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Abstract

Suppose that we wish to infer the value of a statistical parameter at a law from which we
sample independent observations. Suppose that this parameter is smooth and that we can
define two variation-independent, infinite-dimensional features of the law, its so called Q- and
G-components (comp.), such that if we estimate them consistently at a fast enough product of
rates, then we can build a confidence interval (CI) with a given asymptotic level based on a
plain targeted minimum loss estimator (TMLE). The estimators of the Q- and G-comp. would
typically be by products of machine learning algorithms. We focus on the case that the machine
learning algorithm for the G-comp. is fine-tuned by a real-valued parameter h. Then, a plain
TMLE with an h chosen by cross-validation would typically not lend itself to the construction
of a CI, because the selection of h would trade-off its empirical bias with something akin to
the empirical variance of the estimator of the G-comp. as opposed to that of the TMLE. A
collaborative TMLE (C-TMLE) might, however, succeed in achieving the relevant trade-off. We
prove that this is the case indeed.

We construct a C-TMLE and show that, under high-level empirical processes conditions,
and if there exists an oracle h that makes a bulky remainder term asymptotically Gaussian,
then the C-TMLE is asymptotically Gaussian hence amenable to building a CI provided that
its asymptotic variance can be estimated too. The construction hinges on guaranteeing that
an additional, well chosen estimating equation is solved on top of the estimating equation that
a plain TMLE solves. The optimal h is chosen by cross-validating an empirical criterion that
guarantees the wished trade-off between empirical bias and variance.

We illustrate the construction and main result with the inference of the so called average
treatment effect, where the Q-comp. consists in a marginal law and a conditional expectation,
and the G-comp. is a propensity score (a conditional probability). We also conduct a multi-
faceted simulation study to investigate the empirical properties of the collaborative TMLE when
the G-comp. is estimated by the LASSO. Here, h is the bound on the `1-norm of the candidate
coefficients. The variety of scenarios shed light on small and moderate sample properties, in the
face of low-, moderate- or high-dimensional baseline covariates, and possibly positivity violation.

Keywords: cross-validation, empirical process theory, semiparametric models
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1 Introduction

We wish to infer the value of a statistical parameter at a law from which we sample independent
observations. The parameter is a smooth function of the data distribution. We assume that we
can define two variation-independent, infinite-dimensional features of the law, its so called Q-
and G-components, such that if we estimate them consistently at a fast enough joint rate, then
we can build a confidence interval (CI) with a given asymptotic level based on a plain targeted
minimum loss estimator (TMLE) [30, 29]. Typically, the parameter depends on the law only
through its Q-component, whereas its canonical gradient depends on the law through both its Q-
and G-components. The estimators of the Q- and G-components would typically be by products
of machine learning algorithms. We focus on the case that the machine learning algorithm for the
G-component is fine-tuned by a real-valued parameter h. Is it possible to construct an estimator
that will lend itself to the construction of a CI, by fine-tuning data-adaptively and in a targeted
fashion both the algorithm for the estimation of the G-component and the resulting estimator of
the parameter of interest?

Literature overview. The general problem that we address is often encountered in observational
studies of the effect of an exposure, for instance when one wishes to infer the average effect of a
two-level exposure. It is then necessary to account for the fact that the level of exposure is not
fully randomized in the observed population. A pivotal object of interest in such studies, the so
called exposure mechanism (that is, the conditional law of exposure given baseline covariates) is an
example of what we generally call a G-component of the law of the experiment.

A wide range of estimators of the average effect of a two-level exposure require the estimation
of the propensity score: Horvitz-Thompson estimators [9]; estimators based on propensity score
matching [23, 8, 7] or stratification [1, 24]; any estimator relying on the efficient influence curve,
among which double-robust inverse probability of exposure weighted estimators [20, 22, 18] or
estimators built based on the targeted minimum loss estimation (TMLE) methodology [30, 29].

Common methods for the estimation of the propensity score are multivariate logistic regres-
sion [14], high-dimensional propensity score adjustment [25, 2], and a variety of machine learning
algorithms [15, 6, 10]. Except in the so called collaborative variant of TMLE that we will discuss
shortly, the estimators of the propensity score can be derived at a preliminary step, regardless es-
sentially of why they are needed and how they are used at the subsequent step. This is problematic
because optimality at the preliminary step has little if any relation to optimality at the subsequent
step. For instance, the optimal estimator of the propensity score at the preliminary step might take
values very close to zero, therefore disqualifying it as a viable estimator at the subsequent step, not
to mention an optimal one. In a less dramatic scenario, using an instrumental variable (which only
influences exposure but not the outcome) to estimate the propensity score could concomitantly
yield a better estimator thereof and only increase the variance of the resulting estimator of the
effect of exposure [31, 29].

This prompted the development of the so called collaborative version of the targeted minimum
loss estimation methodology [31, 29], where the estimation of the G-component is not separated
from that of the parameter of main interest anymore. More concretely, collaborative TMLE (C-
TMLE) consists in building a sequence of estimators of the G-component and in selecting one
of them by optimizing a criterion that targets the parameter of main interest. For instance, in
the above less dramatic scenario, covariates that are strongly predictive of exposure but not of
the outcome would be removed, resulting in less bias for the estimator of the parameter of main
interest.

The C-TMLE methodology has been adapted to a wide range of fields, including genomics [4, 34],
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survival analysis [27], and clinical studies[11]. Because the derivation of C-TMLE estimators is often
computationally demanding, scalable versions have also been developed [11].

In [26], the authors propose a C-TMLE algorithm that uses regression shrinkage of the exposure
model for the estimation of the propensity score. It sequentially reduces the parameter that deter-
mines the amount of penalty placed on the size of the coefficient values, and selects the appropriate
parameter by cross-validation. The methodology for continuously fine-tuned, collaborative targeted
learning that we develop in this article encompasses the algorithm of [26]. Its statistical analysis
sheds light on why, and under which assumptions, it would provide valid statistical inference.

The present study builds upon [28]. The methodology is also studied in [12, 13], the latter an
example of real-life application.

At this point in the introduction, we wish to formalize what is the problem at stake. What
follows recasts the introductory paragraph in the theoretical framework that we adopt in the article.

Setting the scene. Let O1, . . . , On be n independent draws from a law P0 on a set O. We view
P0 as an element of the statistical model M, a collection of plausible laws for O1, . . . , On. The
more we know about P0, the smaller is M. Our primary goal is to infer the value of parameter
Ψ : M → R at P0, namely, ψ0 ≡ Ψ(P0). Our statistical analysis is asymptotic in the number of
observations.

We consider the case that Ψ is pathwise differentiable at every P ∈M with respect to (w.r.t.)
a tangent set SP ⊂ L2

0(P ): there exists D∗(P ) ∈ L2
0(P ) such that, for every s ∈ SP , there exists a

submodel {Pt : t ∈ R, |t| < c} ⊂ M satisfying (i) Pt|t=0 = P , (ii) Pt � P for all t ∈]− c, c[, (iii)

d

dt
log

dPt
dP

(O)

∣∣∣∣
t=0

= s(O)

(the submodel’s score function equals s), and (iv) the real valued mapping t 7→ Ψ(Pt) is differen-
tiable at t = 0 with a derivative equal to PD∗(P )s, where Pf is a shorthand notation for EP (f(O))
(any measurable f). It is assumed moreover that every P ∈ M is associated with two possibly
infinite-dimensional features Q ∈ Q and G ∈ G such that (i) Q and G are unrelated (i.e., variation
independent: knowing anything about Q tells nothing about G and vice versa), (ii) Ψ(P ) depends
on P only through Q, (iii) D∗(P ) depends on P only through Q and G, and (iv) G is a mapping
from O to R. At this early stage, we can introduce the pivotal

Rem20(Q,G) ≡ Ψ(P )−Ψ(P0) + P0D
∗(P )

for every P ∈ M. The notation is justified (i) because we wish to think of the right-hand-side
expression as a remainder term, and (ii) by the fact that Ψ(P ) and D∗(P ) depend on P only
through Q and G. We consider the case that parameter Ψ is such that, for some pseudo-distances
dQ and dG on Q and G,

|Rem20(Q,G)| . dQ(Q,Q0)× dG(G,G0), (1)

where a . b stand for “there exists a universal positive constant c > 0 such that a ≤ bc”. A
remainder term satisfying (1) is said double-robust.

Let Q̂ be an algorithm for the estimation of Q0, the Q-component of the true law P0. Likewise,
let Ĝh (h ∈ H, an open interval of R∗+ of which the closure contains 0) be an h-specific algorithm

for the estimation of G0, the G-component of P0. Formally, we view Q̂ and each Ĝh as mappings
from ⋃

N≥1

{
N−1

N∑
i=1

Dirac(oi) : o1, . . . , oN ∈ O

}

3



to Q and G, respectively, that can “learn” from the empirical measure Pn some estimators Q̂(Pn)
and Ĝh(Pn) of Q0 and G0. Set Q0

n ≡ Q̂(Pn) (the superscript 0 stands for “initial”), Gn,h ≡ Ĝh(Pn),
and let P 0

n,h ∈ M be any element of the model of which the Q- and G-components equal Q0
n and

Gn,h. Derived by the mere substitution of P 0
n for P0 in Ψ(P0), Ψ(P 0

n,h) is a natural estimator of
Ψ(P0). It is not targeted toward the inference of Ψ(P0) in the sense that none of the known features
of P 0

n,h was derived specifically for the sake of ultimately estimating Ψ(P0).

It is well documented in the TMLE literature that one way to target Ψ(P 0
n,h) toward Ψ(P0) is

to build P ∗n,h ∈M from P 0
n,h in such a way that

PnD
∗(P ∗n,h) = oP (1/

√
n)

and to infer Ψ(P0) with Ψ(P ∗n,h). This can be achieved, in such a way that Gn,h is not modified,

by “fluctuating” P 0
n,h, a procedure that we will develop in details in the specific example studied

in the article. Then, by (1), the estimator satisfies the asymptotic expansion:

Ψ(P ∗n,h)−Ψ(P0) = (Pn − P0)D
∗(P ∗n,h) + Rem20(Q

∗
n,h, Gn,h) + oP (1/

√
n). (2)

By convention, we agree that small values of h correspond with less bias for Gn,h as an estimator
ofG0. Moreover, we assume that there exists hn ∈ H, hn = o(1), such that dG(Gn,hn , G0) = oP (ρ1,n)
for some ρ1,n = o(1), i.e., that Gn,hn consistently estimates G0 at rate ρ1,n. If Q∗n,hn is also such

that dQ(Q∗n,hn , Q0) = oP (ρ2,n) for some ρ2,n = o(1), and if ρ1,nρ2,n = o(1/
√
n), then (1) and (2)

yield
Ψ(P ∗n,hn)−Ψ(P0) = (Pn − P0)D

∗(P ∗n,hn) + oP (1/
√
n)

which may in turn imply the asymptotic linear expansion

Ψ(P ∗n,hn)−Ψ(P0) = (Pn − P0)IF + oP (1/
√
n), (3)

with influence function IF ≡ D∗(P0), depending in particular on how data-adaptive are algorithms
Q̂ and Ĝh (h ∈ H). By the central limit theorem, (3) guarantees that

√
n(Ψ(P ∗n,hn) − Ψ(P0)) is

asymptotically Gaussian.
We focus on a more challenging situation, where ρ1,nρ2,n is not necessarily o(1/

√
n). We

anticipate that our analysis is also very relevant at small and moderate sample sizes when ρ1,nρ2,n =
o(1/
√
n).

In order to derive an asymptotic linear expansion similar to (3) from (2) in this situation, we
would have to derive an asymptotic expansion of Rem20(Q

∗
n,hn

, Gn,hn). Unfortunately, we have
reasons to believe that this is not possible without targeting (their presentation in an example is
deferred to Section 3.3).

Now, observe that the estimators Ψ(P ∗n,h) (h ∈ H) do not cooperate in the sense that, although

Q∗n,h and Q∗n,h′ (for any two h, h′ ∈ H, h 6= h′) share the same initial estimator Q0
n, the construction

of the latter does not capitalize on that of the former. In contrast, we propose to build collabo-
ratively a continuum of estimators of the form Ψ(P ∗n,h) (h ∈ H) and to select data-adaptively one
among them that will be asymptotically Gaussian, under conditions often encountered in empirical
process theory.

Organization of the article. In Section 2, we lay out a high-level presentation of collaborative
TMLE, and state a high-level result. In Sections 3, 4, 5 and 6, we consider a specific example. In
Section 3, we particularize the theoretical construction and analysis. In Section 4, we describe two
practical instantiations of the estimator developed in Section 3. In Sections 5 and 6, we carry out
a mutli-faceted simulation study of their performances and comment upon its results. In Section 7,
we summarize the content of the article. All the proofs are gathered in the appendix.
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2 High-level presentation and result

We now state and prove a general result about continuously fine-tuned, collaborative targeted
minimum loss estimation, a version of [Theorem 10.1 in 28]. Its high-level assumptions are clarified
in the particular example that we study in the next sections.

From now on, we slightly abuse notation and denote D∗(Q,G) instead of D∗(P ), where Q and
G are the Q- and G-components of P . Let G· ≡ {Gt : t ∈ T } ⊂ G be a (one-dimensional) subset
of G (indexed by a real parameter ranging in an open subset T of H) such that t 7→ D∗(Q,Gt)(O)
is twice differentiable over T for all Q ∈ Q (P0-almost surely). We characterize ∂D∗ and ∂2D∗ by
setting, for every h ∈ T and Q ∈ Q,

∂hD
∗(Q,G·)(O) ≡ d

dt
D∗(Q,Gt)(O)|t=h, (4)

∂2hD
∗(Q,G·)(O) ≡ d2

dt2
D∗(Q,Gt)(O)|t=h.

Consider the following inter-dependent assumptions. The first one is indexed by (Q, h, c) ∈
Q×H× R∗+.

