
HAL Id: hal-01759108
https://hal.science/hal-01759108

Submitted on 5 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handover Triggering in IEEE 802.11 Networks
Nicolas Montavont, Alberto Blanc, Renzo Efrain Navas, Tanguy Kerdoncuff,

German Castignani

To cite this version:
Nicolas Montavont, Alberto Blanc, Renzo Efrain Navas, Tanguy Kerdoncuff, German Castignani.
Handover Triggering in IEEE 802.11 Networks. IEEE 16th International Symposium on A World
of Wireless, Mobile and Multimedia Networks (WoWMoM), Jun 2015, Boston, United States.
�10.1109/WoWMoM.2015.7158126�. �hal-01759108�

https://hal.science/hal-01759108
https://hal.archives-ouvertes.fr

Handover Triggering in IEEE 802.11 Networks

Nicolas Montavont, Alberto Blanc, Renzo Navas and Tanguy Kerdoncuff
Institut Mines Telecom / Telecom Bretagne

2, rue de la chataigneraie
35576 Cesson

Email: firsname.lastname@telecom-bretagne.eu

German Castignani
University of Luxembourg / SnT

4, rue Alphonse Weicker
L-2721 Luxembourg

Email: german.castignani@uni.lu

Abstract—The current and future IEEE 802.11 de-
ployment could potentially offer wireless Internet con-
nectivity to mobile users. The limited AP radio coverage
forces mobile devices to perform frequent handovers while
current operating systems lack efficient mechanisms to
manage AP transition. Thus we propose an anticipation-
based handover solution that uses a Kalman filter to
predict the short term evolution of the received power.
This mechanism allows a mobile device to proactively start
scanning and executing a handover as soon as better APs
are available. We implement our mechanism in Android
and we show that our solution provides a better wireless
connection.

I. INTRODUCTION

Due to the proliferation of Wifi hot-spots and com-
munity networks, we have recently observed a great
evolution of IEEE 802.11 networks especially in urban
scenarios. These 802.11-based networks allow mobile
users to get connected to the Internet, providing a high
throughput but a limited mobility due to the short cover-
age area of access points (APs). In our previous work [1]
we have shown that community networks appear to be
highly dense in urban areas, generally providing several
APs (15 in median) per scanning spot. Under this condi-
tion, a mobile user may be able to connect to community
networks and compensate the low AP coverage area
by transiting between APs. We call such AP transition
a handover. However, two main issues currently limit
mobile users from using community networks in such
a mobility-aware scenario. First, operators have not
deployed the necessary infrastructure to allow mobile
users to perform handovers without being disconnected
at the application layer, i.e., after a handover on-going
application flows are interrupted. This limitation may be
addressed by deploying a Mobile IP [2] infrastructure, in
which the application flows may be tunnelled through
a Home Agent that belongs to the operator. Second,
independently from the first issue, there is still a lack of
mechanism to intelligently manage a layer 2 handover
between two APs. In current mobile devices, when a
handover occurs, we observe a degradation of on-going

flows corresponding to a dramatic reduction of the TCP
congestion window (CWND) and of the throughput. In
this paper, we focus on this latter issue by analyzing
the impact of layer 2 handovers on mobile users. We
propose Kalman-filter-based HAndover Trigger algo-
rithm (KHAT) that succeeds in intelligently triggering
handovers and reducing the scanning impact on the
mobile device. We propose a complete implementation
of our handover mechanism in Android ICS (4.0) and
show a comparative study to show that our approach
outperforms the handover mechanism that is currently
implemented on these devices.

The paper is organized as follows. Section II
presents the litterature on handover optimization and
Section III analyzes the handover impact on on-going
communications. Section IV introduces KHAT which is
evaluated indoor and outdoor in Section V. Section VI
concludes the paper.

II. HANDOVER PROCESS AND RELATED WORK

The IEEE 802.11 standard defines a handover as a
three steps process: scanning, authentication and asso-
ciation. The standard proposes two different scanning
algorithms namely passive and active scanning. In pas-
sive scanning, the mobile station (MS) simply tunes its
radio on each channel and listens for periodic beacons
sent by the APs. In active scanning, the MS proactively
sends requests in each channel and waits for responses
during a pre-defined timer.

