flow state is kept as single-phase if the predicted density is the one of minimal fugacity. Otherwise, a two-phase equilibrium must be computed.

To achieve this, the algorithm consists in cancelling the fugacities imbalance between both phases. First, one can introduce the two-phase mixture definitions:

ρ = α ρ + (1 -α )ρ v ρe s = α ρ e s, + (1 -α )ρ v e s,v , (8a) (8b) 
where α represents the liquid volume fraction. These expressions can lead to two formulations of the volume fraction, which are equivalent at equilibrium:

       α ,ρ = ρ -ρ v ρ -ρ v α ,e = ρe s -ρ v e s,v ρ e s, -ρ v e s,v . (9a) (9b) 
It is convenient to introduce, for each phase k ∈ { , v} the quantity F k defined from the fugacity f k as:

F k = ln( f k ). ( 10 
)
For a given set of values (T i , P i , ρ i , ρ i v , e i s, , e i s,v ), supposedly not at equilibrium, one can compute the corresponding (α ,ρ , α ,e ). The iterative process then consists in computing the step of temperature ∆ T i and pressure ∆ P i so that the updated values (T i+1 , P i+1 ) and corresponding values of (ρ i+1 , ρ i+1

v , e i+1 s, , e i+1 s,v ) minimize both the difference F i+1 -F i+1 v between liquid and vapour phases and the difference (α i+1

,ρα i+1 ,e ). In this respect, steps are built as:

F i + ∆ F i = F i v + ∆ F i v α i ,ρ + ∆ α i ,ρ = α i ,e + ∆ α i ,e . (11a) (11b) 
The detail of thermodynamic quantities such as the fugacity for cubic EoS is recalled in appendix A). The variations of both α ,ρ and α ,e can be expressed from (∆ P, ∆ T ) using a first-order approximation:

∆ α ≈ ∂ α ∂ P T ∆ P + ∂ α ∂ T P ∆ T (12) 
The pressure step is then computed as

∆ P i = ∂ α ,ρ ∂ T P - ∂ α ,e ∂ T P ∂ α ,ρ ∂ P T - ∂ α ,e ∂ P T η T ∆ T i - α i ,ρ -α i ,e ∂ α ,ρ ∂ P T - ∂ α ,e ∂ P T η α , (13) 
with ∆ T i given by

∆ T i = F i v -F i + ∂ F ∂ P T -∂ F v ∂ P T η α ∂ F ∂ T P -∂ F v ∂ T P -∂ F ∂ P T -∂ F v ∂ P T η T . (14) 
Partial derivatives that appear in the previous expressions are detailed in appendix A. These steps of pressure and temperature are made until a certain level of convergence is reached towards the cancellation of the two errors α ,ρα ,e and |F -

F v |.
The initialization is designed to give the best possible estimate for (T, P). To do this, one tries to compute a two-phase equilibrium verified by the values of transported density and previous time step temperature (ρ, T old ). If this couple corresponds to a two-phase state, T old together with the computed pressure are taken as the first-guess. Otherwise, a two phase equilibrium is computed from the couple (ρ, T m ) and is used as the first guess.

Along the iterations, it is necessary to make a few verifications to ensure that the loop evolves properly. First, if the pressure step computed from (13) yields a negative pressure, it is reduced until it provides a positive pressure. This is likely to happen near pure liquid states, especially at low temperatures, where the pressure sensitivity to density variations is strong. It is also important to ensure that pressure and temperature steps do not yield a one-phase state. Otherwise, the steps are reduced until a two-phase point is reached.

Mathematical Properties

This section aims at providing the derivation of the important mathematical properties of the Homogeneous Equilibrium Model. This is particularly interesting towards the implementation into the solver AVBP (see for example [START_REF] Moureau | Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids[END_REF], for more details). AVBP is a multispecies compressible unsteady solver jointly developed by CERFACS and IFPEN.