A1(Q, h, c) There exists an open neighborhood T ⊂ H of h ∈ H for which the setGn,· ≡ {Ĝh(Pn) ≡
Gn,h : h ∈ T } ⊂ G is such that t 7→ D∗(Q,Gn,·)(O) is twice differentiable over T (P0-almost
surely). Moreover, P0-almost surely,

sup
h∈T
|∂2hD∗(Q,Gn,·)(O)| ≤ c.

A2 For all h ∈ H, we know how to build P ∗n,h ∈ M, with Q- and G-components denoted by Q∗n,h
and Gn,h, in such a way that PnD

∗(Q∗n,h, Gn,h) = oP (1/
√
n). Moreover, we know how to

choose hn ∈ H such that

PnD
∗(Q∗n,hn , Gn,hn) = oP (1/

√
n). (5)

and, for some deterministic c2 > 0, A1(Q∗n,hn , hn, c2) is met and

Pn∂hnD
∗(Q∗n,hn , Gn,·) = oP (1/n1/4). (6)

A3 It holds that dG(Gn,hn , G0) = oP (1), and there exists Q1 ∈ Q such that dQ(Q∗n,hn , Q1) = oP (1).
In addition,

(Pn − P0)
(
D∗(Q∗n,hn , Gn,hn)−D∗(Q1, G0)

)
= oP (1/

√
n), (7)

Rem20(Q
∗
n,hn , Gn,hn)− Rem20(Q1, Gn,hn) = oP (1/

√
n). (8)

A4 Let Φ0 : G → R be given by Φ0(G) ≡ P0D
∗(Q1, G). There exist h̃n ∈ H and ∆(P1) ∈ L2

0(P0)
such that

Φ0(Gn,h̃n)− Φ0(G0) = (Pn − P0)∆(P1) + oP (1/
√
n). (9)

A5 It holds that (hn − h̃n)2 = oP (1/
√
n). Moreover, there exists a deterministic c5 > 0 such that

A1(Q1, hn, c5) is met, and

(Pn − P0)
(
D∗(Q1, Gn,hn)−D∗(Q1, Gn,h̃n)

)
= oP (1/

√
n), (10)

(hn − h̃n)× P0

(
∂hnD

∗(Q∗n,hn , Gn,·)− ∂hnD∗(Q1, Gn,·)
)

= oP (1/
√
n), (11)

(Pn − P0)
(
∂hnD

∗(Q∗n,hn , Gn,·)− ∂hnD∗(Q1, Gn,·)
)

= oP (1/
√
n). (12)
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Now that we have introduced our high-level assumptions, we can state the corresponding high-
level result that they entail. The proof is relegated to the appendix.

Theorem 1 (Asymptotics of the collaborative TMLE – a high-level result). Under assumptions
A2 to A5, it holds that

Ψ(P ∗n,hn)−Ψ(P0) = (Pn − P0) (D∗(Q1, G0) + ∆(P1)) + oP (1/
√
n). (13)

Commenting on the high-level assumptions. Assumption A1(Q, h, c) concerns both D∗

(specifically, how D∗(Q,G)(O) depends on G(O)) and algorithms Ĝt, t ∈ H (specifically, how
smooth is t 7→ Ĝt(Pn)(O) around h). In the particular example studied in the following sections,
the counterpart C1 of A1(Q, h, c) concerns only algorithms Ĝt, t ∈ H.

In the example, we show how P ∗n,hn can be built collaboratively in such a way that A2 is
met, under a series of nested assumptions about the smoothness of data-dependent, real-valued
functions over H, the construction of which notably involve algorithms Ĝt, t ∈ H. To understand
why achieving (6) is relevant, observe that the following oracle version of Pn∂hnD

∗(Q∗n,hn , Gn,·),

lim
t→0
t6=0

1

t
P0

(
D∗(Q∗n,hn , Gn,hn+t)−D

∗(Q∗n,hn , Gn,hn)
)
,

can be rewritten as

lim
t→0
t6=0

1

t

(
Rem20(Q

∗
n,hn , Gn,hn+t)− Rem20(Q

∗
n,hn , Gn,hn)

)
in view of (1). Thus, achieving (5) relates to finding critical points of h 7→ Rem20(Q

∗
n,hn

, Gn,h).
Assumption A3 formalizes the convergence of Gn,hn to its target G0 w.r.t. dG , and that of Q∗n,hn

to some limit Q1 ∈ Q w.r.t. dQ. It does not require that Q1 be equal to the target Q0 of Q∗n,hn ,
but A4 may be impossible to meet when Q1 6= Q0 (see below). Condition (7) in A3 is met for
instance if the L2(P0)-norm of D∗(Q∗n,hn , Gn,hn)−D∗(Q1, G0) goes to zero in probability and if the
difference falls in a P0-Donsker class with probability tending to one. As for (8), it typically holds
whenever the product of the rates of convergence of Q∗n,hn and Gn,hn to their limits is oP (1/

√
n).

The counterpart of A3 in the example studied in the following sections is C2.
With A4, we assume the existence of an oracle h̃n that undersmoothes Gn,h enough so that

Φ0(Gn,h̃n) is an asymptotically linear estimator of Φ0(G0), where we note that Φ0 is pathwise

differentiable in a similar way as Ψ. We say that h̃n is an oracle because the definition of Φ0

involves P0 and Q1. It happens that

Lemma 2. Under A2 and A3, if Q1 = Q0, dG(Gn,hn , G0) × dQ(Q∗n,hn , Q0) = oP (1/
√
n), and if

(3) is met with IF = D∗(P0), then A4 holds with hn = h̃n and ∆(P1) = 0.

It is difficult to assess whether or not A4 is a tall order when dG(Gn,hn , G0)× dQ(Q∗n,hn , Q0) is

not necessarily oP (1/
√
n), or if Q1 6= Q0.

Finally, A5 states that the distance between h̃n and hn, introduced in A2, is of order oP (1/n1/4)
at most. Its conditions (10) and (12) are of similar nature as (7). As for (11), the Cauchy-Schwarz
inequality reveals that it is met if the L2(P0)-norm of ∂hnD

∗(Q∗n,hn , Gn,·) − ∂hnD
∗(Q1, Gn,·) is

oP (1/n1/4).
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3 Collaborative TMLE for continuous tuning when inferring the
average treatment effect: presentation and analysis

In this section, we specialize the discussion to the inference of a specific statistical parameter,
the so called average treatment effect. Section 3.1 introduces the parameter and recalls what
are the corresponding D∗ and Rem20 from Section 1. Section 3.2 describes the uncooperative
construction of a continuum of uncooperative TMLEs. Section 3.3 argues why the selection of one
of the uncooperative TMLEs is unlikely to yield a well behaved (i.e., asymptotically Gaussian)
estimator when the product of the rates of convergence of the estimators of Q0 and G0 to their
limits is not fast enough (i.e., o(1/

√
n)). Then, Sections 3.4 and 3.5 present the collaborative

construction of collaborative TMLEs and how to select one among them that is well behaved,
under assumptions that are spelled out in Section 3.6, where the high-level Theorem 1 and its
assumptions are specialized.

3.1 Preliminary

We observe n independent draws O1 ≡ (W1, A1, Y1), . . ., On ≡ (Wn, An, Yn) from P0, the true law
of O ≡ (W,A, Y ). It is known that Y takes its values in [0, 1]. We consider the statistical model
M that leaves unspecified the law QW,0 of W and the conditional law of Y given (A,W ), while we
might know that the conditional expectation G0 of A given W belongs to a set G.

Introduce
Q̄0(A,W ) ≡ EP0(Y |A,W ), G0(W ) ≡ P0(A = 1|W ).

The parameter of interest is the average treatment effect,

ψ0 ≡ EQW,0
(
Q̄0(1,W )− Q̄0(0,W )

)
.

We choose it because its study provides a wealth of information and paves the way for the analysis
of a variety of other parameters often encountered in the statistical literature.

More generally, every P ∈ M gives rise to QW , Q̄(A,W ), G(W ) and Q ≡ (QW , Q̄), which are
respectively the marginal law of W under P , the conditional expectation of Y given (A,W ) under
P , the conditional probability that A = 1 given W under P , and the couple consisting of QW and
Q̄. For each of them, the average treatment effect is Ψ(P ), where Ψ :M→ [0, 1] is given by

Ψ(P ) ≡ EQW
(
Q̄(1,W )− Q̄(0,W )

)
.

For notational conciseness, we let `G be given by

`G(A,W ) ≡ AG(W ) + (1−A)(1−G(W )) (14)

for every G ∈ G. Note that `G(A,W ) is the conditional likelihood of A given W when A given W
is drawn from the Bernoulli law with parameter G(W ), hence the “`” in the notation. Parameter
Ψ viewed as a real-valued mapping over M is pathwise differentiable at every P ∈ M w.r.t. the
maximal tangent set SP = L2

0(P ). The efficient influence curve D∗(P ) of Ψ at P ∈M is given by

D∗(P )(O) ≡ D∗2(Q̄,G)(O) +
(
Q̄(1,W )− Q̄(0,W )−Ψ(P )

)
where (15)

D∗2(Q̄,G)(O) ≡ 2A− 1

`G(A,W )
(Y − Q̄(A,W )).

Recall definition (1). It is easy to check that, for every P ∈M,

Rem20(Q̄,G) = EP0

[
(2A− 1)

(
1− `G0(A,W )

`G(A,W )

)(
Q̄(A,W )− Q̄0(A,W )

)]
. (16)

7



Writing Rem20(Q̄,G) instead of Rem20(Q,G) slightly abuses notation, but is justified because
integrating out A in the RHS of (16) reveals that it only depends on P0, Q̄ and G. Furthermore,
by the Cauchy-Schwartz inequality, it holds that

Rem20(Q̄,G)2 ≤ P0(Q̄− Q̄0)
2 × P0

(
G−G0

`G

)2

. (17)

3.2 Uncooperative construction of a continuum of uncooperative TMLEs

Prerequisites. Let Q̄0
n ≡ ˆ̄Q(Pn) be an initial estimator of Q̄0 and {Gn,h ≡ Ĝh(Pn) : h ∈ H} be

a continuum of candidate estimators of G0 indexed by a real-valued tuning parameter h ∈ H, an
open interval of R∗+. By convention, we agree that small values of h correspond with less bias for
Gn,h as an estimator of G0. Specifically, denoting L1 the valid loss function for the estimation of
G0 given by

L1(G)(A,W ) ≡ − log `G(A,W ) = −A logG(W )− (1−A) log(1−G(W )), (18)

for every G ∈ G, where `G was defined in (14), we assume from now on that the empirical risk
h 7→ PnL1(Gn,h) increases.

For example, Ĝh could correspond to fitting a logistic linear regression maximizing the log-
likelihood under the constraint that the sum of the absolute values of the coefficients is smaller
than or equal to 1/h with h ∈ H ≡ R∗+. We will refer to this algorithm as the LASSO logistic
regression algorithm.

Uncooperative TMLEs. Let QW,n be the empirical law of {W1, . . . ,Wn}. Set arbitrarily h ∈ H
and let P 0

n,h ∈M denote any element ofM such that the marginal law of W under P 0
n,h equals QW,n

and the conditional expectation of Y given (A,W ) under P 0
n is equal to Q̄0

n, hence Q0
n = (QW,n, Q̄

0
n)

on the one hand; and the conditional expectation of A given W under P 0
n,h coincide with Gn,h on

the other hand. Evaluating Ψ at P 0
n,h yields an estimator of Ψ(P0),

Ψ(P 0
n,h) =

1

n

n∑
i=1

(
Q̄0
n(1,Wi)− Q̄0

n(0,Wi)
)
,

which is not targeted toward the inference of Ψ(P0) in the sense that none of the known features
of P 0

n was derived specifically for the sake of ultimately estimating Ψ(P0).
One way to target Ψ(P 0

n,h) toward Ψ(P0) is to build P ∗n,h ∈M from P 0
n,h in such a way that

PnD
∗(P ∗n,h) = oP (1/

√
n)

and to infer Ψ(P0) with Ψ(P ∗n,h). This can be achieved by “fluctuating” P 0
n,h in the following sense.

For every G ∈ G, introduce the so called “clever covariate” C(G) given by

C(G)(A,W ) ≡ 2A− 1

`G(A,W )
. (19)

Now, for every ε ∈ R, let Q̄0
n,h,ε be characterized by

logit
(
Q̄0
n,h,ε(A,W )

)
≡ logit

(
Q̄0
n(A,W )

)
+ εC(Gn,h)(A,W ) (20)

8



and P 0
n,h,ε ∈ M be defined like P 0

n,h except that the conditional expectation of Y given (A,W )

under P 0
n,h,ε equals Q̄0

n,h,ε (and not Q̄0
n). Clearly, P 0

n,h,ε = P 0
n,h when ε = 0. Moreover, denoting L2

the loss function given by

L2(Q̄)(O) ≡ −Y log Q̄(A,W )− (1− Y ) log
(
1− Q̄(A,W )

)
for every Q̄ induced by a P ∈M, it holds that

d

dε
L2(Q̄

0
n,h,ε)(O) = −D2(Q̄

0
n,h,ε, Gn,h)(O),

a property that prompts us to say that the one-dimensional submodel {P 0
n,h,ε : ε ∈ R} ⊂ M

“fluctuates” P 0
n,h “in the direction of” D2(Q̄

0
n, Gn,h).

