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Abstract

Many tasks in computer vision and pattern recognition are formulated as graph matching
problems. Despite the NP-hard nature of such problems, fast and accurate approximations
have led to signi�cant progress in a wide range of applications. However, learning graph match-
ing from observed data, remains a challenging issue. In practice, the node correspondences
ground truth is rarely available. This paper presents an e�ective scheme for optimizing the
graph matching problem in a classi�cation context. For this, we propose a representation that
is based on a parametrized model graph, and optimize the associated parameters. The objec-
tive of the optimization problem is to increase the classi�cation rate. Experimental results on
seven public datasets demonstrate the e�ectiveness (in terms of accuracy and speed) of our
approach compared to four reference graph classi�ers.

1 Introduction

Graphs are frequently used in various �elds of computer science, since they constitute a universal
modeling tool that enables the description of structured data. The handled objects and their rela-
tions are described in a single and human-readable formalism. Hence, tools for graph classi�cation
and clustering are required in many applications such as pattern recognition (Riesen, 2015), chem-
ical component analysis (Gaüzere et al., 2012) and structured data retrieval (Raveaux et al., 2013).
Various approaches have been proposed during the last decade for tackling the problem of graph
classi�cation. Graph classi�cation is the problem of identifying to which of a set of categories, a
new graph belongs on the basis of a training set. A graph classi�er is a function that maps its
input G ∈ G to an output value f(G) ∈ C. G is the graph space and C is a set of categories or
classes. Graph classi�ers can be categorized into two categories based on whether the classi�er
operates in a graph space or in a vector space. Methods that operate in a vector space can also be
split into two categories based on whether they rely on explicit graph embedding (φ : G→ Rn) or
implicit (k :< G,G >→ R) graph embedding by means of graph kernels (Riesen and Bunke, 2010;
Lozano and Escolano, 2013). Even if such approaches have proven to achieve high performance,
they have two main drawbacks: One is a lack of interpretability. It is very di�cult to return to
the graph space from the kernel space. This problem is known as the "pre-image" problem (Bak�r
et al., 2004) and is still open. The second drawback is that graph kernel techniques rely on the
choice of a priori structures de�ning a graph similarity (i.e.: walks, paths, cliques, etc.).

Graph space (d : G × G → R). To classify unknown objects using the k-Nearest Neighbor
(k-NN) paradigm, one needs to de�ne a metric that measures the distance between the unknown
object and the elements in the learning database. The similarity or dissimilarity between two
graphs requires the computation and evaluation of the "best" matching between them. Since
graph isomorphism rarely occurs in pattern analysis applications, the matching process must be
error-tolerant, i.e., it must tolerate di�erences in the topology and/or its labeling. For instance, in
the Graph Edit Distance (GED) problem (Riesen, 2015), a set of edit operations that are applied
on nodes and edges (substitution, deletion and insertion) are introduced. Each edit operation is
characterized by a cost and the dissimilarity measure is the total cost of the least expensive set of
operations that transform one graph into another. In (Riesen, 2015; Bougleux et al., 2017), the
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GED problem is shown to be equivalent to a Quadratic Assignment Problem (QAP). Since error-
tolerant graph matching problems are NP-hard, most research has long focused on developing
accurate and e�cient approximate algorithms. In (Bougleux et al., 2017), with this quadratic
formulation, two well known graph matching methods ,namely, the Integer Projected Fixed Point
method (Leordeanu et al., 2009) and the Graduated Non Convexity and Concavity Procedure
(Liu and Qiao, 2014), are applied to GED. In (Leordeanu et al., 2009), the heuristic improves
an initial solution by solving a linear assignment problem (LSAP) and a relaxed QAP in which
binary constraints are relaxed to the continuous domain. The algorithm iterates through gradient
descent by comparing the relaxed QAP and the LSAP solutions via a line search. In (Liu and Qiao,
2014), a path following algorithm aims at approximating the solution of a QAP by considering a
convex-concave relaxation through a modi�ed quadratic function.

Positioning the paper. Our paper can be located in the literature by two entries: the complexity
and the a priori knowledge integrated in the model. First, on the complexity side, conventional
kernel-based and k-NN methods cannot be applied directly on large data sets as they are of
quadratic complexity. The number of calls to the dissimilarity measure grows quadratically as a
function of the number of graphs in the learning and test datasets. Second, graph kernel techniques
rely on the choice of a priori structures de�ning a graph similarity (i.e.: walks, paths, cliques, etc.).
Also, recent studies have revealed that hand-crafted edit costs or matching functions, which are
typically used in graph matching, are insu�cient for capturing the inherent structure that underlies
the problem at hand. As a consequence, a better optimization of the graph matching problem does
not guarantee better correspondence accuracy with respect to a user-de�ned ground-truth (Caetano
et al., 2009; Cho et al., 2013) or a better classi�cation rate. To tackle this issue, we introduce a set
of parameters into the graph matching problem. Then, we use a learning scheme to obtain the best
values for these parameters, according to the problem at hand. Such a learned matching function
better model the inherent structure of the classi�cation problem. This paper deals with paradigms
that operate directly on the graph space and can thus capture more structural distortions than
embedding techniques, as well as giving more interpretable solutions (because expressed directly
in the graph space).

In Section 2, the de�nitions are established and the parametrized graph matching problem is
presented. In Section 3, the state of the art is detailed and weaknesses are identi�ed. In Section 4,
the methodology, complexity and algorithms of our proposed approach are presented. Section 5,
highlights an experimental protocol along with its results. Finally, in Section 6, conclusions and
perspectives are discussed.