Jacobian Matrices

Among the numerical methods available in this solver, Two-Step Taylor-Galerkin methods (TTGC, TTG4A [START_REF] Colin | Development of High-Order Taylor-Galerkin Schemes for LES[END_REF]) are particularly interesting as they provide a third-order convergence in space and time for a limited computational cost. Their derivation uses the so-called Cauchy-Kowalevski process, which requires to compute the Jacobian matrix of the flux function [START_REF] Candel | Structure and dynamics of cryogenic flames at supercritical pressure[END_REF], given by:

J F (U) =    ∂ F (U) i ∂U j U k, k = j    i, j . (15) 
After some developments, this matrix reduces to the following form:

J F (U) =      0 1 0 b 2 -1 u 2 -ab (2 -b) u b b u 2 2 -abu -h s u h s -bu 2 (1 + b) u      (16) 
with coefficients a and b defined by:

         a = ∂ ρe s ∂ ρ P b = ∂ P ∂ ρe s ρ (17a) (17b)
Expression ( 16) is valid for any thermodynamic closure. In the supercritical or one-phase domain, the usual form of the Jacobian matrix for cubic EoS naturally applies [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. For points lying in the binodal region, as phase separation is considered by the equilibrium model, the derivation of partial derivatives at saturation is necessary.

First, the calculation of ∂ (ρe s ) ∂ ρ P is presented. To achieve this, it is worth mentioning that the single-phase quantities ρ , ρ v , e s, , e s,v are function of the pressure only. Hence the derivative of liquid volume fraction with respect to mixture density, from (9a), which writes:

∂ α ∂ ρ P = 1 ρ -ρ v . ( 18 
)
Then the calculation can be achieved by differentiating (8b), which eventually yields:

a = ρ e s, -ρ v e s,v ρ -ρ v . (19) 
To treat the derivation of the other term ∂ (ρe s )

∂ ρ P

, it is necessary to introduce saturation derivatives, which, for a thermodynamic quantity ψ usually expressed as a function of pressure and temperature, write:

∂ ψ ∂ P sat = ∂ ψ ∂ P T + ∂ ψ ∂ T P ∂ T ∂ P sat . ( 20 
)
The derivative of temperature with respect to pressure at saturation is given by the well-known Clausius-Clapeyron relation [19] and is denoted here ϑ :

ϑ = ∂ T ∂ P sat = T (ρ -ρ v ) ρ v ρ (h s,v -h s, ) . (21) 
One can then differentiate (8b) with respect to pressure, which writes:

∂ ρe s ∂ P ρ = (ρ e s, -ρ v e s,v ) ∂ α ∂ P ρ,sat + ∑ k∈{ ,v} α k ρ k ∂ e s,k ∂ P sat + α k e s,k ∂ ρ k ∂ P sat (22) 
In this expression, saturation derivatives for single-phase thermodynamic quantities appear and can be computed using [START_REF] Saurel | Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures[END_REF] and the cubic EoS for each phase. This writes eventually:

b = ∂ ρe s ∂ P ρ -1 = 1 ϑC p,mix + β mix ϑ -2α T mix T (23) 
where

C p,mix = α ρ c p, + (1 -α )ρ v c p,v is the mixture volume-specific isobaric heat capacity, α T mix = α α T + (1 -α )α T
v is a mixture thermal expansion coefficient and β mix = α β + (1α )β v a mixture isothermal compressibility coefficient. In the previous expressions, for each phase k ∈ { , v} appear the thermal expansion and isothermal compressibility coefficients (defined in appendix A.1) and the specific isobaric heat capacity

c p,k = ∂ h s,k ∂ T P
, with sensible enthalpy h s,k = e s,k + P ρ k .

Speed of Sound and Characteristic Boundary Conditions

Once the Jacobian matrix has been calculated, its diagonalization yields important mathematical properties of the model. This allows to compute the speed of sound and verify the hyperbolicity of the PDE and also to derive the so-called Characteristic Boundary Conditions introduced by Poinsot and Lele [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF].

In the first place, it is helpful to write system (1) in its non-conservative pseudo-linearized form, in terms of primitive variables V = (ρ, u, P) T . This reads:

∂V ∂t + J p F (V ) ∂V ∂ x = 0, (24) 
with the Jacobian matrix expressed this time in primitive variables (after change of basis):

J p F (V ) =    u ρ 0 0 u 1 ρ 0 ρb (h s -a) u   . (25) 
This form once again stands for any thermodynamic closure. h s here indicates the specific sensible enthalpy h s = e s + P/ρ. The term b (h sa) can be expressed under the form:

b (h s -a) = ∂ P ∂ ρ s + ∂ P ∂ e s ρ P ρ 2 - ∂ e s ∂ ρ s , ( 26 
)
where s is the specific entropy of the two-phase mixture. In order for this term to reduce to ∂ P ∂ ρ s