The optimal fluctuation of P 0
n,h along the above submodel is indexed by the minimizer of the

empirical risk
εn,h ≡ arg min

ε∈R
PnL2(Q̄

0
n,h,ε), (21)

of which the existence is assumed (note that ε 7→ PnL2(Q̄
0
n,h,ε) is twice differentiable and strictly

convex). We call P ∗n,h ≡ P 0
n,h,εn,h

the TMLE of P0, and the resulting estimator

ψ∗n,h ≡ Ψ(P ∗n,h) =
1

n

n∑
i=1

(
Q̄0
n,h,εn,h

(1,Wi)− Q̄0
n,h,εn,h

(0,Wi)
)

(22)

the TMLE of Ψ(P0). It is readily seen that (22) is equivalent to

Pn
(
D∗(P ∗n,h)−D∗2(Q̄∗n,h, Gn,h)

)
= 0

where Q̄∗n,h ≡ Q̄0
n,h,εn,h

. Since εn,h minimizes the differentiable mapping ε 7→ PnL2(Q
0
n,h,ε), it holds

moreover that
PnD

∗
2(Q̄∗n,h, Gn,h) = 0 (23)

which, combined with the previous display, yields

PnD
∗(P ∗n,h) = 0; (24)

in words, ψ∗n,h is targeted toward Ψ(P0) indeed. Furthermore, in view of (16) and (24), ψ∗n,h satisfies

ψ∗n,h −Ψ(P0) = (Pn − P0)D
∗(P ∗n,h) + Rem20(Q̄

∗
n,h, Gn,h). (25)

Finally, the TMLEs ψ∗n,h (h ∈ H) are said uncooperative because, although they share the same

initial estimator Q̄0
n, for any two h, h′ ∈ H, h 6= h′, the construction of ψ∗n,h does not capitalize on

that of ψ∗n,h′ .

3.3 Selecting one of the uncooperative TMLEs

At this stage of the procedure, a crucial question is to select one TMLE in the collection of uncoop-
erative TMLEs, one that lends itself to the construction of a CI for Ψ(P0) with a given asymptotic
level. Such a TMLE necessarily writes as ψ∗n,hn for some well chosen hn ∈ H. This could possibly
be a deterministic (fixed in n) or a data-driven (random and n-dependent) element of H.

The risk R1 generated by L1 (18) is given by

R1(G,G0) ≡ EQ0,W
[KL(G0(W ), G(W ))] ,

9



where KL(p, q) is the Kullback-Leibler divergence between the Bernoulli laws with parameters
p, q ∈ [0, 1]. By Pinsker’s inequality, it holds that

0 ≤ 2P0 (G−G0)
2 ≤ R1(G,G0)

for all G ∈ G. Therefore, if G is bounded away from zero and one, then (17) implies

Rem20(Q̄,G)2 . P0(Q̄− Q̄0)
2 ×R1(G,G0). (26)

If the deterministic hn ∈ H is such that (i) there exist two rates ρ1,n = o(1) and ρ2,n = o(1) such

that R1(Gn,hn , G0) = oP (ρ21,n) and P0(Q̄
∗
n,hn
− Q̄0)

2 = oP (ρ22,n), (ii) P0

(
D∗(P ∗n,hn)−D∗(P0)

)2
=

oP (1), (iii) D∗(P ∗n,hn) falls in a P0-Donsker class with P0-probability tending to one, (iv) oP (ρ1,nρ2,n) =

oP (1/
√
n), then [32, Lemma 19.24], (25) and (26) guarantee that (3) is met (with IF = D∗(P0)).

[This argument will be used repeatedly throughout the article.] Thus, by the central limit theorem,√
n(ψ∗n,hn−Ψ(P0)) converges in law to the centered Gaussian law with variance VarP0(D∗(P0)(O)).

So, if the synergy between the convergences of Q̄∗n,hn and Gn,hn to their respective limits Q̄0 and
G0 is sufficient, then the TMLE ψ∗n,hn can be used to build CIs.

The argument falls apart if oP (ρ1,nρ2,n) is not oP (1/
√
n) (or, worse, if the L2(P0)-limit Q̄1 of

Q̄∗n,hn is not Q̄0, because we do not expect that R1(Gn,hn , G0) = oP (1/n)). In that case, whether or
not it is possible to derive a useful asymptotic linear expansion of a TMLE ψ∗n,hn similar to (3) will

depend on whether or not we can derive an asymptotic linear expansion for
√
nRem20(Q̄

∗
n,hn

, Gn,hn).
If Gn,hn was derived by maximizing the likelihood over a correctly specified, finite-dimensional

and fine-tune-parameter-free parametric model, then
√
nRem20(Q̄

∗
n,hn

, Gn,hn) would be asymptot-
ically linear. Because of how we estimate G0, we now argue that there is little chance that we can
select hn ∈ H such that the remainder term

√
nRem20(Q̄

∗
n,hn

, Gn,hn) is asymptotically linear. A
natural choice would be to use the likelihood-based cross-validation selector hn,CV. Let us recall
how it is derived and explain why we do not believe it will solve our problem.

Let Bn ∈ {0, 1}n be a cross-validation scheme. For instance, Bn could be a V -fold cross-
validation scheme, i.e., a random vector taking V different values b1, . . . , bV ∈ {0, 1}n, each with
probability 1/V , such that (i) the proportion n−1

∑n
i=1 bv(i) of ones among the coordinates of each

bv is close to 1/V , and (ii)
∑V

v=1 bv(i) = 1 for all 1 ≤ i ≤ n. Let P 0
n,Bn

be the empirical probability

law of the training subsample {Oi : Bn(i) = 0, 1 ≤ i ≤ n} and P 1
n,Bn

be the empirical probability
law of the validation subsample {Oi : Bn(i) = 1, 1 ≤ i ≤ n}. The likelihood-based cross-validation
selector hn,CV of h ∈ H is given by

hn,CV ≡ arg min
h∈H

EBn

[
P 1
n,BnL1(Ĝh(P 0

n,Bn))
]
. (27)

Unfortunately, we do not expect that
√
nRem20(Q̄

∗
n,h, Gn,h) is asymptotically linear. Heuris-

tically, hn,CV trades off the bias and variance of Gn,h as an estimator of G0, whereas we wish to
trade off this bias with the variance of ψ∗n,h. Clearly, the variance of the estimator ψ∗n,h = Ψ(P ∗n,h),
where Ψ is a smooth functional, is significantly smaller than that of the infinite-dimensional object
Gn,h.

3.4 Collaborative construction of finitely many collaborative TMLEs

The take-home message of Sections 3.2 and 3.3 is that the uncooperative construction of a continuum
of standard TMLEs will typically fail to produce one asymptotically linear TMLE if the product
of the rates of convergence of the estimators of Q̄0 and G0 to their limits is not fast enough (i.e.,
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o(1/
√
n)). In Sections 3.4 and 3.5, we demonstrate how a collaborative construction of a continuum

of standard TMLEs can produce one asymptotically linear TMLE in this challenging situation,
under appropriate assumptions.

Recursive construction. We now present the collaborative construction of finitely many TMLEs.
In the forthcoming theoretical presentation, we make on the fly a series of assumptions. The most
important ones will be emphasized.

We argued that the cross-validated selector hn,CV (27) does not sufficiently undersmooth Gn,h
to make of

√
nRem20(Q̄

∗
n,h, Gn,h) an asymptotically linear term. Since we have assumed that

h 7→ PnL1(Gn,h) increases, we can focus on those tuning parameters h in H∩]0, hn,CV], a set
assumed non-empty from now (an assumption that we call B1(Pn, 1)).

The construction is recursive. It unfolds as follows.

Initialization. We begin as in Section 3.2: for every h ∈ H∩]0, hn,CV], we build Q̄
(∗)
n,h and P

(∗)
n,h

using Q̄0
n as an initial estimator of Q̄0 and Gn,h as the estimator of G0. Note that placing

the star symbol between parentheses suggests that Q̄
(∗)
n,h and P

(∗)
n,h are the tentative h-specific

estimator of Q̄0 and TMLE. Specifically, for every h ∈ H∩]0, hn,CV], we define Q̄0
n,h,ε as in

(20), εn,h,1 as in (21), assuming that it exists (an assumption that we call B2(Pn, 1)), then

set Q̄
(∗)
n,h ≡ Q̄0

n,h,εn,h,1
and find P

(∗)
n,h ∈ M such that the marginal law of W under P

(∗)
n,h is the

empirical law QW,n of {W1, . . . ,Wn} and the conditional expectation of Y given (A,W ) under

P
(∗)
n,h equals Q̄

(∗)
n,h, hence Q

(∗)
n,h = (QW,n, Q̄

(∗)
n,h) on the one hand; and the conditional expectation

of A given W under P
(∗)
n,h coincides with Gn,h on the other hand.

We assume that h 7→ PnL2(Q
(∗)
n,h) is minimized globally at hn,1 in the interior of H∩]0, hn,CV]

(an assumption that we call B3(Pn, 1)). If there are several minimizers, then hn,1 is the
largest of them by choice. Observe that, for every h ∈ H∩]0, hn,CV],

PnL2(Q̄
(∗)
n,hn,1

) ≤ PnL2(Q̄
(∗)
n,h) ≤ PnL2(Q̄

0
n,h)

and, in particular,

PnL2(Q̄
(∗)
n,hn,1

) < PnL2(Q̄
∗
n,hn,CV

) ≤ PnL2(Q̄
0
n,hn,CV

).

Let us assume now that, in addition, h 7→ εn,h,1, h 7→ 1/Gn,h(Wi) and h 7→ 1/(1−Gn,h(Wi))
(all 1 ≤ i ≤ n) are differentiable in an open neighborhood of hn,1 (an assumption that we call

B4(Pn, 1)). Consequently, (i) ∂hn,1D
∗(Q̄

(∗)
n,hn,1

, Gn,·)(Oi) is well defined for each 1 ≤ i ≤ n

(see (4)), and (ii) h 7→ PnL2(Q̄
(∗)
n,h) is differentiable in that neighborhood. Moreover, since

hn,1 minimizes the previous mapping, we have

0 = − d

dt
PnL2(Q̄

(∗)
n,t)

∣∣∣∣
t=hn,1

=

(
d

dt
εn,t,1

∣∣∣∣
t=hn,1

)
× PnD∗2(Q̄

(∗)
n,hn,1

, Gn,hn,1) + εn,h,1 × Pn∂hn,1D∗(Q̄
(∗)
n,hn,1

, Gn,·)

= εn,h,1 × Pn∂hn,1D∗(Q̄
(∗)
n,hn,1

, Gn,·),
where the third equality holds because

PnD
∗
2(Q̄

(∗)
n,hn,1

, Gn,hn,1) = PnD
∗
2(Q̄0

n,h,εn,h,1
, Gn,hn,1) = 0
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in light of (23). If εn,h,1 6= 0 (an assumption that we call B5(Pn, 1)), then we thus have
proven that the following equation is solved

Pn∂hn,1D
∗(Q̄

(∗)
n,hn,1

, Gn,·) = 0.

To complete the initialization, we define hn,0 ≡ hn,CV, Q̄∗n,hn,1 ≡ Q̄
(∗)
n,hn,1

, Q∗n,hn,1 ≡ Q
(∗)
n,hn,1

,

P ∗n,hn,1 ≡ P
(∗)
n,hn,1

, ψ∗n,hn,1 ≡ Ψ(P ∗n,hn,1), and note that they satisfy

Pn∂hn,1D
∗(Q̄∗n,hn,1 , Gn,·) = PnD

∗(P ∗n,hn,1) = 0 and

PnL2(Q̄
∗
n,hn,1) < PnL2(Q̄

∗
n,hn,0)

(recall how (23) implied (24) earlier).

Recursion. Let k ≥ 2 be arbitrarily chosen. Suppose that, for all 1 ≤ ` < k, we have already built
the 5-tuples (hn,`, Q̄

∗
n,hn,`

, Q∗n,hn,` , P
∗
n,hn,`

, ψ∗n,hn,`) under assumptions B1(Pn, `) to B5(Pn, `),

and also that H∩]0, hn,k−1] 6= ∅ (an assumption that we call B1(Pn, k)). Let us now present
the construction of (hn,k, Q̄

∗
n,hn,k

, Q∗n,hn,k , P
∗
n,hn,k

) under assumptions B1(Pn, k) to B5(Pn, k).
Because the presentation is very similar to that of the initialization, it is more laid out more
directly.

For every h ∈ H∩]0, hn,k−1], we build again Q̄
(∗)
n,h and P

(∗)
n,h but using Q̄∗n,hn,k−1

as an initial

estimator of Q̄0 and Gn,h as the estimator of G0. Specifically, for every h ∈ H∩]0, hn,k−1],
we define Q̄k−1n,h,ε as in (20) with Q̄∗n,hn,k−1

substituted for Q̄0
n, εn,h,k as in (21) with Q̄k−1n,h,ε

substituted for Q̄0
n,h,ε (B2(Pn, k) assumes the existence of εn,h,k), then set Q̄

(∗)
n,h ≡ Q̄kn,h,εn,h,k

and find P
(∗)
n,h ∈ M such that the marginal law of W under P

(∗)
n,h is the empirical law QW,n

of {W1, . . . ,Wn} and the conditional expectation of Y given (A,W ) under P
(∗)
n,h equals Q̄

(∗)
n,h,

hence Q
(∗)
n,h = (QW,n, Q̄

(∗)
n,h) on the one hand; and the conditional expectation of A given W

under P
(∗)
n,h coincides with Gn,h on the other hand.

We assume that h 7→ PnL2(Q
(∗)
n,h) is minimized globally at hn,k in the interior of H∩]0, hn,k−1]

(an assumption that we call B3(Pn, k)). If there are several minimizers, then hn,k is the
largest of them by choice. Moreover, we also assume that h 7→ εn,h,k, h 7→ 1/Gn,h(Wi) and
h 7→ 1/(1−Gn,h(Wi)) (all 1 ≤ i ≤ n) are differentiable in an open neighborhood of hn,k (an

assumption that we call B4(Pn, k)). Consequently, ∂hn,kD
∗(Q̄

(∗)
n,hn,k

, Gn,·)(Oi) is well defined

for each 1 ≤ i ≤ n (see (4)), h 7→ PnL2(Q̄
(∗)
n,h) is differentiable in that neighborhood and, since

hn,k minimizes the previous mapping,

εn,h,k × Pn∂hn,kD
∗(Q̄

(∗)
n,hn,k

, Gn,·) = 0.

