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A B S T R A C T

Accurate forecasting of Global Horizontal Irradiance (GHI) is essential for the integration of the solar resource in
an electrical grid. We present a novel data-driven method aimed at delivering up to 6 h hourly probabilistic
forecasts of GHI on top of a localized solar energy source. The method does not require calibration to adapt to
regional differences in cloud dynamics, and uses only one type of data, covering Europe and Africa. It is thus
suited for applications that require a GHI forecast for solar energy sources at different locations with few ground
measurements. Cloud dynamics are emulated using an analog method based on 5 years of hourly images of
geostationary satellite-derived irradiance, without using any numerical prediction model. This database contains
both the images to be compared to the current atmospheric observation and their successors at one or more
hours of interval. The physics of the system is emulated statistically, and no numerical prediction model is used.
The method is tested on one year of data and five locations in Europe with different climatic conditions. It is
compared to persistence (keeping the last observation frozen), ensemble persistence (generating a probabilistic
forecast using the last observations) and an adaptive first order vector autoregressive model. As an application,
the model is downscaled using ground measurements. In both cases, the analog method outperforms the classical
statistical approaches. Results demonstrate the skill of the method in emulating cloud dynamics, and its potential
to be coupled with a forecasting algorithm using ground measurements for operational applications.

1. Introduction

In the context of a growing need for sustainable energy, the solar
resource ranks among the most promising solutions to meet this up-
coming demand. However, the intermittent nature of its production
makes its integration into an electrical grid challenging. Accurate
forecasting of solar production is essential to ensure the stability of the
grid and to optimize energy consumption. The main input for most solar
power generation systems is Global Horizontal Irradiance (GHI), and its
accurate probabilistic and deterministic forecasting is essential. The
main source of variability in GHI is clouds, and thus most GHI fore-
casting algorithms aim at predicting cloud dynamics. The best per-
forming method for GHI forecasting depends on the forecast horizon
(see the reviews Heinemann et al., 2006; Diagne et al., 2013). For intra-
hour forecasting, machine learning methods (Marquez et al., 2013) or
on site cloud tracking methods (Marquez and Coimbra, 2013) have
been developed, while for more than six hours ahead and day ahead
forecasts, Numerical Weather Prediction (NWP) forecasts are generally
used as the primary source of information (Mathiesen et al., 2013;

Thorey et al., 2015). Using satellite images provides information on
horizontal cloud structures and has proven to be efficient for the intra-
day horizon (see the recent review by Yang et al., 2018). The widely
studied cloud motion vector methods (Hammer et al., 1999; Lorenz
et al., 2004; Escrig et al., 2013) estimate a motion field from successive
cloud satellite images and produce a forecast by advecting the clouds.
The main drawback of these methods is the need for post-processing to
take into account cloud dissipation and deformation. Numerical
weather prediction models are another option, but require a well tuned
regional atmospheric model (Mathiesen and Kleissl, 2011; Perez et al.,
2010). However, to satisfy a forecasting demand for a large number of
sites at different locations where ground observations are sparse, a
robust and easy-to-use method is still needed.

The analog method, first introduced by Lorenz (1969), has gained
renewed interest over the last few years, due to the availability of huge
data sets and its computational efficiency. In particular, atmospheric
analogs using ground radar data are used for precipitation nowcasting
(Panziera et al., 2011; Atencia and Zawadzki, 2015). For a given ob-
servation of the atmosphere, analogs are past atmospheric states with
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an evolution which is assumed to be similar to that of the observed
state. The forecast is issued by first running a k-nearest neighbor al-
gorithm on a historical data set of atmospheric states, finding the
nearest neighbors to the observed state vector (the analogs). The past
evolution of the analogs (called the successors) gives the prediction.
The physics of the system is thus contained in the analog-successor pair,
which is a real state of the atmosphere. Finding analogs with similar
evolution to that of the current atmospheric state implies using a large
historical data set (Van den Dool, 1994), and choosing an appropriate
horizontal spatial domain over which analogs are compared to the
observation (Root et al., 2007). For instance, a strong orographic for-
cing (as in Panziera et al., 2011), ensures a link between different at-
mospheric variables over a reduced region and helps identify good
analogs by looking at cloud structures only in this domain. In general,
the choice of the domain is crucial to constrain the problem such that
only meaningful information is considered to identify analogs (see
Lguensat et al., 2017 for a detailed discussion on local versus global
analogs). Adding a temporal constraint to the analog selection, i.e.,
considering past states that are at the same phase of a diurnal and/or
seasonal cycle as the observation (e.g. Atencia and Zawadzki, 2015), is
also an additional way to improve the quality of the analogs. Finally,
the method is sensitive to the choice of the features on which the
analogs are selected. Indeed, both for computational efficiency and to
avoid overfitting, it is convenient to compress the state vectors in a
space of reduced dimension (the feature space) before running the k-
nearest neighbor algorithm. Features represent the information de-
termining atmospheric evolution and are another way to constrain the
problem. However, as pointed out by Atencia and Zawadzki (2015), it is
difficult to evaluate the quality of a given choice of features other than
by testing different configurations.

In the context of GHI forecasting, analog methods have been de-
veloped using a combination of ground measurements and NWP out-
puts. The aim of the methods is not to emulate atmospheric dynamics,
as for precipitation nowcasting methods, but rather to apply a post-
processing to NWP forecasts using a historical data set. The Pattern
Sequence-based Forecasting method, introduced by Alvarez et al.
(2011) and further developed by Wang et al. (2017) uses the afore-
mentioned information as an input of a clustering algorithm. A unique
label is assigned to each day of the data set. The last few observed labels
define a temporal pattern, and similar past occurrences of this pattern
are retrieved from the historical data set, providing a forecast for the
next day. Hourly forecasts of GHI are performed in (Alessandrini et al.,
2015) using past NWP outputs as features to identify analogs to a
current NWP forecast. The concurrent past observations and successors
are then used as an ensemble, providing a probabilistic forecast of GHI
in place of the NWP forecast. Note that this method has been further
combined with a neural network (Cervone et al., 2017), also used in the
context of nowcasting by Aguiar et al. (2015).

Both GHI and precipitation prediction methods require cloud fore-
casting. There are, however, two fundamental differences between the
analog methods used for precipitation nowcasting (Panziera et al.,
2011; Atencia and Zawadzki, 2015) and for GHI forecasting (Alvarez
et al., 2011; Alessandrini et al., 2015). First, the type of data is different.
Global Horizontal Irradiance analog methods use NWP outputs to
identify analogs, as opposed to only measurements for precipitation
nowcasting. Outputs from NWP have the advantage of providing dif-
ferent variables apart from GHI (e.g. ground temperature, pressure,
wind speed) that can be used as features to identify analog situations.
However, they require a well tuned regional atmospheric model over
the region of interest, i.e., which contains all the relevant physical
processes governing GHI variability over a given region. Apart from the
computational cost of tuning and running such a model, a correct re-
presentation of the physics can be challenging in specific regions, for
instance close to a mountain range. Precipitation nowcasting methods,
by using only measurements to identify analogs, emulate the physics
governing GHI variability with a statistical model (the k-nearest
neighbor algorithm), and do not rely on any physical parametrization of
the atmosphere. Using outputs from a well tuned NWP model usually
guarantees better performances at longer lead times (beyond 6 h).

The second difference is the type of information used to identify
analog situations. The GHI forecasting methods presented above are
based on temporal patterns: temporal sequences of NWP outputs above
a given site are used, and additional information is added by using the
different variables of the NWP models. On the other hand, using ground
radar data or satellite-derived irradiance maps means using mainly
spatial patterns to find similar physical situations (even-though tem-
poral information can also be included by looking at sequences of
images). Note that spatial information has been used for GHI fore-
casting using a gridded output of an NWP model by Davò et al. (2016).

