
HAL Id: hal-01759077
https://hal.science/hal-01759077

Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

K-means Algorithm over Compressed Binary Data
Elsa Dupraz

To cite this version:
Elsa Dupraz. K-means Algorithm over Compressed Binary Data. DCC 2018 : Data compression
conference, Mar 2018, Snowbird, United States. �10.1109/DCC.2018.00060�. �hal-01759077�

https://hal.science/hal-01759077
https://hal.archives-ouvertes.fr


K-means Algorithm over Compressed Binary Data

Elsa Dupraz
IMT Atlantique, Lab-STICC, UBL, Brest, France

Abstract

We consider a network of binary-valued sensors with a fusion center. The fusion center
has to perform K-means clustering on the binary data transmitted by the sensors. In
order to reduce the amount of data transmitted within the network, the sensors compress
their data with a source coding scheme based on binary sparse matrices. We propose to
apply the K-means algorithm directly over the compressed data without reconstructing the
original sensors measurements, in order to avoid potentially complex decoding operations.
We provide approximated expressions of the error probabilities of the K-means steps in the
compressed domain. From these expressions, we show that applying the K-means algorithm
in the compressed domain enables to recover the clusters of the original domain. Monte
Carlo simulations illustrate the accuracy of the obtained approximated error probabilities,
and show that the coding rate needed to perform K-means clustering in the compressed
domain is lower than the rate needed to reconstruct all the measurements.

1 Introduction

Networks of sensors have long been employed in various domains such as environmen-
tal monitoring, electrical energy management, and medicine [1]. In these networks,
inexpensive binary-valued sensors are successfully used in a wide range of applica-
tions, for example in traffic control in telecommunication systems [2], self-testing in
nanonelectric devices [3], or activity recognition on home environments [4]. In this
paper, we consider a network of J sensors that transmit their data to a fusion center.
The fusion center may realize complex data analysis tasks by aggregating the sen-
sors measurements and by exploiting the diversity of the collected data. This paper
considers clustering as a particular data analysis task that consists of separating the
data into a given number of classes with similar characteristics. One of the most
popular clustering methods is the K-means algorithm [5] due to its simplicity and its
efficiency. The K-means algorithm groups the J measurement vectors into K clusters
so as to minimize the average distance between vectors in a cluster and the cluster
center. K-means algorithms were proposed for real-valued measurements [5] but also
for binary measurements [6].

In our context, the J sensors should send their measurements to the fusion center
in a compressed form in order to greatly reduce the amount of data transmitted within
the network. The standard distributed compression framework [7] considers that the
fusion center has to reconstruct all the measurements from all the sensors. However,
in the aforementioned applications [2, 3, 4], the objective of the fusion center is not
to reconstruct the measurements, but to perform a given learning task over the data.
This is why in order to avoid useless and potentially complex decoding operations, we
propose to perform K-means directly over the compressed data. This approach raises



three questions: (i) How should the data be compressed so that the fusion center can
perform K-means without having to reconstruct all the measurements? (ii) How good
is clustering over compressed data compared to clustering over the original data? (iii)
Is the rate needed to perform K-means lower than the rate needed to reconstruct all
the data?

Regarding the first two questions, [8, 9] consider real-valued measurement vectors
compressed from Compressed Sensing (CS) techniques, and show that it is possible
to apply the K-means algorithm directly in the compressed domain. Other than
K-means, detection and parameter estimation can be applied over compressed real-
valued data [10, 11], but also over compressed binary data [12, 13]. However, none of
these works consider the K-means algorithm over compressed binary data. Regarding
the third question, to the best of our knowledge, the K-means algorithm has not been
studied yet in the information theory framework.

Binary data may come either from binary-valued sensors, or from the binary rep-
resentation of quantized real measurements. Here, we propose a clustering algorithm
that applies directly over compressed binary data. Our approach is based on sparse
binary matrices for compression and on K-means in order to cluster the compressed
binary vectors. In order to validate this approach, we further propose a theoretical
analysis of the performance of the K-means algorithm in the compressed domain. We
in particular derive analytical approximated expressions of the error probabilities of
each of the two steps of the K-means algorithm. The theoretical analysis shows that
the K-means algorithm in the compressed domain permits to successfully recover the
clusters of the original domain. Monte Carlo simulations confirm the accuracy of the
obtained approximated error probabilities. We also show from Monte Carlo simu-
lations that the practical rate needed to perform K-means over compressed data is
lower than the rate needed to reconstruct all the measurements.