If εn,h,k 6= 0 (an assumption that we call B5(Pn, k)), then it holds that

Pn∂hn,kD
∗(Q̄

(∗)
n,hn,k

, Gn,·) = 0.

To complete the presentation and the recursion, we define Q̄∗n,hn,k ≡ Q̄
(∗)
n,hn,k

, Q∗n,hn,k ≡ Q
(∗)
n,hn,k

,

P ∗n,hn,k ≡ P
(∗)
n,hn,k

, ψ∗n,hn,k ≡ Ψ(P ∗n,hn,k), and note that they satisfy

Pn∂hn,kD
∗(Q̄∗n,hn,k , Gn,·) = PnD

∗(P ∗n,hn,k) = 0 and (28)
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PnL2(Q̄
∗
n,hn,`

) < PnL2(Q̄
∗
n,hn,`−1

)

for all 1 ≤ ` ≤ k.

We discuss when to stop the loop in the next paragraph. The collection {P ∗n,hn,k : 0 ≤ k ≤ Kn}
of TMLEs is arguably built collaboratively, as the derivation of every P ∗n,hn,` heavily depends on

P ∗n,hn,`−1
.

The loop is iterated until a stopping criterion is met. The instantiations of the collaborative
TMLE laid out in Section 4 rely on the LASSO logistic regression algorithm. It is thus possible to
pre-specify an upper bound on Kn. In general, we may decide to stop the recursive construction
whenever a maximal number K of iterations has been reached, or hn,k ≤ ~, or M successive
TMLEs ψ∗n,hn,k+m (0 ≤ m < M) all belong to an interval of length smaller than ηn,k, for some
user-supplied integers Kmax, M and small positive numbers hmin and ηn,k, the former chosen such
that H∩]0, hmin[ is non-empty and the latter possibly sample-size- and data-driven. The choice of
Kmax would typically be driven by considerations about the computational time. The choice of
hmin would typically depend on the collection {Ĝh : h ∈ H} of h-specific algorithms, h ≤ hmin

meaning that too much undersmoothing is certainly at play when using Ĝh. We would suggest
choosing M ≡ 3 and characterizing ηn,k by η2n,k ≡ ΥPn(P ∗n,hn,k)/10n with ΥPn :M→ R∗+ given by

ΥPn(P ) ≡ EPn
[
D∗(P )(O)2

]
=

1

n

n∑
i=1

D∗(P )(Oi)
2.

The definition of ΥPn is justified by the fact that ΥPn(D∗(P ∗n,hn)) estimates the asymptotic variance
of the TMLE Ψ(P ∗n,hn) in the context where we prove (3) (with IF = D∗(P0)) in Section 3.3.

3.5 Selecting one of the finitely many collaborative TMLEs

It remains to determine which TMLE to select among the collection of collaborative TMLEs that
we constructed in Section 3.4. Again, the selection hinges on the cross-validation principle.

The recursive construction described in Section 3.4 can be applied to the empirical mea-
sure Pn of any subset of the complete data set. Starting from hn,CV (as defined in (27) even
when Pn differs from Pn), let the 5-tuple (Hn,1, Q̄∗n,Hn,1 ,Q

∗
n,Hn,1 ,P

∗
n,Hn,1 ,Ψ(P∗n,Hn,1)) be defined like

the 5-tuple (hn,1, Q̄
∗
n,hn,1

, Q∗n,hn,1 , P
∗
n,hn,1

, ψ∗n,hn,1) with Pn substituted for Pn, under assumptions

B1(Pn, 1) to B5(Pn, 1). Then, recursively, let (Hn,k, Q̄∗n,Hn,k ,Q
∗
n,Hn,k ,P

∗
n,Hn,k ,Ψ(P∗n,Hn,k)) be defined

like (hn,k, Q̄
∗
n,hn,k

, Q∗n,hn,k , P
∗
n,hn,k

, ψ∗n,hn,k) with Pn substituted for Pn, under assumptions B1(Pn, k)

to B5(Pn, k). The recursive construction is stopped when Kn 5-tuples have been derived, where
Kn is defined like Kn with Pn substituted for Pn.

The collection {
(Hn,k, Q̄∗n,Hn,k ,Q

∗
n,Hn,k ,P

∗
n,Hn,k ,Ψ(P∗n,Hn,k)) : 1 ≤ k ≤ Kn

}
(29)

of Kn collaborative TMLEs is used to define a continuum of collaborative TMLEs in the following
straightforward way. The challenge is to associate a 4-tuple (Q̄∗n,h,Q∗n,h,P∗n,h,Ψ(P∗n,h)) to any h ∈
H∩]0, hn,CV]. To do so, we simply let Hn(h) be the element of {Hn,k : 1 ≤ k ≤ Kn} that is closest
to h (with a preference for the larger of the two closer ones when h is right in the middle), that is,
formally, we set

Hn(h) ≡ max
{
Hn,k : |h−Hn,k| = min{|h−Hn,`| : 1 ≤ ` ≤ Kn}

}
(30)
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and associate to h the corresponding 4-tuple

(Q̄∗n,Hn(h),Q
∗
n,Hn(h),P

∗
n,Hn(h),Ψ(P∗n,Hn(h))).

Let Bn be the cross-validation scheme introduced in Section 3.3. By convention, let the max of
the empty set be 0. The collaborative TMLE that we select is

(Q̄∗n,hn,κn , Q
∗
n,hn,κn

, P ∗n,hn,κn , ψ
∗
n,hn,κn

) (31)

where κn is given by

κn ≡ 1 ∨max

{
1 ≤ k ≤ Kn : hn,k ≥ arg min

h∈H∩]0,hn,CV]
EBn

[
P 1
n,BnL2(Q̄∗n,Hn(h)

∣∣
Pn=P 0

n,Bn

))

]}
. (32)

In words, κn is the unique element of {1, . . . ,Kn} such that hn,κn is the smallest element of
{hn,1, . . . , hn,Kn} that is larger than the minimizer of the cross-validated L2-risk of the collabo-
rative TMLE, if there exists such an element, and 1 otherwise. In (32), Q̄∗n,Hn(h)

∣∣
Pn=P 0

n,Bn

equals

Q̄∗n,Hn(h) when Pn = P 0
n,Bn

.
The contrast between hn,κn and hn,CV is stark. At first glance, the main difference is that the

role play by cross-validated L1-risks of algorithms to estimate G0 in (27) is played by cross-validated
L2-risks of algorithms to estimate Q̄0 in (32). A closer examination reveals that the difference is
deeper. Replacing L1(Ĝh(P 0

n,Bn
)) by L2(Q̄

0∗
n,Bnh

) (with Q̄0∗
n,Bn,h

defined like Q̄∗n,h in Section 3.2 but

based on P 0
n,Bn

instead of Pn) would not make of the resulting alternative cross-validated selector of
h a good candidate: because of the inherent lack of cooperation between the uncooperative TMLEs
ψ∗n,h, the resulting estimator of G0 would not even be consistent. This fact motivates the general
C-TMLE methodology, of which the present instantiation includes a twist consisting in solving two
critical equations, see (28).

3.6 Asymptotics

The study of the asymptotic properties of the collaborative TMLE ψ∗n,hn,κn hinges on Theorem 1.

We first specify two pseudo-distances dG and dQ on G and Q in light of requirement (1). On the
one hand, because we will eventually assume that G0 is bounded away from zero and one, (16)
yields that we can choose dG such that, for each G1, G2 ∈ G,

dG(G1, G2)
2 ≡ P0(G1 −G2)

2.

On the other hand, note that any data-dependent Qn ≡ (QW,n, Q̄n) ∈ Q naturally gives rise to a
substitution estimator ψn of ψ0:

ψn ≡ EQW,n
(
Q̄n(1,W )− Q̄n(0,W )

)
=

1

n

n∑
i=1

(
Q̄n(1,Wi)− Q̄n(0,Wi)

)
.

It is easy to check (see the appendix) that the following result holds.

Lemma 3. Assume that G0 is bounded away from zero and one and that Q̄n(1, ·) − Q̄n(0, ·) falls
in a P0-Donsker class with P0-probability tending to one. If P0(Q̄n − Q̄1)

2 = oP (1) for some Q̄1,
then ψn = P0(Q̄1(1, ·)− Q̄1(0, ·)) + oP (1).
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Since we always estimate the marginal law of W under P0, QW,0, with its empirical counterpart
QW,n, we can thus define the pseudo-distance dQ by setting, for each Q1, Q2 ∈ Q,

dQ(Q1, Q2)
2 ≡ P0(Q̄1 − Q̄2)

2,

an expression that does not depend on the first components of Q1 and Q2.
Consider the following inter-dependent assumptions. The first one is related to A1(Q, h, c) and

completes B5(Pn, hn,κn).

C1 There exists a universal constant C1 ∈]0, 1/2[ such that G0 and any by-product Gn,h of algo-

rithm Ĝh (any h ∈ H) trained on the empirical measure Pn take their values in [C1, 1− C1].
Moreover, there exists an open neighborhood T ⊂ H of hn,κn and a universal constant C2 > 0
such that t 7→ Gn,t(W ) is twice differentiable over T (P0-almost surely) and, P0-almost surely,

sup
h∈T

∣∣∣∣ ddtGn,t(W )|t=h
∣∣∣∣ ∨ sup

h∈T

∣∣∣∣ d2dt2Gn,t(W )|t=h
∣∣∣∣ ≤ C2.

When C1 is met, we denote G′n,h(W ) the first derivative of t 7→ Gn,t(W ) at h ∈ H.

C2 Both Gn,hn,κn and Q̄∗n,hn,κn converge in L2(P0), to G0 and Q̄1 respectively. Moreover, it holds

that P0(Gn,hn,κn −G0)
2 = oP (1/

√
n) and P0(Gn,hn,κn −G0)

2×P0(Q̄
∗
n,hn,κn

− Q̄1)
2 = oP (1/n).

C3 Assumption A4 is met, (hn,κn − h̃n)2 = oP (1/
√
n) and (hn,κn − h̃n)2 × P0(Q̄

∗
n,hn,κn

− Q̄1)
2 =

oP (1/n).

C4 With P0-probability tending to one, Q̄∗n,hn,κn , Gn,hn,κn , Gn,h̃n and G′n,hn,κn fall in P0-Donsker
classes.

We are now in a position to state the corollary of Theorem 1 that describes the asymptotic
properties of the collaborative TMLE targeting the average treatment effect.

Corollary 4 (Asymptotics of the collaborative TMLE – targeting the average treatment effect).
Suppose that assumptions B1(·, ·) to B5(·, ·) that we made in Sections 3.4 and 3.5 when constructing
the collaborative TMLE given in (31) are met. In addition, suppose that C1 to C4 are satisfied.
Then

ψ∗n,hn,κn −Ψ(P0) = (Pn − P0) (D∗(Q1, G0) + ∆(P1)) + oP (1/
√
n).

By the central limit theorem, the corrolary implies that
√
n(ψ∗n,hn,κn −Ψ(P0)) converges in law

to the centered Gaussian law with a variance σ2 ≡ P0(D
∗(Q1, G0) + ∆(P1))

2. Therefore, provided
that we can estimate σ2 consistently (or conservatively), we can build CIs for Ψ(P0) with a given
asymptotic level. Sections 4, 5 and 6 investigate the practical implementation of the collaborative
TMLE and its performances in a simulation study.

4 Collaborative TMLE for continuous tuning when inferring the
average treatment effect: practical implementation

In this section, we describe the practical implementation of the two instantiations of the collab-
orative TMLE algorithm presented and studied in Section 3. In both of them, the collection

{Ĝh : h ∈ H} is embodied in R by the glmnet algorithm [3]. The nature of algorithm ˆ̄Q is left

unspecified. As for Q̄0
n, it is obtained once and for all by training ˆ̄Q on Pn at the beginining of the

procedure. More specifically, we never evaluate ˆ̄Q(Pn) for Pn 6= Pn.
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4.1 LASSO-C-TMLE

We now describe our LASSO-C-TMLE algorithm. Recall that Pn denotes the empirical measure
of a generic subset of the complete data set. The following algorithm implements the theoretical
procedure laid out in Sections 3.4 and 3.5.

1. Build a sequence {Gn,h ≡ Ĝh(Pn) : h ∈ H100} by computing a discretized version of the path
of the LASSO logistic regression of A on W with a regularization parameter h ranging in the
set H100 provided by cv.glmnet with options nlambda=100 (hence card(H100) = 100) and
nfolds=10. Set hmin ≡ minH100 and let hn,CV be equal to lambda.min.

2. Build a sequence {Gn,h ≡ Ĝh(Pn) : h ∈ H100 ∩ [hmin, hn,CV)} by computing a discretized
version of the path of the LASSO logistic regression of A on W with a regularization parameter
h ranging in H100∩ [hmin, hn,CV) using glmnet with a lambda set to H100∩ [hmin, hn,CV) from
step 1.

Set k ≡ 1 and Hn,k−1 ≡ hn,CV.

3. For every h ∈ H100 ∩ [hmin,Hn,k−1), determine Q̄k
n,h by fluctuating Q̄k−1

n based on Gn,h (and
Pn) as Section 3.2.

4. Identify the minimizer Hn,k of h 7→ PnL2(Q̄k
n,h) over H100 ∩ [hmin,Hn,k−1), define and store

Q̄∗n,h ≡ Q̄k
n,h for every h ∈ H100 ∩ [Hn,k,Hn,k−1), and finally define Q̄k

n ≡ Q̄k
n,hn,k

.

