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Abstract

In Sequential Massive Random Access (SMRA), a set of correlated sources is jointly encoded
and stored on a server, and clients want to access to only a subset of the sources. Since
the number of simultaneous clients can be huge, the server is only authorized to extract a
bitstream from the stored data: no re-encoding can be performed before the transmission of a
request. In this paper, we investigate the SMRA performance of lossy source coding of Gaussian
sources with memory. In practical applications such as Free Viewpoint Television, this model
permits to take into account not only inter but also intra correlation between sources. For
this model, we provide the storage and transmission rates that are achievable for SMRA under
some distortion constraint, and we consider two particular examples of Gaussian sources with
memory.

1 Introduction

The amount of data available on the web is growing exponentially, as well as the number
of requests to online databases (pictures, music, videos, etc.) [1]. In this context, Massive
Random Access (MRA) refers to the situation where a large number of clients want to
access to some content stored in a huge database. The MRA problem consists in finding
the optimal storage requirements and transmission rates for a set of correlated sources
{X(k)}1≤k≤L such that the compressed sources are stored on a server, that each client
requires a subset of the sources, and that this subset differs from one user to another.
For example, in Free Viewpoint Television [2], the users send requests to the server in
order to obtain one view within a proposed set, and they can freely switch to other views
according to their fancies.

In this paper, we consider a particular setup called Sequential Massive Random Ac-
cess introduced in [3] and formally defined in [4]. SMRA has the following characteristics:
(i) Sequential Access: the clients request the sources one after the other and keep their
previous requests in memory, (ii) Random Access: the requests are client-dependent,
(iii) Massive Access: the number of simultaneous request is huge. The Massive Access
constraint imposes that upon request, the server cannot perform any re-encoding, but
only low complexity operations such as bit extraction. Then, in the SMRA setup, we
aim at minimizing both the storage rate of the set of sources on the server, and the
transmission rates of the compressed sources transmitted from the server to the users.

SMRA is closely related to source coding with side information [5, 6, 7, 8], since, in
the SMRA context, the previously requested source, when kept in the memory of the
client, can be seen as a side information available at the decoder. Nevertheless, SMRA



jointly optimizes the storage and transmission rates, while achievability results provided
in the above works may be interpreted either in terms of storage rate [5, 7] or in terms
of transmission rate [6, 8]. In [4], the joint optimization of these two rates for SMRA
leads to an incremental coding scheme that achieves a double optimality. First, the
transmission rate is equal to the rate without the Massive Access constraint, i.e. when
re-encoding is allowed. Second, the storage rate is the same as without the Random
Access constraint, i.e. without adaptation to the client request.

The main contribution of this paper is to provide the SMRA storage and transmission
rates that are jointly achievable considering some distortion constraint (rates-distortion
trade-off) and realistic source models. In [4], lossy source coding was considered for
correlated Gaussian i.i.d. sources. By correlated i.i.d. sources, we mean that the symbols
generated by one source X(k) are i.i.d. (no intra-correlation), but that the symbols
generated by two sources X(k) and X(`) are statistically dependent (inter-correlation).
In this paper, we investigate the SMRA performance of lossy coding of Gaussian sources
with both inter and intra correlation. This problem is challenging since it requires
the construction of an incremental coding scheme that leads to the double optimality
(with respect to Massive Access and Random Access) while satisfying some distortion
constraint for every source. We also consider two particular cases of Gaussian sources
with memory, and we provide the achievable rates and distortions for these cases.

The paper is organized as follows. Section 2 introduces the SMRA framework with
our source model. Section 3 provides the existing bounds for SMRA. Section 4 gives our
main result and considers two examples.

2 Lossy source coding for SMRA

In this section, we introduce our notations and assumptions. In particular, we formally
define the SMRA coding scheme and we describe the considered model of Gaussian
sources with memory.

2.1 Notations

A random source X is denoted using uppercase; the source X generates a sequence of
random variables denoted Xi using uppercase and index i; the realizations of the Xi

are denoted xi using lowercase; a random vector X is denoted using boldface uppercase
and its realization x is denoted using boldface lowercase. An n-length vector Xn =
(X1, ..., Xn) containing elements X1 to Xn is denoted using superscript n. The alphabet
X of a random variable is denoted with calligraphic letter, and with the same letter as
the random variable. |X | denotes the cardinality of the set X . In the case of multiple
sources, the set J of source indexes is denoted using calligraphic letter. The kth source
is then identified with an index inside brackets i.e. X(k).