The outline of the paper is as follows. Section 2 presents the statistical model
we consider for the measurement vectors and describes the source coding technique
that will be used in our system. Section 3 introduces the K-means algorithm in the
compressed domain. Section 4 proposes the theoretical analysis of the two steps of
the K-means algorithm. Section 5 presents our Monte Carlo simulation results.

2 System Description

In this section, we first introduce our notations and assumptions for the binary mea-
surement vectors collected by the sensors. We then present the source coding tech-
nique that is used in the system.

2.1 Source Model

The network is composed by J sensors and a fusion center. We assume that each
sensor j ∈ J1, JK collects N binary measurements xj,n ∈ {0, 1} that are stored in a
vector xj of size N . Consider K different clusters Ck where each cluster is associated
to a centroid θk of length N . The binary components θk,n of θk are independent and



identically distributed (i.i.d.) with P (θk,n = 1) = pc. We assume that each measure-
ment vector xj belongs to one of the K clusters. The cluster assignment variables
ej,k are defined as ej,k = 1 if xj ∈ Ck, ej,k = 0 otherwise. Let Θ = {θ1, · · · ,θK}
and E = {e1,1, · · · , eJ,K} be the sets of centroids and of cluster assignment variables,
respectively. Within cluster Ck, each vector xj ∈ Ck is generated as

xj = θk ⊕ bj, (1)

where ⊕ represents the XOR componentwise operation, and bj is a vector of size
N with binary i.i.d. components such that P (bj,n = 1) = p. We assume that the
parameter p and pc are unknown. This model is equivalent to the model presented
in [14] for K-means clustering with binary data. It is symmetric, memoryless, and
additive, which may not capture all the noise effect in practical situations, especially
when the binary data comes from quantized real-valued data. Here, we consider this
model as a first step to introduce the analysis and more accurate models will be
considered in future works.

The objective of the K-means algorithm is to recover the unknown cluster as-
signments E and centroids Θ. Some instances of the K-means algorithm such as
K-means++ have been proposed to deal with an unknown number of clusters K [5].
Here, as a first step, K is assumed to be known in order to focus on the compression
aspects of the problem. In our context, each sensor has to transmit its data to the
fusion center that should perform K-means on the received data. We now describe
the source coding technique that is used in our system in order to reduce the amount
of data transmitted to the fusion center.

2.2 Source Coding with Sparse Binary Matrices

In [7], it is shown that sparse binary matrices are very efficient to perform distributed
source coding in a network of sensors, and in [15, 13] it is shown that they allow
parameter estimation over the compressed data. Denote by H a binary matrix of size
N ×M (M < N). Denote by dv � M the number of non-zero components in any
row of H, and denote by dc � N the number of non-zero components in any column
of H. In our system, each sensor j transmits to the fusion center a binary vector uj

of length M , obtained as
uj = HTxj, (2)

where the operation is performed modulo 2 and T is the transpose operator applied
to H. All the sensors use the same matrix H with coding rate r = M

N
.

The set of all the possible vectors xj is called the original domain and is denoted
as XN = {0, 1}N . The set of all the possible vectors uj is called the compressed
domain and is denoted by UM ⊆ {0, 1}M . The compressed domain UM depends on
the considered code H. Note that in distributed source coding [7], the matrix H is
constructed as the sparse parity check matrix of a Low Density Parity Check (LDPC)
code, which permits an efficient decoding of the vectors xj at the fusion center. Here,
we do not want to reconstruct the original vectors xj, but the theoretical analysis
carried in the paper will justify that the matrix H still needs to be sparse in order to



improve the performance of the K-means algorithm in the compressed domain. The
sparsity of H also makes the encoding operation (2) less complex, that is to say linear
with the measurement vector length N .

As in [7], we assume that the vectors uj are transmitted reliably to the fusion
center. We consider this assumption in order to focus on the source coding aspects
of the problem, and we do not describe the channel codes that should be used in the
system in order to satisfy this assumption. Here, in order to avoid complex decoding
operations as in [7], we propose to apply the K-means algorithm directly over the
compressed vectors uj received by the fusion center.