In this paper, we present a methodology based on the analog
method to forecast GHI over a solar energy source. Analogs are iden-
tified by comparing spatial cloud patterns from hourly images of sa-
tellite-derived irradiance. These are easily available over Europe and
Africa, and no additional data are used. The method needs no calibra-
tion of physical parameters to adapt to different climates. It is inspired
from precipitation nowcasting analog methods, while carefully ad-
dressing the points highlighted above: the choice of the spatial domain
is automatic and physical, and the choice of the features is carefully
tested within a novel framework. In Section 2, we present the satellite
and ground data. The analog algorithm is described in detail in Section
3. Section 4 presents a novel framework to evaluate the validity of the
selected analogs, justifying some of the choices made in the metho-
dology. Three reference statistical methods are then presented in Sec-
tion 5, to which the analog method is compared in terms of standard
forecasting scores in Section 6. Finally, a short overview of a simple
downscaling method using additional ground measurements is

Nomenclature

G global horizontal irradiance (Wm−2)
Gclr clear sky irradiance (Wm−2)
c cloud index
t time (one hour resolution)
d day of year
h hour of day
c cloud index
x y( , ) latitude and longitude of satellite-image pixels
x y( , )s s latitude and longitude of a site satellite-image pixel
DVI daily variability index
DCI daily clearness index
Cm daily temporal correlation map of cloud index
Cn

p spatial correlation between n-th analog and observation

∗Cn optimal spatial correlation for the n-th analog
wn analog weights
co observed cloud index

̂c forecasted cloud index
A analog design matrix
S successor feature matrix
W analog weights matrix
B linear regression coefficients
rn linear regression residuals
σ standard deviation of the forecast
p l( )s d( , ) average probability of the most probable cluster transi-

tions
X VAR(1) method design matrix
y VAR(1) method endogenous variable
Bar VAR(1) method linear regression coefficients
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presented in Section 7. Conclusions and perspectives are presented in
Section 8.

The outputs of the algorithm and the code used to generate the
figures are available freely on https://github.com/AAyet/analog-solar-
forecasting.

2. Data pre-processing

In this Section, we present the satellite and ground data used in this
study. We then introduce the variable of interest, the cloud index, that
is forecasted by the analog method.

2.1. Satellite and ground data

The Ocean and Sea Ice Satellite Application Facility (OSI SAF), al-
most in real time, develops, processes and distributes products related
to key parameters of the ocean-atmosphere interface, that can be ac-
cessed free of charge (http://www.osi-saf.org). To demonstrate the al-
gorithm, we used an archive of 18,521 images of satellite-derived GHI
obtained from the Meteosat Second Generation geostationary satellites
covering Europe and Africa (Brisson et al., 1999; Le Borgne et al., 2004,
2011). The images were remapped on a regular grid of °0.05 and in-
terpolated to produce hourly maps. The archive extended from 2011-
09-06 to 2016-12-31. We used the year 2016 as a test year and the rest
of the archive as the training set. Aerosols are the main source of errors
in satellite observations. This is corrected by OSI SAF with a determi-
nistic global correction varying in latitude and period of the year,
without accounting for Saharan dusts. There is no site adaptation and
the correction is not parameterized by the soil albedo, which varies
mainly with orography. Moreover, systematic errors occur in the mid-
latitudes. Although satellite information has good spatio-temporal
sampling, ground measurements are needed to avoid specific atmo-
spheric contamination.

The method was tested at the location of five stations of the Baseline
Surface Radiation Network (BSRN, Ohmura et al., 1998) where pyr-
geometer measurements are available. The stations are shown in Fig. 1
(a) and are described in detail in Table 1. They cover the wide range of
climates required to test the robustness of the method to local variations
in cloud dynamics. The climatic difference between the sites is in-
vestigated further in Section 2.3. The algorithm is tested considering
the observed satellite value of GHI to be the reference truth. In Section
7 the ground measurements are also used to present a simple down-
scaling method as a simple extension. Note that in the following, the
Payerne ground data will not be used, due to a lack of historical mea-
surements.

2.2. Cloud index and clear sky irradiance

Satellite-derived GHI, noted as G (see Fig. 1(a) for an example), can
be decomposed into two contributions: clear sky irradiance Gclr , the
radiation received by the ground in the absence of clouds, with a de-
terministic diurnal and seasonal cycle, and cloud cover, a negative
contribution which is the main source of unpredictability of GHI. Cloud
cover is represented by the cloud index c varying between zero and one
such that

= −G c G(1 ) .clr (1)

Clear sky irradiance Gclr is usually computed using a clear sky model
(e.g. the Ineichen and Perez model (Perez et al., 2002), the Heliosat
method (Cano et al., 1986; Hammer et al., 2003), or the Frouin and
Chertock (1992) parametrization, used by OSI SAF). It uses a de-
terministic formula accounting for the diurnal and seasonal variations
in the solar zenith angle together with an aerosol climatology. In this
paper, for simplicity, we do not use such deterministic formulations for
Gclr . Instead, for a given day and hour d h G( , ), clr is computed by taking
the maximum GHI in the satellite database for data within a 3-month

interval d h( , )� around d h( , ) such that

=
∈

G d h x y t x y( , , , ) max G( , , ).clr
t d h( , )� (2)

An example of a cloud index map obtained with this clear sky model
is presented in Fig. 1(b).

This simplistic model omits some features of the real atmospheric
irradiance, such as cloud enhancement events (Inman et al., 2016),
where GHI is enhanced as compared to a cloud-free situation due to the
presence of clouds. These events induce an overestimation of the clear
sky irradiance in Eq. (2). An evaluation of the quality of the simplistic
clear sky model was done by comparing it to the Ineichen and Perez
model, implemented with a monthly climatology of Linke turbidity
(describing the optical thickness of the atmosphere due to both the
absorption by water vapor and the absorption and scattering by aerosol
particles relative to a dry and clean atmosphere). The clear sky model
(2) was trained over the historical data set of satellite-derived irra-
diance as defined in the previous subsection (from 2011 to 2015), and it
was compared to the prediction of the Ineichen and Perez model over
the year 2016 (the test data set). We used the Mean Bias Error and the
Root Mean Squared Error, defined in Section 6.2. Results are presented
in Table 2. The simplistic clear sky model has a negative bias, which is
low with respect to the RMSE as a result of the cloud enhancement
events.

Such a simplistic model was used since the main goal of the paper is
to assess the skill of the analogs to emulate cloud dynamics, i.e., at
forecasting the cloud index. The scores presented in Section 6 have been
computed in terms of GHI, but similar results have been observed when
computed in terms of cloud index, revealing that their interpretation is
not biased by the clear sky model errors. This model thus provides a
sufficiently good data set of cloud index maps to test the validity of the
proposed method.

2.3. Climatic description of the sites

One of the main goals of the present work is to assess the robustness
of the analog method to different climatic situations. To further in-
vestigate the difference in climate between the different BSRN sites, we

Fig. 1. (a) OSI SAF Eumetsat satellite-derived GHI image with selected BSRN stations; (b)
cloud index obtained after applying Eq. (1) to (a), on 2016-07-2.
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used the simplified framework presented in Huang et al. (2014) and
originally introduced in Stein et al. (2012).

Two daily indices are computed over the whole data set, the Daily
Variability Index (DVI)

=
∑ −

∑ −
= −

= −

G t x y G t x y
G t x y G t x y

DVI
| ( , , ) ( , , )|

| ( , , ) ( , , )|
i
n

i s s i s s

i
n

clr i s s clr i s s

2 1

2 1 (3)

and the Daily Clearness Index (DCI)

=
∑

∑
=

=

G t x y
G t x y

DCI
( , , )
( , , )

,i
n

i s s

i
n

clr i s s

1

1 (4)

where ∈ …t( )i i n{1, , } is the set of times in a given day (with an hourly
temporal resolution). Note that one DVI and one DCI value are com-
puted per day in the data set, as opposed to one per day of one year in
the case of clear sky irradiance.

Daily Clearness Index measures the average GHI relative to clear sky
for a given day, and is between zero and one, while the DVI measures its
variability, and is positive. The combination of both indices allows us to
distinguish between three types of days: overcast days, with a DCI close
to zero and a DVI lower than one, intermittent days, with a higher DCI
and a DVI higher than one, and clear days, with a DCI and a DVI close to
one (see Fig. 2 of Huang et al., 2014 for more details).

The Probability Density Function (PDF) of both indices is then es-
timated using a Gaussian kernel density estimation method, where the
bandwidth is estimated using Scott’s rule (Scott, 2015). The resulting
PDFs are presented in Fig. 2, using ground measurements or satellite-
derived irradiance to compute the indices.