2 Problem statement

In this section, the problem of learning discriminative graph matching is formally de�ned. An
attributed graph is considered as a triple (V , E, L) where V is a set of vertices. E is a set of
edges such as E ⊆ V ×V and L is a set of attributes of the nodes and edges. For clarity, we abuse
the set notation such that Li is a label that is associated with vertex vi and Lij is a label that is
associated with an edge (vi, vj). Graphs are assumed to be simple (no loops or multiple edges).

2.1 Graph matching problem

We de�ne the error-correcting graph matching problem to compute the GED of two graphs. Let
G1 = (N1, E1, L1) and G2 = (N2, E2, L2) be two graphs, with N1 = {1, · · · , n} and N2 =
{1, · · · ,m}. To apply removal or insertion operations on nodes, node sets are augmented by
dummy elements. The removal of each node vi ∈ N1 is modeled as a mapping vi → ε2i where ε

2
i

is the dummy element that is associated with vi. As a consequence, the set N2 is increased by n
dummy elements ε2 to form a new set V 2 = N2 ∪ ε2. The node set N1 is increased similarly by
m dummy elements ε2 to form V 1 = N1 ∪ ε1. Note that V 1 and V 2 have the same cardinality :
n1 = n2 = n + m. Each element of the two graphs can be edited only once. A graph matching
solution is de�ned as a subset of possible correspondences y ⊂ V 1 × V 2, which are represented
by a binary assignment matrix Y ∈ {0, 1}n1×n2 , where n1 and n2 denote the sizes of V 1 and V 2,
respectively. If v1

i ∈ V 1 matches with v2
a ∈ V 2, then Yi,a = 1, or Yi,a = 0 otherwise. We denote

by y ∈ {0, 1}n1n2 , a column-wise vectorized replica of Y . With this notation, the error-correcting
graph matching problem can be expressed as the problem of �nding the assignment vector y∗ that
minimizes a score function d(G1, G2, y) as follows:
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Problem 1 Graph matching formulation

y∗ = argmin
y

d(G1, G2, y) (1a)

subject to y ∈ {0, 1}n1n2 (1b)
n1∑
i=1

yi,a = 1 ∀a ∈ [1, · · · , n2] (1c)

n2∑
a=1

yi,a = 1 ∀i ∈ [1, · · · , n1] (1d)

where constraints 1c and 1d indicate that each node of a graph must be matched with only one
node of the other graph.
The function d(G1, G2, y) measures the dissimilarity of graph attributes, and is typically decom-
posed into a �rst order dissimilarity function dV (L1

i , L
2
a) for a node pair v1

i ∈ V 1 and v2
a ∈ V 2, and

a second-order similarity function dE(L1
ij , L

2
ab) for an edge pair e1

ij ∈ V 1 × V 1 and e2
ab ∈ V 2 × V 2.

Dissimilarity functions are usually represented by a symmetric dissimilarity matrix D, in which a
non-diagonal element Dia;jb = dE(L1

ij , L
2
ab) contains the edge dissimilarity of two correspondences

(v1
i , v

2
a) and (v1

j , v
2
b ) and a diagonal term Dia;ia = dV (L1

i , L
2
a) represents the node dissimilarity of

a correspondence (v1
i , v

2
a). Thus, the objective function of graph matching is de�ned as:

d(G1, G2, y) =
∑
yia=1

dV (L1
i , L

2
a) +

∑
yia=1

∑
yjb=1

dE(L1
ij , L

2
ab) = yTDy (2)

In essence, the score accumulates all the dissimilarity values that are relevant to the assignment.
Problem 1 models the error-correcting graph matching to compute the GED. In the literature,
this problem is also called as the GED problem. The two names are equivalent except that the
�rst name explicitly speci�es the matching. Problem 1 is referred to as an integer quadratic
programming problem. More precisely, it is the quadratic assignment problem, which is known to
be NP-hard.

2.2 Parametrized graph matching

In the context of the objective function that is de�ned in Eq. 2, an interesting question arises:
What can be learned to improve graph matching. To address this issue, we parameterize Eq. 2 as
follows. Let π(a) = i denote an assignment of node v2

a in G2 to node v1
i in G1, i.e. yia = 1. A

joint feature map Φ(G1;G2; y) is de�ned by aligning the relevant dissimilarity values of Eq. 2 into
a vector form as: Φ(G1, G2, y) = [· · · , dV (L1

π(a), L
2
a), · · · , dE(L1

π(a)π(b), L
2
ab), · · · ]. By introducing a

real-valued vector β to weight all elements of this feature map, we obtain a discriminative objective
function:

d(G1, G2, y, β) =βΦT (G1, G2, y) (3a)

= · · ·+ βa · dV (L1
π(a), L

2
a)+

+ βab · dE(L1
π(a)π(b), L

2
ab) + · · · (3b)

where β is a weight vector that encodes the importance of node and edge dissimilarity values. In
the case of uniform weights, i.e. β = 1, all elements of vector β are 1, and Eq. 3a is reduced
to the conventional graph matching score function of Eq. 2: d(G1, G2, y) = d(G1, G2, y,1). An
example of the parametrized objective function is given in Figure 1. The discriminative weight
formulation is general in the sense that it can assign di�erent parameters to individual nodes and
edges. However, it does not learn a graph model that underlies the feature map, and requires a
reference graph G2 at query time, whose attributes cannot be modi�ed in the learning phase. The
new discrete optimization problem can be rewritten from Problem 1 as follows:

Problem 2 Parametrized graph matching problem

y∗ = argmin
y

d(G1, G2, y, β) (4a)
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Figure 1: Illustration of the parametrized score function computation.

subject to y ∈ {0, 1}n1n2 (4b)
n1∑
i=1

yi,a = 1 ∀a ∈ [1, · · · , n2] (4c)

n2∑
a=1

yi,a = 1 ∀i ∈ [1, · · · , n1] (4d)