, Gibbs relation must be verified by the thermodynamic closure. This is obviously true for cubic EoS and is also verified by the homogeneous equilibrium closure, as shown in the following. Euler theorem and Gibbs-Duhem relations for each phase k ∈ { , v} write:

E s,k = T S k -PV k + gm k S k dT -V k dP + m k dg = 0 (27a) (27b)
where E s,k , S k , V k and m k are respectively the extensive sensible energy, entropy, volume and mass of phase k. Summing over both phases, one gets

E s = T S -PV + gm S dT -V dP + m dg = 0 (28a) (28b) 
with E s , S , V and m respectively the extensive sensible energy, entropy, volume and mass of the thermodynamic system that constitute the ensemble of both phases. One observes that Gibbs-Duhem relation (28b) is immediately verified by the two-phase mixture at equilibrium. Dividing (28a) and (28b) by the mixture mass m and differentiating the first relation yield Gibbs relation for the two-phase mixture at homogeneous equilibrium :

de s = T ds + P ρ 2 dρ (29)
Thus, the well-known form of the Jacobian matrix in primitive variables is still valid for the two-phase mixture:

J p F (V ) =    u ρ 0 0 u 1 ρ 0 ρc 2 u   , (30) 
where the speed of sound appears to have the same definition

c = ∂ P ∂ ρ s , (31) 
except that ρ and s are, in the binodal region, variables of the two-phase mixture at equilibrium. The mixing law for specific entropy is:

ρs = α ρ s + (1 -α )ρ v s v . ( 32 
)
The calculation of the speed of sound in the two-phase case can be achieved by expressing the differential of specific entropy from density and pressure differentials. These developments provide the following form for the speed of sound to the square:

c 2 = 1 ρ ϑ 2 T C p,mix -2α T mix ϑ + β mix . ( 33 
)
Although this compact form does not directly show the positivity of c 2 , it is actually verified, as shown in [START_REF] Flåtten | Relaxation Two-Phase Flow Models and the Subcharacteristic Condition[END_REF]. As expected, this thermodynamic closure effectively allows the flow model to be hyperbolic in both subcritical and supercritical regions. Diagonalization of the Jacobian J p F (V ) yields the so-called characteristic form. The characteristic Jacobian Matrix J c F (W ) can be expressed using transformation matrices L U = R -1 U as:

J c F (W ) = L U J F (U) R U , (34) 
these transformation matrices allowing to change basis between conservative and characteristic variables:

∂W = L U ∂U, ∂U = R U ∂W . (35a) (35b) 
As a consequence of J p F (V ) taking the usual form despite the two phase closure, its diagonalized form remains similar to its one-phase counterpart, as diagonalization yields:

J c F (W ) =    u 0 0 0 u + c 0 0 0 u -c    (36) 
with

L U = b ρc      ρc(-u 2 /2 + 1 + a) ρcu ρc u 2 /2 + uc b -a -u + c b 1 u 2 /2 -uc b -a -u -c b 1      , R U = ρ 2c      2c ρ 1 1 2cu ρ u + c u -c 2c ρ u 2 2 + a u 2 2 + a + c c b + u u 2 2 + a + c c b -u      . (37a) (37b) 
One observes that the modifications needed to write the Characteristic Boundary Conditions in the two-phase case reduce to modifying thermodynamic coefficients a, b and c (the speed of sound), according to (19), ( 23) and (33). From this point, test cases are run to observe the behaviour of the homogeneous equilibrium model.

Test Cases, Results and Discussion

This section is dedicated to the different test cases that have been studied. All computations were performed on the solver AVBP-RG (see [START_REF] Schmitt | Simulation des Grandes Echelles de la combustion turbulente à pression supercritique[END_REF][START_REF] Schmitt | Large-Eddy Simulation of oxygen/methane flames under transcritical conditions[END_REF][START_REF] Schmitt | Large-Eddy Simulation of Supercritical-Pressure Round Jets[END_REF][START_REF] Urbano | Study of flame response to transverse acoustic modes from the les of a 42-injector rocket engine[END_REF][START_REF] Urbano | Exploration of combustion instability triggering using Large Eddy Simulation of a multiple injector Liquid Rocket Engine[END_REF] among others), the real-gas version of AVBP. The numerical method used here is TTG4A, a two-step Taylor-Galerkin method [START_REF] Colin | Development of High-Order Taylor-Galerkin Schemes for LES[END_REF]. The fluid considered in the following is pure nitrogen with tabulated isochoric heat capacity.