Once candidate APs have been found, the MS se-
lects one of the APs and attempts authentication and
association. If the association is successful, the MS
can send and receive data through the new AP, if this
new AP is on the same IP subnet as the previous AP.
If the new AP belongs to another IP subnet, the MS
needs additional processing to update its IP address
and redirect data flows to its new point of attachment.
Such Layer 3 handover may be handled by specific
protocols like Mobile IP [2]. Note that in this paper
we do not address IP mobility and any layer 3 mobility
management protocol can be use on top of our proposal
if needed.978-1-4799-8461-9/15/$31.00 c©2015 IEEE

In 2012, the IEEE has published new amendments
for IEEE 802.11 handover optimization, aimed at re-
ducing its duration and its impact on higher layers. The
IEEE 802.11k amendment proposes mechanisms for
radio resource measurement for seamless AP transition,
including measurement reports of signal strength (RSSI)
and load of nearby APs. Additionally, the IEEE 802.11r
amendment contains a Fast Basic Service Set Transition
(FT), which avoids exchanging 802.1X authentication
signaling under special conditions by caching authenti-
cation data.

While these features may enhance the handover per-
formance, they heavily rely on a cooperation between
APs, which might not always be a viable solution. In
addition, users may access various networks operated
by different providers. In that case, operators should
share network information and performance among
them, which is quite an unlikely scenario. In this paper,
we focus on MS-based solutions, where the MS itself
handles the handover without the help from the network.
Several works have been proposed in the literature so
far. In general, those studies cover different aspects of
the handover mechanism. We may group them into three
main categories:

• Handover triggering: when to decide that a
disconnection with the current AP will occur.

• AP discovery: how to search for APs on differ-
ent channels by minimizing the impact on the
higher layers.

• Best AP selection: with which AP to associate,
among the discovered ones.

The simplest mechanism to trigger a handover is to
monitor the RSSI as an estimation of the link quality
and start the handover process if the current RSSI is
lower than a pre-established threshold (commonly set
at −80 dBm). Fig. 1a shows the relationship between
the RSSI measured on an MS and the TCP throughput
that we have gathered during more than 600 connections
to community networks in a urban area in Rennes,
France [1]. We observe that the TCP throughput is ex-
tremely variable for high RSSI, but starts degrading for
RSSI lower than −70 dBm, and it becomes significantly
low around −80, dBm.

Some works focus on the anticipation of the han-
dover triggering in order to minimize the impact on
ongoing communications. Mhatre et al. [3] propose
a set of handover algorithms based on continuously
monitoring the wireless link, i.e., listening to beacons
from the current and neighboring channels. These ap-
proaches give handover latencies varying between 150
and 800 ms. However, since these approaches need to
listen to beacons from neighboring channels, it is neces-
sary to modify the firmware of the wireless card, which

may not always be possible. Yoo et al. [4] propose a
number of handover triggering mechanisms based on
predicting RSSI samples at a given future time using
Least Mean Square (LMS) linear estimation. In this
algorithm, the device continuously monitors the RSSI
and computes the LMS prediction if the RSSI is below
a certain threshold (PPred). Then, if the predicted RSSI
value is lower than a second threshold, PMin, the MS
starts a handover.

Wu et al. [5] propose a handover mechanism aiming
at decoupling the AP discovery phase from the AP
selection and reconnection phase. The MS alternates
between scanning phases and a (normal) data mode
where the MS is connected to its current AP. The
time interval between two scanning phases is adapted
depending on the current signal level and varies between
100 and 300 ms. In each scanning phase, the sequence of
channels to scan is selected based on a priority list that
is built based on the results of a periodic full scanning
(i.e., here all channels are scanned).

As far as Android devices are concerned, Silva et
al. [6] present a mobility management solution based on
IEEE 802.21. They propose a mapping of IEEE 802.21
primitives for handover initiation, preparation, execution
and completion to existent Android OS methods and
functions.

III. HANDOVER IMPACT

During an L2 handover, the MS is not able to send
or receive application flows. This is because, usually,
when a MS triggers a handover, the link quality does
not allow exchanging frames anymore, and because
the MS is often switching operating channel. In this
section we evaluate the handover and scanning impact
on application flows, and determine which parameters
influence the scanning latency and success rate.

This testbed consists of nine Cisco Aironet 1040
APs installed in the roof of our building at the locations
given in Fig. 2. All APs are connected to a dedicated
wired LAN. APs broadcast a single SSID, correspond-
ing to an open-system authentication network belonging
to a single IP subnet. We also use a dedicated (fixed)
server for traffic generation and tracing. iPerf is used
to generate TCP downlink traffic to the MS. For each
experiment, we walk from AP1 to AP6 and then back
again to AP1.