5. As long as Hn,k > hmin, set k ← k + 1 and repeat steps 3 and 4 recursively.

The algorithm necessarily converges in a finite number of repetitions of step 4. Let Kn be the number
of repetitions. For every 1 ≤ k ≤ Kn, set Q∗n,Hn,k ≡ (QW,n, Q̄∗n,Hn,k) ∈ Q (its first component is

the empirical law of W under Pn) and let P∗n,Hn,k ∈ M be any element of model M of which

the Q-component equals Q∗n,Hn,k . The collection (29) of Kn collaborative TMLEs and mapping

h 7→ Hn(h) over H100[hmin, hn,CV) as in (30) are thus now well defined.
Recall the definition of the cross-validation scheme Bn introduced in Section 3.3. Set

~(Pn) ≡ arg min
h∈H100∩[hmin,hn,CV)

EBn

[
P 1
n,BnL2(Q̄n,Hn(h)

∣∣
Pn=P 0

n,Bn

)

]
and run once steps 1 to 5 with Pn ≡ Pn, hence the collection{

(hn,k, Q̄
∗
n,hn,k

, Q∗n,hn,k , P
∗
n,hn,k

,Ψ(P ∗n,hn,k)) : 1 ≤ k ≤ Kn

}
of collaborative TMLEs. Finally, set

κn ≡ 1 ∨max {1 ≤ k ≤ Kn : hn,k ≥ ~(Pn)} .

The collaborative TMLE that we select, our LASSO-C-TMLE estimator, is Ψ(P ∗n,hn,κn ), as in (31).

4.2 LASSO-PSEUDO-C-TMLE

The LASSO-C-TMLE procedure described in Section 4.1 is quite demanding computationally. It
is thus tempting to try and develop an alternative algorithm that would mimick LASSO-C-TMLE
but be simpler.
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In Section 3.5, we emphasized (see comment before statement of theorem) that one of the keys
of LASSO-C-TMLE is to ensure the existence of hn ∈ H and Q̄∗n,hn such that

Pn∂hnD
∗(Q̄∗n,hn , Gn,·) = 0.

If we knew how to compute the derivative G′n,h(W ) of t 7→ Gn,t(W ) at t = h, then this could be

easily achieved by enriching the fluctuation of the initial Q̄0
n ≡ ˆ̄Q(Pn). Specifically, in light of (19)

and (20), given any h ∈ H, we would define

C+h (Gn,·)(A,W ) ≡ C(Gn,h)(A,W )
(
1, G′n,h(W )

)
, (33)

introduce Q̄0
n,h,ε+ characterized for any ε+ ∈ R2 by

logit
(
Q̄0
n,h,ε+(A,W )

)
≡ logit

(
Q̄0
n(A,W )

)
+ C+h (Gn,·)(A,W )ε+

and P 0
n,h,ε+ ∈ M defined like P 0

n,h,ε except that the conditional expectation of Y given (A,W )

under P 0
n,h,ε+ equals Q̄0

n,h,ε+ (and not Q̄0
n,h,ε). Then, the optimal fluctuation would be indexed by

the minimizer of the empirical risk

ε+n,h ≡ arg min
ε+∈R2

PnL2(Q̄
0
n,h,ε+).

It would result in Q̄∗+n,h ≡ Q̄
0
n,h,ε+ , P ∗+n,h ≡ P

0
n,h,ε+n,h

and the TMLE

ψ∗+n,h ≡ Ψ(P ∗+n,h) =
1

n

n∑
i=1

(
Q̄∗+n,h(1,Wi)− Q̄∗+n,h(0,Wi)

)
where, by construction, we would have

PnD
∗(Q̄∗+n,h, Gn,h) = Pn∂hD

∗(Q̄∗+n,h, Gn,h) = 0.

The LASSO-PSEUDO-C-TMLE algorithm that we now describe adapts the above procedure.
It unfolds as follows.

1. Build a sequence {Gn,h ≡ Ĝh(Pn) : h ∈ H100} by computing a discretized version of the path
of the LASSO logistic regression of A on W with a regularization parameter h ranging in the
set H100 provided by cv.glmnet with option nlambda=100 (hence card(H100) = 100). Let hn
be equal to lambda.min. Our estimator of G0 is Gn,hn .

2. Choose arbitrarily h+n ∈ arg min{|h− hn| : h ∈ H100, h 6= hn} and, for every 1 ≤ i ≤ n, define

G′+n,hn(Wi) ≡
Gn,h+n (Wi)−Gn,hn(Wi)

h+n − hn
,

a rudimentary numerical approximation of the derivativeG′n,hn(Wi) of t 7→ Gn,t(Wi) at t = hn.

3. Determine Q̄∗+n,hn and P ∗+n,hn as described above, with h = hn and G′+n,hn substituted for G′n,hn
in (33).

The LASSO-PSEUDO-C-TMLE estimator is ψ∗+n,hn .
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5 Main simulation study

In this section, we present the results of a multi-faceted simulation study of the behaviors and
performances of the two instantiations of the collaborative TMLE described in Section 4. Section 5.1
specifies the synthetic data-generating distribution P0 that we use, Section 5.2 introduces the
competing estimators, Section 5.3 outlines the structure of the simulation study, and Section 5.4
gathers its results. Written in R [16], our code makes extensive use of the C-TMLE package [5].

5.1 Synthetic data-generating distribution

Our synthetic data-generating distribution P0 = Π0,p,δ depends on two fine-tune parameters: the
dimension p of the baseline covariate W and a nonnegative constant δ ≥ 0. Sampling O ≡ (W,A, Y )
under Π0,p,δ unfolds sequentially along the following steps.

1. Sample W̃ from the centered Gaussian law on RM , M = dp/10e, of which the covariance
matrix Σ is the block-diagonal matrix (Akl)1≤k,l≤M where: A11 is the 10×10 identity matrix;
each Akk for 1 < k ≤M is the block-diagonal matrix (Bk,st)1≤s,t≤4 with

Bk,11 =

 1 0 .25
0 1 .25
.25 .25 1

 , Bk,22 = Bk,33 =

(
1 .5
.5 1

)
, Bk,44 =

 1 .5 0
.5 1 0
0 0 1


and Bk,st is a zero matrix for 1 ≤ s 6= t ≤ 4; each Akl for 1 ≤ k 6= l ≤M is a zero matrix. If
p = 10, then Σ = A11 and we set W ≡ W̃ . If M > 10p, then we set W ≡ (W̃1, . . . , W̃p)

>.

2. Sample A conditionally on W from the Bernoulli law with paramater

G0(W ) ≡ expit

(
δ +

p∑
k=1

βkWk

)
,

where (β1, · · · , βp) = (1, 1, 3/(p− 2), . . . , 3/(p− 2)).

3. Sample Ỹ conditionally on (A,W ) from the Gaussian law with (conditional) variance 1/25
and expectation

f0(A,W ) ≡ 2

5
(1 +W1 +W2 +W5 +W6 +W8 +A),

then define Y ≡ expit(Ỹ ).

The covariance matrix Σ induces a loose dependence structure. The components of W̃ can be
gathered in 1 + 4× (M − 1) independent groups, one group consisting of 10 + (M − 1) independent
random variables, and the other groups consisting of either two or three mildly dependent random
variables (with correlations equal to either 0.25 or 0.5). Neither

Q̄0(A,W ) ≡
∫
[0,1]

e−[logit(u)−f0(A,W )]2/50

10
√
π(1− u)

du

nor Ψ(Π0,p,δ) has a closed form expression. Independently of p and δ, Ψ(Π0,p,δ) ≈ 0.0799.
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5.2 Competing estimators

Let O1, . . . , On be independent draws from P0. Recall the characterization of Ĝh (h ∈ H100) and

definition of hn,CV given in Section 4.1, step 1. Let the algorithm ˆ̄Q for the estimation of Q̄0 consist
in fitting the working model {Q̄θ : θ = (θ0, θ1), θ0, θ1 ∈ R8} where Q̄θ is given by

Q̄θ(A,W ) ≡ Φ
(

(Aθ>1 + (1−A)θ>0 ))(W3, . . . ,W10)
>
)

with Φ the distribution function of the standard normal law. Note that the working model is
necessarily mis-specified, notably because of the absence of W1 and W2 in the above definition.

Recall that Q̄0
n is obtained by training ˆ̄Q on the whole data set once and for all. To emphasize, ˆ̄Q

is never re-trained during the cross-validation procedure. This is consistent with implementation
the original instantiation of the C-TMLE algorithm and of its scalable instantiations.

We compare the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators of Ψ(Π0,p,δ) from
Section 4 with the following commonly used competitors:

• the unadjusted estimator:

ψunadj
n ≡

∑n
i=1AiYi∑n
i=1Ai

−
∑n

i=1(1−Ai)Yi∑n
i=1(1−Ai)

;

• the so called G-comp estimator [17]:

ψG-comp
n ≡ 1

n

n∑
i=1

(
Q̄0
n(1,Wi)− Q̄0

n(0,Wi)
)

;

• the so called IPTW estimator [9, 21]:

ψIPTW
n ≡ 1

n

n∑
i=1

(2Ai − 1)Yi
Gn,hCV

(Ai,Wi)
;

• the so-called A-IPTW estimator [19]:

ψA-IPTW
n ≡ 1

n

n∑
i=1

(2Ai − 1)

Gn,hCV
(Ai,Wi)

(
Yi − Q̄0

n(Wi, Ai)
)

+
1

n

n∑
i=1

(
Q0
n(1,Wi)−Q0

n(0,Wi)
)

;

• and the plain TMLE estimator ψ∗n,hn,CV
, see (22).

5.3 Outline of the structure of the simulation study

We consider six different scenarios. In each of them, we repeat independently B = 200 times the
following steps: for each (n, p, δ) in a collection of scenario-specific triplets,

1. simulate a data set of n independent observations drawn from Π0,p,δ;

2. derive the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators of Sections 4.1 and
4.2 as well as the competing estimators presented in Section 5.2;

3. for the double-robust estimators only, i.e., ψA-IPTW
n , ψ∗n,hn,CV

and our two collaborative TM-

LEs, construct 95% CIs and check whether or not each of them contains Ψ(Π0,p,δ).
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Building confidence intervals based on the collaborative TMLEs. By Corollary 4, the
asymptotic variances of our collaborative TMLEs both write as

VarP0 [(D∗(Q1, G0) + ∆(P1)) (O)] . (34)

Because ∆(P1) is difficult to estimate, we estimate (34) with the empirical variance of D∗(P ∗n,hn,κn ),
i.e., with

PnD
∗(P ∗n,hn,κn )2 =

1

n

n∑
i=1

D∗(P ∗n,hn,κn )(Oi)
2

(recall that PnD
∗(P ∗n,hn,κn ) = 0 by construction). Therefore, the 95% CIs based on our collaborative

TMLEs take the form
ψ∗n,hn,κn ± 1.96

√
PnD∗(P ∗n,hn,κn

)2/n.

We anticipate that the asymptotic variances are over-estimated, resulting in CIs that are too wide.
However, we also anticipate that the omitted correction term is of second order relative to main
term, or, put in other words, that the difference between (34) and VarP0(D∗(Q1, G0)(O)) is small.

Six scenarios. The three first scenarios investigate what happens when δ = 0 and the number of
covariates p increases as a function of sample size n. In scenario 1, p = 0.2× n and we increase n.
In scenario 2, p = b2.83×

√
nc and we increase n. In scenario 3, p = b7.6× log nc and we increase n.

The values of the pairs (p, n) used in these scenarios are presented in Table 0. The constants 0.2,
2.83 and 7.6 are chosen so that p = 40 at sample size n = 200 in the three scenarios.

Table 0: Values of p and n in scenarios 1, 2 and 3.

n 200 400 600 800 1000 1200 1400 1600 1800 2000

p in scenario 1 40 80 120 160 200 240 280 320 360 400
p in scenario 2 40 56 69 80 89 98 105 113 120 126
p in scenario 3 40 45 48 50 52 53 55 56 56 57

In scenarios 4 and 5, we still set δ = 0 and either keep p fixed and increase n (scenario 4) or
keep n fixed and increase p (scenario 5). Finally, in scenario 6, we keep n and p fixed and challenge
the positivity assumptions that G0 is bounded away from 0 and 1 by progressively increasing δ.

In each scenario and for all estimators, we report in a table the average bias (bias, multiplied by
10), standard error (SE, multiplied by 10) and mean squared error (MSE, multiplied by 100) across

the B = 200 repetitions. Specifically, if {φ(b)n : 1 ≤ b ≤ B} are the B realizations of an estimator of

ψ0 = Ψ(Π0,p,δ) based on n independent draws from Π0,p,δ, then we call φ
1:B
n ≡ B−1

∑B
b=1(φ

(b)
n −ψ0)

the average bias, (B−1
∑B

b=1(φ
(b)
n − φ

1:B
n )2)1/2 the standard error, and (φ

1:B
n )2 + B−1

∑B
b=1(φ

(b)
n −

φ
1:B
n )2 the mean squared error.

We also represent in a series of figures how MSE, the empirical coverage of the 95% CIs and
their widths evolve as the sample size (scenarios 1 to 4) or number of covariates (scenario 5) or
parameter δ (scenario 6) increase. To ease comparisons, all similar figures share the same x- and
y-axes.

5.4 Results

Scenarios 1, 2, and 3: increasing n and setting p = 0.2n, b2.83
√
nc, b7.6 log nc. The

results of the three simulation studies under scenarios 1, 2 and 3 are best presented and commented
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upon altogether. Figure 1 and Table 1 summarize the numerical findings under scenario 1; Figure 2
and Table 2 summarize the numerical findings under scenario 2; Figure 3 and Table 3 summarize
the numerical findings under scenario 3.

Figures 1a, 2a and 3a reveal a general trend: MSE decreases as sample size n increases, despite
the fact that the number of covariates p also increases (at different n-rates in each scenario). Over-
all, LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE perform similarly and better than TMLE;
TMLE outperforms IPTW, and IPTW outperforms A-IPTW. Moreover, the gap between LASSO-
C-TMLE, LASSO-PSEUDO-C-TMLE on the one hand and TMLE on the other hand (i) reduces
as sample size n increases (in each scenario), and (ii) reduces as p decreases (for each sample size
n, across scenarios).