2.3 Graph classi�cation problem

For clarity, the rest of the de�nition is focused on a 2-class problem. However the paradigm can
be extended to a multi-class problem. A linear classi�er is a function that maps its input x ∈ Rq
(a real-valued vector) to an output value f(x) ∈ {0, 1} (a single binary value):

f(x) =

{
1 if β · x+ b > 0

0 otherwise

where β is a vector of real-valued weights, and β · x is the dot product

q∑
i=1

βixi, in which q is the

number of inputs to the classi�er and b is the bias. The bias shifts the decision boundary away
from the origin and does not depend on any input value. The value of f(x) (0 or 1) is used to
classify x as either a positive or a negative instance, in the case of a binary classi�cation problem.
If b is negative, the weighted combination of inputs must produce a positive value that is greater
than |b| in order to push the classi�er over the 0 threshold. For clarity, b is often included in the
weight vector β with b = β0 × 1. To extend this paradigm to graphs, let D be the set of graphs.
Given a graph training set TrS = {(Gi, ci)}Mi=1, where Gi ∈ D is a graph and ci ∈ C is the class of
the graph, out of the two possible classes. The learning of a graph classi�er consists of inducing
from TrS a mapping function f : G→ C that assigns a class to an unknown graph:

f(G) =

{
1 if β · ΦT (G,Gm, y) + b > 0

0 otherwise
with Gm a graph model

Let ∆(TrS, f) be a function that computes the error rate obtained by a classi�er f . We represent
the error for the pth training sample by errorp = 1 − δ(cp, f(Gp)), where cp is the target value,
f(Gp) is the value that is produced by the classi�er and δ(·, ·) is the Kronecker Delta function.
The error rate (∆) is the mean of errors errorp over the set TrS between the ground-truth values
and values produced by the classi�er. Straightforwardly, we de�ne η = 1−∆ as the classi�cation
rate on the training set.

To address the problem of learning graph matching, we start with the discriminative weight for-
mulation of Eq. 3a. We learn the weights β from labelled examples from TrS minimizing the func-
tion ∆. The objective function is the error rate function with extra weights β: min

β
∆(TrS, f, β).
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Figure 2: Parametrized matching function where G1 has 7 graph components (4 nodes and 3
edges).

2.4 Fixed parametrized graph matching for machine learning

To perform conventional machine learning techniques such as Support Vector Machines (SVM) or
Deep Neural Networks (DNN) on a data set, a �xed feature vector size is often mandatory. To
obtain a �xed size, in Eq.3b, the sizes of the vectors β and Φ(G,Gm, y) must only depend on the
size of Gm and not on the query graph G = (N,E,L).

The graph elements of G and the components of graph Gm(Nm, Em) are aligned into a vectorial
form by the function Φ. Φ(G,Gm, y) is a vector ∈ R|Nm|+|Em|+2. Two extra components are added
to accumulate node and edge deletion costs. For instance, it can occur that a node or an edge of
G is mapped to a dummy element ε (node deletion or edge deletion). In such a case, the node
deletions are mapped in the penultimate component of the vector Φ(·). The edge deletions are
mapped in the last component of the vector Φ(·).

β is a vector ∈ R|Nm|+|Em|+2. Individual weights are associated with each component of Gm.
Two extra components are added to parametrize the node and edge deletion costs, respectively.
A shared weight is associated with all node deletion costs. The same strategy is applied for edge
deletions.

The value of the objective function remains the same. Substitutions and insertions have indi-
vidual weights. Deletions share a mutual parameter. In Figure 1, G1 holds 5 graph components
and in Figure 2, G1 holds 7 graph components. However, in both �gures Φ(·) and β are vectors of
size 5 that only depend on model graph G2.

3 State of the art

The literature on learning similarity/dissimilarity matching functions can be roughly categorized
into two parts according to whether the objective is to minimize an error rate on the number
of correctly matched graph components (matching level) or an error rate on a classi�cation task
(classi�cation level).

Matching level. In this category, the purpose is to minimize the average Hamming distance
between a ground-truth's correspondence and the automatically deduced correspondence. Cae-
tano et al. (Caetano et al., 2009) use a 60-dimensional node similarity function for appearance
similarity and a simple binary edge similarity for edges. Leordeanu et al. (Leordeanu et al., 2012)
do not use dV , and instead employ a multi-dimensional function dE for dissimilarity of appear-
ance, angle, and distance. The work of Torresani et al. (Torresani et al., 2008) can be viewed
as adopting 2-dimensional dV and dE functions for measuring appearance dissimilarity, geometric
compatibility, and occlusion likelihood. In (Cortés and Serratosa, 2015) a method for learning the
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real numbers for the insertion dV (ε→ v) and deletion dV (v → ε) costs on nodes and edges is pro-
posed. An extension to substitution costs is presented in (Cortés and Serratosa, 2016). While the
optimization methods for learning these functions are di�erent, all of them are essentially aimed
at learning common weights for all the edges' and nodes' dissimilarity functions in a matching
context. The discriminative weight formulation in Eq. 3a is more general in the sense that it can
assign di�erent parameters for individual nodes and edges. In (Cho et al., 2013), the discriminative
weight formulation is also employed. The learning problem is turned into a regression problem
and a structured support vector machine (SSVM) is used to minimize it. In (Riesen and Ferrer,
2016), the main contribution is the prediction of whether two nodes match or not. The node
assignment is represented by a vector of 24 features. These numerical features are extracted from
the node-to-node cost matrix C which was used for the original matching process. Then, using
the assignments derived from exact graph edit distance computation as the ground truth, each
computed node assignment is labeled correct or incorrect. This set of labeled assignments is used
to train an SVM endowed with a Gaussian kernel to classify the assignments computed by the
approximation as correct or incorrect. A major drawback is the optimal solution requirements for
performing the learning.