2.2 Coding scheme definition

As initially described in [4], the SMRA coding scheme is sequential in the sense that
the compression of each source is performed accounting for the previously requested
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Figure 1: SMRA: focus on the coding of one source X(k)

sources that the user will potentially have in its memory. More formally, consider the
compression of source X(k) and denote by J(k) the set that contains the indexes of the
sources that can be requested just before X(k). Here, as a first step, we consider the
compression of X(k) by taking into account only its potential direct predecessors and
not the whole user’s history of requests. The generalization to more complex sets J(k)

is left for future works. In practical situations, the set J(k) depends on the constraints
of the considered application. For example, in Free-Viewpoint Television, a user may
only move from one view to the neighboring left and right views, which would give
J(k) = {k − 1, k + 1}.

The overall compression scheme is depicted in Figure 1 and consists of two phases.
During the first phase, the source X(k) is encoded by the offline encoder into an incre-
mental index sequence at storage rate S(k) bits/source symbol under the assumptions
that: (i) all the realizations of the sources in J(k) are known, (ii) only one source with
index in J(k) will be available at the client’s decoder. The second phase starts when the
client requests X(k) and specifies the index j∗ ∈ J(k) of the source stored in its memory.
The server then extracts an index subsequence at rate R(k)|(j∗) (online extractor) and
sends it over a noiseless link to the user. To finish, the decoder estimates the requested
source from the received index subsequence and from the available source X(j∗).

The SMRA code construction is incremental because the server will have to adapt the
rate (by extracting a subsequence of indices) to any possible previous request j? ∈ J(k),
without re-encoding. We now formally define the SMRA code and the jointly achievable
storage rates, transmission rates, and distortions for this code.

Definition 1 (SMRA code) A ((2nS(k) , (2nR(k)|(j∗))j?∈J(k))1≤k≤L, n) SMRA code for the
set of discrete general sources {X(k)}1≤k≤L consists, for each source X(k), 1 ≤ k ≤ L, of

• an offline encoder hoff
(k) that assigns a sequence of M(k) = |J(k)| indices to the set of

vectors
(
xn(k), (x

n
(j∗))j?∈J(k)

)
∈ X n ×X n×M(k)

hoff
(k) : X n ×X n×M(k) →

M(k)∏
m=1

{1, . . . , 2nrk,m} (1a)

xn(k), (x
n
(j∗))j?∈J(k) 7→ (i1, . . . , iM(k)

) (1b)

where S(k) = rk,1 + rk,2 + . . .+ rk,M(k)
.



• a set of M(k) online extractors hon
(k)|(j∗), j

? ∈ J(k), that extract a subsequence of indices

from the sequence of indices (i1, . . . , iM(k)
)

hon
(k)|(j∗) :

M(k)∏
m=1

{1, . . . , 2nrk,m} →
∏

m∈I(k)|(j∗)

{1, . . . , 2nrk,m} (2a)

(i1, . . . , iM(k)
) 7→ (im)m∈I(k)|(j∗) (2b)

where I(k)|(j∗) ⊆ {1, · · · ,M(k)}, and R(k)|(j∗) =
∑

m∈I(k)|(j∗) rk,m ≤ S(k)

• a set of M(k) decoders g(k)|(j∗), j
? ∈ J(k), that, given the source realization xn(j∗), assign

an estimate x̂n(k)|(j∗) to each received subsequence of indices

g(k)|(j∗) :
∏

m∈I(k)|(j∗)

{1, . . . , 2nrk,m} × X n → X n (3a)

(im)m∈I(k)|(j∗) ,x
n
(j∗) 7→ x̂n(k)|(j∗) (3b)

Definition 2 (Rates-distortion region for SMRA code) Consider a distortion mea-

sure d : X × X → R. The tuple
(

(S(k), (R(k)|(j∗))j?∈J(k) , (D(k)|(j∗))j?∈J(k))1≤k≤L

)
is said

to be achievable for SMRA if there exists a sequence of SMRA codes such that

∀k ∈ {1, · · · , L},∀j? ∈ J(k), lim
n→∞

E

[
1

n

n∑
i=1

d
(
X(k),i, X̂(k)|(j∗),i

)]
≤ D(k)|(j∗), (4)

where the expectation is taken over (Xn
(k),X

n
(j∗)).