Judging by Tables 1, 2 and 3, the unadjusted, G-comp, IPTW and A-IPTW estimators are
strongly biased. The TMLE estimator is strongly biased too, even for large sample size n, when
the number of covariates p is not sufficiently small. Note however that the bias of TMLE vanishes
at sample size n = 2000 in scenario 2 (then, p = 126) and at sample size n ∈ {1000, 2000} (then,
p ∈ {52, 57}). Double-robustness is in action. In contrast, the LASSO-C-TMLE and LASSO-
PSEUDO-C-TMLE estimators are both essentially unbiased in all configurations.

Tables 1, 2 and 3 also reveal that the variance of the TMLE estimator tends to be smaller than
those of the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators, those last two variances
being very similar. Moreover, the gap between them tends to diminish as sample size n increases,
in all scenarios.

We now turn to Figures 1b, 2b and 3b. The LASSO-C-TMLE estimator performs best in terms
of empirical coverage, followed by the LASSO-PSEUDO-C-TMLE, TMLE and A-IPTW estimators,
in that order. At moderate sample size, the superiority of LASSO-C-TMLE-based CIs over the
others is striking. However, even they fail to provide the wished coverage except when sample size
n is large (say, larger than 1500).

As a side note, we recall that if S is drawn from the Binomial law with parameter (B, q) =
(200, q), then S ≤ 185 with probability approximately 8% for q = 95%, 22% for q = 94% and
43% for q = 93%. In this light, an empirical coverage of 7.5% is not that abnormal for B = 200
independent CIs of exact coverage q = 93%, and even q = 94%. Moreover, we anticipated to
get conservative CIs because of how we estimate the asymptotic variance of the LASSO-C-TMLE
estimator, see Section 5.3. The fact that the “ratio” entries of Table 3, scenario 3, are that close to
one for the LASSO-C-TMLE estimator at sample size n ∈ {1000, 2000} (not to mention at sample
size n = 2000 in Table 1, scenario 1) reveals that little over-estimation of the asymptotic variance
is at play. Finally, we see in Figures 1c, 2c and 3c that the CIs based on the LASSO-C-TMLE
and LASSO-PSEUDO-C-TMLE estimators are systematically slightly wider and slightly narrower
than those based on the TMLE estimator, all much narrower than those based on the A-IPTW
estimator.

Scenario 4: keeping p fixed and increasing n. Figure 4 and Table 4 summarize the numerical
findings under scenario 4, where the number of covariates p is set to 40 and sample size n goes from
200 to 2000 by steps of 200.

We observe the same trend in Figure 4a as in Figures 1a, 2a and 3a: MSE decreases as sample
size n increases; overall, LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE perform similarly and
better than TMLE; TMLE outperforms IPTW, and IPTW outperforms A-IPTW. Moreover, the
gap between LASSO-C-TMLE, LASSO-PSEUDO-C-TMLE on the one hand and TMLE on the
other hand vanishes completely as sample size increases, whereas it only got smaller in scenarios 1,
2, 3.
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Figure 1: Scenario 1. We fix the ratio p/n = 0.2, and increase the sample size n from 200 to 2000.

n ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

200 bias 1.259 1.212 0.435 0.632 0.327 -0.007 0.039
SE 0.236 0.152 0.320 0.137 0.151 0.242 0.260
MSE 1.641 1.491 0.291 0.418 0.130 0.059 0.069
ratio 1.414 0.882 0.577 0.466

1000 bias 1.171 1.206 0.279 0.407 0.189 0.032 0.026
SE 0.110 0.066 0.157 0.061 0.064 0.083 0.091
MSE 1.382 1.459 0.103 0.169 0.040 0.008 0.009
ratio 1.765 0.969 0.882 0.632

2000 bias 1.175 1.217 0.232 0.339 0.134 0.014 0.020
SE 0.076 0.047 0.120 0.050 0.045 0.050 0.069
MSE 1.386 1.483 0.068 0.118 0.020 0.003 0.005
ratio 1.666 0.959 1.062 0.626

Table 1: Scenario 1. The performance of each estimator at sample size n ∈ {200, 1000, 2000},
with ratio p/n = 0.2. The columns named L-C-TMLE and LP-C-TMLE correspond to the LASSO-
C-TMLE and LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the ratios of
the average of the SE estimates across the B repetitions to the empirical SE. Bias and SE are
multiplied by 10, and MSE is multiplied by 100.
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Figure 2: Scenario 2. We increase the sample size n from 200 to 2000 and set p = b2.83
√
nc.

n ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

200 bias 1.242 1.173 0.469 0.614 0.322 0.014 0.018
SE 0.221 0.157 0.278 0.135 0.156 0.226 0.217
MSE 1.592 1.401 0.297 0.395 0.128 0.051 0.048
ratio 1.377 0.857 0.630 0.553

1000 bias 1.216 1.214 0.271 0.361 0.126 0.003 0.019
SE 0.104 0.068 0.184 0.077 0.064 0.076 0.074
MSE 1.489 1.479 0.107 0.136 0.020 0.006 0.006
ratio 1.505 0.965 0.862 0.790

2000 bias 1.192 1.214 0.201 0.274 0.080 0.007 0.018
SE 0.075 0.051 0.140 0.061 0.051 0.053 0.049
MSE 1.426 1.477 0.060 0.079 0.009 0.003 0.003
ratio 1.488 0.870 0.898 0.904

Table 2: Scenario 2. The performance of each estimator at sample size n ∈ {200, 1000, 2000},
with ratio p = b2.83

√
nc. The columns named L-C-TMLE and LP-C-TMLE correspond to the

LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the
ratios of the average of the SE estimates across the B repetitions to the empirical SE. Bias and SE
are multiplied by 10, and MSE is multiplied by 100.
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Figure 3: Scenario 3. We increase the sample size n from 200 to 2000 and keep p = b7.6 log(n)c.

n ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

200 bias 1.244 1.190 0.427 0.634 0.314 -0.009 0.014
SE 0.228 0.148 0.316 0.136 0.170 0.239 0.241
MSE 1.600 1.439 0.282 0.420 0.128 0.057 0.058
ratio 1.363 0.777 0.598 0.502

1000 bias 1.242 1.208 0.224 0.286 0.056 -0.008 -0.006
SE 0.114 0.077 0.219 0.086 0.065 0.071 0.069
MSE 1.555 1.465 0.098 0.089 0.007 0.005 0.005
ratio 1.544 0.995 0.992 0.894

2000 bias 1.227 1.205 0.159 0.185 0.019 -0.006 -0.003
SE 0.074 0.050 0.157 0.066 0.046 0.053 0.050
MSE 1.511 1.453 0.050 0.039 0.003 0.003 0.002
ratio 1.552 1.023 0.978 0.942

Table 3: Scenario 3. The performance of each estimator at sample size n ∈ {200, 1000, 2000}, with
p = b7.6 log(n)c. The columns named L-C-TMLE and LP-C-TMLE correspond to the LASSO-C-
TMLE and LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the ratios of
the average of the SE estimates across the B repetitions to the empirical SE. Bias and SE are
multiplied by 10, and MSE is multiplied by 100.
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Judging by Table 4, the unadjusted, G-comp, IPTW and A-IPTW estimators are strongly bi-
ased whereas the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators are both essentially
unbiased even at small sample size n = 200. The TMLE estimator is strongly biased too at sample
size n = 200, but much less so as n increases, with no bias at all at n = 2000. Again, double-
robustness is in action. Moreover, there is little if any difference between the LASSO-C-TMLE,
LASSO-PSEUDO-C-TMLE and TMLE estimators in terms of bias, SE and MSE for sample size
n ∈ {1000, 2000}.

Figure 4b reveals that, at sample sizes n ≥ 1000, the empirical coverage of the CIs based on the
LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators is satisfactory, and that CIs based
on the TMLE estimator may provide more coverage than wished. By Table 4 (ratio rows), the
estimation of the actual variance of the LASSO-C-TMLE and TMLE estimator is quite good at
sample size n ∈ {1000, 2000}. Apparently, the variance of the LASSO-PSEUDO-C-TMLE estimator
is under-estimated at sample size n = 1000, but much better estimated at sample size n = 2000.

Scenario 5: keeping n fixed and increasing p. Figure 5 and Table 5 summarize the numerical
findings under scenario 5, where the sample size n is set to 1000 and the number of covariates p
ranges over {50, 75, 100, 150, 200}.

The take home message of Figure 5a is that, in terms of MSE, the LASSO-C-TMLE and LASSO-
PSEUDO-C-TMLE estimators outperform the TMLE estimator, which outperforms the IPTW and
A-IPTW estimators. Figure 5b further shows that the above message is also valid when considering
the empirical coverage of the CIs based on the different estimators. As the number of covariates
p increases, all the empirical coverage degrade. However, the CIs based on the LASSO-C-TMLE
estimator behave remarkably better than those based on the LASSO-PSEUDO-C-TMLE estimator,
which are themselves superior to those based on the TMLE estimator.

Examining Table 5 helps to better understand the general pattern. The unadjusted, G-comp,
IPTW and A-IPTW estimators are too strongly biased to compete. The TMLE estimator performs
rather well when the number of covariates p equals 50, like the LASSO-C-TMLE and LASSO-
PSEUDO-C-TMLE estimators. However, when p ∈ {100, 200}, then the TMLE estimator is too
biased to compete too – even double-robustness does not help yet at the moderate sample size
of n = 1000. In contrast, the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators are
essentially unbiased, and exhibit relatively small variances (compared to all the variances reported
in Tables 1, 2, 3, 4. Finally, let us note that the estimation of the variance of the LASSO-C-TMLE
estimator is rather good (see the ratio rows of Table 5), as opposed to that of the variance of the
LASSO-PSEUDO-C-TMLE estimator.

Scenario 6: keeping n and p fixed and challenging the positivity assumption. In this
scenario, we study how the level of posivitity violation influences the performance of the estimators,
at small sample size n = 100 and with p = 50 covariates, by progressively increasing δ ∈ {0.5+k/10 :
0 ≤ k ≤ 15}. Figure 6a illustrates how the positivity violation is challenged. We recover the fact
that δ 7→ Π0,50,δ(A = 1|W ) is increasing. When δ = 2, the law is highly skewed to 1, and
the positivity assumption is practically violated. Figures 6b, 6c, 6d and Table 6 summarize the
numerical findings under scenario 6.

We see in Figure 6 that, overall, the TMLE estimator is much more affected than the LASSO-
C-TMLE and LASSO-PSEUDO-C-TMLE estimators by the near violation of the positivity as-
sumption at sample size n = 500, and that the LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE
estimators behave similarly in terms of MSE and empirical coverage. Judging by Table 6, The un-
adjusted, G-comp, IPTW, A-IPTW and TMLE estimators are too strongly biased to compete with
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Figure 4: Scenario 4. We fix the number of covariates p = 40, and increase the sample size n
from 200 to 2000.

n ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

200 bias 1.286 1.215 0.485 0.649 0.317 0.020 0.020
SE 0.226 0.159 0.345 0.147 0.172 0.231 0.259
MSE 1.705 1.501 0.354 0.443 0.130 0.054 0.068
ratio 1.283 0.761 0.594 0.469

1000 bias 1.259 1.191 0.213 0.251 0.028 -0.020 -0.021
SE 0.109 0.073 0.211 0.090 0.062 0.076 0.074
MSE 1.597 1.425 0.090 0.071 0.005 0.006 0.006
ratio 1.490 1.062 0.947 0.866

2000 bias 1.260 1.202 0.117 0.140 -0.002 -0.001 -0.002
SE 0.080 0.049 0.165 0.066 0.046 0.049 0.048
MSE 1.595 1.448 0.041 0.024 0.002 0.002 0.002
ratio 1.673 1.062 1.014 0.974

Table 4: Scenario 4. The performance of each estimator at sample size n ∈ {200, 1000, 2000}, with
p = 40. The columns named L-C-TMLE and LP-C-TMLE correspond to the LASSO-C-TMLE and
LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the ratios of the average of
the SE estimates across the B repetitions to the empirical SE. Bias and SE are multiplied by 10,
and MSE is multiplied by 100.
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Figure 5: Scenario 5. We fix the sample size n = 1000, and increase the number of covariates p
from 50 to 200.

p ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

50 bias 1.237 1.205 0.228 0.285 0.053 -0.017 -0.008
SE 0.107 0.072 0.211 0.090 0.065 0.071 0.072
MSE 1.542 1.457 0.096 0.089 0.007 0.005 0.005
ratio 1.472 0.983 0.998 0.864

100 bias 1.179 1.199 0.252 0.357 0.130 0.005 0.013
SE 0.102 0.069 0.167 0.073 0.071 0.072 0.075
MSE 1.402 1.443 0.091 0.133 0.022 0.005 0.006
ratio 1.561 0.867 0.896 0.791

200 bias 1.190 1.221 0.297 0.417 0.179 0.024 0.024
SE 0.107 0.067 0.159 0.067 0.060 0.077 0.089
MSE 1.428 1.494 0.114 0.178 0.036 0.006 0.009
ratio 1.591 1.009 0.933 0.645

Table 5: Scenario 5. The performance of each estimator at sample size n = 1000, with p ∈
{50, 100, 200}. The columns named L-C-TMLE and LP-C-TMLE correspond to the LASSO-C-
TMLE and LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the ratios of
the average of the SE estimates across the B repetitions to the empirical SE. Bias and SE are
multiplied by 10, and MSE is multiplied by 100.
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the nearly unbiased LASSO-C-TMLE and LASSO-PSEUDO-C-TMLE estimators. The rather poor
performance in terms of empirical coverage of the CIs based on the LASSO-C-TMLE and LASSO-
PSEUDO-C-TMLE estimators may be due to the apparent failure in estimating well their variance
(see the ratio rows of Table 6).

