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THE DISCRETE LAPLACIAN ACTING ON 2−FORMS AND

APPLICATION

HATEM BALOUDI, SAYDA BELGACEM, AND AREF JERIBI

Abstract. In the current paper, we study the discrete Laplacian acting
on 2−forms which was introduced and investigated by Chebbi (2018).
We establish a new criterion of essential self-adjointness using the Nelson
lemma. Moreover, we give an upper bound on the infimum of the essen-
tial spectrum. Furthermore, we establish a link between the adjacency
matrix and the discrete Laplacian on 2−forms.
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1. Introduction

Spectral graph theory represents an active area of research. In the last
few years, the questions of the essential self-adjointness of discrete Laplacian
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operators on infinite graphs have attracted a lot of interest, see [11, 18, 22,
17]. There exist other definitions of the discrete Laplacian, e.g., [24, 16, 4, 2].
The one we are studying here is the discrete Laplacian acting on 2-forms and
denoted by L2,skew, where skew stands for skew-symmetric. This operator
was introduced by Chebbi in [7]. The author shows the relation between
the χ−completeness geometric hypothesis for the graph and essentially self-
adjointness for the discrete Laplacian L2,skew. More specifically, the author
has proved that L2,skew is essential self-adjoint, when the triangulation (we
refer to Section 2 for a precise definition) is χ−complete.

The current study has two major aims. It first aims to discuss the question
of essential self-adjointness for L2,skew. It is worth noting that this oper-
ator depends on the weight R on oriented triangular faces and the weight
E on oriented edges, see Section 4 for more details. In the setting of elec-
trical networks, the weight E correspond to the conductance. We establish
a hypothesis on the weights and involve essential self-adjointness by using
the Nelson commutator theorem. The technique of the proof are inspired
from [3]. Moreover, we give an upper bound on the infimum of the essential
spectrum σess(L

F
2,skew), where L

F
2,skew is the Friedreichs extension of L2,skew.

Secondly, the paper aims to identify the link between the adjacency ma-
trix and the discrete Laplacian L2,skew. To achieve this goal, we analyze
the structure of L2,skew. Note that this discrete Laplacian was introduced
on a skew-symmetric statistic on the space of 2−forms. We can define the
discrete Laplacian L2,sym in the symmetric case by the same expression of
L2,sym. In the case of a tri-partite graph, we prove that the two operators
are unitarily equivalent. Furthermore, L2,sym is unitarily equivalent to the
adjacency matrix of the triangular graph, see Section 7 for more details. We
recall that the spectral theory of adjacency matrix acting on graphs is useful
for the study of some gelling polymers, of some electrical networks, and in
number theory, see [14, 13, 23].

As for the rest of this paper, it is structured as follows: The next section is
devoted to some definitions and notations for graph. We find the definitions
of two different Hilbert structures on the set of faces, in Section 3. Both
definitions have their own interest. This permits to define two different
types of discrete Laplacian associated to faces. The relation between these
two operators is clearly presented in Section 4.3. In Section 5, we discuss
the question of essential self-adjointness for the discrete Laplacian L2,skew.
We establish a new criterion of essential self-adjointness using the Nelson
lemma. In Section 6, we give an upper bound on the infimum of the essential
spectrum. The obtained findings from the previous sections are presented
in Section 7 for the purpose of investigating the questions of boundedness
and essential self-adjointness for the adjacency matrix.

Acknowledgment. The authors thank Colette Anné, Nabila Torki-
Hamza, Sylvain Golénia and Nassim Athmouni for useful discussions and
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comments on the text. They would like to thank also the anonymous ref-
eree for their numerous relevant remarks and useful suggestions.