Classi�cation level. Learning graph matching in a classi�cation context is more challenging
since the ground truth is given at the class level and not at the node/edge level. In (Riesen
and Bunke, 2009), a grid search on a validation set is used to determine the values of the pa-
rameters Kn = βndel = βnins, which corresponds to the cost of a node deletion or insertion, and
Ke = βedel = βeins, which corresponds to the cost of an edge deletion or insertion. The main
drawbacks of the grid search is the empirical de�nitions of intervals and bounds of the grid, which
require expertise on the problem. The speed can also drastically decrease as the grid becomes
larger. The method aimed at learning common weights for all the edges and nodes and only distin-
guishes weights by type of operations: deletion, insertion or substitution (βdel, βins, βsub). Neuhaus
et al. (Neuhaus and Bunke, 2005) address the issue of learning dissimilarity functions for numer-
ically labeled graphs from a corpus of sample graphs. A system of self-organizing maps (SOMs)
that represent the dissimilarity spaces of node and edge labels was proposed. The learning process
adapts the edit costs in such a way that the similarity of graphs from the same class is increased.
The matching are computed only once before learning the costs and each edit operation is consid-
ered independently from the matching it belongs. From the same authors, in (Neuhaus and Bunke,
2007), the graph matching process is formulated in a stochastic context. A maximum likelihood
parameter estimation of the distribution of matching operations is performed. The underlying
distortion model is a mixture of multivariate Gaussians. The model is learned using an Expecta-
tion Maximization algorithm. The matching costs are adapted to decrease the distances between
graphs from the same class, thereby leading to compact graph clusters. The method requires the
summation over all possible edit paths between two graphs which is not tractable in practice. Two
limitations can be identi�ed: (i) attributes must be numeric vectors of a �xed dimension. The
methods focus on organizing the feature space rather than learning graph matching and (ii) the
methods are not discriminative, they model graphs that belong to the same class. A clear picture
of the state of the art is provided in Table 1. Adapting methods that operate at the matching
level is not trivial since node correspondences must be inferred from the class labels. The neural
methods that are proposed in (Neuhaus and Bunke, 2005) perform well at the classi�cation level
but are limited to vector attributes and each edit operation is considered independently from the
matching it belongs. The former limitation is leveraged in (Neuhaus and Bunke, 2007) thanks to a
probabilistic framework. However, the method is not discriminative and models graphs that belong
to the same class. In this paper, the contribution is to match graphs and to learn edge/node dis-
similarity functions at the same time as a single minimization problem. A neural-based algorithm
and the discriminative weight formulation aim at learning graph matching dissimilarity functions
in a discriminative way.

The �rst development of this idea was in paper (Raveaux et al., 2017). In this paper, we go
further in three aspects: (i) Theoretically, we extend our method to multiclass problems. (ii) Then,
we consider a new family of model graphs based on median graphs. (iii) Finally, four datasets are
added to the experimental study. The experimental phase shows that the newly proposed approach
achieves various improvements compared to the prior approach published in (Raveaux et al., 2017)
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Ref Ground-
Truth
Level

Shared
parameters

Graph type Optimization
method

Learning
space

Discriminative
or genera-
tive

Matching
and Learn-
ing

Neuhaus and Bunke (2005) Class No Numeric SOM Vector Generative Independently
Neuhaus and Bunke (2007) Class No Numeric EM Vector Generative Independently
Riesen and Bunke (2009) Class Yes Any Grid Search Distance DiscriminativeSimultaneously
Riesen and Ferrer (2016) Matching No Any SVM Distance NA Independently

Cortés and Serratosa (2015, 2016) Matching Yes Any Quadratic
program-
ming

Distance NA Independently

Caetano et al. (2009) Matching No Numeric Bundle Vector NA Simultaneously
(Torresani et al., 2008) Matching No Any Bundle Distance NA Simultaneously

Cho et al. (2013) Matching No Any SSVM Distance NA Simultaneously

This paper Class No Any Neural net-
work

Distance DiscriminativeSimultaneously

Table 1: Papers published about learning graph matching

Figure 3: Overview of the perceptron and our proposal of a modi�ed perceptron for graph

4 Proposal: a multiclass graph-based perceptron

In this section, the choice of the perceptron algorithm is explained. Then, on a 2-class problem,
the key concepts of our graph-based perceptron are presented along with the changes from the
original perceptron paradigm (Rosenblatt, 1957). Finally, an extension to multiclass problems is
detailed.

4.1 The perceptron choice

The choice of the perceptron may seem dated compared to recent deep neural network architectures
(He et al., 2015). However, four key points motivated this choice. The perceptron is deterministic,
simple, capable of online learning and stackable. (i) Simple: The perceptron is a simple algorithm
for binary classi�cation in which the weights are adjusted in the direction of each misclassi�ed
example. (ii) Deterministic: Given a particular input, the algorithm will always produce the same
output. In the graph domain, the parameter space is huge. Thus, having a reproducible process
is appreciable. (iii) Online learning ability: The perceptron is capable of online learning (learning
from samples one at a time). This is useful for larger datasets since there is no need to address
the entire datasets in memory. (iv) Stackable: The simple perceptron neuron can be stacked to
create a multilayer perceptron. The multilayer perceptron is a renown algorithm which is still in
use in the latest deep learning architectures (He et al., 2015) and is especially involved in the dense
layers.

4.2 2-class graph-based perceptron

The perceptron is an algorithm (Rosenblatt, 1957) for learning a binary classi�er C = {0, 1}. In the
context of neural networks, a perceptron is an arti�cial neuron using the Heaviside step function
as the activation function. A global picture of the graph-based perceptron is depicted in Figure 3.
The conventional perceptron is adapted to graphs thanks to three main features : a) the learning
rule for updating the weight vector β, b) the graph matching algorithm for �nding y∗, and c) the
graph model Gm.