The main particularity of the SMRA code definition resides in the combination of
two encoding mappings: a standard offline encoder that produces the sequence of coded
indexes, and a novel online extractor that can only extract a part of the coded indexes.
The online extractor is a very simple operation introduced because re-encoding is not
desirable in massive access to data. The above definition suggests that the encoder
and the extractor should be jointly designed in order to minimize both storage S(k) and
transmission R(k)|(j∗) rates involved in the definition.

2.3 Gaussian source model with memory

In this paper, we derive the tuple of jointly achievable rates S(k), R(k)|(j∗), and dis-
tortions D(k)|(j∗) for a Gaussian source model with memory which we now describe.
For all j ∈ J(k), we assume that the source X(j) generates Gaussian vectors of length
n as Xn

(j) ∼ N (0,Σn
(j)). The covariance matrices Σn

(j) are positive-definite. For all

j ∈ J(k), the statistical dependence between X(j) and X(k) is described by (Xn
(k)|Xn

(j) =

xn(j)) ∼ N (xn(j),Σ
n
(k|j)). The covariance matrices Σn

(k|j) are assumed to be positive-definite
Toeplitz matrices with expression

Σn
(k|j) =


ρ

(k|j)
1 ρ

(k|j)
2 ρ

(k|j)
3 · · · ρ

(k|j)
n

ρ
(k|j)
2 ρ

(k|j)
1 ρ

(k|j)
2 · · · ρ

(k|j)
n−1

· · · · · · · · · · · · · · ·
ρ

(k|j)
n ρ

(k|j)
n−1 · · · ρ

(k|j)
2 ρ

(k|j)
1

 . (5)



Let λ
(k|j)
i , ` = 1, · · · , n be the n eigenvalues of Σn

(k|j). For Gaussian sources, X = R and

we consider the quadratic distortion measure defined ∀(x, y) ∈ R×R by d(x, y) = (x−y)2.
This model captures the dependencies between components for a wide range of sources
with stationarity in the memory. Finite memory can be considered by setting ρ

(k|j)
i = 0

for all i greater than a given integer. For this model, [9] provided the rate-distortion
region in the standard case of lossy source coding without side information.

The sources X(j) that may serve as side information for X(k) were also reconstructed
with a certain distortion. The set J(k) then contains all the possible distorded versions
of the sources that can be available at the decoder when X(k) is requested. With the
model introduced in this section, we assume a Gaussian model between the source X(k)

and the sources with distortion contained in J(k). The expressions of the covariance
matrices Σn

(k|j) given in (5) hence depend on the distortion levels in these sources. In the
following, we first describe already existing information-theoretic results for particular
cases of this model, we then provide our main result of achievability for SMRA.

3 Source Coding performance: knowns bounds

The main particularity of the SMRA coding scheme (see Figure 1) lies in the splitting
of the encoder into two parts. The offline encoder has access to all the data but does
not know the index j? of the source available at the decoder, and the online encoder
has access to the coded sequence of indexes and to the index j?. The storage and
transmission rates that are achievable for SMRA have been derived in [4].

For instance, let us consider a set of L i.i.d. sources such that the joint distribution
can be factorized as P (xn(1), ...,x

n
(`), ...,x

n
(L)) =

∏n
i=1 P (x(1),i, ..., x(L),i). When a client

requests the source X(k) and indicates that the source X(j∗) is available at its decoder,
we show that [4]

S(k) ≥ max
j∈J(k)

H
(
X(k)|X(j)

)
(6a)

R(k)|(j∗) ≥ H
(
X(k)|X(j∗)

)
, (6b)

where H(X(k)|X(j∗)) is the conditional entropy of the source X(k) given X(j). As a
result, the transmission rate H

(
X(k)|X(j∗)

)
is the same as if re-encoding was allowed

(optimality despite the Massive Access constraint). Moreover, this optimal transmis-
sion rate can be achieved while keeping the storage rate at its lowest possible value
maxj∈J(k) H

(
X(k)|X(j)

)
, which is much smaller than the rate

∑
j∈J(k) H(X(k)|X(j)) that

is required when storing a different codeword for all possible pairs (X(j), X(k))j∈J(k) (op-
timality despite the Random Access constraint). A similar result holds for lossy com-
pression of i.i.d. sources.