3 K-means Algorithm

The K-means algorithm for clustering binary vectors xj ∈ XN was initially pro-
posed in [6]. In this section, we restate this algorithm in the compressed domain
UM . The Hamming distance between two vectors a, b ∈ UM is defined as d(a,b) =∑M

m=1 am ⊕ bm. Denote ψk = HTθk and Ψ = {ψ1, . . . ,ψK} the compressed versions
of the centroids θk. Applying the K-means algorithm in the compressed domain cor-
responds to minimizing the objective function F(Ψ, E) =

∑J
j=1

∑K
k=1 ej,kd(uj,ψk).

with respect to the compressed centroids ψk and to the assignment variables ej,k.

We initialize the K-means algorithm with K compressed centroids ψ
(0)
k that may

be either selected at random among the set of input vectors uj, or obtained from the
K-means++ procedure [16]. Denote by L the number of iterations of the K-means
algorithm. In the following, superscript ` always refers to a quantity obtained at the
`-th iteration of the algorithm. At iteration ` ∈ J1, LK, K-means proceeds in two

steps. First, from the centroids ψ
(`−1)
k obtained at iteration ` − 1, it assigns each

vector uj to a cluster as

∀j, k, e(`)j,k =

{
1 if d(uj,ψ

(`−1)
k ) = min

k′∈J1,KK
d(uj,ψ

(`−1)
k′ ),

0 otherwise.
(3)

Second, the algorithm updates the centroids as follows:

∀j, n, ψ
(`)
k,n =

 1 if
J∑

j=1

e
(`)
j,kuj,n ≥ 1

2
J
(`)
k ,

0 otherwise.

(4)

where J
(`)
k is the number of vectors assigned to cluster k at iteration `. Step (3)

assigns each vector uj to the cluster with the closest compressed centroid ψ
(`)
k . The

centroid computation step (4) is a majority voting operation which can be shown

to minimize the average distances between the centroid ψ
(`)
k and all the vectors uj

assigned to cluster k at iteration `.
Following the same reasonning as for K-means in the original domain [6], it is easy

to show that when applying K-means in the compressed domain, the sequence of ob-
jective functions F(Ψ(`), E(`)) is decreasing with ` and converges to a local minimum.



However, this property does not guarantee that the cluster assignment variables e
(`)
j,k

obtained from the algorithm in the compressed domain will correspond to the correct
cluster assignments in the original domain. In order to show that the K-means algo-
rithm applied in the compressed domain can recover the correct clusters of the original
domain, we now propose a theoretical analysis of the two steps of the algorithm.

4 K-means Performance Evaluation

In order to assess the performance of the K-means algorithm in the compressed do-
main, we evaluate each step of the algorithm individually. We provide an approxi-
mated expression of the error probability of the cluster assignment step in the com-
pressed domain, assuming that the compressed centroids ψk are perfectly known.
In the same way, we provide an approximated expression of the error probability of
the centroid estimation step in the compressed domain, assuming that the cluster
assignment variables ej,k are perfectly known. Although evaluated in the most favor-
able cases, these error probabilities will enable us determine whether it is reasonable
to apply K-means in the compressed domain in order to recover the clusters of the
original domain. The expressions of the error probabilities we derive rely on three
functions fM , FM , and g defined as

fM(m, p) =

(
M

m

)
pm(1− p)M−m, (5)

FM(m, p) =
M∑

u=m+1

fM(u, p), (6)

g(d, p) =
1

2
− 1

2
(1− 2p)d. (7)

The function fM is the Binomial probability distribution and the function FM is the
Binomial complementary cumulative probability distribution. The value g(d, p) gives
the probability that the sum of d binary random variables

∑d
i=1Xi equals 1, where

P (Xi = 1) = p, see [17, Section 3.8].

4.1 Error Probability of the Cluster Assignment Step

The following proposition evaluates the error probability of the cluster assignment
step (3) applied to the compressed centroids ψk.

Proposition 1. Let êj,k be the cluster assignments obtained when applying the cluster
assignment step (3) to the true compressed centroids ψk. The error probability Pa,k =
P (êj,k = 0|xj ∈ Ck) for cluster k can be approximated as

Pa,k ≈ 1−
M∑

m1=0

M∑
m2=m1

fM (m1, q1)BM,K(m2, q2) (8)

where

BM,K(m2, q2) =

K∑
k=1

(
K − 1

k

)
fM (m1, q2)

kFM (m1, q2)
K−1−k (9)



and q1 = g(dc, p), q2 = g
(
dc,

1
2(1− (1− 2pc)

2(1− 2p))
)
.