2. Generalities about graphs

We start with some definitions to fix notations for graphs and refer to
[9, 10, 24] for surveys on the matter. Let V be a countable set. We equip V
with the discrete topology. Let E : V ×V −→ [0,+∞) and assume that E is
symmetric (i.e., E(x, y) = E(y, x), for all x, y ∈ V). Let m : V −→ (0,+∞).
We say that G = (V,m, E) is a weighted graph with vertices V, weight of
vertices m and weight of edges E . In the setting of electrical networks, the
weights correspond to the conductances. We say that x, y are neighbors if
E(x, y) 6= 0 and we denote it by x ∼ y. A graph G is simple if it has no loops
(i.e., E(x, x) = 0), m=1 and E has values in {0, 1}. The set of neighbors of
x ∈ V is denoted by

NG(x) := {y ∈ V : E(x, y) 6= 0}.

A graph is locally finite if ♯NG(x) is finite for all x ∈ V. The weighted degree
of vertices is given by

dV(x) :=
1

m(x)

∑

y∼x

E(x, y).

When G is simple, dV(x) = ♯NG(x). A graph G is connected, if for all x, y ∈
V, there exists an x−y−path, i.e., there is a sequence (x1, ..., xN+1) ∈ VN+1

such that x1 = x, xN+1 = y and E(xn, xn+1) > 0 for all n ∈ {1, ..., N}. If
no vertices appear more than once in (x1, ..., xN ), the path (x1, ..., xN+1) is
called a simple path. The path is called a cycle or closed when the origin
and the end are identical, i.e., x1 = xN+1. An n−cycle is a cycle with n
vertices.

In the sequel, we shall always consider graphs G, which are

locally finite, connected and have no loop.

The set of cyclic permutations of (x, y, z) ∈ V3 is denoted by

	 (x, y, z) := {(x, y, z), (y, z, x), (z, x, y)}.

Let Tr the set of all simple 3-cycles

F = Tr/ ∼=

where ̟1
∼= ̟2 if and only if ̟1 is a cyclic permutation of ̟2. The elements

of F are called triangular faces. Atriangulation is a couple (G,F) where G
is a graph and F is the set of all triangular faces.

In the sequel, we represent the triangular faces by their vertices. For a
triangular face ̟ = (x, y, z), we have

̟ = (x, y, z) = (y, z, x) = (z, x, y).
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Let (G = (V, E ,m),F) be a triangulation and let R : V ×V ×V −→ [0,+∞)
such that

(x, y, z) ∈ F ⇐⇒ R(x, y, z) > 0.

We assume that R is symmetric, i.e.

R(x, y, z) = R(σ(x, y, z))

For all (x, y, z) ∈ V × V × V and for any permutation σ(x, y, z) of (x, y, z).
We say that T = (V,m, E ,R) is a weighted triangulation with weight of
triangular faces R. We say that T is simple if G := (V,m, E) is simple and
the weights of the faces equal 1. Choosing an orientation of triangulation
consists of defining a partition of F :

F = F+ ⊔ F−,

(x1, x2, x3) ∈ F+ ⇐⇒ (x3, x2, x1) ∈ F−.

For (x1, x2, x3) ∈ F , we denote

−(x1, x2, x3) = (x3, x2, x1).

The set of neighbors of the edge (x, y) is given by

F(x,y) := NG(x) ∩ NG(y).

The weighted degree of edges is given by:

dE (x, y) :=
1

E(x, y)

∑

z∈F(x,y)

R(x, y, z).

When T is simple, dE(x, y) = ♯F(x,y).

3. The symmetric and skew-symmetric spaces

3.1. Hilbert structures on the set of edges. Let T = (V,m, E ,R) be a
weighted triangulation. Let E := {(x, y) ∈ V × V : E(x, y) > 0}. The set of
1−cochains (or 1-forms) is given by:

Cskew(E) :=
{
f : E → C, f(x, y) = −f(y, x) for all x, y ∈ V

}
,

where skew stands for skew-symmetric. This corresponds to fermionic sta-
tistics. The set of functions with finite support is denoted by Cc

skew(E).
Concerning bosonic statistics, we define:

Csym(E) :=
{
f : E → C, f(x, y) = f(y, x) for all x, y ∈ V

}
.