The above cases consider sources with no intra correlation (the source components
X(k),i are i.i.d.) but with inter correlation (X(k),i and X(j),i are statistically dependent).
However, real data such as videos always contain intra correlation and it is of great inter-
est to see if the optimality of SRMA remains in this case. Consider the Gaussian model
with intra correlation described in Section 2.3 and assume that X(j∗) is the previously
requested source. For this model, the marginal Karhunen Loeve Transform (KLT) [10]



derived from the covariance matrix of Xn
(k) will not take into account the inter correla-

tion of X(k) and X(j∗) and it will lead to a suboptimal transmission rate. On the other
hand, the conditional KLT [10] derived from the covariance matrix Σ(k|j?) would lead
to an optimal transmission rate. However, the conditional KLT cannot be applied in
the SMRA coding scheme, since the offline encoder does not know the index j? of the
source that will be available at the decoder. In the remaining of the paper, we study
the SMRA coding of the Gaussian sources described in Section 2.3, and we propose an
incremental coding scheme that applies to sources with inter and intra correlation.

4 Lossy Source Coding for Correlated Gaussian Vectors

The following theorem states our main result by providing the achievable tuple of rates
and distortions for non i.i.d. Gaussian sources for SMRA. The proof is given in Sec-
tion 4.1.

Theorem 3 For given parameters δk, θk (k ∈ {1, · · · , L}), the rates-distortions tu-
ple
(
(S(k), (R(k)|(j∗), D(k)|(j∗))j∗)k

)
is achievable for Gaussian sources for SMRA if ∀k ∈

{1, · · · , L},∀j∗ ∈ J(k),

R(k)|(j∗)(δk, θk) ≥ lim
n→∞

1

n

n∑
i=1

max

(
0,

1

2
log2

λ
(k|j?)
i

θk

)
(7)

S(k)(δk, θk) ≥ lim
n→∞

1

n

n∑
i=1

max

(
0, max

j∈J(k)

1

2
log2

λ
(k|j)
i

θk

)
(8)

D(k)|(j∗)(δk, θk) ≤ lim
n→∞

1

n

n∑
`=1

min

(
θ,

λ
(k|j?)
i δk

λ
(k|j?)
i + δk

)
. (9)

given that the limits exist.

In the above theorem, we notice that the transmission rate R(k)|(j∗)(δk, θk) corresponds
to the Wyner-Ziv rate-distortion function for a given target distortion D(k)|(j∗)(δk, θk)
when X(j∗) is the only possible side information. The storage rate S(k)(δk, θk) is given

by the mean of the worst possible rates 1
2

log2
λ
(k|j)
i

θk
for each components i ∈ {1, · · · , n}.

In Theorem 3, the parameter θk comes from the waterfilling problem of allocating
the rate between source components in order to achieve a distortion constraint in expec-
tation. The parameter δk is the distortion of an individual component when no previous
request is available at the decoder. When a previous request X(j∗) is available at the de-
coder, the source X(k) can be reconstructed with a distortion D(k)|(j∗) ≤ δk that depends
on the parameter δk and on the statistics between X(k) and X(j∗). It is worth noting
that all the distortion levels D(k)|(j) only depend on the eigenvalues of Σn

(k|j) and on the
unique parameter δk. In particular, it is not possible to achieve a particular distortion
for a given X(j∗) without affecting all the distortions for the other possible X(j). This is
due to the incremental aspect of SMRA, as can be seen in the following proof.



4.1 Proof of achievability
Test-channel: We consider the following test channels

Un
(k) = Xn

(k) + Ψn
(k) (10)

∀j ∈ J(k), X̂n
(k|j) = A(k|j)U

n
(k) +B(k|j)X

n
(j) (11)

where Ψn
(k) ∼ N (0, δkIn), In is the identity matrix of size n × n. A(k|j) and B(k|j) are

n× n matrices such that

A(k|j) = Σn
(k|j)(δkIn + Σn

(k|j))
−1 (12)

B(k|j) = (In + δkΣ
n
(k|j))

−1Σn
(k|j)(Σ

n
(j))
−1. (13)

For all i ∈ {1, · · · , n} and j ∈ J(k), this test channel gives individual distortions

E
[
(X(k),i − X̂(k|j),i)

2
]

=

((
1

δk
In + (Σn

(k|j))
−1

)−1
)
i,i

=
λ

(k|j)
i δk

λ
(k|j)
i + δk

. (14)

Random code generation: Generate 2nr0 sequences Un
(k) at random according to (10).