Proof. See appendix 6.

It can be seen from (8) that the approximated error probability Pa, depends on
the number of clusters K but does not depend on the considered cluster k. The
expressions (8) and (10) are only approximations of the error probabilities of the two
steps of the algorithm. Indeed, they are obtained by assuming that the components
of the vector HTbj are independent, which is not true in general. However, it is
shown in [13, 15] that this assumption is reasonable for parameter estimation over
sparse binary matrices. In Section 5, we verify the accuracy of this approximation by
comparing the values of (8) and (10) to the error probabilities measured from Monte
Carlo simulations.

4.2 Error Probability of the Centroid Computation Step

The following proposition now evaluates the error probability of the centroid compu-
tation step (4) in the compressed domain.

Proposition 2. Let Ψ̂k be the estimated compressed centroids obtained after applying
the centroid estimation step (4) to the true cluster assignment variables ej,k. The error

probability Pc,k = P (ψ̂k,m 6= ψk,m) for cluster k can be approximated as

Pc,k ≈
Jk∑

j=dJk
2
e

fJk(j, q1) (10)

where Jk is the number of vectors in cluster k, and q1 = g(dc, p).

Proof. See appendix 6.

The approximated error probability Pc,k (10) only depends on the considered clus-
ter k through the number Jk of vectors in cluster Ck. The expression (8) is only an
approximation of the error probability of the centroid assignment step for the same
reasons as for the cluster assignment step. We will also verify the accuracy of this
approximation in Section 5.

5 Simulation Results

In this section, we evaluate through simulations the performance of the K-means
algorithm in the compressed domain. We first consider each step of the algorithm
individually, and we verify the accuracy of the approximated error probabilities ob-
tained in Section 4. We then assess the performance of the full algorithm and we
evaluate the rate needed to perform K-means over compressed data.

Throughout the section, we set J = 200, K = 4, pc = 0.1. We set dv = 2 for all
the considered binary sparse matrices, since it can be shown from (8) and (10) that
the error probabilities Pa and Pc,k are increasing with dv (dv is necessarily greater
than 2). The sparse matrices are constructed from the Progressive Edge Growth
algorithm [18], which reduces the correlation between the components of HTbj.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

p

Pe

N=1000, M=500, theoretic
N=1000, M=500, practical
N=500, M=250, theoretic
N=500, M=250 practical
N=1000, M=250, theoretic
N=1000, M = 250, practical
N=500, M=125, theoretic
N=500, M=125, practical

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

p

Pe

N=1000, M=500, theoretic
N=1000, M=500, practical
N=500, M=250, theoretic
N=500, M=250 practical
N=1000, M=250, theoretic
N=1000, M = 250, practical
N=500, M=125, theoretic
N=500, M=125, practical

curves for r=1/4 
(superposed)

curves for r=1/2 
(superposed)

(b)

Figure 1: Comparison of approximated theoretic error probabilities with error prob-
abilities measured from Monte Carlo simulations for the two steps of the algorithm.
For both steps, dashed lines represent theoretic error probabilities while continuous
lines give error probabilities measured from Monter Carlo simulations. (a) Cluster
assignment step (b) Centroid estimation step.

5.1 Accuracy of the error probability approximations

Here, we consider two codes of rate r = 1/2 and dc = 4 with parameters (N =
1000,M = 500) and (N = 500,M = 250). We also consider two codes of rate r = 1/4
with dc = 8 and parameters (N = 1000,M = 250) and (N = 500,M = 125). We
compare the approximated expressions Pa (8) and Pc,k (10) with the effective error
probabilities measured from Monte Carlo simulations for each step of the algorithm
for the four constructed codes over Nt = 10000 simulations. Figure 1(a) represents
the obtained error probabilities for the cluster assignment step, while Figure 1(b) rep-
resents the centroid estimation step. As expected from (8) and (10), the performance
of the cluster assignment step varies with the vector length N , but the performance
of the centroid computation step does not vary with N .