There is a clear difference between the different sites, that is visible
both from satellite-derived irradiance (Fig. 2(a) and (b)) and ground
measurements (Fig. 2(c) and (d)). Palaiseau and Camborne exhibit si-
milar PDFs, indicating a high proportion of variable and overcast days.
Carpentras and Cener show an opposite behavior, with a higher pro-
portion of clear days, even-though the DCI of those sites is different,
showing that Cener has a higher proportion of overcast days than
Carpentras. The Payerne site (for which ground measurements are un-
available), shows in-between characteristics. Overall, the five different
sites have a different proportion of overcast, intermittent and clear
days, indicating different climates.

3. The analog method

3.1. Overview of the method

In this section we present the analog method as implemented in this
work. To forecast the cloud index over a given site (a pixel of a satellite-
derived irradiance map), the method requires a current observation of
the cloud structures from which the forecast is made (a cloud index map
around the pixel of interest) and a historical or training data set (a set of
past cloud index maps around the pixel of interest). The method is di-
vided into three steps.

The first step is the selection of the closest analogs to the current

Table 1
Selected BSRN stations with corresponding latitude, longitude, altitude and climate.

Station Latitude Longitude Altitude (m) Climate

Palaiseau (France) 48.713 2.208 156 Continental
Carpentras (France) 44.083 5.059 100 Mediterranean
Camborne (England) 50.217 −5.317 88 Oceanic
Payerne (Switzerland) 46.815 6.944 491 Semi-continental
Cener (Spain) 42.816 −1.601 471 Oceanic

Table 2
Mean Bias Error (MBE) and Root Mean Squared Error (RMSE) in Wm−2 between the
estimated clear sky value from Eq. (2) and the Perez and Ineichen model.

Station MBE RMSE

Palaiseau −72 124
Carpentras −78 121
Camborne −70 124
Payerne −35 98
Cener −76 117

Fig. 2. Estimated probability distribution function (PDF) of [(a), (c)] DVI and [(b), (d)] DCI for the selected BSRN sites; (a) and (b) are from one pixel satellite-derived irradiance while (c)
and (d) are from ground pyrogeometer measurements.
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observation, through a k-nearest neighbor algorithm. This implies two
sub-steps. Given a site over which the forecast is made, a set of
neighboring pixels is first constructed. These pixels are those with
maximal information explaining the variability in the cloud index of the
considered site. They define a correlation mask around the considered
site, the size and shape of which depend on the day of the year under
consideration (due to the seasonal variation of the cloud structures). To
forecast the cloud index over a site for a given day of a year, only the
pixels within the mask are considered, both for observation and for the
training data set.

The resulting reduced images are then compressed into four fea-
tures, that represent physical attributes of the cloud structures. The k-
nearest neighbors (the analogs) to the observation are then retrieved: in
the four-dimensional feature space, they are the closest images to the
observation in terms of Euclidean distance. The compression into four
features aims at both avoiding the “curse of dimensionality” due to the
high number of pixels contained in the masks, and at including physical
reasoning in the algorithm. The choice of the features can seem arbi-
trary, and is thus further investigated in Section 4.

The second step is the generation of a prediction ensemble from the
selected analogs. It consists of a set of possible forecasts, weighted ac-
cording to their reliability. Since the aim of the method is to forecast the
cloud index over a precise pixel, the analogs are first spatially translated
to match the observation as closely as possible. The resulting translated
images are then weighted as a function of their correlation with the
observation: a higher correlation is interpreted as a more reliable
analog and thus has a higher weight. The ensemble of predictions is
thus the ensemble of successors (the images that were observed l hours
after the analogs, l being the lead time of the forecast), translated and
weighted in the same way as the corresponding analogs.

The last step is to aggregate the ensemble in order to estimate a PDF
of the forecast. Under the assumption that the PDF is Gaussian, the
estimation is made through a weighted linear regression between the
analogs and the successors. The aggregation method, called local linear
regression in the context of analog methods, is known for its robustness
to small data sets and for handling non-linearities.

The method has one critical parameter, which is the number k of
analogs selected in the first step. The determination of the optimal
number of analogs is presented in Section 6.1. In the rest of the section,
each of the steps of the method is explained in more detail.

3.2. Correlation mask

For a given site of coordinates x y( , )s s , it is crucial to automatically
select the zone in which the analogs are sought. In the case of pre-
cipitation forecasts (Atencia and Zawadzki, 2015; Panziera et al.,
2011), a rectangular window is selected manually according to the scale
of the structures to be forecasted and the bottom boundary forcing
(mainly orographic). It is, however, essential for the method to have an
automatic zone selection. In Dambreville et al. (2014), inter-correlation
maps between the pixel of interest and the surrounding region are
computed. It is shown that using them to select the pixels to be used in a
spatio-temporal autoregressive model improved the forecasting skills as
compared to a simple squared zone selection. Here, we proceed simi-
larly, computing a daily temporal correlation map mC (for a day d)
between the pixel of interest x y( , )s s and the surrounding region using a
metric inspired by Zawadzki (1973)

=d x y
c t x y c t x y

c t x y c t x y
( , , )

( , , ) ( , , )

[ ( , , ) ( , , ) ]
,m s s

d

s s
d d2 2 1/2

C
(5)

where the averages · d are temporal within a 3-month interval around d.
An example of such a map is shown in Fig. 3(a).

The mC metric is more suited to cloud forecasting than a standard
Pearson correlation (where the mean cloud index is subtracted in each
of the factors), since it accounts for only the cloud structures (i.e., pixels

where the cloud index is non zero) in the correlation. It gives a mea-
surement of the mean geographical extension of the structures around
the site pixel. For a given map, the region where the correlation is
higher than 0.9 is selected. However, this can lead to unrealistic masks,
where geographically distant regions can be artificially selected to-
gether. A segmentation algorithm (based on the watershed algorithm,
e.g. Soille and Ansoult (1990)) is applied to select a connected com-
ponent containing the site. Overall, we also set a minimal number of
pixels that must be contained in the mask. Fig. 3(b) presents the masks
for the different BSRN stations, for two different days of the year. The
summer masks tend to be smaller than the winter masks, reflecting a
change in synoptic regimes. Note also the link between the mask con-
tour and the orography for the Cener, Carpentras and Payerne sites.

3.3. Analog selection

Selecting correct analogs means identifying past atmospheric si-
tuations where cloud structures are similar to the current observation,
and the evolution of which in the past (the successors) is representative
of the future evolution of the hindcast. The aim is thus to find similar
cloud regimes, i.e., cloud structures that evolve in a similar way. Since
the identification of similar cloud regimes does not rely on the details of
the cloud structure at a given time, the analog selection is performed
considering images compressed in a four dimensional space (feature
space). This also has the advantage of avoiding overfitting and being
computationally efficient. We thus first describe how the features are
defined, and then give details on the k-nearest neighbor algorithm used
to select the analogs.

Fig. 3. (a) Example of a correlation map for the Palaiseau site (white dot); (b) correlation
masks for the different BSRN sites (red dots) for Jan. 1st (full line) and Jul. 1st (dashed
lines). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.3.1. Feature extraction
For a given cloud index image in a given daily mask, its cloud index

histogram contains crucial information on the structure of the clouds. It
is often bimodal, with its lower peak corresponding to “clear sky”
pixels, and its higher peak to “cloud” pixels. Here, we make the as-
sumption that histograms discriminate between different cloud re-
gimes. This assumption requires that the dynamics of the clouds ob-
served in the correlation mask are constrained enough, hence the
importance of having a correct mask that selects only meaningful in-
formation. The validity of the assumption also depends on how con-
strained the weather for a given site is, for instance by orographic
forcing and/or predictable synoptic weather patterns.

The four features described below are thus meant to differentiate
images with different cloud histograms. The first step in the definition
of the features for a given cloud index image is to separate the clear sky
from the cloud pixels by finding a cloud index threshold separating the
two modes (e.g. Fig. 4). This is done by using Otsu’s method (Otsu,
1979, similar to a bimodal Fisher’s discriminant analysis of a histogram
of cloud index). The image is then compressed into four features the
values of which range from 0 to 1:

1. the cloud fraction, or number of cloud pixels over the total number of
pixels in the mask

2. the cloud spread, or number of cloud pixels over the number of pixels
in the convex hull of the clouds (one when only one cloud and zero
when many separate clouds)

3. the clear sky intensity, or mean cloud index of the clear sky pixels
4. the cloud intensity, or mean cloud index of the cloud pixels.