One-dimensional test cases

In order to validate the formulations of the Jacobian matrix and the corresponding characteristic boundary conditions, it is interesting to study the behaviour of acoustic and entropy perturbations in a 1D domain, bounded by fully reflecting boundary conditions or fully non-reflecting boundary conditions.

Case 1 -Acoustic Waves with Fully Reflecting Boundary Conditions: a uniform 100-node mesh is used, on a domain Ω = [0, L] of length L = 10 -2 m. The initial condition used in this case is built by adding gaussian perturbations on the characteristic variables associated to the forward and backward acoustic eigenvalues

∂W + (x) = ∂W -(x) = exp -200 x -L/2
2 to the homogeneous two-phase solution U 0 . U 0 is the set of conservative variables corresponding to density ρ 0 = 100 kg/m 3 , pressure P 0 = 10 bar and velocity u 0 = 0 m/s. Initial solution is then The boundary conditions considered here are a fully reflecting inlet with u and ρ imposed on the left-hand side and a fully reflecting outlet with pressure imposed on the right hand side. Their formulation is described in appendix B.

U(x,t = 0) = U 0 + R U 0 •    0 ∂W + (x) ∂W -(x)   . ( 38 
)
The results are displayed in Fig. 2. Acoustic waves follow the expected behaviour, as their amplitude is preserved. As observed, imposing pressure on the outlet results in reflecting into the domain an acoustic wave of opposite sign. On the contrary, imposing velocity at the inlet results in reflecting into the domain an acoustic wave of same sign.

Case 2 -Entropy Wave with Fully Reflecting Boundary Conditions: This case is built on the same setup as the previous one. The initial condition is now an entropy perturbation ∂W s (x) = 10 exp -200 x -L/2

2 added to the homogeneous solution U 0 . U 0 is now the set of conservative variables corresponding to density ρ 0 = 50 kg/m 3 , pressure P 0 = 10 bar and velocity u 0 = 40 m/s. Initial solution is then computed as: Results are displayed on Fig. 3. The entropy wave is well convected and evacuated by the outlet boundary condition, without generating any acoustic noise.

U(x,t = 0) = U 0 + R U 0 •    ∂W s (x) 0 0   . ( 39 
)
Case 3 -Acoustic Wave with Non-Reflecting Outlet and Fully Reflecting Inlet: For this test case, the initial solution (38) is used, as for Case 1. Here, boundary conditions are the relaxed outlet for pressure on the righthand side and a fully-reflecting inlet with imposed density and velocity on the left-hand side. The results for this test case are shown in Fig. 4. Once again, the expected behaviour is observed, as the wave hitting the outlet is evacuated, the backward acoustic wave being reflected on the inlet.

The present section allowed to validate the derivation and implementation of the boundary conditions in one dimension. The following section is then dedicated to multidimensional computations.

Two-dimensional test cases

In this section, the behaviour of the thermodynamic closure is investigated in a multidimensional framework. Extending previous developments to multidimensional systems presents no difficulty, as the modifications of the Jacobian matrices remain constrained to the thermodynamic coefficients. The form of the useful matrices can be found in Appendix B.

Case 4 -Fully two-phase "droplet" evacuation: For this test case, pressure and velocity are initially homogeneous in a square domain Ω = [-L/2, L/2] × [-L/2, L/2], with respective values P 0 = 10 bar, u 0 = 40 m/s and v 0 = 0 m/s. Length of the domain is L = 10 -2 m, discretized over 100 × 100 points. Density profile is built as

ρ 0 (x, y) = ρ max + ρ min 2 + ρ min -ρ max 2 tanh 70 x 2 + y 2 + 0.3 , (40) 
with ρ min = 50kg/m 3 and ρ max = 600kg/m 3 . These parameters correspond to a liquid-phase mass fraction ranging from Y ,min = 0.188 to Y ,max = 0.996. Results are displayed in Fig. 5. The density perturbation exits the domain, as no acoustic noise is generated.