Learning rule. The learning rule aims at modifying β. The weights should be updated in cases
of wrong classi�cations. The correction must take into account the amount and the sign of the
committed error.

Learning rule: β(t+ 1) = β(t) + α(ck − c)Φ(G,Gm, y∗) (5)
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To show the time-dependence of β, we use βi(t) as the weight at time t. The parameter α is the
learning rate, where 0 < α ≤ 1. (ck − c) is the error function. This error is positive if (ck > c) and
negative if (ck < c). The learning rule is the steepest gradient descent. It attempts to reduce the
error in the direction of the error descending along the gradient when considering the Φ(G,Gm, y∗)
entries associated with weight β.

Graph matching solver. A graph matching algorithm is utilized in the computation of the
function f as follows:

1. y∗ ← Solve Problem 1 with d(G,Gm, y, β).

2. f ← heaviside(β(t) · ΦT (G,Gm, y∗))

Many e�cient approximate algorithms have been proposed to solve the graph matching problem
de�ned in Problem 1. In (Riesen and Bunke, 2009; Bougleux et al., 2017), Riesen et al. and
Bougleux et al. have reformulated the Quadratic Assignment Problem of Problem 1 to a Linear
Sum Assignment Problem (LSAP). Nodes of both graphs are involved in the assignment problem.
A cost matrix is computed to enumerate pair-wise node distances. The LSAP can be solved in
polynomial time which makes this approach very fast. To reduce the graph matching problem to
a LSAP, local rather than global relationships are considered.

Graph model. The graph matching is computed between an input graph Gi and a graph model
Gm. The choice of a graph model among a set of graphs is of primary interest. The graph model
should represent the diversity of attributes and topologies that can be found in the graph set TrS.
The graph model selection rules can be split into two categories according to whether the choice
depends on a graph dissimilarity measure or not. From this perspective, two ways of choosing
the graph model are proposed. First, the graph model is de�ned as follows : Gm = arg max

G∈TrS
|G|.

With |G| = |V | + |E|. Accordingly, GmL is the largest graph of the set. Gm may gather a large
diversity of attributes along with di�erent structures. Second, the median graph is de�ned as

Gm = arg min
G∈TrS

∑
Gi∈TrS

d(Gi, G, y∗i , β). However this de�nition relies on prede�ned parameters

β. Now, let us design the learning algorithm of the graph-based perceptron. Algorithm 1 is a
deterministic algorithm. #iter is the maximum number of iterations or also called epochs in the
literature. The parametrized graph matching problem is solved in Line 5. Line 6 is the classi�cation
step while lines 8 to 11 apply the learning rule de�ned in Eq. 5 when the classi�cation is wrong.

Algorithm 1: The learning graph-based perceptron scheme
Data: TrS = {(G, c)} and Gm

Data: #iter is the maximum number of iterations
Data: α learning rate
Result: Learned β. A weight vector

1 β ← 1 and t← 0
2 while error > 0 and iter< #iter do
3 error ← 0 and iter ← 0
4 for G ∈ TrS do

5 y∗ ← argmin
y

β(t) · ΦT (G,Gm, y) // Solve problem 2

6 c← heaviside(β(t) · ΦT (G,Gm, y∗))
7 ck ← getLabel(G)
8 if ck − c != 0 then

9 β(t+ 1)← β(t) + α(ck − c)Φ(G,Gm, y∗)
10 error← error +1

11 end

12 t ← t +1

13 end

14 error ← error/|TrS|
15 iter ← iter +1

16 end

4.3 Multiclass graph-based perceptron

The perceptron provides a natural extension of the multiclass problem. Instead of having only one
neuron in the output layer, with binary output, we could have N neurons leading to multiclass
classi�cation. A set of functions f(G, c) map each possible input/output pair to a real value that
represents the �tness of the pair (G, c). The resulting score is used to choose among many possible
outputs: c∗ = argminc f(G, c). To extend graph-based perceptron to the multiclass case, two main
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actions must be taken: a) the binary activation function must be replaced to gauge the �tness
between the input and the class; b) the graph models must be computed for each class rather than
the entire training dataset.
Activation function. The Heaviside step function can only produce a binary output. To enable
generalization, a recti�ed linear unit (ReLU) is employed, min(0, d(G,Gm, y∗, β)). Well admitted,
ReLU leads to faster training algorithms than standard sigmoid activation functions (LeCun et al.,
2012).
Graph model computation. The model graphs are specialized by class. They are computed on
subsets that correspond to each class rather than the entire training set.

In Algorithm 2, the learning procedure of the multiclass graph-based perceptron is designed.
In line 5, the selection of the most promising neuron is achieved by �nding the minimum activation
value (fi) among all the neurons. Line 5 can be viewed as the classi�cation step. Lines 8 and 9
are dedicated to weight updating. In the case of an incorrect classi�cation, the misleading neuron
(index i) must be pushed away from the expected neuron (index k). In line 8, the expected
neuron weights (βk) are reduced, which likely leads to the minimum activation value (fk) in the
next iteration. In the opposite way, in line 9, the misleading neuron weights (βi) are increased to
prevent the ith neuron to be chosen during the next iteration.

Algorithm 2: Learning graph-based perceptron scheme in a multiclass context

Data: TrS = {(G, c)} and Gi
m ∀i ∈ {1, · · · , |C|}

Data: #iter is the maximum number of iterations and α learning rate
Result: Learned βi ∀i ∈ {1, · · · , |C|}. A weight vector for each class.