Note that a principal component analysis has been performed on the
historical data set, resulting in the cloud fraction feature being corre-
lated with the first principal component. This consolidates a fact al-
ready mentioned in Panziera et al. (2011).

3.4. k-Nearest neighbor algorithm

Given an observation for which analog situations are found, the full
historical data set of potential analogs is first reduced by imposing a
temporal constraint. Following the method used by Atencia and
Zawadzki (2015), only analogs within a time of the year (3-month
window) and time of the day (± 3 h) interval are considered. A minimal
24 h lag between two chosen analogs is also imposed. This increases the
likelihood of finding similar convective and advective patterns. It also
increases the robustness of the method to different geographical loca-
tions. Then, the k-nearest neighbors are selected, based on a Euclidean
distance in the four dimensional feature space, in which the images are
mapped. As described in Section 6, for the BSRN sites of this study, the
optimal number of neighbors is close to 80.

3.5. Ensemble generation

Given a set of analog-successor pairs corresponding to an observed
cloud index image, the next step is to create a forecast ensemble, i.e., a
set of possible outcomes, weighted by their reliability.

The analogs have been found on the basis of features that do not
depend on the details of the observed cloud structures. To improve the
accuracy of the single-pixel forecast, the first step is to match the cloud
structures of the analog cloud irradiance maps with those observed. The
k analogs are thus spatially translated to match the observation. This
translation is performed by maximizing a correlation metric between
the analogs and the current observation. For a translation x y(Δ ,Δ ) of the
analog image, the spatial correlation n

pC between the n-th translated
analog and the observation is

=
〈 + + 〉

〈 〉〈 + + 〉
x y

c x y c x x y y
c x y c x x y y

(Δ ,Δ )
( , ) ( Δ , Δ )

[ ( , ) ( Δ , Δ ) ]
,n

p
o

n
a

o
n
a2 2 1/2C

(6)

where co and ∈ …c{ }n
a

n k{1, , } are respectively the observed and analog cloud
index images (in the mask) and 〈 〉· is a spatial average over the mask.
We use an optimization procedure to find the translation that max-
imizes n

pC defined in Eq. (6). The optimal translation is then used to
compute the maximum correlation noted as ∗

nC . Note that the procedure
does not allow information that was initially outside the mask to be
translated to the site pixel x y( , )s s .

Since the translation is performed within the correlation mask, we
can assume that the translated cloud structures will evolve similarly to
the original structures. The successors are thus translated with the same
optimal displacement as their corresponding analogs. The forecast en-
semble is then created by considering the translated successors as a set
of possible outcomes, their reliability being measured by ∗

nC . The more
a translated analog is correlated with the truth, the higher the weight of
the analog-successor pair in the forecast ensemble. A simple ex-
ponential kernel (e.g. Lguensat et al., 2017) is chosen for the weights

⎜ ⎟∝ ⎛
⎝

⎞
⎠

∗
w

λ
exp ,n

nC

(7)

where λ is the median of the ∗
nC . In Fig. 5, we compute the mean over

the test year of the correlation given in Eq. (6) between the observed
field and the successors at different lead times of: the best analog after
the k-nearest neighbor selection, after translation, and after reordering
the analogs with the weights defined in Eq. (7). It shows that each of the
steps increases the correlation of the analogs with the truth.

3.6. Aggregation of the ensemble

The previous step provides a weighted ensemble of forecasts with
weights wn. The ensemble is then aggregated to estimate the PDF of the
forecast. We use a local linear aggregation operator (Cleveland, 1979)
to estimate the mean and the standard deviation of the forecasted PDF,
assuming that it is Gaussian. This operator makes an efficient use of
small data sets and reduces biases. Fig. 6 presents a schematic of the
forecasting operation:

1. a weighted least square regression B is fitted between the analogs cn
a

and the successors cn
s. The dimension of the analogs is first reduced

by using a Principal Component Analysis (PCA) on the set of analog
images, as prescribed by Lguensat et al. (2017), to avoid overfitting.
Principal Component Analysis finds a set of orthogonal vectors (set
to five in the present study) that explains most of the variance in the
considered images, on which the data is projected.

2. the regression operator is then applied to the current observation co

(compressed in the same space as the analogs) to obtain the mean of
the estimated PDF ̂c

̂ =c cB o (8)

3. the standard deviation of the PDF is given considering the weighted
standard deviation of the residuals = −r c cBn n

s
n
a

Fig. 4. (a) Histogram of cloud index from image (b) on the 2nd of July 2016 at Payerne.
The cloud threshold in full black line in (b) corresponds to the dashed line in (a).
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where r is the weighted mean of the residuals.

For comparison, we have also used (not shown) a locally constant
operator, a special case of the local linear operator where the weighted
mean and standard deviation of the successors is considered, without
any linear regression. This simple procedure is described in detail in
Lguensat et al. (2017). The local linear operator has proven to be the
most efficient, based on the performance criteria described in Section 6.

4. Evaluation of the quality of the analogs

The choice of the features and distance used to select the analogs is
crucial for the performances of the algorithm. In this work, the con-
straint of using only one source of data with sufficient history in many
geographical locations (maps of satellite-derived irradiance), has led to

the heuristic choice of features presented in Section 3. An automated
selection of the features could also have been performed, using for in-
stance principal component analysis on maps of satellite-derived irra-
diance as in Davò et al. (2016) or Foresti et al. (2015). In the present
method, a physics-based choice of features has been preferred over a
data-based choice.

Using a time-lagged embedded state vector (i.e., considering images
at previous time steps in addition to the current observation) to de-
termine cloud regimes is another classic choice. Embedded vectors have
been recently used in the frame of the Nonlinear Laplacian Spectral
Analysis (NLSA) to forecast the Madden Julian Oscillation index by
means of analogs (Alexander et al., 2017). However, since GHI images
are available only for daylight hours, constructing embedded states is
not optimal. In addition, the low temporal resolution of the images
decreases the precision of any method estimating a temporal change in
cloud structures. Still, the algorithm has been tested considering an
estimation on the mean displacement of clouds from two successive
images as additional features. The average score of the algorithm de-
creased on different sites with respect to the algorithm presented above
(not shown). These additional features made the method less robust to
different sites, since the estimation of cloud motion is also difficult due
to cloud deformation, especially in the presence of a strong orographic
forcing.

As mentioned in the introduction, it is difficult to assess the quality
of a given set of features and distance used to select the analogs. A
simple test, suggested in Van den Dool (1994), considers analogs as
valid if they are closer to the observation than a climatology (in the four
dimensional features space). This was done (not shown), with an hourly
climatology, yielding positive results. Another quality test is proposed
herein, by providing some insight into the physical meaning of the
features. It aims at quantifying if temporal patterns of cloud structures
can be easily discriminated in the four-dimensional feature space. If the
features and the distance are well chosen, initial images of similar
temporal patterns should be grouped in well defined clusters in feature
space (with respect to the chosen distance). Cloud regimes (similar-
evolving cloud index fields) can then be identified in relation to the
clusters.

Fig. 5. Mean correlation over the test data set between current observations and best analog-successor for different lead times. Three strategies are studied: the best analog without
translation (dotted-dashed), the best analog with translation (dotted) and the best translated analog with respect to the weights given in Eq. (7) (full line).

Fig. 6. Schematic of the aggregation procedure: probabilistic forecast using a local linear
regression B on selected analogs and successors.
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The methodology used to define clusters is similar to that used in
Wang et al. (2017) in the context of the Pattern Sequence-based Fore-
casting method. We first define a finite set of clusters using a k-mean
algorithm (Lloyd, 1982) on the historical data set of features for a given
site. It is defined for each day of the year, which corresponds to a dif-
ferent mask, and thus different values of the features. The optimal
number of clusters is obtained by maximizing the silhouette score
(Rousseeuw, 1987). It is defined as the average of −b a a b( )/max( , ) over
all the points in the feature space, with a the mean distance between a
point and all other points in the same cluster, and b the mean distance
between a point and all other points in the next nearest cluster. The
score is bounded between −1 for incorrect clustering and +1 for
highly dense clustering. Scores around zero indicate overlapping clus-
ters.

An example of clustering for the Palaiseau site is given in Fig. 7, for
Jan. 1st. The optimal number of clusters for this particular day is five.
We can interpret the different clusters by their cloud structures: red for
small and isolated clouds, cyan for large and dense clouds, green and
blue for intermediary situations, yellow when the whole mask is cov-
ered by dense clouds. Table 3 presents the mean (over all the days of the
year) optimal number of clusters and the associated mean silhouette
score for the different sites. Palaiseau and Camborne display similar
characteristics, with a low mean silhouette score and a high number of
clusters.