The set of functions with finite support is denoted by Cc
sym(E).

We turn to the Hilbert structures.

ℓ2skew(E) :=



f ∈ Cskew(E) such that ‖f‖2 :=

1

2

∑

x,y∈V

E(x, y)|f(x, y)|2 < ∞
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and

ℓ2sym(E) :=



f ∈ Csym(E) such that ‖f‖2 :=

1

2

∑

x,y∈V

E(x, y)|f(x, y)|2 < ∞



 .

The associated scalar product is given by

〈f, g〉 :=
1

2

∑

(x,y)∈E

E(x, y)f(x, y)g(x, y),

when f and g are both in ℓ2skew(E) or in ℓ2sym(E).

3.2. Hilbert structures on the set of faces. Let T = (V,m, E ,R) be a
weighted triangulation. The set of 2−cochains or 2−forms is given by

Cskew(R) =
{
f : F −→ C : f(x, y, z) = −f(z, y, x)

}
.

The set of functions with finite support is denoted by Cc
skew(R). Concerning

the case symmetric, we define

Csym(R) =
{
f : F −→ C : f(x, y, z) = f(z, y, x)

}
.

The set of functions with finite support is denoted by Cc
sym(R). Let us define

the Hilbert spaces ℓ2skew(R) and ℓ2sym(R) as the sets of cochains with finite
norm, we have

ℓ2skew(R) :=



f ∈ Cskew(R) : ‖f‖2 =

1

2

∑

(x,y,z)∈F

R(x, y, z) | f(x, y, z) |2 < ∞





and

ℓ2sym(R) :=



f ∈ Csym(R) : ‖f‖2 =

1

2

∑

(x,y,z)∈F

R(x, y, z) | f(x, y, z) |2 < ∞



 .

The associated scalar product is given by

〈f, g〉 :=
1

2

∑

(x,y,z)∈F

R(x, y, z)f(x, y, z)g(x, y, z)

:=
1

6

∑

(x,y)∈E

∑

z∈F(x,y)

R(x, y, z)f(x, y, z)g(x, y, z)

when f and g are both in ℓ2skew(R) or in ℓ2sym(R).

4. Operators

In this section, we recall the concept of exterior derivative operator asso-
ciated to a faces space, we refer to [7, 8] for more details. This permits to
define the discrete Laplacian acting on 2−forms.
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4.1. Skew-symmetric case. We start with defining the operators in the
skew-symmetric case. The skew-symmetric exterior operator is the operator
d1skew : Cc

skew(E) −→ Cc
skew(R), given by

d1skew(f)(x, y, z) = f(x, y) + f(y, z) + f(z, x).

The skew-symmetric co-exterior derivative operator is the formal adjoint of
d1skew, i.e. it is the operator δ1skew : Cc

skew(R) −→ Cc
skew(E), given by

∀f ∈ Cc
skew(R), δ1skew(f)(x, y) =

1

E(x, y)

∑

z∈F(x,y)

R(x, y, z)f(x, y, z).

Both operators are closable (see [7, Lemme 3.1]). We denote their closure by
the same symbol. The skew-symmetric discrete Laplacian operator acting
on 2−forms is given by

L2,skew(f)(x, y, z) = d1skewδ
1
skew(f)(x, y, z)

=
1

E(x, y)

∑

t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑

t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑

t∈F(z,x)

R(z, x, t)f(z, x, t),

with f ∈ Cc
skew(R).

4.2. Symmetric case. We turn to the symmetric case. The symmetric
exterior operator is the operator d1sym : Cc

sym(E) −→ Cc
sym(R), given by

∀f ∈ Cc
sym(E), d1sym(f)(x, y, z) = f(x, y) + f(y, z) + f(z, x).