1 βi ← 1 ∀i ∈ {1, · · · , |C|} and t← 0
2 while error > 0 and iter< #iter do
3 error ← 0 and iter ← 0
4 for G ∈ TrS do

5 ci ← arg min
o∈{1,··· ,|C|}

fo(G, o)

6 ck ← getLabel(G)
7 if ck − ci != 0 then

8 βi(t+ 1)← βi(t) + αΦ(G,Gi
m, y

∗)

9 βk(t+ 1)← βk(t)− αΦ(G,Gk
m, y

∗)
10 error← error +1

11 end

12 t ← t +1

13 end

14 error ← error/|TrS| and iter ← iter +1
15

16 end

4.4 Complexity Analysis

In this section, we conduct a complexity analysis for the described algorithms. Algorithm 1 is a
deterministic algorithm whose complexity in terms of calls to the matching solver is O(#iter·|TrS|)
where #iter is the number of iterations. In addition, the entire test set (TeS) is classi�ed by only
|TeS| calls to the graph matching algorithm. This linear complexity makes the decision procedure
a fast graph classi�er. Classical graph classi�ers require generally |TrS| × |TeS| calls to the graph
matching solver. Algorithm 2 is also a deterministic algorithm. The algorithm complexity in terms
of calls to the matching solver is O(#iter ·|TrS|·|C|). |C| is the number of classes. The classi�cation
of the entire test set is performed by |TeS| × |C| calls to the graph matching algorithm. Finally,
the complexity of the graph matching solver used in our approach is O((n + m)3) with n and m
the number of nodes in G1 and G2, respectively

4.5 Discussion

In this section, we point out the classi�cation capability of our proposal as well as giving advantages
and inconvenient of the method. First, the single layer perceptron architecture is only capable
of learning linearly separable patterns. However our proposal can go beyond linearly separable
features thanks to the graph space. The perceptron algorithm is operating on the graph set TrS
through a change of variable fromG to Φ(G,Gm, y∗) vector of minimal edit costs for each element in
the model graph Gm. Then, the weights β are optimized with respect to classi�cation loss through
the perceptron algorithm. But β is also implied in �nding y∗ as y∗ = argmin

y
d(G,Gm, y, β). It
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means modifying β is not only acting on the linear projection of Φ(G,Gm, y∗) but also on the graph
matching operator, which is a non-linear operation. Reinterpreting the minimization problem, it
appears that both variables β and y are involved into the minimization of an empirical risk guided
by the loss function l:

min
β,y

∑
(Gk,ck)∈TrS

l(Gk, ck, G
m, yk, β) (6)

l =
1

2

(
ck − heaviside(β · Φ(Gk, Gm, y∗k))

)2
(7)

We now describe the strengths and weaknesses of the proposed research method. The �rst strength
of our approach is its adaptability. The graph matching solutions are adapted according to the
considered dataset because learning and matching are performed in concert. Second, our approach
is discriminative. The similarity of graphs from the same class is increased, whereas the similarity
of graphs from di�erent classes is decreased. Third, According to the complexity analysis in the
previous section, our approach is very fast in the classi�cation stage because it requires one graph
comparison per class. One drawback of the method is the a priori choice of model graph (Gm).
However, this meta-parameter could be learned in a speci�c training phase.

5 Experiments

In this section, experiments are presented. First seven datasets are described along with the six
methods compared in this experimental study. Finally, the protocol and the results are detailed.

5.1 Experimental setting

Dataset. Seven graph databases were chosen from the public IAM repository Riesen and Bunke
(2008) and from the Tarragona graph repository for learning error-tolerant graph matching (Moreno-
García et al., 2016). Each database consists of a set of graph instances that are divided in di�erent
classes, where each class is composed of a training set TrS and a test set TeS. The datasets are
described in Table 2. These databases are representative of a wide range of learning problems that
occur in Computer Vision. Matching functions dv and de were taken from Riesen and Bunke (2010)
and (Moreno-García et al., 2016). For the sake of reproducibility, the codes of the cost functions are
available at https://sites.google.com/site/gperceptron along with a video demonstration.

Table 2: On the left side, summary of graph data set characteristics. On the right side, best
parameters according to learning strategies R-1NN and C-1NN taken from Paper I Riesen and
Bunke (2010) and from Paper II Moreno-García et al. (2016)

Database size (TrS,TeS) ]classes node labels edge labels |V | |E| max |V | max |E| balanced R-1NN C-1NN
α Kn Ke From α Kn Ke From

LETTER-HIGH (750,750) 15 x,y none 4.7 4.5 9 9 Y 0.9 1.7 0.75 Paper I 0.5 1 1 Paper II
LETTER-MED (750,750) 15 x,y none 4.7 3.2 9 9 Y 0.7 1.9 0.75 Paper I 0.5 1 1 Paper II
LETTER-LOW (750,750) 15 x,y none 4.7 3.1 9 9 Y 0.3 0.1 0.25 Paper I 0.5 1 1 Paper II

CMU (71,70) 2 Shape none 30 154.4 30 158 Y NA NA NA NA 0.5 1000 1 Paper II
GREC (286,528) 22 x,y Line types 11.5 12.2 25 30 Y 0.5 90 15 Paper I NA NA NA NA

Fingerprint (378,1533) 4 none angle 5.42 4.42 26 24 N 0.75 0.7 0.5 Paper I NA NA NA NA
COIL-DEL (2400,1000) 100 x,y none 21.5 54.2 77 222 Y NA NA NA NA NA NA NA NA

Table 3: Taxonomy of the compared methods
Classi�er Parameter learning Model graph Method's Name