The remaining question is to link the clusters to cloud regimes. More
precisely, we look at how the states in a given cluster evolve in time
looking at the transitions between the different clusters. For a given site
s and day d to which corresponds an optimal set of clusters, we compute
the transition matrix between the clusters, i.e., the set of probabilities of
an image being in a cluster j knowing that it was in a cluster i l, hours
before, denoted p j i l( | , )s d( , ) . We then obtain the mode of this distribution
by

=∗p i l p j i l( , ) max ( | , )s d j s d( , ) ( , ) (10)

and compute the weighted average of the modes defined in Eq. (10)
over all the clusters and for a given lead time l as

∑= ∗p l p i p i l( ) ( ) ( , ).s d
i

s d s d( , ) ( , ) ( , )
(11)

where p i( )s d( , ) is the probability of being in cluster i. Table 4 presents
the averages of p l( )s d( , ) over all the days of the year d, along with its
standard deviations, for the different sites. We see again that the Pa-
laiseau and Camborne sites have the worse scores, meaning that there is
no clear most probable transition between clusters. On the contrary, the
mean probabilities for the Cener site are higher with a low confidence
interval. Thus, we can expect better performances for this site.

Fig. 7. Scatter plots of the different features, with colors corresponding to five clusters obtained with a k-mean algorithm, for the Palaiseau site, on Jan. 1st. All the axes range between
zero and one. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Mean optimal number of clusters and mean silhouette score for the BSRN sites. The
standard deviation is between brackets.

Station Number of clusters Score

Palaiseau 5.0 (0.9) 0.38 (0.02)
Carpentras 3.5 (0.5) 0.46 (0.02)
Camborne 4.2 (1.0) 0.37 (0.03)
Payerne 3.8 (1.1) 0.44 (0.03)
Cener 3.1 (0.4) 0.41 (0.03)

Table 4
Mean probabilities and associated standard deviation (between brackets) of states that
follow the most probable path between clusters in the training data set.

Station +1 h +2 h +3 h +4 h +5 h +6 h

Palaiseau 0.78
(0.07)

0.67
(0.08)

0.59
(0.08)

0.55
(0.07)

0.52
(0.08)

0.48
(0.16)

Carpentras 0.82
(0.04)

0.74
(0.06)

0.69
(0.07)

0.65
(0.08)

0.55
(0.13)

0.58
(0.16)

Camborne 0.81
(0.05)

0.70
(0.07)

0.63
(0.08)

0.58
(0.08)

0.55
(0.13)

0.49
(0.17)

Payerne 0.85
(0.04)

0.77
(0.06)

0.71
(0.07)

0.66
(0.08)

0.62
(0.09)

0.57
(0.16)

Cener 0.84
(0.03)

0.76
(0.04)

0.70
(0.05)

0.66
(0.05)

0.63
(0.05)

0.61
(0.06)
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5. Reference methods

The analog method is compared to three reference statistical
methods, presented in this section.

5.1. Persistence

The first method is a clear-sky adjusted persistence. The last ob-
served cloud index is used as a forecast. It is converted back to GHI
using the clear sky irradiance predicted at the time of the forecast. This
method provides a deterministic forecast and is used as the reference
method to evaluate deterministic forecasts.

5.2. Persistence ensemble (PeEn)

The second method is an extension of the persistence method which
is commonly used (e.g. Alessandrini et al., 2015) to generate prob-
abilistic forecasts: the persistence ensemble (PeEn) method. The last 20
observations for each site from the past 20 days at the same diurnal
hour are considered as an ensemble of forecasts. A cumulative dis-
tribution function of the forecast ̂c can then be estimated from the
ensemble ci

e

̂ ∑< = <
=

P c c
n

c c1( ) 1 ( )
i

n

i
e

1 (12)

with =n 20 the size of the ensemble and 1 the indicator function.

5.3. Adaptive vector-autoregressive model (VAR(1))

The third method is an “adaptive” order-one vector autoregressive
model, denoted as VAR(1). Non adaptive VAR models (Box et al., 1970)
are commonly used in the literature for GHI forecasting (e.g.
Dambreville et al., 2014, Alessandrini et al., 2015). The version pre-
sented here is more sophisticated and is a special case of the analog
method, in which the local linear regression is performed considering
the whole reduced historical database (without analog selection or
weighting).

The VAR method predicts a given time series by means of a linear
regression. For a given day d, the exogenous variables are the values of
GHI in the pixels contained in the day d mask. To build the design
matrix dX( ), only the images in the training data set within a ±45 day
window around d are considered

=d c t x yX ( ) ( , , )i j i j j, (13)

with x y( , )j j the set of coordinates in the day d mask, and ti the set of
times in the ± 45 day window.

The endogenous variable y is the cloud index value observed at the
pixel containing the site of interest x y l( , ),s s hours after the initial ob-
servation

= +y d l c t l x y( , ) ( , , )i i s s (14)

The model is an ensemble of 2190 linear regressions d lB ( , )ar : one
per day and per lead time, such that

∥ − ∥y d l d d lX B( , ) ( ) ( , )ar (15)

is minimized, where ∥ ∥· is the Frobenious norm. A “global” auto-
regressive model has also been tested, fitting a unique model for each
location and for each lead time, totaling 6 linear regressions per site (as
in the literature). Results are worse than for the adaptive VAR(1)
model, especially at low lead times. These are not shown here for
clarity.

The VAR(1) model also provides a probabilistic forecast, by com-
puting a variance in the forecasted index using the residuals, as pre-
sented in Eq. (9) for the local linear operator. This method will thus be
used as a reference for the evaluation of probabilistic forecasts in the

following.

6. Numerical experiment

In this section, we evaluate the performance of the analog now-
casting method using different classic scores, and comparing it to sta-
tistical methods. We also discuss the optimal number of analogs for
each site. The method is also improved by a simple bias correction of
the forecast.

6.1. Experiment set-up

As mentioned in Section 2.1, a data set of 18,521 hourly images of
satellite-derived GHI (from 2011-01-06 to 2016-12-31) is split into two
parts. The training set extends from 2011-09-06 to 2015-12-31. The
year 2016 is the test set, over which the performances of the algorithms
presented below are evaluated.

A key parameter in the analog algorithm is the number of analogs k.
Its optimization is done by cross-validation on the training data set. The
Root Mean Squared Error (presented below) is then computed as a
function of the number of analogs. Results (not shown) indicate an
optimal value close to =k 80 analogs for the five sites. The performance
of the algorithm is robust to slight changes in RMSE, and one can safely
choose the number of analogs to be 80 for different sites. Note that also
in other papers on analog methods (Panziera et al., 2011; Atencia and
Zawadzki, 2015; Alessandrini et al., 2015), the number of analogs is
empirically chosen depending on the situation of interest.

6.2. Reference scores

Hereinafter, ̂c corresponds to the statistical forecast (for instance,
from the analog method) and co is the observed cloud index from a
satellite image at the location of the considered site, considered to be
the reference truth. We evaluate the performance of the deterministic
forecast of our methodology over a set of validation observations S of
cardinality | |S , using the Mean Biased Error (MBE)

̂∑= −
∈

c cMBE 1
| | i

i i
o

S
S (16)

the Root Mean Square Error (RMSE)

̂∑= −
∈

c cRMSE 1
| |

( )
i i

o
i

2
S S (17)

and the Mean Absolute Error (MAE)

̂∑= −
∈

c cMAE 1
| |

| |.
i

i
o

i
S

S (18)

We also compute the forecast skill (FS) in terms of RMSE, to mea-
sure the improvement of the forecast model with respect to the per-
sistence model

= −FS 1 RMSE
RMSE

.
p (19)

The RMSE is more severe in the evaluation of the performances of
the algorithm since it is a quadratic score, but, as advocated by
Alessandrini et al. (2015), we also present the MAE here, since penalties
paid by the solar energy producers are usually proportional to the im-
balances in their production.