6 Secondary simulation study: LASSO-C-TMLE as a fine-tuning
procedure

In this shorter section, we describe a second, less ambitious simulation study. Its aim is to evaluate
the interest in using the LASSO-C-TMLE procedure as a fine-tuning procedure. Specifically we wish
to investigate, in the same context as in Section 5, how the rivals of the LASSO-C-TMLE estimator
that also rely on the estimation of G0 (i.e., the IPTW, A-IPTW, TMLE and LASSO-PSEUDO-
C-TMLE estimators) perform when they are provided with the estimator Gn,hn,κn indexed by the
data-adaptive, targeted, fine-tune parameter hn,κn .

We thus choose to repeat independently B = 200 times the following steps: for each number of
covariates p ∈ {100, 200},

1. simulate a data set of n = 1000 independent observations drawn from Π0,p,0;

2. derive the LASSO-C-TMLE estimator of Sections 4.1

3. derive the LASSO-PSEUDO-C-TMLE estimator of Section 4.2 as well as the competing
IPTW, A-IPTW and TMLE estimators exactly as presented in Section 5.2, and also using
Gn,hn,κn in place of Gn,hn (LASSO-PSEUDO-C-TMLE) and Gn,hn,CV

(the others).

The results are reported in Table 7. A clear pattern emerges from Table 7: the bias is sys-
tematically reduced when using Gn,hn,κn in place of Gn,hn,CV

or Gn,hn . Nevertheless, the MSE of
the IPTW estimator increases, with a two-fold increase when the number of covariates p = 200.
In contrast, the A-IPTW estimator benefits more from the substitution, with a stark decrease of
the MSE on top of that of the bias, the latter being still far too large. This makes only more
remarkable the fact that the TMLE estimator greatly benefits from the substitution on all fronts,
bias and MSE. On the contrary, the benefit for the LASSO-PSEUDO-C-TMLE estimator is not
convincing. In summary, Gn,hn,κn is targeted even “out of context”, i.e., even when it is used to
build a plain TMLE estimator as opposed to the full-fledged C-TMLE estimator.

7 Discussion

We study the inference of the value of a smooth statistical parameter at a law P0 from which
we sample n independent observations, in situations where (i) we rely on a machine learning
algorithm fine-tuned by a real-valued parameter h to estimate the G-component G0 of P0, possibly
consistently, and (ii) the product of the rates of convergence of the estimators of the Q- and G-
components of P0 to their targets may be slower than the convenient o(1/

√
n). A plain TMLE with

an h chosen by cross-validation would typically not lend itself to the construction of a CI, because
the selection of h would trade-off its empirical bias with something akin to the empirical variance of
the estimator of G0 as opposed to that of the TMLE. We develop a collaborative TMLE procedure
that succeeds in achieving the relevant trade-off: under high-level empirical processes conditions,
and if there exists an oracle h that makes a bulky remainder term asymptotically Gaussian, then the
C-TMLE is asymptotically Gaussian hence amenable to building a CI provided that its asymptotic
variance can be estimated too.

28



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
propensity score

E
C

D
F

delta
0.5

1.2

2.0

(a) For every δ ∈ {0.5, 1.2, 2}, we simulate n =
1000 observations (W1, A1, Y1), . . . , (Wn, An, Yn)
from Π0,50,δ, compute {Π0,50,δ(A = 1|W = Wi) :
1 ≤ i ≤ n}, and finally plot the corresponding
empirical cumulative distribution.

●

●●

●
●

●

●
●●

●

●
●

●●
●●

●
●

●

●

●

0.01

0.02

0.03

0.04

0.05

0.0 0.5 1.0 1.5 2.0
delta

M
S

E

estimator
● TMLE

L−C−TMLE

LP−C−TMLE

(b) MSE for three of the seven estimators. MSE
is multiplied by 100.

●
●●●●●

●●●
●●●●●●●●●

●●
●

0.02
0.03
0.040.05

0.10

0.20
0.30
0.400.50

0.0 0.5 1.0 1.5 2.0
delta

1 
−

 C
I c

ov
er

ag
e estimator

● TMLE

L−C−TMLE

LP−C−TMLE

A−IPTW

(c) Coverage of 95% CIs based on the double-
robust estimators.

●●●●●●●●●●●●●●●●●●●●●

0.8

1.2

1.6

2.0

0.0 0.5 1.0 1.5 2.0
delta

ra
tio

 o
f C

I w
id

th estimator
● TMLE

L−C−TMLE

LP−C−TMLE

A−IPTW

(d) Relative width of 95% CIs based on the
double-robust estimators w.r.t. that of the plain
TMLE, ψ∗

n,hn,CV
.

Figure 6: Scenario 6. We fix n = 500, p = 50, and vary δ ∈ {0.5 + k/10 : 0 ≤ k ≤ 15}. As the
MSEs for IPTW and A-IPTW are too large, we only plot the MSEs of the plain TMLE ψ∗n,hn,CV

and the two collaborative TMLEs to ease comparisons.

δ ψunadj
n ψG-comp

n ψIPTW
n ψA-IPTW

n ψ∗n,hn,CV
L-C-TMLE LP-C-TMLE

1.0 bias 1.283 1.252 0.995 0.484 0.145 0.006 0.009
SE 0.170 0.105 0.319 0.117 0.108 0.120 0.128
MSE 1.675 1.579 1.092 0.248 0.033 0.014 0.017
ratio 1.385 0.816 0.774 0.650

2.0 bias 1.391 1.340 1.620 0.625 0.185 0.053 0.063
SE 0.223 0.142 0.409 0.154 0.143 0.168 0.186
MSE 1.984 1.817 2.791 0.414 0.055 0.031 0.039
ratio 1.283 0.650 0.597 0.474

Table 6: Scenario 6. The performance of each estimator at sample size n = 500, with p = 50
and δ ∈ {1, 2}. The columns named L-C-TMLE and LP-C-TMLE correspond to the LASSO-C-
TMLE and LASSO-PSEUDO-C-TMLE estimators, respectively. Rows ratio report the ratios of
the average of the SE estimates across the B repetitions to the empirical SE. Bias and SE are
multiplied by 10, and MSE is multiplied by 100.
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The construction of the C-TMLE and the main result about its empirical behavior are illustrated
with the inference of the average treatment effect, both theoretically and numerically. In the
simulation study, the G-component is estimated by the LASSO, and h is the bound on the `1-
norm of the candidate coefficients. Overall, the resulting LASSO-C-TMLE estimator is superior
to all its competitors, including a plain TMLE estimator. Evaluated in terms of empirical bias,
standard error, mean squared error and coverage of CIs, the superiority is striking in small and
moderate sample sizes. It is also strong when the number of covariates increases, or when the
positivity assumption is increasingly challenged, thus making the inference task progressively even
more delicate.

The simulation study suggests that the CIs based on the C-TMLE do not provide the wished
coverage, especially in small sample sizes. Obviously, this may be explained by the need for the
C-TMLE estimator to reach its asymptotic regime. More subtly, this may also be related to high-
level assumption A4, that states the existence of an oracle h making a bulky remainder term
asymptotically Gaussian. The assumption may fail to hold in practice. We will devote future
research to understanding better A4 and finding strategies to avoir relying on it.

In conclusion, we believe that the present study further demonstrates the high versatility and
potential of the collaborative targeted minimum loss estimation methodology. For (relative) sim-
plicity, we focused on the inference of a smooth, real-valued statistical parameter from independent
and identically distributed observations, assuming that the machine learning algorithm is fine-
tuned by a real-valued parameter. Our instantiation of the collaborative targeted minimum loss
estimation methodology can be extended to other statistical parameters, sampling schemes, and
fine-tuning of machine learning algorithms.

A Proofs

Sections A.1, A.2, A.3 and A.4 respectively prove Lemma 2, Theorem 1, Lemma 3 and Corollary 4.

A.1 Proof of Lemma 2

Proof. By (1),

Ψ(P ∗n,hn)−Ψ(P0) + P0D
∗(Q∗n,hn , Gn,hn) = Rem20(Q

∗
n,hn , Gn,hn),

Ψ(P0)−Ψ(P0) + P0D
∗(Q1, Gn,hn) = Rem20(Q1, Gn,hn),

hence, by (3) and (8),

P0

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q1, Gn,hn)

)
= Rem20(Q

∗
n,hn , Gn,hn)− Rem20(Q1, Gn,hn)−

(
Ψ(P ∗n,hn)−Ψ(P0)

)
= −(Pn − P0)D

∗(P0) + oP (1/
√
n).

But (5) and Φ0(G0) = P0D
∗(Q1, G0) = 0 also imply that

−Φ0(Gn,hn) + Φ0(G0) = P0

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q1, Gn,hn)

)
+(Pn − P0)

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q1, G0)

)
+(Pn − P0)D

∗(Q1, G0) + oP (1/
√
n)

which, combined with the previous display and (7), yield

Φ0(Gn,hn)− Φ0(G0) = (Pn − P0) (D∗(P0)−D∗(Q1, G0)) + oP (1/
√
n) = oP (1/

√
n)

showing that (9) is satisfied with h̃n = hn and ∆(P1) ≡ 0.
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A.2 Proof of Theorem 1

Proof. The proof unfolds in two parts.
Step one: extracting the would-be first order term. Equality (5) in A2 rewrites as

oP (1/
√
n) = PnD

∗(Q∗n,hn , Gn,hn)

= (Pn − P0)D
∗(Q∗n,hn , Gn,hn) + P0D

∗(Q∗n,hn , Gn,hn)

=
[
(Pn − P0)D

∗(Q1, G0) + (Pn − P0)
(
D∗(Q∗n,hn , Gn,hn)−D∗(Q1, G0)

)]
+
[
P0D

∗(Q∗n,hn , G0) + P0

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q∗n,hn , G0)

)]
.

The second term of the sum between the first pair of brackets is oP (1/
√
n) by (7) in A3. As for

the first term between the second pair of brackets, (1) and (1) entail that it satisfies

P0D
∗(Q∗n,hn , G0) = Ψ(P0)−Ψ(P ∗n,hn) + Rem20(Q

∗
n,hn , G0) = Ψ(P0)−Ψ(P ∗n,hn),

where we also use the fact that Ψ(P ∗n,hn) depends on P ∗n,hn only through Q∗n,hn . Thus, it holds that

Ψ(P ∗n,hn)−Ψ(P0)− (Pn − P0)D
∗(Q1, G0) + oP (1/

√
n)

= P0

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q∗n,hn , G0)

)
≡ T1,n. (35)

Let us now study T1,n, the right-hand side expression in (35). It rewrites as

T1,n = P0 (D∗(Q1, Gn,hn)−D∗(Q1, G0))

+ P0

(
D∗(Q∗n,hn , Gn,hn)−D∗(Q∗n,hn , G0)

)
− P0 (D∗(Q1, Gn,hn)−D∗(Q1, G0)) .

Consider the three terms in the right-hand side of the above equation. Combining (1), (1) and the
fact that Ψ(P ) = Ψ(P ′) whenever P and P ′ have the same Q-component reveals that the first and
third terms equal both Φ0(Gn,hn)−Φ0(G0) and Rem20(Q1, Gn,hn). For similar reasons, the second
term equals Rem20(Q

∗
n,hn

, Gn,hn). Therefore, by using successively (8) in A3 then (9) from A4, we
obtain that

T1,n = Φ0(Gn,hn)− Φ0(G0) +
(
Rem20(Q

∗
n,hn , Gn,hn)− Rem20(Q1, Gn,hn)

)
=

[
Φ0(Gn,h̃n)− Φ0(G0)

]
+
[
Φ0(Gn,hn)− Φ0(Gn,h̃n)

]
+ oP (1/

√
n)

= (Pn − P0)∆(P1) +
[
Φ0(Gn,hn)− Φ0(Gn,h̃n)

]
+ oP (1/

√
n). (36)

Step two: showing that the would-be first order term is complete. The rest of the proof consists
in showing that the term between brackets in (36), say T2,n, is oP (1/

√
n). The inequality below

follows from the definition of Φ0 and the triangle inequality, and the equality from (10) in A5:

|T2,n| ≤
∣∣∣Pn (D∗(Q1, Gn,h̃n)−D∗(Q1, Gn,hn)

)∣∣∣
+
∣∣∣(Pn − P0)

(
D∗(Q1, Gn,hn)−D∗(Q1, Gn,h̃n)

)∣∣∣
=

∣∣∣Pn (D∗(Q1, Gn,h̃n)−D∗(Q1, Gn,hn)
)∣∣∣+ oP (1/

√
n).

Therefore, it suffices to prove that the absolute value in the above right-hand side expression is
oP (1/

√
n). Under A1(Q1, hn, c5) (guaranteed by A5), for every 1 ≤ i ≤ n, the Taylor-Lagrange

inequality yields∣∣∣(D∗(Q1, Gn,h̃n)−D∗(Q1, Gn,hn)− (h̃n − hn)× ∂hnD∗(Q1, Gn,·)
)

(Oi)
∣∣∣ . (h̃n − hn)2

31



hence, by convexity,∣∣∣Pn (D∗(Q1, Gn,h̃n)−D∗(Q1, Gn,hn)− (h̃n − hn)× ∂hnD∗(Q1, Gn,·)
)∣∣∣ . (h̃n − hn)2.

Since Pn∂hnD
∗(Q∗n,hn , Gn,·) and (h̃n − hn) are both oP (1/n1/4) by (6) in A2 and A5, we get

Pn

(
D∗(Q1, Gn,h̃n)−D∗(Q1, Gn,hn)

)
= (h̃n − hn)× Pn

(
∂hnD

∗(Q∗n,hn , Gn,·)− ∂hnD∗(Q1, Gn,·)
)

+ oP (1/
√
n)

= (h̃n − hn)× (Pn − P0)
(
∂hnD

∗(Q∗n,hn , Gn,·)− ∂hnD∗(Q1, Gn,·)
)

+(h̃n − hn)× P0

(
∂hnD

∗(Q∗n,hn , Gn,·)− ∂hnD∗(Q1, Gn,·)
)

+ oP (1/
√
n).