We also see that for each of the two steps of the algorithm, the theoretic error
probabilities Pa,k and Pc,k are very close to the measured error probabilities, whatever
the considered code. This shows the accuracy of the proposed approximations, even
for smaller values N = 500 for which the correlation between components of HTbj

increases. Figure 1(a) and (b) also illustrate that the cluster assignment step and the
centroid computation step in the compressed domain can indeed recover the correct
clusters of the original domain, since it is possible to reach error probabilities from
10−3 to 10−7.

5.2 K-means algorithm and rate evaluation

In this section, we evaluate the performance of the K-means algorithm in the com-
pressed domain. Here, we set N = 1000. We consider a first code of rate r = 1/4
with M = 250 and dc = 8, and a second code of rate r = 1/2, with M = 500 and



0 0.05 0.1 0.15 0.2 0.25
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

p

Pe

M=250 (r=1/4)
M=500 (r=1/2)

R
d
 =

 0
.4

3

R
d
 =

 0
.6

8

Figure 2: Error probability of the K-means algorithm with L = 10 iterations. The
values of Rd indicate the average rates needed to reconstruct all the measurement
vectors for the considered values of p.

dc = 4. We run over Nt = 10000 simulations the K-means algorithm in the com-
pressed domain initialized with L = 10 iterations. For each simulation, the K-means
algorithm is repeated 100 times over the same data in order to avoid initialization
issues. Figure 2 represents the error probability of the cluster assignments decided by
the algorithm in the compressed domain with respect to the correct clusters in the
original domain. The error probability is decreasing with r and is increasing with p,
which is expected since the value of p represents the noise level in the measurement
vectors compared to the centroids.

The above results show that the rate r has to be chosen carefully with respect to
the value of p in order to guarantee the efficiency of the clustering in the compressed
domain. It can be shown from the value of Rd that the rate needed to reconstruct all
the measurement vectors also increases with p. This is why we now compare the rate
needed to perform K-means over compressed data to the rate needed to reconstruct all
the sensors measurements. For pc = 0.1 and p = 0.1, we get Rd = 0.68 bits/symbol,
and, for pc = 0.1 and p = 0.05, we obtain Rd = 0.43 bits/symbol. The results of
Figure 2 show that for pc = 0.1 and p = 0.1, the code of rate r = 1/2 < 0.68 enables
to perform K-means with an error probability lower than 10−6. For pc = 0.1 and
p = 0.05, the code of rate r = 1/4 < 0.43 also enables to perform K-means with a low
error probability Pe = 10−5. This shows that the rate needed to perform K-means
is lower than the rate needed to reconstruct all the sensors measurements, which
justifies the approach presented in the paper.

6 Conclusion

In this paper, we considered a network of sensors that transmit their compressed bi-
nary measurements to a fusion center. We proposed to apply the K-means algorithm
directly over the compressed data, without reconstructing the sensor measurements.
From a theoretical analysis and from Monte Carlo simulations, we showed the effi-
ciency of applying K-means in the compressed domain. We also showed that the rate
needed to perform K-means on the compressed vectors is lower than the rate needed



to reconstruct all the measurements. Future works will also be dedicated to the gen-
eralization of the analysis to more complex, e.g. asymmetric models or models with
memory.

Appendix

Proof of Proposition 1

Without loss of generality, we first evaluate the error probabilities Pa,1 = P (êj,1 =
0|xj ∈ C1). Assume that xj ∈ C1 and let

a1 = uj ⊕ψ1 = HTbj,

2 ≤ k ≤ K, ak = uj ⊕ψk = HT (θ1 ⊕ θk ⊕ bj). (11)

Define for all k ∈ {1, · · · , K}, Ai =
∑M

m=1 ak,m. According to the cluster assignment
step (3), the error probability Pa,1 can be expressed as

Pa,1 = 1− P
(
A1 ≤ min

i=2,··· ,K
Ai

)
≈ 1−

M∑
u=0

P (A1 = u)
M∑
v=u

P

(
min

i=2,··· ,K
Ai = v

)
. (12)

In the above expression, the probability of the minimum of the Ai can be developped
as