A. Operating Systems Benchmark

To illustrate how the handover is currently impacting
data flows, we have performed a set of experiments
to evaluate the degradation of TCP performance for
different devices and Operating Systems (OS). Table I
shows the number of handovers and the average TCP

2

-20

 0

 20

 40

 60

 80

 100

 120

-90 -80 -70 -60 -50 -40 -30

T
h
ro

u
g
h
p
u
t
/
K

B
/s

Signal Strength / dBm

Throughput Std. Dev. Throughput Average

(a) RSSI and TCP Throughput Relation (b) Downloaded data for different OS

0 1 2 3 4

0

2

4

6

Time /s

D
ow

nl
oa

de
d

D
at

a
/M

B
yt

es

(c) Scanning impact on TCP download

Fig. 1: Various TCP performance

Fig. 2: Campus AP Deployment

throughput we have observed for the same path and
same MS speed using different devices and operating
systems. As a baseline, we also show the maximum
achieved throughput for each device remaining static
and connected to a single AP. Using Windows, we
observe the best result, since the MS performs up
to four handovers, reaching an average throughput of
0.875MB/s. Additionally we observe that for Win-
dows, the time in which no data is downloaded (i.e., the
disconnected time) is relatively short compared to the
other OSs. The netbook running Ubuntu reacts slowly
to changing channel conditions: in this case the MS is
disconnected for more than 20 s and executes only two
handovers, indicating that the MS waits until the quality
of the radio link is significantly degraded. Fig.1b shows
the evolution of the downloaded data for each case.
Additionally, we have observed that for the Windows
device, the average round-trip time (RTT) is the lowest
one (103 ms) having also a low standard deviation. This
differs from the other devices that reach larger RTT
values.

B. Scanning Interactions with Data Traffic

We focus on active scanning where an MS sends
Probe Requests on each channel to discover potential
APs, instead of just waiting for periodic beacons (pas-
sive scanning). We chose active scanning because it

allows spending less time in each channel to determine
the AP availability. If the handover phases are done
one after the other, all packets that arrive during the
handover process will be lost. In order to reduce the
impact of handovers on applications flows, it is possible
to introduce a gap between the scanning phase and
the other handover steps, i.e., the decision to handover,
the authentication and the association, as presented
in [5]. An MS may use the power saving mode defined
in IEEE 802.11 to request its current AP to buffer
incoming packets during the time the MS scans other
channels. This way, instead of loosing packets during
the scanning phase, an MS can receive the packets after
the scanning phase, albeit with an extra delay. This
behavior is illustrated in Fig. 1c, where we plot the
sequence number of the received packets of a TCP flow
when an MS is performing one scan of the 13 channels
with an active timer set at 50ms. We can see that the
scan is starting just before the time 1 s, at which no more
data packets are received from the server. Once the scan
is finished, around 850ms after, the MS comes back to
its current AP, and starts receiving TCP packets again.

This technique can also be used to split a scanning
phase into several sub-phases where only a subset of
channels are scanned. For example, to scan the 13
channels, an MS could sequentially scan three times
a subset of 4 (or 5) channels each time, interleaving
these sub-phases with the data mode with the current AP
to retrieve data packets. The impact of the number of
scanned channels, and the timers used in each channel
is given in the next subsection.

C. Scanning Parameters

We analyze the scanning performance under differ-
ent values of timers used to wait for Probe Responses
(from 5 ms to 100 ms) and different number of scanned
channels during a sub-phase (between 1 and 13). In
the standard IEEE 802.11 scanning algorithm, the MS
is supposed to scan each channel using two timers

3

Device OS Version Chipset Static Avg. Mob. Avg. Number of Mean RTT σRTT
Thr. (MB/s) Thr. (MB/s) handovers (ms) (ms)

Asus N10J Win XP SP2 AR5006 5.19 0.878 4 103 43
Asus N10J Ubuntu 10.04 AR5006 4.88 0.601 2 161 360
Nexus S Android 4.0.3 BCM4329 3.80 0.568 5 129 114
MacBook MAC OS 10.7.4 BCM4322 8.44 0.613 3 167 276

TABLE I: Handover performance of different OS

Nb. of AT=5 AT=10 AT=20 AT=50 AT=100
channels (%) (%) (%) (%) (%)

1 3.11 5.76 10.62 22.28 25.24
3 6.45 18.28 32.61 58.18 88.24
5 9.28 21.02 38.83 68.94 89.31
8 10.44 23.61 40.46 70.43 96.58
13 11.74 28.62 45.76 79.88 100.00

RSSI -67.16 -70.07 -76.02 -81.28 -83.26

TABLE II: Percentage of discovered APs for different
values of AT and number of scanned channels

namely MinCT and MaxCT (see section II). However,
the IEEE 802.11 Android driver uses a single timer,
namely Active Timer (AT) for scanning. AT is defined as
the time an MS waits for Probe Responses on a channel.