In light of (11) and (12) in A5, the righ-hand side expression is oP (1/
√
n). This completes the

proof: T2,n = oP (1/
√
n), hence (36) rewrites as

T1,n = (Pn − P0)∆(P1) + oP (1/
√
n),

and (13) finally follows from (35).

A.3 Proof of Lemma 3

Proof. Set q̄n ≡ Q̄n(1, ·) − Q̄n(0, ·), q̄1 ≡ Q̄1(1, ·) − Q̄1(0, ·), and ψ1 ≡ P0q̄1. Using inequality
(a+ b)2 ≤ 2(a2 + b2) (valid for all real numbers a, b), we first remark that

P0(q̄n − q̄1)2 ≤ 2P0[Q̄n(1, ·)− Q̄1(1, ·)]2 + 2P0[Q̄n(0, ·)− Q̄1(0, ·)]2

= 2P0(Q̄n − Q̄0)
2/`G0 . P0(Q̄n − Q̄0)

2.

Therefore, it also holds that P0(q̄n− q̄1)2 = oP (1). Second, we decompose the difference ψn−ψ1 as

ψn − ψ1 = Pnq̄n − P0q̄1 = (Pn − P0)(q̄n − q̄1) + (Pn − P0)q̄1 + P0(q̄n − q̄1).

Lemma 19.24 in [32] guarantees that the first term in the above RHS expression is oP (1/
√
n).

Because q̄1 is uniformly bounded, the standard central limit theorem (for sequences of independent
and identically distributed, real-valued random variables with finite variance) implies that the
second term is OP (1/

√
n). Finally, the third term is oP (1) by the Cauchy-Schwarz inequality and

the remark we previously made. In summary, ψn − ψ1 = oP (1), as stated.

A.4 Proof of Corollary 4

The proof of Corollary 4 uses repeatedly the fact that some specific random functions fall in P0-
Donsker classes with P0-probability tending to one. Specifically, the proof will refer several times
to the following lemma (its proof is deferred to the end of this section).

Lemma 5. Suppose that the assumptions of Corollary 4 are met. Then, with P0-probability
tending to one, Q̄∗n,hn,κn (1, ·) − Q̄∗n,hn,κn (0, ·), D∗(P ∗n,hn,κn ), D∗(Q1, Gn,hn,κn ) − D∗(Q1, Gn,h̃n) and

∂hn,κnD
∗(Q∗n,hn,κn , Gn,·)− ∂hn,κnD

∗(Q∗n,hn,κn , Gn,·) also fall in P0-Donsker classes.

We can now present the proof of Corollary 4.
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Proof of Corollary 4. There is no obvious counterpart in C1, C2 and C4 to (7) and (8) appearing
within A3. Yet, under C2 and C4, Gn,hn,κn consistently estimates G0 and Q̄∗n,hn,κn converges to

a limit Q̄1 that may differ from Q̄0. Moreover, since Gn,hn,κn and G0 are bounded away from zero
by C1, we have

P0(D
∗(P ∗n,hn,κn )−D∗(P1))

2 = oP (1), (37)

where P1 ∈M is any element of modelM of which theQ- andG-components equalQ1 ≡ (QW,0, Q̄1)
and G0 (see proof below). By Lemma 5, D∗(P ∗n,hn,κn ) falls in a P0-Donsker class with P0-probability
tending to one. It thus holds that

(Pn − P0)(D
∗(P ∗n,hn,κn )−D∗(P1)) = oP (1/

√
n),

as requested in (7) of A3. In addition, the following convergence also occurs,

Rem20(Q̄
∗
n,hn,κn

, Gn,hn,κn )− Rem20(Q̄1, Gn,hn,κn ) = oP (1/
√
n), (38)

as requested in (8) of A3 (see proof below). Consequently, C1, C2 and C4 imply A3.
Let us now turn to assumption A5. To alleviate notation, let G′′n,h(W ) be the second order

derivative of t 7→ Gn,t(W ) at h ∈ T under C1. Given the definition of D∗(Q1, Gn,t)(O), see (15),
t 7→ D∗(Q1, Gn,t)(O) is twice differentiable on T and, for each h ∈ T ,

∂2hD
∗(Q1, Gn,·)(O) = (Y − Q̄1(A,W ))×

(
G′′n,h(W )

`Gn,h(A,W )2
− 2(2A− 1)

G′n,h(W )2

`Gn,h(A,W )3

)
.

Obviously, under C1, there exists a universal constant C3 > 0 such that the supremum in h ∈ T of
∂2hD

∗(Q1, Gn,·)(O) is P0-almost surely smaller than C3. Consequently, assumption A1(Q̄1, hn,κn , C3)
is met. In addition, we show below that (10), (11) and (12) hold true whenever C1 to C4 are met.

In summary, A2 is satisfied by construction of ψ∗n,hn,κn , see (28); A4 is assumed to hold true;
A3 and A5 are met. Thus, Theorem 1 applies and implies the result stated in Corollary 4. This
completes the proof.

Proof of (37). Suppose that the assumptions of Corollary 4 are met and recall decomposition (15).
To alleviate notation, introduce Q̄n ≡ Q̄∗n,hn,κn , q̄n ≡ Q̄∗n,hn,κn (1, ·) − Q̄∗n,hn,κn (0, ·) and Gn ≡
Gn,hn,κn . By Lemma 5, q̄n falls in a P0-Donsker class with P0-probability tending to one. Using
repeatedly inequality (a+ b)2 ≤ 2(a2 + b2), we obtain

P0(D
∗(P ∗n,hn,κn )−D∗(P1))

2 . P0(`Gn − `G0)
2 + P0(Q̄n`G0 − Q̄1`Gn)2

+P0(q̄n − q̄1)2 + (ψ∗n,hn,κn − ψ0)
2

. P0(Gn −G0)
2 + P0(Q̄n − Q̄1)

2

+P0(q̄n − q̄1)2 + (ψ∗n,hn,κn − ψ0)
2

= P0(q̄n − q̄1)2 + (ψ∗n,hn,κn − ψ0)
2 + oP (1).

The assumptions of Lemma 3 are met too. Therefore, we can retrieve the bound

P0(q̄n − q̄1)2 . P0(Q̄n − Q̄1)
2 = oP (1)

from its proof and assert that its conclusion holds: (ψ∗n,hn,κn − ψ0) = oP (1). This completes the

proof of (37).
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Proof of (38). Suppose that the assumptions of Corollary 4 are met. In view of (16), we have

Tn ≡ |Rem20(Q̄
∗
n,hn,κn

, Gn,hn,κn )− Rem20(Q̄1, Gn,hn,κn )|

=

∣∣∣∣EP0

[
(2A− 1)

(
1− `G0(A,W )

`Gn,hn,κn (A,W )

)
(Q̄∗n,hn,κn (A,W )− Q̄1(A,W ))

]∣∣∣∣ .
Therefore, the Cauchy-Schwarz inequality and equality (`Gn,hn,κn − `G0)

2 = (Gn,hn,κn −G0)
2 yield

T 2
n . P0(Gn,hn,κn −G0)

2 × P0(Q̄
∗
n,hn,κn

− Q̄1)
2 = oP (1/n),

which completes the proof of (38).

Proof of (10) in the context of Section 3. Suppose that the assumptions of Corollary 4 are met.
Using C1 and the Taylor-Lagrange inequality yields

|Gn,h̃n(W )−Gn,hn,κn (W )| . |h̃n − hn,κn |

hence P0(Gn,h̃n −Gn,hn,κn )2 . (h̃n − hn,κn)2 = oP (1) (with much to spare). Now, observe that(
D∗(Q1, Gn,hn,κn )−D∗(Q1, Gn,h̃n)

)
(O) = (Y − Q̄1(A,W ))(2A− 1)

×

(
1

`Gn,hn,κn (A,W )
− 1

`Gn,h̃n(A,W )

)
,

which evidently implies the upper bound∣∣∣(D∗(Q1, Gn,hn,κn )−D∗(Q1, Gn,h̃n)
)

(O)
∣∣∣ . |`Gn,hn,κn (A,W )− `Gn,h̃n(A,W )|

= |Gn,hn,κn (W )−Gn,h̃n(W )|.

Therefore, P0(D
∗(Q1, Gn,hn,κn )−D∗(Q1, Gn,h̃n))2 = oP (1). Furthermore, Lemma 5 guarantees that

D∗(Q1, Gn,hn,κn ) − D∗(Q1, Gn,h̃n) falls in a P0-Donsker class with P0-probability tending to one.
The same argument as the one that lead to (3) in Section 3.3 thus completes the proof of (10).

Proof of (11) in the context of Section 3. Suppose that the assumptions of Corollary 4 are met. In
view of (15), we have

∂hn,κnD
∗(Q∗n,hn,κn , Gn,·)(O) =

2A− 1

`Gn,hn,κn (A,W )
G′n,hn,κn (W )(Y − Q̄∗n,hn,κn (A,W )), (39)

∂hn,κnD
∗(Q1, Gn,·)(O) =

2A− 1

`Gn,hn,κn (A,W )
G′n,hn,κn (W )(Y − Q̄1(A,W )), (40)

hence ∣∣(∂hn,κnD∗(Qn,hn,κn , Gn,·)− ∂hn,κnD∗(Q1, Gn,·)
)∣∣ . |Q̄1 − Q̄∗n,hn,κn |. (41)

Therefore, the Cauchy-Schwarz inequality implies the bound(
(hn,κn − h̃n)× P0

(
∂hn,κnD

∗(Qn,hn,κn , Gn,·)− ∂hn,κnD∗(Q1, Gn,·)
))2

. (hn,κn − h̃n)2 × P0(Q̄
∗
n,hn,κn

− Q̄1)
2 = oP (1/n),

thus completing the proof of (11).

34



Proof of (12) in the context of Section 3. Suppose that the assumptions of Corollary 4 are met.
By Lemma 5, ∂hn,κnD

∗(Q∗n,hn,κn , Gn,·) − ∂hn,κnD
∗(Q1, Gn,·) falls in a P0-Donsker class with P0-

probability tending to one. In view of (41), it holds that

P0

(
∂hn,κnD

∗(Qn,hn,κn , Gn,·)− ∂hn,κnD∗(Q1, Gn,·)
)2

= oP (1).

The same argument as the one that lead to (3) in Section 3.3 thus completes the proof of (12).

Proof of Lemma 5. We proceed by order of appearance in the statement of the lemma. First, note
that

Q̄∗n,hn,κn (1,W )− Q̄∗n,hn,κn (0,W ) = (2A− 1)Q̄∗n,hn,κn (A,W ).

Second, derive from (15) the explicit forms of D∗(P ∗n,hn,κn ), D∗(Q1, Gn,hn,κn ), D∗(Q1, Gn,h̃n), and

of the difference of the two last ones. Third, recall the explicit forms of ∂hn,κnD
∗(Q∗n,hn,κn , Gn,·)

and D∗(Q1, Gn,hn,κn ) given in (39) and (40), and derive from them that of their difference. Thanks
to C4 and the above explicit forms, straightforward applications of [33, Theorem 2.10.6] yield the
result.

We conclude this article on a final remark about B4(Pn, k). Suppose that B2(Pn, k) is met. If,
in light of C1, we also assume that t 7→ Gn,t(W ) is twice differentiable in a neighborhood of hn,k,
then the assumptions of the implicit function theorem are satisfied and h 7→ εn,h,k is differentiable
around hn,k.
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p ψIPTW
n (ψIPTW

n )′ ψA-IPTW
n (ψA-IPTW

n )′

100 bias 0.252 0.078 0.357 0.151
SE 0.167 0.325 0.073 0.167
MSE 0.091 0.112 0.133 0.050

200 bias 0.297 0.106 0.417 0.152
SE 0.159 0.480 0.067 0.150
MSE 0.114 0.242 0.178 0.045

p ψ∗n,hn,CV
ψ∗n,hn,κn L-C-TMLE LP-C-TMLE LP-C-TMLE′

100 bias 0.130 0.017 0.005 0.013 -0.000
SE 0.071 0.101 0.072 0.075 0.094
MSE 0.022 0.011 0.005 0.006 0.009

200 bias 0.179 -0.037 0.024 0.024 -0.072
SE 0.060 0.140 0.077 0.089 0.148
MSE 0.036 0.021 0.006 0.009 0.027

Table 7: Using LASSO-C-TMLE as a fine-tuning procedure. The performance of each
estimator at sample size n = 1000 with p ∈ {100, 200}. The prime symbol indicates the use of
Gn,hn,κn as an estimator of G0 in place of Gn,hn,CV

or Gn,hn . Bias and SE are multiplied by 10, and
MSE is multiplied by 100.

38


	1 Introduction
	2 High-level presentation and result
	3 Collaborative TMLE for continuous tuning when inferring the average treatment effect: presentation and analysis
	3.1 Preliminary
	3.2 Uncooperative construction of a continuum of uncooperative TMLEs
	3.3 Selecting one of the uncooperative TMLEs
	3.4 Collaborative construction of finitely many collaborative TMLEs 
	3.5 Selecting one of the finitely many collaborative TMLEs 
	3.6 Asymptotics

	4 Collaborative TMLE for continuous tuning when inferring the average treatment effect: practical implementation
	4.1 LASSO-C-TMLE
	4.2 LASSO-PSEUDO-C-TMLE

	5 Main simulation study
	5.1 Synthetic data-generating distribution
	5.2 Competing estimators
	5.3 Outline of the structure of the simulation study
	5.4 Results

	6 Secondary simulation study: LASSO-C-TMLE as a fine-tuning procedure
	7 Discussion
	A Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Theorem ??
	A.3 Proof of Lemma ??
	A.4 Proof of Corollary ??