The symmetric co-exterior derivative operator is the formal adjoint of d1sym,

i.e. it is the operator δ1sym : C1
sym(R) −→ Cc

sym(E), given by

∀f ∈ C1
sym(R), δ1sym(f)(x, y) :=

1

E(x, y)

∑

z∈F(x,y)

R(x, y, z)f(x, y, z).
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Indeed, for f ∈ Cc
sym(E) and g ∈ Cc

sym(R) we get:

〈d1symf, g〉 =
1

2

∑

(x,y,z)∈F

R(x, y, z)d1symf(x, y, z)g(x, y, z)

=
1

6

∑

x∼y

∑

z∈F(x,y)

R(x, y, z)(f(x, y) + f(y, z) + f(z, x))g(x, y, z)

=
1

2

∑

x∼y

∑

z∈F(x,y)

R(x, y, z)f(x, y)g(x, y, z)

=
1

2

∑

x∼y

E(x, y)f(x, y)
( 1

E(x, y)

∑

z∈F(x,y)

R(x, y, z)g(x, y, z)
)

= 〈f, δ1symg〉.

The operators d1sym and δ1sym are closable. Indeed, since δ1sym : ℓ2sym(R) −→

ℓ2sym(E)( resp. d
1
sym : ℓ2sym(E) −→ ℓ2sym(R)) is with dense domain then δ1sym(

resp. d1sym) is closable. We denote their closure by the same symbol. The
symmetric discrete Laplacian operator acting on 2−forms is the operator
L2,sym = d1symδ

1
sym, given by the same expression of L2,skew.

4.3. Relationship between L2,skew and L2,sym. The two operators L2,skew

and L2,sym have the same expression. However, they do not act on the same
spaces. Namely, when T is tri-partite, we shall prove that the two operators
are unitarily equivalent.

Definition 4.1. A tri-partite graph is a graph whose vertices can be parti-
tioned into 3 disjoint sets so that there are no two vertices within the same
set are adjacent. A tri-partite triangulation is a triangulation T = (G,F)
such that G is tri-partite.

Theorem 4.2. Let T = (V,m, E ,R) be a tri-partite weighted triangulation.
Then, L2,skew and L2,sym are unitarily equivalent.

Proof. We consider the tri-partite decomposition {V1,V2,V3}. Set

	 V1 × V2 × V3 = {	 (x, y, z) : (x, y, z) ∈ V1 × V2 × V3}.

Let U : ℓ2skew(R) −→ ℓ2sym(R) be the unitary map given by

U(f)(x, y, z) = S(x, y, z)f(x, y, z),

where

S(x, y, z) :=





1, if (x, y, z) ∈	 V1 × V2 × V3,

−1, if (x, y, z) ∈	 V3 × V2 × V1.
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LetW be the following mapping from ℓ2sym(R) into ℓ2skew(R) : W(f)(x, y, z) =
S(x, y, z)f(x, y, z). Then

〈Uf, g〉 = 〈f,Wg〉, U(W(g)) = g and W(U(f)) = f

for all f ∈ ℓ2skew(F) and g ∈ ℓ2sym(F). So we have

W(f) = U−1(f) = U∗(f)

for all f ∈ ℓ2sym(R). Therefore,

UL2,skewU
−1(f)(x, y, z) = L2,sym(f)(x, y, z)

for all f ∈ Cc
sym(R). �

5. A Nelson criterium

For the general theory of unbounded Hermitian operators and their exten-
sions, we refer the reader to [25, 20, 27]. Let Lskew be the following mapping
from Cskew(R) into itself:

Lskew(f)(x, y, z) =
1

E(x, y)

∑

t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑

t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑

t∈F(z,x)

R(z, x, t)f(z, x, t).

Let L2,max,skew be the restrictions of Lskew to

D(L2,max,skew) :=
{
f ∈ ℓ2skew(R) such that Lskewf ∈ ℓ2skew(R)

}
.

Lemma 5.1. L∗
2,skew = L2,max,skew.