We ran 60 scanning sub-phases for each AT and
subset of scanned channels and measured the average
number of discovered APs, the RSSI distribution of the
discovered APs and the average duration of the scanning
(i.e., the scanning latency). Results are presented in
Table II. As a baseline, we consider that all the available
APs are discovered when scanning the full channel
sequence (i.e., 13 channels) using AT=100 ms. In the
other cases, the MS discovers only a fraction of the
APs, since it either does not wait long enough to receive
all AP Probe Responses, or because only a subset of
channels are scanned.

We have also observed that when using a short
AT, even if the MS discovers a low number of APs,
those APs have a high RSSI. On the other hand, when
using higher AT values, the MS discovers more APs
but a large part of them have a low RSSI. This can be
observed in Fig. 3a, where we see that for AT=5 ms the
average RSSI of candidate APs is −67 dBm, while for
AT=20 ms, this decreases up to −76 dBm.

IV. KHAT: PROACTIVE HANDOVER ALGORITHM

We propose a handover algorithm called Kalman
Filter-based HAndover Triggering (KHAT for short) that
provides link going down detection, optmized scanning
strategy, and new AP selection. An MS monitors its
link quality with its current AP, and when the signal
strength is degrading, it starts alternating between scan
periods and data communication with the current AP.
The scan periodicity and the timer values are determined
according to the current link quality and whether a can-
didate AP has already been found. Once the candidate

AP becomes better than the current AP, the handover is
triggered.

A. RSSI modelling

One way of keeping track of the changing radio
condition is to track the RSSI on the MS. While far
from being perfect, the RSSI has the advantage of being
always available, whether the MS is exchanging data or
not, as it is updated not only whenever the MS receives
data frames but also when it receives beacon frames,
which are typically sent every 100 ms by most APs.
As the RSSI can fluctuate rapidly, especially when a
user is moving, its instantaneous value is not necessarily
representative. At the same time, its local average and
trend are more useful in deciding whether the radio
channel conditions are improving or not and whether
they are reaching the point where communication is no
longer possible. Using the well known Kalman filter,
it is possible to extract this information from the RSSI
measurements. Many authors have already use Kalman
filter and other time series techniques in order to model
radio channels and the received signal strength, see, for
example, the works by Jiang et al. [7], by Baddour et
al. [8] and references therein.

More formally, let X(ti) , Xi be the received
signal strength at time ti. In our case, we sample
the RSSI roughly every 100 ms; but, as we rely on
software timers, there are no guarantees that the ti’s
will be equally spaced. Figure 3b shows the empirical
distribution of ∆ti = ti− ti−1 for a subset of the traces
we collected. The average is 96 ms and the standard
deviation is 8.2 ms. Given that roughly 90% of the
samples are within less than 100 ms of each other, it
seems reasonable to “re-sample” the time series with a
time-step of 100 ms.

In all the traces we have collected, it is often the
case that several consecutive samples have the same
value, indicating that the received signal strength is
often constant during periods that are longer than the
average distance between samples. The presence of sev-
eral samples with exactly the same value is an obstacle
when one is trying to estimate the local trend of a signal
as, in this case, the estimated slope would be exactly
0. The Kalman filter does not perform well in these
circumstances. As we rely on the values reported by the
802.11 driver, we wondered whether these consecutive
samples with the same values were caused by the driver

4

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●
●

●
●

●

●
●

●●
●

●

●

●

●

−100 −90 −80 −70 −60 −50 −40

1

5

10

50

100

500

1000

Power /dBm

N
um

be
r

of
 d

is
co

ve
re

d
A

P
s

● AT= 5 ms
AT= 10 ms
AT= 20 ms
AT= 50 ms
AT= 100 ms

(a) Number and RSSI of discovered APs
for different AT

80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

1.0

∆t /ms

C
D

F

●● ●
●●●

●●●
●
●

●
●
●
●

●

●

●

●

●
●●

●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

(b) Sampling interval CDF for the original
time series

500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Constant Period Length/ms

C
D

F

●●●●●●
●●●●
●
●

●
●●
●
●
●
●●●
●●●●●●●●●
●●●●● ●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●

(c) The CDF of the length of the periods
where all the received power samples are
equal for the community networks

Fig. 3: RSSI analysis

not updating the values often enough. Figure 3c shows
the distribution of the length of the periods where the
signal strength was constant for several traces collected
using a static MS which was not sending or receiving
data (note that the distribution was the same whether
the test was performed using a laptop running Linux or
a smartphone running Android). The median is 305 ms
and the standard deviation is 306 ms. In the case of
mobile MSs and/or data traffic the median values are
smaller (around 110 ms for MS with data traffic, but
the standard deviation is always larger). In order to
mitigate the effect of these periods, we pre-process
the RSSI samples, using a time-varying exponential
average, before applying the Kalman filter. In order to
further reduce the lag of the smoothed signal, we use a
time-varying weight in the exponential smoothing.