1NN

R (Riesen and Bunke, 2009)
M R-M-1NN

TrS R-1NN

C (Cortés and Serratosa, 2015)
M C-M-1NN

TrS C-1NN

Perceptron Gradient descent
L G-L-Perceptron
M G-M-Perceptron
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Compared methods. A commonly used approach in pattern classi�cation is based on nearest-
neighbor classi�cation. That is, an unknown object is assigned the class of its closest known
element, or nearest neighbor (1NN). Two versions were utilized in the tests. R-1NN (Riesen and
Bunke, 2009) and C-1NN (Cortés and Serratosa, 2015) where the values of Ke = βedel = βeins and
Kn = βndel = βnins were borrowed from (Riesen and Bunke, 2010) and (Moreno-García et al., 2016),
respectively. Kn corresponds to the cost of a node deletion or insertion, and Ke corresponds to
the cost of an edge deletion or insertion. The aforementioned methods hold a meta parameter
α ∈ [0, 1] which corresponds to the weighting parameter that controls whether the cost on the
nodes or on the edges is more important. In Table 2, the best values of parameters (α,Kn,Ke)
are summarized. The learning method in C-1NN is based on the minimization of the distance
between the graph matching solver and the human ground-truth correspondences. This approach
is a generative approach while R-1NN is a discriminative one. The R-1NN learning scheme aims
at �nding the best parameters by performing a grid search over the parameter space. The 1NN
classi�er is known to be slow as the size of the training set grows. For fair competition with our
algorithms, two fast classi�ers were derived from R-1NN and C-1NN: R-M-1NN and C-M-1NN
are 1NN classi�ers for which the training is reduced to one median graph per class. The median
graphs were computed with a graph distance function and the best learned parameters (see Table
2). This training set reduction may lead to a loss of accuracy but produced a large speed-up.

Our proposal is called G-Perceptron which stands for graph-based perceptron. Two versions
have been derived according to whether the graph model is the largest graph or the median graph,
G-L-Percetron or G-M-Percetron, respectively. As mentioned in Section 4, prede�ned β parameters
are required to compute the median graphs of the G-M-Perceptron method. A vanilla plain solution
was adopted with β = 1. Let us recall that β = 1 is the initialization value of our algorithms.
A summary of the six compared methods is reported in Table 3. The G-Percetron, C-1NN and
R-1NN classi�ers were implemented in JAVA 7 and run on a 2.6 GHz computer with 8 GB RAM.
Graph matching solvers involved in C-1NN and R-1NN are based on the Linear Sum Assignment
Problem (LSAP) which is solved in our implementation by the Hungarian method. This setting
makes possible a fair comparison.
Protocol. To assess the performance of our learning scheme and our new classi�er, two experiments
were performed. First, the impact of the learning rate α was studied on the LETTER-HIGH
dataset and second, classi�cations were carried out on all datasets. To summarize the results of
theses experiments, the classi�cation rates (η) during the training and the test phases are reported
along with the time, inmilliseconds, for classifying all test instances. In our protocol, the retained
β parameters for the test phase are those that maximize the classi�cation rate on the training set.
Finally, we de�ne two metrics for accuracy and speed evaluation. LetM be the set of all methods.

AccDev
i

= 100 ∗
maxj∈M ηjTeS − η

i
TeS

maxj∈M ηjTeS

TimeRatioi =
Timei

minj∈M Timej

where ηiTeS and Timei are the classi�cation rate and the processing time for the method i.
AccDev is the best when equal to zero. For TimeRatio, the closer to 100 it is, the better is the
time performance.

5.2 Results

In Figure 4, the impact of the learning rate is depicted for the median and large graph models. A
very high learning rate (α = 0.1) leads to poor results. The search space exploration is too fast
and saddle points are missed. A high learning rate (α = 0.01) leads to unstable results with many
oscillations while a low learning rate implies a slow but smooth convergence. A trade-o� can be
achieved with an intermediate value (α = 0.001). This value was the best for the median and large
graph models. For the rest of the experiments, α = 0.001 was chosen and the number of iterations
was set to 300. To continue the analysis of the learning ability of Algorithm 2, in Table 4, the
classi�cation rates obtained during the learning phase are tabulated (column ηTrS). The learning
ability is demonstrated on all data sets. The classi�cation rate is always higher on the training set
than on the test set except on the CMU and Fingerprint databases where the number of classes
is small. The loss between the training and test recognition rates is 3% on average. This result
demonstrates the good generalization ability of our algorithms.
Now, we compare the median and large graph models. In Table 5, classi�cation rate deviations
and time ratios are reported.
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Table 4: Classi�cation results. The best classi�cation rates are marked in blue while the best pro-
cessing times are in red. "Best" means an improvement over other methods statistically signi�cant
according to a z-test with a con�dence level of 70%

G-L-Perceptron G-M-Perceptron R-1NN C-1NN R-M-1NN C-M-1NN

Database ηTrS ηTeS Time ηTrS ηTeS Time ηTeS Time ηTeS Time ηTeS Time ηTeS Time

LETTER-LOW 0.97 0.95 2060 1 0.98 1436 0.99 69700 0.96 71869 0.97 1341 0.98 1341
LETTER-MED 0.66 0.64 2278 0.90 0.87 1404 0.92 74506 0.93 72150 0.86 1388 0.81 1310
LETTER-HIGH 0.75 0.70 2433 0.86 0.81 1669 0.83 86377 0.84 84911 0.82 1731 0.71 1498

CMU 1 0.99 11420 1 0.99 11029 NA NA 0.99 427955 NA NA 0.99 10780
GREC 0.84 0.70 23339 0.84 0.75 14370 0.98 199087 NA NA 0.96 14726 NA NA

Fingerprint 0.64 0.68 7768 0.74 0.76 1576 0.58 260816 NA NA 0.73 2138 NA NA
Coil-DEL 0.60 0.57 1091777 0.52 0.52 471575 NA NA NA NA NA NA NA NA