The evaluation of the probabilistic forecast is carried out by com-
puting the Brier Skill Score (BSS), defined from the Brier Score (BS) as
the improvement over the VAR(1) model

= −BSS 1 BS
BS

.
VAR (20)

The BS is the equivalent of mean square error for probabilistic
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forecasts and is defined as

̂∑ ∑= −
∈ ∈

p TBS 1
| |

( )
i j

i j i j, ,
2

S
S T (21)

whereT is an ensemble of possible categories in which the observation
can fall, in the present case intervals of 10 −W m 2 starting from 0 up to
1000 −W m 2. We define =T 1i j, if the observation ci

0 falls within the
interval j and =T 0i j, otherwise. The predicted probability for the j-th
interval ̂pi j, is computed from the cumulative distribution function
(CDF) predicted by the model ̂ ⩽P c c( )i .

The Continuous Ranked Probability Score (CRPS) (Hersbach, 2000),
an equivalent of MAE for a probabilistic forecast is also computed. It is
given by

̂∫∑= ⩽ − ⩽
∈

P c c P c c dcCRPS 1
| |

[ ( ) ( )]
i

i i
o 2

S
S (22)

where ̂ ⩽P c c( )i
o is the CDF of the observation, considered here to be a

step function. We recall here that both the analog and the VAR(1)
methods produce Gaussian forecasts, so that the computation of the
CDF is straightforward.

All together, these five scores provide a standard evaluation of the
various aspects of the proposed method. The comparison with standard
methods is given in Section 6.3.

6.3. Comparison with reference methods and bias correction

Our main concern in this section is to assess the robustness of the
methods to different geographical locations, i.e., their capacity to
forecast the cloud index for different climatic situations.

The first evaluation score is the MBE, presented in Fig. 8 as a
function of lead time. The analog method shows a bias peaking for lead
times of 3–4 h. The bias is not present in the VAR(1) method. Fig. 9
presents a scatter plot of the forecasted value versus the observation for
the analog methods. It shows that a linear relation between the bias and
the forecasted intensity can be clearly inferred.

This bias is thus corrected by applying a simple post-processing

method to the forecast. We fit 6 linear regressions per site (one per lead
time) between the observed bias and the forecasted value from the
analog prediction. These linear regressions are then applied to the
forecasted GHI value to obtain a “post-processed” analog method
(called p-analog in the following). Fig. 8 shows that the p-analog
method is globally less biased than the analog method, except for the
Payerne and Cener sites. This is a very simplistic post-processing
method, and more sophisticated model output statistics could be used,
such as Kalman filtering (Diagne et al., 2014).

Figs. 10 and 11 show respectively the MAE and the RMSE for the
different methods. A quantitative evaluation of the methods in terms of
RMSE skill score is presented in Table 5. Table 6 and Fig. 12 present
respectively the BSS and the CRPS as a function of lead time for the
different methods. We can first note that even-though the p-analog
method is more biased than the analog method for certain sites, both its
probabilistic and deterministic performances are similar or better than
the analog method. Note also the consistency of the results with the
climatic analysis of the different sites in Fig. 2: on sites with a higher
proportion of intermittent days (Palaiseau and Camborne) the analog
and p-analog methods have a worse score as compared to the persis-
tence method, since those days are more difficult to forecast.

When comparing the analog method between sites, results are co-
herent with the probabilities given in Table 4: a small error corresponds
to a large percentage of images following the most probable transition
paths in the database, i.e., where the selected analogs exhibit the same
cloud regimes as the truth. Additional evidence of this statement is
found by looking at the improvement in RMSE and MAE of the analog
method with respect to the VAR(1) model only, which shows the im-
provement of the forecasting skill due to the analog selection step. The
largest improvement also occurs in the sites where the probability de-
fined in Table 4 is high. Comparing the performances of the analog
method with the p-analog method, we see that the bias correction
dramatically increases the performances on the sites where the analog
method does not beat the VAR(1) method. We can thus infer that the
inappropriate choice of analogs on the sites where cloud regimes are
not well defined is the source of the bias of the method.

Bootstrap confidence intervals have also been computed for each of

Fig. 8. MBE as a function of lead time for the analog method (blue), the post-processed analog method (red), the persistence method (black), and the adaptive VAR(1) model (green). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the scores. Overall, they indicate statistically significant difference
scores between the persistence (or PeEn) method and the three other
methods. However, the distinction between the analog and p-analog
forecast skill is more unclear, and has been further investigated using
the Diebold-Mariano (DM) test, introduced in econometry by Diebold
and Mariano (1995) and then used in meteorology by Gilleland and
Roux (2015). The DM test evaluates whether the difference between

two forecasts, quantified by a given forecast score, is statistically sig-
nificant. The test (not shown) was performed based on the mean
squared error score. Results indicate that most of the time the difference
between the analog and p-analog methods is significant.

Fig. 9. Scatter plot between the observed and predicted GHI values. The red line corresponds to the centered and indentity slope line. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. Mean MAE and corresponding 95% bootstrap confidence interval as a function of lead time for the analog method (blue), the post-processed analog method (red), the persistence
method (black), and the adaptive VAR(1) model (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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7. Statistical downscaling

In the previous Section, GHI has been forecasted using only geos-
tationary satellite images. Here, we extend this procedure by showing a

simple example of statistical downscaling between satellite and ground
data on different BSRN sites. This application shows the potential of the
method for operational forecasting.

7.1. Description of the method

The aim of the present extension is to forecast the cloud index over a
local site corresponding to the location of a solar energy source, where a
historical database of ground GHI measurements is available.

The principle of the method, first introduced in Zorita and Von
Storch (1999), is to use cloud index maps as a measure of the weather
regime in which the solar energy source is. Each historical cloud index
image is paired with its concurrent (at the same date) ground mea-
surement of GHI. Given an observed cloud index image from which the
forecast is made, an estimation of the weather regime is performed by
selecting analogs, and weighting them as a function of their reliability.
The concurrent ground measurements are then used as a forecast en-
semble, with the same weights as the corresponding satellite-derived
image.

A similar methodology has been developed in Alessandrini et al.
(2015) under the name of the analog ensemble method. In this article,
the weather regime is estimated using NWP forecasts: past forecasts,
analog to the current one are found, and the concurrent past observa-
tions are then used as a forecast ensemble. Apart from the fact that it
uses a different type of data, there is a fundamental difference in the
assumption made by both methods. The analog ensemble method finds
similar past NWP forecasts to the current forecast. The underlying as-
sumption is thus that “if similar past forecasts are found, their errors
will likely be similar to the errors of the current forecast, which can be
inferred from theirs”. In the present case, the hypothesis underlying the
statistical downscaling method is that similar weather structures as
defined by satellite-derived maps yield a similar local evolution in the
cloud index. The analog ensemble method thus aims at forecasting an
NWP model error, while in the present case the aim is to forecast the
evolution of measured GHI from a global observation.

The algorithm consists in the following steps:

Fig. 11. Mean RMSE and corresponding 95% bootstrap confidence interval as a function of lead time for the analog method (blue), the post-processed analog method (red), the persistence
method (black), and the adaptive VAR(1) model (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Skill RMSE relative to the persistence method.

Station Method +1 h +2 h +3 h +4 h +5 h +6 h

Palaiseau VAR(1) 0.154 0.183 0.174 0.174 0.169 0.17
Analog 0.157 0.16 0.148 0.158 0.154 0.155
p-Analog 0.168 0.184 0.176 0.182 0.176 0.167

Carpentras VAR(1) 0.102 0.162 0.186 0.19 0.193 0.183
Analog 0.139 0.188 0.207 0.203 0.208 0.194
p-Analog 0.125 0.172 0.214 0.22 0.223 0.208

Camborne VAR(1) −0.016 0.134 0.175 0.186 0.205 0.206
Analog −0.074 0.054 0.118 0.143 0.179 0.202
p-Analog 0.016 0.145 0.198 0.209 0.225 0.229

Payerne VAR(1) 0.093 0.178 0.196 0.207 0.201 0.188
Analog 0.103 0.193 0.221 0.232 0.224 0.193
p-Analog 0.093 0.185 0.225 0.239 0.234 0.205

Cener VAR(1) 0.024 0.121 0.161 0.19 0.21 0.22
Analog 0.087 0.168 0.213 0.238 0.246 0.237
p-Analog 0.084 0.164 0.203 0.239 0.256 0.257

Table 6
BSS relative to the adaptive VAR(1) method.