Let Yi be the re-sampled RSSI time series. We
construct the smoothed series Zi as:

Zi = αiYi + (1− αi)Zi−1

where Z1 = Y1 and αi = αup if the RSSI is increasing,
instead whenever the RSSI starts decreasing αi = α1.
Whenever the RSSI is constant the value of αi is
determined by the last change before the beginning of
the constant samples. If the last change was an increase
αi = αup, otherwise αi = min(0.8 · αi−1, αmin). This
corresponds to the pseudo-code in Algorithm 1.

We have used αup = 0.5, so that the smoothed time
series will react quickly to upward changes, α1 = 0.4
and αmin = 0.01 so that it will, instead, react much
more slowly to downward changes. The reason of this
asymmetric behavior is that we are interested in having
an accurate estimate of the level and, above all, of the
trend, only when the signal is decreasing. By using a
larger αi when the signal is increasing we assure that
Z will quickly reach the value of Y reducing the lag
between Y and Z.

Algorithm 1 The algorithm used to compute αi
1: increasing ← FALSE
2: lastV alue← Y1

3: α1 ← α1

4: i← 1
5: while i ≤ length(Y) do
6: if Yi 6= lastV alue then
7: if YI > lastV alue then
8: increasing ← TRUE
9: αi ← αup

10: else
11: increasing ← FALSE
12: αi ← α1

13: end if
14: else
15: if increasing =FALSE then
16: if αi−1 > αmin then
17: αi ← 0.8 · αi−1

18: else
19: αi ← αi−1

20: end if
21: else
22: αi ← αup
23: end if
24: end if
25: end while

We have verified that the received power times series
of our sample are indeed non-stationary by computing
their autocorrelation functions, which were all slowly
decreasing (as a function of the lag). We have then
decided to use a state-space based model to represent
the evolution of the power over time. In particular we
have used the local linear trend model (see, for example,
Durbin and Koopman [9]):

Zi = µi + εi εi ∼ N (0, σ2
ε)

µi+1 = µi + νi + ξi ξi ∼ N (0, σ2
ξ) (1)

νi+1 = νi + ζi ζi ∼ N (0, σ2
ζ)

5

where Zi is the time series under scrutiny, µi is the
level at time i, νi is the slope at time i and εi, ξi, ζi
are independent identically distributed (i.i.d.) Gaussian
random variables with 0 mean and variance σ2

ε , σ
2
ξ , σ

2
ζ

respectively. These variances can be obtained by Max-
imum Likelihood Estimation from sample realizations
of Z.

Once the values for the variances are specified, and
given a realization of Zi (i = 0, . . . , n), one can use
the well known Kalman filter algorithm to compute
µi and νi for any value of i (again, see, for example,
Durbin and Koopman [9]). To be more precise, one can
solve the “filtering” problem, where the values of µi
and νi are computed using the samples Z0, Z1, . . . , Zi.
At first, we have used the dlm [10] R [11] package to
solve the filtering problem. Note that, as the filtering
problem uses only the samples between 0 and i, it can
be implemented in real time as it depends only on past
values of the time series. The Kalman filter can also
be used to predict future values. In the case of the
local linear trend model (1), the prediction algorithm is
extremely simple: one can just model the future values
of the time series using a straight line with slope νi,
starting at the value µi at time i.

We have also implemented the Kalman filter on a
Samsung Nexus S smartphone, in the WiFiStateMachine
module of the Android Java framework. For the sake of
simplicity we have used a straightforward implementa-
tion of the Kalman recursion. The general form of the
Kalman filter is:

Zi = FΘi + v vi ∼ Nn(0, Vi)

Θi = GΘi−1 + wi wi ∼ Nm(0,Wi)

For the local linear trend model Z is a scalar, and so is
v, while:

Θi =

(
µi
νi

)
, G =

(
1 1
0 1

)
,W =

(
σ2
ξ 0

0 σ2
ζ

)
, F = (1 0) .