The distribution of Un
(k) does not depend on the possible previous requests X(j). Denote

by C the set of generated sequences un(k) and index them with s ∈ {1, · · · , 2nr0}. Assign

each un(k)(s) ∈ C to M(k) incremental bins, following the same process as in the proof of [4,

Theorem 6]. In order to construct the incremental bins, consider the source reordering
function π : J(k) → {1, · · · ,M(k)}, j → π(j). We denote m = π(j), and the reordering
function π is such that Ī(Xπ−1(m); U(k)) ≤ Ī(Xπ−1(m−1); U(k)), ∀m ∈ {2, · · ·M(k)}, where
Ī(.; .) is the spectral mutual information defined in [11, Section 5.4]. The size of the M(k)

incremental bins is defined by values rm such that at the m-th level, there are 2n(r1+···+rm)

bins. This defines M(k) mappings f(k|j)(u
n
(k)) = (i1, · · · , iπ(j)), j ∈ {1, · · · ,M(k)} where

the (i1, · · · , iπ(j)) are the indices of the successive bins to which un(k) belongs.

Encoding: Given a sequence xn(k), find a sequence un(k)(s) ∈ C such that (xn(k),u
n
(k)(s)) ∈

T
(1)
ε,n (X(k), U(k)), where

T (1)
ε,n (X(k), U(k)) =

{
(xn(k),u

n
(k))

∣∣∣∣∣ 1n log
P (un(k)|xn(k))

P (un(k))
< r0 − ε

}
. (15)

The offline encoder then sends to the storage unit the index sequence (i1, · · · , iM(k)
)

obtained for un(k)(s). Upon request of the source X and previous request j, the online

extractor sends to the user the index sequence (i1, · · · , iπ(j)) for un(k)(s).

Decoding: Given the received index sequence (i1, ..., iπ(j)) and the side information
xn(j), declare ûn(k) = un(k)(s) if there is a unique pair of sequences (xn(j),u

n
(k)(s)) such that

f(k|j)(u
n
(k)(s)) = (i1, ..., iπ(j)) and (xn(j),u

n
(k)(s)) ∈ T

(2)
ε,n (X(j), U(k)) where

T (2)
ε,n (X(j), U(k)) =

{
(xn(j),u

n
(k))

∣∣∣∣∣ 1n log
P (un(k)|xn(j))
P (un(k))

<

j∑
i=1

ri − ε

}
. (16)

Then compute x̂n(k|j) from ûn(k) and xn(j) according to (11).



Probability of error: We define the error events:

E0,1 = {@s such that (Xn
(k),u

n
(k)(s)) ∈ T (1)

ε,n (X(k), U(k))}
E0,2 = {(Xn

(k),u
n
(k)(s)) ∈ T (1)

ε,n (X(k), U(k)) but (Xn
(j),u

n
(k)(s)) /∈ T (2)

ε,n (X(j), U(k))}
Ej = {∃s′ 6= s : f(k|j)(u

n
(k)(s

′)) = f(k|j)(u
n
(k)(s)) and (Xn

(j),u
n
(k)(s

′)) ∈ T (2)
ε,n (X(j), U(k))}, ∀j ∈ J

By the same derivation as in the proof of [4, Theorem 6], we show that P(Ej) → 0 as
n → ∞, ∀j ∈ J . By the definitions of the spectral mutual information Ī(X(k); U(k)),

see [11, Section 5.4], and of the set T
(1)
ε,n in (15) we show that if r0 ≥ Ī(X(k); U(k)), then

P(E0,1) → 0 as n → ∞. With the same arguments and from the definition of T
(2)
ε,n

in (16), we show that P(E0,2)→ 0 as n→∞ if
∑j

i=1 ri ≥ Ī(X(k); U(k))− Ī(X(j); U(k)).
At the end and from the two above rate conditions, the decoding error probability
P n
error = P(E0,1

⋃
E0,2

⋃
∪j∈JEj)→ 0 as n→∞.