Median vs Large graph models. As expected, the classi�er that is based on large graph models is
slower than the one based on median graphs. On average the G-M-Perceptron is approximatively
two times faster than G-L-Perceptron while providing an accuracy gain of 7%. This gain in accuracy
reaches 19% for LETTER-MED/HIGH. This is because the median graph better models the intra-
class distribution of a classi�cation problem than the largest graph of a set. The median graph is
a better prototype or representative of a class. Now, we compare the 1NN based approaches to
the G-M-Perceptron.
G-perceptron vs 1NN. On average, he G-M-Perceptron is 1% less accurate than R-1NN. However,
the deviations from this mean are large between datasets. On Fingerprint G-M-Percetron is 24%
more accurate than R-1NN whereas in GREC, G-M-Percetron is 24% less accurate than R-1NN.
A plausible explanation is the lack of data on GREC dataset, with only 17 graphs by class on
average, the number of weights (464) is too large and the learning algorithm fails to converge
completely. Compared to the learning scheme of C-1NN, our approach is competitive with a small
loss of accuracy of 2% on average on the CMU and LETTER databases. Second, in term of speed,
on average, G-M-Perceptron is 66 times faster than 1NN classi�ers. The time complexity of our
graph-based perceptron is quadratic as a function of the test set size and the number of classes
(|TeS| · |C|) whereas the complexity of any 1NN classi�er grows quadratically as a function of the
test and training set sizes (|TrS| · |TeS|) with |C| << |TrS|.
We compare the 1NN classi�ers with reduced training sets to G-M-Perceptron. The training sets
were reduced to one median graph per class (M-1NN).
G-Perceptron vs M-1NN. As expected, M-1NN classi�ers are fast. C-M-1NN is the fastest approach.
This is because the graph matching solver is based on a fast LSAP solver. The speed gain is 8% on
average compared to G-M-Perceptron. However, G-M-Perceptron is 5% more accurate on average
than C-M-1NN. This result is experimental proof of the merit of learning discriminative matchings.
G-M-Perceptron and R-M-1NN are based on the same graph matching solver and achieved very
similar speed performances on the LETTER datasets. However on the GREC and Fingerprint
databases G-M-Perceptron is 20% faster than R-M-1NN. The median graphs are not the same for
both approaches and on these di�cult databases the median graph sizes do matter.

Generally, for the M-1NN classi�ers, the median graphs were selected after the learning of the
best parameter values (see Table 2) while in the G-M-Perceptron case, the median graphs were
chosen from scratch with β = 1 and the parameter learning scheme had to compensate an eventual
bad median graph choice. Our experimental setting is in favor of the M-1NN classi�ers. Finally, no
reference parameters are available for the Coil-DEL dataset. However, this dataset is interesting for
assessing the capability of our method dealing with a large number of classes (100). For instance,
on this dataset, a 1NN classi�er with β = 1 obtained a classi�cation rate ηTeS = 0.552 in 13496127
ms. G-M-Perceptron can reach nearly the same accuracy (ηTeS = 0.518) while being 27 times
faster. In contrast, a fast M-1NN classi�er based on median graphs with β = 1 achieved only a
1% recognition rate in 286416 ms.

6 Conclusions and Perspectives

In this paper, a graph-based perceptron was proposed for learning discriminative graph matching
in a classi�cation context. Our proposal is supported by a formal de�nition and two deterministic
algorithms. Graph matching was parametrized to build a weighted formulation. This weighted
formulation was used to de�ne a perceptron classi�er, in which each neuron is composed of a graph
model and a vector of parameters. Each weight is associated with a graph component of the graph
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(a) Large graph model
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(b) Median graph model

Figure 4: Letter-HIGH : Impact of the learning rate on the convergence.

Table 5: Classi�cation analysis. The top-2 of deviations are marked in blue while the 2 best time
ratios are in red. Accuracy deviations (AccDev) are in % (The lower the better). Time ratio is the
best when equal to one (The lower the better).

G-L-Perceptron G-M-Perceptron R-1NN C-1NN R-M-1NN C-M-1NN

Database AccDev TimeRatio AccDev TimeRatio AccDev TimeRatio AccDev TimeRatio AccDev TimeRatio AccDev TimeRatio

LETTER-LOW 3.91 1.54 0.81 1.07 0.00 51.98 2.70 53.59 1.62 1.00 0.94 1.00
LETTER-MED 31.38 1.74 6.30 1.07 1.58 56.87 0.00 55.08 7.74 1.06 13.04 1.00
LETTER-HIGH 16.64 1.62 3.80 1.11 1.58 57.66 0.00 56.68 3.01 1.16 16.16 1.00

CMU 0.00 1.06 0.00 1.02 NA NA 0.00 39.70 NA NA 0.00 1.00
GREC 29.42 1.62 23.85 1.00 0.00 13.85 NA NA 2.69 1.02 NA NA

Fingerprint 10.22 4.93 0.00 1.00 23.54 165.49 NA NA 3.95 1.36 NA NA
Coil-DEL 0.00 2.32 9.46 1.00 NA NA NA NA NA NA NA NA

model. Weights are learned using the gradient descent algorithm. Two types of graph models
were investigated, the median graph and the large graph of a graph set. Classi�cation results
on 7 publicly available datasets demonstrated a large speed-up during the test phase (60 times
faster in average) with a loss of accuracy of 6% on average compared to a 1-NN classi�er based
on an optimized graph distance. The results revealed that the median graph was the best graph
prototype for serving as graph model within a neuron.

In future work, the �rst objective will be to overcome the main drawback of median graphs
that require pre-de�ned weights to be computed. This could be achieved by looping the whole
learning scheme. Learned weights could be used to compute better median graphs. Finally, in the
near future, we plan to extend our work to multiple layers and consequently to learn mid-level
graph-based representations.
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