Case 5 -Enforcing Velocity Profile: This test case aims at validating the behaviour of characteristic boundary conditions with relaxation towards a given value. In the same domain as case 4, the solution is initialized with values ρ 0 = 300 kg/m 3 , P 0 = 10 bar, u 0 = 30 m/s, v 0 = 0 m/s. At time t = 0s, horizontal velocity and density profiles are enforced on the inlet. To do this, on the left side of the domain, an inlet with relaxation towards imposed density and velocity is used together with an outlet, on the right boundary, with relaxation towards imposed pressure (see appendix B). Top and bottom boundary conditions are no-slip walls. Relaxation coefficients at the boundaries, on ρ, u and P are set to 40. Velocity and density profiles are defined by the following formula, the resulting values being centered on the homogeneous field values ρ 0 and u 0 : Results are displayed in Figure 6. After a transient regime, each flow quantity stabilizes towards its expected value. The final profile of velocity corresponds to the prescribed form.

         u inlet = u 0 1 + 1 2 tanh(10 3 y) ρ inlet = ρ 0 1 - 1 2 tanh(10 3 y) (41a) (41b) 

Conclusion and Prospects

The present article presents the Homogeneous Equilibrium Method as a thermodynamic closure to extend the use of Cubic EoS to a subcritical region, in the case of a monospecies fluid. The practical implementation of the equilibrium computation has been described and the mathematical properties have been investigated, to provide the flow model's Jacobian matrix together with its corresponding Characteristic Boundary Conditions implementation. In particular, it has been observed that the form of the resulting flow model is similar to the usual one-phase case, which makes its implementation more simple. Test cases were presented to validate both the derivation and implementation of the thermodynamic closure. These test cases illustrate that the obtained flow model is suited for computations using classical hyperbolic PDEs numerical methods, in particular of the Taylor-Galerkin family.

Current and future developments focus on the extension of the thermodynamic closure and its mathematical properties to multispecies mixtures, assuming one-fluid mixture using the Corresponding States Principle [19]. Then, implementation of a surface tension model is the next step towards the development of a solver able to handle the whole range of pressure encountered in industrial combustors such as rocket and Diesel engines. Thermal expansion coefficient α T is defined by:

α T = - 1 ρ ∂ ρ ∂ T P (42) 
Isothermal compressibility coefficient β is defined by:

β = 1 ρ ∂ ρ ∂ P T (43) 
Entropy is defined by adding a residual value to s PG , the entropy predicted by the Perfect-Gas EoS, through the relation:

s(T, P) = s PG (T, P)

+ P P 0 1 ρ 2 ∂ ρ ∂ T P * - r P * dP * . ( 44 
)
Fugacity f is defined by the relation:

rT ln f (ρ, T ) P = ρ ρ 0 P ρ 2 * - rT ρ * dρ * -rT ln P ρrT + P ρ -rT = g res (ρ, T ), (45) 
where g res (ρ, T ) is the residual Gibbs free energy, representing the difference between the value of g(ρ, T ) predicted by the considered cubic EoS and the one predicted by the Perfect-Gas EoS.

A.2 Useful Partial Derivatives

In order to derive the pressure (13) and temperature ( 14) steps used in the iterative loop, partial derivatives of the quantity F are needed. They write:

             ∂ F ∂ T P = 1 T   ln (ρrT ) -F + ρ 0 1 rρ 2 * α T β - 1 ρ * dρ *   ∂ F ∂ P T = 1 ρrT (46a) (46b) 
For the computation of mixture fraction α ,e derivatives with respect to temperature and pressure, the following relations are needed:

         ∂ e s ∂ P T = 1 ρ β P -α T T ∂ e s ∂ T P = c v + α T ρβ α T T -β P (47a) (47b) 

B Characteristic boundary conditions

In this appendix are recalled the derivation and implementation of characteristic boundary conditions.

B.1 Transformation Matrices

Transformation matrices between the different sets of flow variables are recalled here. First, transformation matrices to change basis from a primitive variation ∂V to characteristic perturbation ∂W are given by:

L V =          1 0 0 0 -1 c 2 0 n x n y n z 1 ρc 0 -n x -n y -n z 1 ρc 0 t 1x t 1y t 1z 0 0 t 2x t 2y t 2z 0          (48) R V =         1 ρ 2c ρ 2c 0 0 0 nx 2 -nx 2 t 1x t 2x 0 ny 2 - ny 2 t 1y t 2y 0 nz 2 -nz 2 t 1z t 2z ρc 2 ρc 2 0 0 0         (49) 
These matrices include the rotation of the frame in order to express velocities in a frame that includes the normal to the boundary n = n x , n y , n z t . t 1 = t 1x ,t 1y ,t 1z t and t 2 = t 2x ,t 2y ,t 2z t denote the two vectors of the basis that are tangential to the boundary. The velocity writes u = [u, v, w] t Eventually, the transformation matrices to change basis from conservative to characteristic including rotation of the frame for boundary condition applications, in three dimensions, write: 