Proof. Let f ∈ Cc
skew(R) and let g ∈ Cskew(R). Let F00 the support of f and

set

F0 =
{
(x, y, z) ∈ F : ∃u ∈ V, {(x, y, u), (y, z, u), (z, x, u)} ∩ F00 6= ∅

}
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which is a finite set. Then, supp(L2,skew) ⊂ F0 and the following relation
holds:

1

2

∑

(x,y,z)∈F0

R(x, y, z)L2,skew(f)(x, y, z)g(x, y, z) =

1

2

∑

(x,y,z)∈F0

R(x, y, z)
( 1

E(x, y)

∑

t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑

t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑

t∈F(z,x)

R(z, x, t)f(z, x, t)
)
g(x, y, z)

=
1

2

∑

(x,y,z)∈F00

R(x, y, z)f(x, y, z)
( 1

E(x, y)

∑

u∈V

R(x, y, u)g(x, y, u)

+
1

E(y, z)

∑

u∈V

R(y, z, u)g(y, z, u)

+
1

E(z, x)

∑

u∈V

R(z, x, u)g(z, x, u)
)

(1) =
1

2

∑

x,y,z∈V

R(x, y, z)f(x, y, z)L2g(x, y, z).

Let g ∈ D(L2,max,skew). It follows from (1) that

〈L2,skewf, g〉 = 〈f,L2,max,skewg〉

for all f ∈ Cc
skew(R), which implies that g ∈ D(L∗

2,skew). Now let g ∈

D(L∗
2,skew). Let (x, y, z) ∈ F and let

f =
1

R(x, y, z)

(
1	(x,y,z) − 1	(z,y,x)

)
.

Then, f ∈ Cc
skew(R) and we obtain from (1):

(L∗
2,skewg)(x, y, z) = 〈f,L∗

2,skewg〉

= 〈L2,skewf, g〉

=
1

2

∑

(u,v,w)∈F

R(u, v, w)L2,skewf(u, v, w)g(u, v, w)

=
1

2

∑

(u,v,w)∈F

R(u, v, w)f(u, v, w)L2,max,skewg(u, v, w)

= (L2,max,skewg)(x, y, z).
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which implies that L2,skewg = L2,max,skewg ∈ ℓ2skew(R) by the definition of the
adjoint, it follows that g ∈ D(L2,max,skew). Hence L∗

2,skew = L2,max,skew. �

Remark 5.2. Let Lsym be the mapping from Csym(R) into itself given by
the same expression of L2,sym. Then, L∗

2,sym = L2,max,sym where L2,max,sym

is the restrictions of Lsym to

D(L2,max,sym) :=
{
f ∈ ℓ2sym(R) such that Lsymf ∈ ℓ2sym(R)

}
.

Using the Nelson commutator theorem, we prove the criterium of essential
self-adjointness for L2,skew and L2,sym.

Theorem 5.3. Let T = (V,m, E ,R) be a weighted triangulation. Set

N (x, y, z) = 1 + dE(x, y) + dE(y, z) + dE(z, x).

Suppose that

sup
x∼y, z∈F(x,y)

∑

r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2< ∞.

Then L2,skew is essentially self-adjoint on Cc
skew(R) and L2,sym is essentially

self-adjoint on Cc
sym(R).

Proof. Let N be the operator of multiplication by N (., ., .) ant take f ∈
Cc
skew(F). Going over the same techniques of the proof of [3, Theorem 5.13],

we obtain:

‖L2,skewf‖
2 ≤

2

3

∑

x∼y,z∈F(x,y)

R(x, y, z)
( 1

E2(x, y)
|

∑

t∈F(x,y)

R(x, y, t)f(x, y, t) |2

+
1

E2(y, z)
|

∑

t∈F(y,z)

R(y, z, t)f(y, z, t) |2

+
1

E2(z, x)
|

∑

t∈F(z,x)

R(z, x, t)f(z, x, t) |2
)

≤ 2
∑

x∼y,z∈F(x,y)

R(x, y, z)
1

E2(x, y)
|

∑

t∈F(x,y)