Station Method +1 h +2 h +3 h +4 h +5 h +6 h

Palaiseau Analog 0.059 0.024 0.008 0.005 0.006 0.002
p-Analog 0.062 0.028 0.009 0.003 0.002 0.001

Carpentras Analog 0.181 0.123 0.093 0.069 0.049 0.032
p-Analog 0.151 0.093 0.093 0.074 0.055 0.045

Camborne Analog 0.014 −0.012 −0.014 −0.01 −0.009 −0.007
p-Analog 0.029 0.015 0.012 0.005 0.008 0.008

Payerne Analog 0.093 0.062 0.046 0.033 0.019 0.012
p-Analog 0.065 0.047 0.053 0.033 0.026 0.016

Cener Analog 0.086 0.056 0.041 0.033 0.026 0.016
p-Analog 0.081 0.051 0.033 0.034 0.03 0.021
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1. given an observed satellite cloud index image, find k analogs, using
the Euclidean distance in the previously defined four dimensional
feature space

2. select the k concurrent ground measurements, corresponding to the
times of the k satellite analogs. These are called “local” analogs. The
corresponding “local” successors are the values that have been
measured l hours after the “local” analogs, l being the lead time of
the forecast

3. weight the “local” analog-successor pairs with the exponential
kernel given in Eq. (7) where ∗Cn is now the correlation between the
analog satellite image and the current observation without any
translation

4. use a local-linear operator between the “local” analogs and “local”
successors to obtain a probabilistic forecast

7.2. Numerical experiment

We now evaluate the proposed downscaling method on the BSRN
sites. The experiment set-up is the same as in Section 6. A local clear sky
model is first defined using ground measured values of GHI, which

defines ground values of cloud index. The optimal number of analogs is
80 for all the sites. It has been calculated by cross-validation on the
training dataset.

For the sake of clarity, we present here only the ground RMSE, as
defined in Eq. (17), but using the ground measurements of cloud index
as the truth. The analog method is compared to ground clear-sky ad-
justed persistence, defined in the same way as in Section 6. An adaptive
VAR(1) is also built, fitting linear regressions between the ground GHI
measurements and their successors. Results are presented in Fig. 13 and
show an improvement of + +1.4%, 3.1% in RMSE with respect to the
adaptive VAR(1) and the persistence method. The results of this
downscaling method are also consistent with Table 4, and the VAR(1)
method has worse scores than previously as compared to the analog
method. The results of a post-processed analog method are also pre-
sented, using the same methodology as in the previous section. On the
sites where the cloud regimes are not well defined, the post-processing
again brings an improvement. This shows that the bias corrected by the
post-processing model is due to a bad evaluation of local cloud condi-
tions, and is not linked to the type of data that is used. It gives addi-
tional evidence of the validity of the analysis presented in Section 4.

Fig. 12. Mean CRPS and corresponding 95% bootstrap confidence interval as a function of lead time for the analog method (blue), the post-processed analog method (red), the PeEn
(black), and the adaptive VAR(1) model (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Normalized “ground” RMSE and corresponding 95% bootstrap confidence interval as a function of lead time for the analog method (blue), the post-processed analog method
(red), the persistence method (black), and the adaptive VAR(1) model (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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8. Conclusion

We have presented a computationally efficient method for GHI
nowcasting on a given solar energy source, tested on sites representing
different climatic conditions in Europe. The method uses a k-nearest
neighbor algorithm on a four-dimensional feature space obtained from
cloud index images to then apply a linear regression between selected
analogs and successors. The methodology has proven to be robust to
different geographical locations, and requires little tuning, no ground
measurements nor a numerical weather model. We have also presented
a framework to assess the performance of a given metric and set of
features to choose the analogs, based on the analysis of their clustering
performances. It provides a tool for evaluating the potential perfor-
mance of the method on a location without having to run extensive
numerical tests, and can be used when building an analog method.

The method has also been extended with a simple downscaling al-
gorithm, when ground GHI measurements are also available. In both
cases, the analog method shows a bias, which could be interpreted
within the clustering-performance framework. A simple post-processing
bias correction has been suggested, effectively improving the perfor-
mances of the algorithm.

The method has proven to have potential for operational applica-
tions and future works will go in three directions. We first plan to use
recent developments in information geometry for the analog-successor
selection (as an alternative to the heuristic features). This would allow
us to improve the identification of large scale cloud conditions, and thus
reduce the intrinsic bias of the method.

The analog algorithm is a flexible method, designed to be easily
combined with other algorithms in the context of operational fore-
casting. The combination of different forecast methods has been re-
cently identified as an essential trend in solar forecasting (Yang et al.,
2018). The downscaling procedure presented herein is a simple ex-
ample of such a combination. It will be improved by nesting a statistical
model forecasting local GHI values with a hidden Markov chain, de-
fined with the satellite image analogs. Other machine learning methods
(e.g.. random forests, neural networks) will be tested with the same
setup to better assess the analog method strengths.

Acknowledgments

The first author acknowledges the funding provided by Elum Energy
and IMT Atlantique for this work. The authors also wish to thank the
Elum Energy R&D team and Pr. Jordi Badosa for the valuable discus-
sions. Finally, the authors would like to thank the three anonymous
reviewers for their valuable comments that contributed to greatly im-
prove the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.solener.2018.02.068.

References

Aguiar, L.M., Pereira, B., David, M., Diaz, F., Lauret, P., 2015. Use of satellite data to
improve solar radiation forecasting with bayesian artificial neural networks. Sol.
Energy 122, 1309–1324.

Alessandrini, S., Delle Monache, L., Sperati, S., Cervone, G., 2015. An analog ensemble for
short-term probabilistic solar power forecast. Appl. Energy 157, 95–110.

Alexander, R., Zhao, Z., Székely, E., Giannakis, D., 2017. Kernel analog forecasting of
tropical intraseasonal oscillations. J. Atmos. Sci. 74 (4), 1321–1342.

Alvarez, F.M., Troncoso, A., Riquelme, J.C., Ruiz, J.S.A., 2011. Energy time series fore-
casting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 23 (8),
1230–1243.

Atencia, A., Zawadzki, I., 2015. A comparison of two techniques for generating now-
casting ensembles. part ii: Analogs selection and comparison of techniques. Mon.
Weather Rev. 143 (7), 2890–2908.

Box, G.E., Jenkins, G.M., Reinsel, G., 1970. Forecasting and control. Time Ser. Anal. 3, 75.
Brisson, A., Le Borgne, P., Marsouin, A., 1999. Development of algorithms for surface

solar irradiance retrieval at osi saf low and mid latitudes. Eumetsat Ocean and Sea Ice
SAF internal project team report.

Cano, D., Monget, J.-M., Albuisson, M., Guillard, H., Regas, N., Wald, L., 1986. A method
for the determination of the global solar radiation from meteorological satellite data.
Sol. Energy 37 (1), 31–39.

Cervone, G., Clemente-Harding, L., Alessandrini, S., Delle Monache, L., 2017. Short-term
photovoltaic power forecasting using artificial neural networks and an analog en-
semble. Renew. Energy 108, 274–286.

Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. J.
Am. Stat. Assoc. 74 (368), 829–836.

Dambreville, R., Blanc, P., Chanussot, J., Boldo, D., 2014. Very short term forecasting of
the global horizontal irradiance using a spatio-temporal autoregressive model.
Renew. Energy 72, 291–300.

Davò, F., Alessandrini, S., Sperati, S., Monache, L.D., Airoldi, D., Vespucci, M.T., 2016.
Post-processing techniques and principal component analysis for regional wind
power and solar irradiance forecasting. Sol. Energy 134 (Supplement C), 327–338.

Diagne, M., David, M., Boland, J., Schmutz, N., Lauret, P., 2014. Post-processing of solar
irradiance forecasts from wrf model at reunion island. Sol. Energy 105 (Supplement
C), 99–108.

Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N., 2013. Review of solar irra-
diance forecasting methods and a proposition for small-scale insular grids. Renew.
Sustain. Energy Rev. 27, 65–76.

Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat. 13
(3), 253–263.

Escrig, H., Batlles, F., Alonso, J., Baena, F., Bosch, J., Salbidegoitia, I., Burgaleta, J., 2013.
Cloud detection, classification and motion estimation using geostationary satellite
imagery for cloud cover forecast. Energy 55, 853–859.

Foresti, L., Panziera, L., Mandapaka, P.V., Germann, U., Seed, A., 2015. Retrieval of
analogue radar images for ensemble nowcasting of orographic rainfall. Meteorol.
Appl. 22 (2), 141–155.