P

(
min

i=2,··· ,K
Ai = v

)
≈

K−1∑
k=1

(
K − 1

k

)
P (Ai = v)kP (Ai > v)K−1−k (13)

given that the Ai with i > 1 are all identically distributed. In order to get (12)
and (13) we implicitly assume that the random variables Ai are mutually independent
for all i = 1, · · · , K, and as a result (12) is only an approximation of Pa,1. To finish,
the terms P (A1 = u) and P (Ai = v) (i 6= 1) can be calculated as follows. First,
since a1,m is the XOR sum of dc binary random variables bj,n, its probability is given
by P (a1,m = 1) = q1. Assuming that the a1,m are independent, it follows that
P (A1 = u) ≈ fM(u, q1). In the same way, for i > 1, P (ai,m = 1) = q2 since ai,m is the
XOR sum of dc random variables θ1,n ⊕ θi,n ⊕ bj,n and P (θi,n = 1) = pc. This gives
P (Ai = v) ≈ fM(v, q2). At the end, the terms P (Ai > v) are given by the Binomial
complementary cumulative probability distribution FM(v, q2).

Proof of Proposition 2

From the model defined in Section 2, a codeword uj (j ∈ Ck), can be expressed as

uj = HT (θk ⊕ bj) = ψk ⊕ aj, (14)

where aj = HTbj is such that P (aj,m = 1) = pd. Let Aj =
∑Jk

j=1 aj,m. The error
probability of the centroid computation step can be evaluated as

Pc,k = P

(
Aj ≥

Jk
2

)
≈

Jk∑
j=dJk

2
e

fJk(j, q1). (15)

The approximation comes from the fact that (10) assumes that the aj,m are indepen-
dent.



References

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer
networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] L. Y. Wang, J.-F. Zhang, and G. G. Yin, “System identification using binary sensors,”
IEEE Transactions on Automatic Control, vol. 48, no. 11, pp. 1892–1907, 2003.

[3] E. Colinet and J. Juillard, “A weighted least-squares approach to parameter estimation
problems based on binary measurements,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 148–152, 2010.

[4] F. J. Ordóñez, P. de Toledo, and A. Sanchis, “Activity recognition using hybrid gen-
erative/discriminative models on home environments using binary sensors,” Sensors,
vol. 13, no. 5, pp. 5460–5477, 2013.

[5] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern recognition letters,
vol. 31, no. 8, pp. 651–666, 2010.

[6] Z. Huang, “Extensions to the K-means algorithm for clustering large data sets with
categorical values,” Data mining and knowledge discovery, vol. 2, no. 3, pp. 283–304,
1998.

[7] Z. Xiong, A. Liveris, and S. Cheng, “Distributed source coding for sensor networks,”
IEEE Signal Processing. Magazine, vol. 21, no. 5, pp. 80–94, 2004.

[8] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas, “Randomized dimensionality
reduction for K-means clustering,” IEEE Transactions on Information Theory, vol. 61,
no. 2, pp. 1045–1062, 2015.

[9] N. Keriven, N. Tremblay, Y. Traonmilin, and R. Gribonval, “Compressive k-means,”
arXiv preprint arXiv:1610.08738, 2016.

[10] M. Davenport, P. T. Boufounos, M. B. Wakin, R. G. Baraniuk, et al., “Signal pro-
cessing with compressive measurements,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, no. 2, pp. 445–460, 2010.

[11] A. G. Zebadua, P.-O. Amblard, E. Moisan, and O. J. Michel, “Compressed and quan-
tized correlation estimators,” IEEE Transactions on Signal Processing, vol. 65, no. 1,
pp. 56–68, 2017.

[12] S. Wang, L. Cui, L. Stankovic, V. Stankovic, and S. Cheng, “Adaptive correlation
estimation with particle filtering for distributed video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, pp. 649–658, May 2012.

[13] E. Dupraz, A. Roumy, and M. Kieffer, “Source coding with side information at the
decoder and uncertain knowledge of the correlation,” IEEE Transactions on Commu-
nications, vol. 62, no. 1, pp. 269–279, 2014.

[14] T. Li, “A general model for clustering binary data,” in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pp. 188–
197, 2005.

[15] V. Toto-Zarasoa, A. Roumy, and C. Guillemot, “Maximum likelihood BSC parame-
ter estimation for the Slepian-Wolf problem,” IEEE Communications Letters, vol. 15,
no. 2, pp. 232–234, 2011.

[16] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of careful seeding,” in
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.

[17] R. Gallager, “Low-density parity-check codes,” IEE Transactions on information the-
ory, vol. 8, no. 1, pp. 21–28, 1962.

[18] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-
growth tanner graphs,” IEEE Transactions on Information Theory, vol. 51, no. 1,
pp. 386–398, 2005.