R(x, y, t)f(x, y, t) |2

≤ 2
∑

x∼y,z∈F(x,y)

R(x, y, z)
1

E2(x, y)

( ∑

r∈F(x,y)

R(x, y, r)
)
×

( ∑

t∈F(x,y)

R(x, y, t) | f(x, y, t) |2
)

= 2
∑

x∼y,z∈F(x,y)

R(x, y, z)
( 1

E(x, y)

∑

t∈F(x,y)

R(x, y, t)
)2

| f(x, y, z) |2

≤ 12‖N (f)‖2.
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Moreover, we notice that N (., ., .) is symmetric and f(x, y, z) = −f(z, y, x)
and let J =| 〈f, [L2,skew,N ]f〉 |. We get:

J ≤
1

12

∑

x∼y,z∈F(x,y)

R(x, y, z)
(
| f(x, y, z) |2

+ | [L2,skew,N ](f)(x, y, z) |2
)

≤
1

2
‖N

1
2 (f)‖2 +

∑

x∼y,z∈F(x,y)

R(x, y, z) |
∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)×

(
N (x, y, t)−N (x, y, z)

)
f(x, y, t) |2

≤
1

2
‖N

1
2 (f)‖2 +

∑

x∼y,z∈F(x,y)

R(x, y, z)
( ∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)

)
×

( ∑

r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2| f(x, y, r) |2

)

=
1

2
‖N

1
2 (f)‖2 +

∑

x∼y,z∈F(x,y)

R(x, y, z)
( ∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)

)
×

∑

r∈V

1

E(x, y)
F(x, y, r) | N (x, y, r)−N (x, y, z) |2

︸ ︷︷ ︸
≤C

| f(x, y, z) |2

≤ (
1 + 12C

2
)‖N

1
2 (f)‖.

Applying [26, Theorem X.37], the result follows. The proof of L2,sym may
be checked in the same way as the proof of L2,skew. �

Corollary 5.4. Let T = (V,m, E ,R) be a simple triangulation. Assume
that

sup
x∼y,z∈F(x,y)

∑

r∈F(x,y)

|♯F(y,z) + ♯F(z,x) − ♯F(y,r) − ♯F(r,x)|
2 < ∞.

Then L2,skew is essentially self-adjoint on Cc
skew(R) and L2,sym is essentially

self-adjoint on Cc
sym(R).

6. Essential spectrum

Let A be a closed, densely defined linear operator on a Banach space X,
and let σ(A) denote the spectrum of A. We denote by K(X) the set of
compact operators on X to itself. We define the essential spectrum of the
operator A by

σess(A) =
⋂

K∈K(X)

σ(A+K).
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It is well known that if A is a self-adjoint operator on a Hilbert space, the
essential spectrum of A is the set of limit points of the spectrum of A, i.e., all
points of the spectrum except isolated eigenvalues of finite multiplicity, see
[30]. Let T = (V,m, E ,R) be a weighted triangulation. Note that L2,skew is
non-negative symmetric operator on Cc

skew(R). We consider the quadratic
form

q(f, g) = 〈f,L2,skewg〉+ 〈f, g〉

on Cc
skew(R) × Cc

skew(R). Let H1 be the completion of Cc
skew(R) under the

norm

‖f‖q =
√

〈L2,skewf, f〉+ ‖f‖2.

We define the Friedrichs extension LF
2,skew of L2,skew by:

i) A vector f is in domain D(LF
2,skew) if and only if f ∈ H1 and Cc

skew(R) ∋

g 7−→ 〈f,L2,skewg〉+〈f, g〉 extends to a norm continuous function on ℓ2skew(R).

(ii) For each f ∈ D(LF
2,skew), there is a unique uf such that 〈f,L2,skewg〉 +

〈f, g〉 = 〈uf , g〉 by Riesz’ Theorem. The Friedrichs extension of L2,skew, is

given by LF
2,skewf = uf − f . It is a self-adjoint extension of L2,skew, e.g.

see [26, Theorem X.23]. Note that LF
2,skew is bounded if and only if dE (.) is

bounded, e.g. see [8].