Frouin, R., Chertock, B., 1992. A technique for global monitoring of net solar irradiance at
the ocean surface. Part I: model. J. Appl. Meteorol. 31 (9), 1056–1066.

Gilleland, E., Roux, G., 2015. A new approach to testing forecast predictive accuracy.
Meteorol. Appl. 22 (3), 534–543.

Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Müller, R., Beyer,
H.G., 2003. Solar energy assessment using remote sensing technologies. Remote Sens.
Environ. 86 (3), 423–432.

Hammer, A., Heinemann, D., Lorenz, E., Lückehe, B., 1999. Short-term forecasting of
solar radiation: a statistical approach using satellite data. Sol. Energy 67 (1),
139–150.

Heinemann, D., Lorenz, E., Girodo, M., 2006. Forecasting of Solar Radiation. Solar Energy
Resource Management for Electricity Generation From Local Level to Global Scale.
Nova Science Publishers, New York.

Hersbach, H., 2000. Decomposition of the continuous ranked probability score for en-
semble prediction systems. Weath. Forecast. 15 (5), 559–570.

Huang, J., Troccoli, A., Coppin, P., 2014. An analytical comparison of four approaches to
modelling the daily variability of solar irradiance using meteorological records.
Renew. Energy 72, 195–202.

Inman, R.H., Chu, Y., Coimbra, C.F., 2016. Cloud enhancement of global horizontal ir-
radiance in California and Hawaii. Sol. Energy 130, 128–138.

Le Borgne, P., Legendre, G., Marsouin, A., 2004. Meteosat and goes-east imager visible
channel calibration. J. Atmos. Ocean. Technol. 21 (11), 1701–1709.

Le Borgne, P., Legendre, G., Marsouin, A., Péré, S., Philippe, S., 2011. Meteosat and goes-e
radiative fluxes validation report (products osi-303, 304, 305, 306).

Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., Fablet, R., 2017. The analog data as-
similation. Month. Weath. Rev.

Lloyd, S., 1982. Least squares quantization in pcm. IEEE Trans. Inform. Theory 28 (2),
129–137.

Lorenz, E., Hammer, A., Heinemann, D., et al., 2004. Short term forecasting of solar ra-
diation based on satellite data. In: EUROSUN2004 (ISES Europe Solar Congress), pp.
841–848.

Lorenz, E.N., 1969. Atmospheric predictability as revealed by naturally occurring ana-
logues. J. Atmos. Sci. 26 (4), 636–646.

Marquez, R., Coimbra, C.F., 2013. Intra-hour dni forecasting based on cloud tracking
image analysis. Sol. Energy 91, 327–336.

Marquez, R., Pedro, H.T., Coimbra, C.F., 2013. Hybrid solar forecasting method uses
satellite imaging and ground telemetry as inputs to anns. Sol. Energy 92, 176–188.

Mathiesen, P., Collier, C., Kleissl, J., 2013. A high-resolution, cloud-assimilating numer-
ical weather prediction model for solar irradiance forecasting. Sol. Energy 92, 47–61.

Mathiesen, P., Kleissl, J., 2011. Evaluation of numerical weather prediction for intra-day
solar forecasting in the continental united states. Sol. Energy 85 (5), 967–977.

Ohmura, A., Gilgen, H., Hegner, H., Müller, G., Wild, M., Dutton, E.G., Forgan, B.,
Fröhlich, C., Philipona, R., Heimo, A., et al., 1998. Baseline surface radiation network
(bsrn/wcrp): new precision radiometry for climate research. Bull. Am. Meteorol. Soc.
79 (10), 2115–2136.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans.
Syst., Man, Cybernet. 9 (1), 62–66.

Panziera, L., Germann, U., Gabella, M., Mandapaka, P.V., 2011. Nora – nowcasting of
orographic rainfall by means of analogues. Q.J.R. Meteorol. Soc. 137 (661),
2106–2123.

Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., Vignola, F., 2002. A
new operational model for satellite-derived irradiances: description and validation.
Sol. Energy 73 (5), 307–317.

Perez, R., Kivalov, S., Schlemmer, J., Hemker, K., Renné, D., Hoff, T.E., 2010. Validation
of short and medium term operational solar radiation forecasts in the us. Sol. Energy
84 (12), 2161–2172.

A. Ayet, P. Tandeo Solar Energy 164 (2018) 301–315

314

http://dx.doi.org/10.1016/j.solener.2018.02.068
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0005
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0005
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0005
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0010
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0010
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0015
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0015
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0020
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0020
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0020
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0025
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0025
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0025
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0030
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0040
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0040
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0040
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0045
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0045
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0045
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0050
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0050
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0055
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0055
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0055
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0060
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0060
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0060
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0065
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0065
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0065
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0070
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0070
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0070
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0075
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0075
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0080
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0080
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0080
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0085
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0085
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0085
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0090
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0090
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0095
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0095
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0100
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0100
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0100
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0105
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0105
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0105
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0110
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0110
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0110
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0115
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0115
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0120
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0120
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0120
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0125
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0125
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0130
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0130
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0140
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0140
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0145
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0145
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0155
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0155
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0160
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0160
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0165
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0165
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0170
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0170
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0175
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0175
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0180
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0180
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0180
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0180
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0185
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0185
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0190
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0190
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0190
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0195
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0195
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0195
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0200
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0200
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0200


Root, B., Knight, P., Young, G., Greybush, S., Grumm, R., Holmes, R., Ross, J., 2007. A
fingerprinting technique for major weather events. J. Appl. Meteorol. Climatol. 46
(7), 1053–1066.

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Computat. Appl. Math. 20, 53–65.

Scott, D.W., 2015. Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons.

Soille, P.J., Ansoult, M.M., 1990. Automated basin delineation from digital elevation
models using mathematical morphology. Signal Process. 20 (2), 171–182.

Stein, J.S., Hansen, C.W., Reno, M.J., 2012. The variability index: A new and novel metric
for quantifying irradiance and pv output variability. In: World Renewable Energy
Forum, pp. 13–17.

Thorey, J., Mallet, V., Chaussin, C., Descamps, L., Blanc, P., 2015. Ensemble forecast of

solar radiation using tigge weather forecasts and helioclim database. Sol. Energy 120,
232–243.

Van den Dool, H., 1994. Searching for analogues, how long must we wait? Tellus A 46 (3),
314–324.

Wang, Z., Koprinska, I., Rana, M., 2017. Solar power forecasting using pattern sequences.
In: International Conference on Artificial Neural Networks. Springer, pp. 486–494.

Yang, D., Kleissl, J., Gueymard, C.A., Pedro, H.T., Coimbra, C.F., 2018. History and trends
in solar irradiance and pv power forecasting: a preliminary assessment and review
using text mining. Sol. Energy.

Zawadzki, I.I., 1973. Statistical properties of precipitation patterns. J. Appl. Meteorol. 12
(3), 459–472.

Zorita, E., Von Storch, H., 1999. The analog method as a simple statistical downscaling
technique: comparison with more complicated methods. J. Clim. 12 (8), 2474–2489.

A. Ayet, P. Tandeo Solar Energy 164 (2018) 301–315

315

http://refhub.elsevier.com/S0038-092X(18)30199-3/h0205
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0205
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0205
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0210
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0210
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0215
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0215
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0220
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0220
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0230
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0230
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0230
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0235
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0235
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0240
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0240
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0245
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0245
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0245
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0250
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0250
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0255
http://refhub.elsevier.com/S0038-092X(18)30199-3/h0255

	Nowcasting solar irradiance using an analog method and geostationary satellite images
	Introduction
	Data pre-processing
	Satellite and ground data
	Cloud index and clear sky irradiance
	Climatic description of the sites

	The analog method
	Overview of the method
	Correlation mask
	Analog selection
	Feature extraction

	k-Nearest neighbor algorithm
	Ensemble generation
	Aggregation of the ensemble

	Evaluation of the quality of the analogs
	Reference methods
	Persistence
	Persistence ensemble (PeEn)
	Adaptive vector-autoregressive model (VAR(1))

	Numerical experiment
	Experiment set-up
	Reference scores
	Comparison with reference methods and bias correction

	Statistical downscaling
	Description of the method
	Numerical experiment

	Conclusion
	Acknowledgments
	Supplementary material
	References