L U =             1 + b(a-ec) c 2 bu c 2 bv c 2 bw c 2 -b c 2 -u•t 1 ρ t 1 x ρ t 1 y ρ t 1z ρ 0 -u•t 2

B.2 Inlets with prescribed density and velocity

In the following, fully reflecting characteristic boundary conditions are briefly described in the case of subsonic flows, in one dimension. More details about characteristic boundary conditions can be found in [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. In order to impose velocity and density on an inlet, one would modify the flow quantities predicted by the numerical transport (denoted here with superscript p ) to ensure that the corrected values (denoted with superscript c ) of ρ c and u c are equal to the target values ρ t and u t . If the previous values at the boundaries are ρ 0 and u 0 , the variations ∂ ρ = ρ cρ 0 and ∂ u = u cu 0 must be cancelled. In terms of characteristic variables, applying the transformations mentioned in previous section B. [START_REF] Baer | A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials[END_REF] 

At a subsonic inlet, only the inward acoustic wave ∂W -information is known from inside of the domain. Thus, the entropy wave ∂W s and outward acoustic wave ∂W + must be corrected in order to ensure that density and velocity remain constant. Hence the corrected values:

     ∂W + c = ∂W -p ∂W s c = - ρ c ∂W -p (53a) (53b) 
Actually, to prevent density and velocity drift at the boundary, the correction is defined as

     ∂W + c = ∂W -p + 2(u t -u p ) ∂W s c = - ρ c ∂W -+ (u t -u) p + (ρ t -ρ p ) (54a) (54b) 

B.3 Outlet with prescribed pressure

To build up a subsonic fully reflecting pressure outlet, one would modify the predicted flow quantities to ensure that the corrected value P c is equal to the target value P t . If the previous values at the boundaries are P 0 , the variation ∂ P = P c -P 0 has to be cancelled. At a subsonic outlet, only the outward acoustic wave ∂W + information may be corrected, as the two other waves carry information from inside the domain. From equations 52, correction writes:

∂W -c = -∂W + p (55) 
Actually, to ensure that no boundary pressure drift is observed, correction is defined as

∂W + c = ∂W -p + 2 (P t -P p ) ρc . (56) 
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 3 (a) Grey area represents the binodal region, delimited by the saturation curve. C indicates the critical point. Hatched area shows the spinodal region, where isotherms (dotted lines) have a positive slope. In this area, the speed of sound may become imaginary. sat (T m ) (b) Solutions of the cubic EoS are shown for a given couple (P m , T m ).
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 2 Fig.2: Test case 1 -Initially superimposed backward and forward acoustic waves with fully reflecting boundary conditions. Density and pressure snapshots of the solution. From left to right: initial time, before, during and after interaction with domain boundaries.
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 3 Fig. 3: Test case 2 -Entropy wave transport with fully reflecting characteristic boundary conditions. Density and pressure snapshots of the solution. From left to right: initial time, before, during and after interaction with domain boundaries.
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 4 Fig. 4: Test case 3 Acoustic wave transport with non-reflecting characteristic boundary condition on the righthand side. Density and pressure snapshots of the solution. From left to right: initial time, before, during and after interaction with domain boundaries.
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 3 a) Density snapshots, taken before, during and after the droplet hits the outlet. Temporal evolution of minimum (dashed lines) and maximum (solid lines) values of density, pressure and temperature. Pressure and temperature remain constant and homogeneous in the domain, as the density perturbation is evacuated.
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 5 Fig. 5: Test case 4 -Transport of a droplet-like solution.
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 33 a) Left-hand side figure shows the evolution of minimum (dashed line), maximum (dotted line) and mean density (solid line) in the domain. Center figure represents the evolution of minimum (dashed line), maximum (dotted line) and mean pressure (solid line) in the domain. Right-hand side figure shows the evolution of mean kinetic energy in the domain. (b) velocity and density profiles at the inlet: initial (dashed lines), target (solid lines) and final values (symbols).

Fig. 6 :

 6 Fig. 6: Test case 5 -Relaxation towards prescribed density and velocity profiles at the inlet. Final time is 0.2 s.
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