Theorem 6.1. Let T = (V,m, E ,R) be a weighted triangulation and let
F0 = {K ⊂ F : K finite}. Then,

inf σ(LF
2,skew) ≤ inf

(x,y,z)∈F
R(x, y, z)

( 1

E(x, y)
+

1

E(y, z)
+

1

E(z, x)

)
.

and

inf σess(L
F
2,skew) ≤ sup

K⊂F0

inf
(x,y,z)∈Kc

R(x, y, z)(
1

E(x, y)
+

1

E(y, z)
+

1

E(z, x)

)
.

In particular, if T is a simple triangulation then LF
2,skew is not with compact

resolvent.

Proof. Let (x0, y0, z0) ∈ F and let

f =
1	(x0,y0,z0) − 1	(z0,y0,x0)√

R(x0, y0, z0)

where 1	(x0,y0,z0) denotes the indicator function of 	 (x0, y0, z0). Then
‖f‖ = 1 and

〈f,L2,skewf〉 = R(x0, y0, z0)
( 1

E(x0, y0)
+

1

E(y0, z0)
+

1

E(z0, x0)

)

Applying [21, Proposition 3], the result follows. �
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7. Application to the study of the adjacency matrix

7.1. Adjacency matrix. The adjacency matrix has important implica-
tions. For example, it uses the semi-boundedness in order to give meaning
to the heat equation, see [5]. Let G = (V,m, E) be a weighted graph. We
define the set of 0−cochains on V by

C(V) = {f : V −→ C}.

We denote by Cc(V) the 0−cochains with finite support in V. We associate
a Hilbert space to V :

ℓ2(V) =
{
f ∈ C(V) such that ‖f‖2 =

∑

x∈V

m(x)|f(x)|2 < ∞
}
.

The associated scalar product is given by

〈f, g〉 =
∑

x∈V

m(x)f(x)g(x), for f, g ∈ ℓ2(V).

We define the adjacency matrix:

AG(f)(x) =
1

m(x)

∑

y∈V

E(x, y)f(y), f ∈ Cc(V).

It is symmetric and thus closable. We denote its closure by the same sym-
bol. When G is simple, we have that AG is unbounded if and only if it is
unbounded from above and if and only if the degree is unbounded, see [15].

7.2. Triangular graph. Let T = (V,m, E ,R) be a weighted triangulation.

Set V̂ = F/ ∼, where ̟ ∼ −̟.

Definition 7.1. Let T = (V,m, E ,R) be a weighted triangulation. Set V̂ =

F/ ∼, where ̟ ∼ −̟. The triangular graph of T is the graph Ĝ = (V̂, m̂, Ê)
where m̂ = 1 and

Ê((x0, y0, z0), (x, y, z)) =
√

R(x0, y0, z0)
(√R(x, y, z)

E(x, y)
1x=x0, y=y0

+

√
R(x, y, z)

E(y, z)
1y=y0, z=z0 +

√
R(x, y, z)

E(z, x)
1z=z0, x=x0

)

if (x0, y0, z0) 6= (x, y, z) and 0 otherwise.

A triangulation T Triangular graph Ĝ
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Remark 7.2. Let T = (V,m, E ,R) be a triangulation. The adjacency ma-

trix on Ĝ is given by

A
Ĝ
(f)(x0, y0, z0) :=

∑

z∈V , z 6=z0

√
R(x0, y0, z0)R(x0, y0, z)

E(x0, y0)
f(x0, y0, z)

+
∑

x∈V , x 6=x0

√
R(x0, y0, z0)R(x, y0, z0)

E(y0, z0)
f(x, y0, z0)

+
∑

y∈V , y 6=y0

√
R(x0, y0, z0)R(x0, y, z0)

E(z0, x0)
f(x0, y, z0)

for all f ∈ Cc(V̂).