We are interested in computing the 2× 2 vector mi =
(E[µi] E[βi])

T , containing the expected values of the
level (µi) and slope (νi). It is known [9] that one can
compute these values using the following equations:

mi = ai +RiF
T
i Q
−1
i ei fi = Fiai

Ci = Ri −RiFTi Q−1i FiRi Qt = FiRiF
T
i + Vi

ai = Gimi−1

Ri = GiCi−1G
T
i +Wi

where ei = Yi − fi, and the following initial values:
C0 =

(σ2
1 0

0 σ2
2

)
, m0 = (Z0 0)T are used for C and

m. The values of σ2
1 and σ2

2 have almost no influence
on the computations as the matrices R,F, T, C quickly

converge to steady state values which are independent
from the initial values.

The local linear trend model 1 is characterized
by three parameters: σ2

ε , σ
2
ξ , σ

2
ζ . It is possible to use

Maximum Likelihood Estimation (MLE) methods to
estimate the values of these parameters from sample
realizations of Z. We have used the MLE functions of
the dlm package to this end, but in some cases the
optimization algorithm used to compute the MLE did
not converge. When it converged its estimations for σ2

ε
and σ2

ζ where not always consistent over all the samples
but the order of magnitude was fairly consistent, with σ2

ε
usually smaller than σ2

ζ and with σ2
ε often fairly close

to 0. It should be stressed that, in this case, there are
no guarantees about the convexity of the optimization
problem solved by the MLE procedure, which can
very well converge to a local minimum instead of a
global one. Also it is not uncommon to tune the model
parameters in order to improve its performances. In our
case we have observed that using σ2

ε = 0.5, σ2
ξ = 1

and σ2
ζ = 2.5, we obtain fairly smooth level and slope

values, which can be effectively used by the KHAT
algorithm.

B. Algorithm design

KHAT adapts the scanning strategy, the scanning
period and the handover trigger by comparing an es-
timate of the link quality and the quality of candidate
AP as presented in Fig. 4. The main process consists
in continuously monitoring the RSSI of the current link
and detect a link going down event. To achieve this,
we use the Kalman filter to obtain the current value
of the RSSI (µ) and the slope (ν). After analyzing a
large number of RSSI time series, we have estimated
that the link going down trigger can be declared if
µ < −70 dBm and ν < −0.2 dBm/s. If the link
going down condition is satisfied, the MS check on its
candidate AP list. If there is not a valid candidate AP,
the MS will attempt scanning only if there has not been
another scanning instance for the last TScan seconds. On
the other hand, if after triggering a link going down
condition, the MS has a valid candidate it will attempt
a handover only if the difference between the candidate
AP RSSI and the current exponentially smoothed RSSI
sample (µ) is greater than ∆, where ∆ is defined as
follows:

∆ =

8 , if µ > −70

5 , if − 70 ≤ µ < −75

3 , if − 75 ≤ µ < −80

2 , if µ ≤ −80.

(2)

After a scan completes, an existing candidate AP
would be updated with a new RSSI, or a new candi-
date may be selected. Additionally, in order to avoid

6

Monitor

RSSI
going
down?

Candidate
AP ?

Handover
Condition ?

TScan
expired ?

Scan

New Scan
Results

Update TScan

Handover
Condition ?

Candidate
AP ?

Handover

Y

Y N

YYY

N

NN

Y

Update
Candidate

Fig. 4: Algorithm Flow Chart

µ Number of Active Time Scanning duration
(dBm) channels (ms) (ms)

(+∞,−75) 13 5 150
[−75,−80) 13 10 250
[−80,−∞) 13 20 400

TABLE III: Scanning Strategies

scanning at a very high frequency, we adapt the value
of TScan depending on the scanning results. Each time
the MS triggers a link going down, if a candidate AP
exists, we double the current value of TScan (up to 1 s)
since it is not necessary to scan at a high frequency if
there is at least one candidate AP. On the other hand,
if no candidate exists at that time, we set TScan to its
minimum value (250 ms).

The scanning strategy itself is also adapted depend-
ing on the current link condition. Each scanning strategy
consists in determining a number of channels to scan
and the time to wait on each channel (AT in Android
system). Based on results presented in section III-C we
fixed AT as presented in Table III: the better the current
link quality is, the less time the MS will spend scanning,
because it still has time to find APs before it disconnects
from its current AP. When the signal quality with the
current AP is low, we set aside more time for the MS to
scan, in order to maximize the probability to find an AP.
In order to contain the scanning duration, we propose to
use AT in {5 ms, 10 ms, 20 ms}. The reason is that for
smaller scan times, we only find APs with high RSSI
(as shown in section III-C) and as we are in fairly good
condition, the MS would only be interested in AP with
high RSSI.