Distortion and rate computation: First, from the individual distortions (14) and
from the error probability analysis, the overall distortion for the sequence Xn

(k) can be
calculated for all j ∈ J(k) as

1

n

n∑
i=1

E[(X(k),i − X̂(k|j),i)
2] ≤ (1− P n

error)
1

n

n∑
i=1

λ
(k|j)
i δk

λ
(k|j)
i + δk

+ P n
errorδmax (17)

where δmax is a constant that represents the maximum possible distortion over a given
component, and the expectation is calculated given that X(j) is available at the decoder.
Then, from the definition of the spectral mutual information in [11, Section 5.4] and
by the ergodicity of the considered Gaussian sources, Ī(X(k); U(k)) − Ī(X(j); U(k)) =
limn→∞

1
n
h(Un

(k)|Xn
(k))−

1
n
h(Un

(k)|Xn
(j)). From [10], we can then express

1

n
h(Un

(k)|Xn
(k))−

1

n
h(Un

(k)|Xn
(j)) =

n

2
log2

det(Σn
(k|j) + δkIn)

det(δkIn)
=

1

n

n∑
i=1

1

2
log2

λ
(k|j)
i

di
, (18)

where det(.) is the determinant of the matrix in argument, and di =
λ
(k|j)
i δk

λ
(k|j)
i +δk

. At

the end, taking the limits when n → ∞ in (17) and (18), and expressing the rate-
allocation optimization between the individual components X(k),i of X(k) gives the rate
and distortion expressions in (7). It can be seen from (17) and (18) that the rate and the
distortion are allocated component by component. This operation leads to the expression
of S(k) in (7) in which the maximum over the j ∈ J(k) is taken component by component.

4.2 Examples
As an example, we consider one source X(k) and M = 3 possible previous requests X(j).
We consider two Gaussian models that are particular cases of our model introduced in
Section 2.3. The two considered cases have been introduced in [9] for the standard case
of lossy source coding without side information. In order to obtain approximations of
the rate and distortion expressions provided in Theorem 3, we computed the eigenvalues
of the three Toeplitz matrices obtained with each considered model at length N = 1000.
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Figure 2: Rates S(k) and R(k)|(j) with respect to distortions D(k)|(j) for three possible
previous requests X(j): (a) Nearest Neighbor correlation model, (b) First-order Markov
model

Nearest Neighbor correlation We first consider the Gaussian model of Section 2.3
with ρ

(k|j)
1 = σ2

j , ρ
(k|j)
2 = σ2

j/2, and ρ
(k|j)
i = 0, ∀i > 2. This model assumes that each

component i in X(k) is only correlated with the components i − 1, i, and i + 1 of X(j).
In order to completely define the model for each of the three possible previous requests,
we set σ2

1 = 1, σ2
2 = 2, σ2

3 = 4. The rate-distortion functions for SMRA for this model
are represented in Figure 2 (a). As expected, the storage rate is superimposed with the
worst possible transmission rate. Figure 2 (a) also shows the rate-distortion functions

for SMRA for the memoryless Gaussian model (ρ
(k|j)
1 = σ2

j and ρ
(k|j)
i = 0, ∀i > 1), which

illustrates the gain at taking the memory into account.

First-order Markov source We now consider the Gaussian model with ρ
(k|j)
i =

σ2|γj|i−1, with −1 < γj < 1, for all i ∈ {1, · · · , n}. This model assumes that all
the components of X(k) and X(j) are correlated with a level σ2|γj|i decreasing with i.
For this model, we set σ2 = 1 γ1 = 1/2, γ2 = 1/4, and γ3 = 1/5. The correspond-
ing rate-distortion functions for SMRA are represented in Figure 2 (b), as well as the
rate-distortion functions for the memoryless case. In this case, we observe that the mem-
oryless rate-distortion functions are the same whatever the previously requested source
X(j) available at the decoder, while taking the memory into account permits a decrease
in the transmission rates and distortions.

5 Conclusion

In this paper, we considered SMRA source coding for Gaussian sources with memory,
and we provided the achievable storage and transmission rates for this problem. For this
source model, the transmission rate is equal to the rate without the Massive Access con-
straint, and the storage rate is equal to the rate without the Random Access constraint,



as for the lossless i.i.d. case. However, with the incremental scheme considered in the
paper, it is not possible to achieve a particular distortion for a given previous request
without affecting all the distortions for the other possible previous requests. This issue
will be tackled in future works.
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