V. EXPERIMENTATION

A. Methodology and implementation

We have implemented our solution on the Android
ICS 4.0.3 system working on a Samsung Nexus S
(GT-I9023) smartphone. It involves modifications in
the Android Java Framework, the WPA Supplicant

KHAT Stock Android
Indoor Average Power (dBm) -63 -68

Average Throughput (MB/s) 2.11 0.80
Outdoor Average Power (dBm) -71 -77

Average Throughput (MB/s) 0.22 0.12

TABLE IV: Performance comparison

0 50 100 150 200 250 300
Scan Occurences

AP 1

AP 2

AP 3

AP 4

AP 5

AP 6

AP 7

AP 8

AP 9

AP 10

AP 11

AP 12

AP 13

AP 14

AP 15

AP 16

AP 17 90

85

80

75

70

65

60

55

50

Fig. 9: Heatmap of the selected AP in the outdoor
environment

and the Linux driver (BCM4329). We moved at the
same time two identical smartphones, one with KATH
implementation and the other with stock Android, in
two different environments. The first set of experiments
was performed in our building as described in Fig 2.
The mobile user walks at a roughly constant speed
and each connection lasts for 120 s. The second set of
experiments was performed in the city of Luxembourg,
using the HOTCITY Wifi deployment (see [12] for more
details). In all cases, we use iperf to generate the TCP
traffic for both MSs and generate several connections
for more than one hour.

B. General results

Fig. 5, 6, 7 and 8 show the RSSI and the received
TCP data for the two considered environments, over one
connection duration, while Table IV shows the average
over all connections that we made. We can see that
KHAT provides a better RSSI (-69 dBm in average)
along the connections and allows the smartphone to
have a better throughput than stock Android (222 kB/s
versus 146 kB/s). We can also see that KHAT triggers
the handover systematically before stock Android to
avoid suffering from a poor quality with its current AP.
Sometimes, as at Time=400s of the outdoor connection,
KHAT manages to find an intermediate AP between
those chosen by Stock Android which allows to signig-
icantly increase both the RSSI and the TCP download.
Looking at the zoom of Fig. 8 between Time=200s and

7

0 50 100 150

−
90

−
80

−
70

−
60

−
50

Time (s.)

R
S

S
I (

dB
m

)

● ● ● ● ● ● ● ● ●

●

KHAT RSSI
Legacy RSSI
KATH Handover
Legacy Handover

Fig. 5: RSSI for Legacy and KHAT smartphones indoor

0 50 100 150

0
50

10
0

15
0

20
0

Time (s.)

D
ow

nl
oa

de
d

D
at

a
(M

B
)

KHAT Rx
LegacyRx
KHAT Handover
Legacy Handover

Fig. 6: Received data for Legacy and KHAT smartphones indoor

0 200 400 600 800 1000

−
90

−
80

−
70

−
60

−
50

Time (s.)

R
S

S
I (

dB
m

)

● ● ● ● ● ●● ● ● ●●●● ●●●●● ●●● ● ● ● ● ● ● ●● ●

●

KHAT RSSI
Legacy RSSI
KATH Handover
Legacy Handover

Fig. 7: RSSI for Legacy and KHAT smartphones outdoor

0 200 400 600 800 1000

0
50

10
0

15
0

Time (s.)

D
ow

nl
oa

de
d

D
at

a
(M

B
)

KHAT Rx
LegacyRx
KHAT Handover
Legacy Handover

200 220 240 260 280 300

20
30

40
50

Fig. 8: Received data for Legacy and KHAT smartphones outdoor

300s, we can see a quite large period of time (around
50s) where the Legacy smartphone is not able to receive
any data from the TCP server. On the other hand,

KHAT is performing two handovers. The first handover
at Time=233s is made prior to the Legacy handover, but
still a stagnation in the received data is observed before

8

and after the handover. However the second handover
at Time=275s is smooth and does not impact the data
reception.

Fig. 9 shows the list of selected APs from the chosen
connection in the outdoor environment captured by an
MS running Wi2me[1]. The APs are shown in their
apparence order along the path. We can see that for
the six first APs, the KHAT AP selection is judicious:
when the signal strength of one AP is degrading, another
AP becomes available. However, between scanning oc-
curence 140 to 200, there is not ideal choice for any
AP. Observing that the RSSI is low, KHAT is trying
to handover to different AP at this period of time,
osciatilling between AP7, AP8, AP9 and AP10. These
are the handovers we can see around Time=625s in Fig
7. While KHAT avoids to trigger handover when it is
not for a significantly better AP, in areas where all APs
offer low RSSI, KHAT may trigger several handovers. It
finally finds AP11 at Time=721s which was providing a
good coverage area. During this period, we can see that
the Legacy phone did not trigger any handover and was
unable to receive any data for a long period of time.

VI. CONCLUSION

IEEE 802.11 is one of the most popular wireless
standard to offer high data rate Internet connection.
With the vast number of hot-spots and community
networks that are deployed today, there is a potential
for users to use Wifi network in mobility scenarios.
However, as the AP coverage area is usually limited
to few tenths of meters, there is a strong need for
optimized mobility support, when users move from one
AP to another one. We have shown in this paper that
current devices are able to transit between APs, but the
handover performance is quite low.

We proposed a handover algorithm called KHAT
that anticipates the signal loss from the current AP to
preemptively scan for potential APs. The prediction of
the link going down is achieved with a Kalman filter
which estimates the slope of the RSSI to determine
the link condition. If the estimate is below a given
threshold (smooth RSSI lower than −70 dBm and slope
lower than 0.2), we launch a scanning. Data packets can
be buffered (and retrieved later on) by the AP during
the MS scanning by exploiting the power saving mode
defined in 802.11. Depending on the scanning results,
the MS will either handover to a new (better) candidate
AP that has been found, or it will loop on the link
quality prediction. The scanning period and strategy are
adapted depending on the current link condition.

We have implemented KHAT on Android ICS 4.0.3
system working on a Samsung Nexus S (GT-I9023). To
address the tradeoff between the scanning latency and
the AP discovery, the MS is scanning with AT=20 ms if

a handover is imminent, AT=10 ms when the link quality
is medium and AT=5 ms when the link quality is good.
In two different environments (indoor and outdoor), we
compared a Stock Android with a KHAT smartphone.
We have shown that KHAT outperforms Stock Android
by anticipating handovers, and using more APs available
on the path. The average RSSI is 6dBm either in
the outdoor environment, and the TCP throughout is
0.22MB/s compared to 0.12MB/s for Stock Android.
The perspective of this work is to apply the link quality
prediction on candidate APs in order to better choose
the target AP when a handover is needed.

VII. ACKNOWLEDGMENTS

This work has received a French government support
under reference ANR-10-LABX-07-01 (Cominlabs).

REFERENCES

[1] G. Castignani, A. Lampropulos, A. Blanc, and N. Montavont,
“Wi2Me: A Mobile Sensing Platform for Wireless Hetero-
geneous Networks,” in International Workshop on Sensing,
Networking and Computing with Smartphones (Phonecom),
IEEE ICDCS, june 2012.

[2] C. Perkins, “IP Mobility Support for IPv4,” Internet Requests
for Comments, IETF, RFC 3220, february 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3220.txt

[3] V. Mhatre and K. Papagiannaki, “Using smart triggers for
improved user performance in 802.11 wireless networks,” in
Proc. of the 4th int. conf. on Mobile systems, applications and
services, 2006, pp. 246–259.

[4] S. Yoo, D. Cypher, and N. Golmie, “LMS predictive link trig-
gering for seamless handovers in heterogeneous wireless net-
works,” in IEEE Military Communications Conference, 2007.
MILCOM 2007. IEEE, Oct. 2007, pp. 1–7.

[5] H. Wu, K. Tan, Y. Zhang, and Q. Zhang, “Proactive scan:
Fast handoff with smart triggers for 802.11 wireless LAN,”
in INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, May 2007, pp. 749–757.

[6] R. Silva, P. Carvalho, P. Sousa, and P. Neves, “Enabling
heterogeneous mobility in android devices,” Mob. Netw. Appl.,
vol. 16, no. 4, pp. 518–528, Aug. 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11036-011-0322-6

[7] T. Jiang, N. Sidiropoulos, and G. Giannakis, “Kalman filtering
for power estimation in mobile communications,” Wireless
Comm., IEEE Trans. on, Jan 2003.

[8] K. Baddour and N. Beaulieu, “Autoregressive modeling for
fading channel simulation,” Wireless Comm., IEEE Trans. on,
july 2005.

[9] J. Durbin and S. Koopman, Time series analysis by state space
methods, ser. Oxford statistical science series. Oxford Univ.
Press, 2001.

[10] G. Petris, “An R package for dynamic linear models,”
Journal of Statistical Software, 2010. [Online]. Available:
http://www.jstatsoft.org/v36/i12/

[11] R Development Core Team, R: A Language and Environment
for Statistical Computing. [Online]. Available: http://www.R-
project.org

[12] G. Castignani, J. Monetti, N. Montavont, A. Arcia-Moret,
R. Frank, and T. Engel, “A study of urban ieee 802.11 hotspot
networks: towards a community access network,” in Wireless
Days (WD), 2013 IFIP, Nov 2013, pp. 1–8.

9