Proposition 7.3. Let T = (V,m, E ,R) be a weighted triangulation. Then
L2,sym is unitarily equivalent to

A
Ĝ
+Q(V )

where

V (x0, y0, z0) =
R(x0, y0, z0)

R(x0, y0)
+

R(x0, y0, z0)

E(y0, z0)
+

R(x0, y0, z0)

E(z0, x0)

and Q(V ) be the operator of multiplication by V .

Proof. Set U : ℓ2sym(R) −→ ℓ2(V̂) as the operator given by

U(f)(x, y, z) =
√
R(x, y, z)f(x, y, z).

Notice that

U−1(f)(x, y, z) = U∗(f)(x, y, z) =
1√

R(x, y, z)
f(x, y, z)

for all f ∈ ℓ2(V̂). Notice now that on Cc(V̂)

UL2,symU
−1(f)(x0, y0, z0) =

∑

t∈V

√
R(x0, y0, z0)R(x0, y0, t)

E(x0, y0)
f(x0, y0, t)

+
∑

t∈V

√
R(x0, y0, z0)R(y0, z0, t)

E(y0, z0)
f(y0, z0, t)

+
∑

t∈V

√
R(x0, y0, z0)R(z0, x0, t)

E(z0, x0)
f(z0, x0, t).

Using Remark 7.2, we obtain the result. �
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Corollary 7.4. Let T = (V,m, E ,R) be a weighted 3−partite triangulation.
If V is bounded on F , then

A
Ĝ
≥ sup

(x,y,z)∈F
V (x, y, z).

In particular, A
Ĝ
≥ −3 when T is simple.

Proof. Since L2,sym is non-negative operator, then

〈A
Ĝ
f, f〉 ≥ −3 ‖f‖2

for all f ∈ Cc(V̂) �

Corollary 7.5. Let T = (V,m, E ,R) be a 3−partite weighted triangulation.
Set

N (x, y, z) = 1 +
∑

r∈V

(
dE(x, y) + dE (y, z) + dE(z, x)

)
.

Suppose that

sup
(x,y,z)∈F

∑

r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2< ∞.

and V is bounded. Then, A
Ĝ
is essentially self-adjoint on Cc(V̂).

Proof. Combine Proposition 7.3, Theorem 5.3 and Theorem 4.2. �

7.3. Geometric Hypothesis. We recall the two following definitions:

Definition 7.6. [1, Definition 8] The graph G := (V,m, E) is χ−complete
if there exists an increasing sequence of finite set (Vn)n such that V = ∪nVn

and there exist related functions χn satisfying the following three conditions:

1) χn ∈ Cc(V), 0 ≤ χn ≤ 1,
2) χn(x) = 1 if x ∈ Vn,
3) ∃C > 0, ∀n ∈ N, x ∈ V,

1

m(x)

∑

y∈V

E(x, y)|χn(x)− χn(y)|
2 ≤ C.

Definition 7.7. [7, Definition 4.2] A weighted triangulation T = (V,m, E ,R)
is χ−complete, if

1) G = (V,m, E) is χ−complete.
2) ∃M > 0, ∀n ∈ N, (x, y) ∈ E

1

E(x, y)

∑

t∈F(x,y)

R(x, y, t)|2χn(t)− χn(x)− χn(y)|
2 ≤ M.

We recall the criterion obtained in [7].

Theorem 7.8. Let T = (V,m, E ,R) be a χ−complete weighted triangula-
tion then L2,skew is essentially self-adjoint on Cc

skew(R).
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Corollary 7.9. Let T = (V,m, E ,R) be a χ−complete weighted triangula-

tion. If T is tri-partite then A
Ĝ
is essentially self-adjoint on Cc(V̂).

Proof. Combine Proposition 7.3, Theorem 4.2 and Theorem 7.8.

7.4. Book-like triangulation. We recall the definition of 1−dimensional
decomposition given in [6] for the case of graphs.

Definition 7.10. [6] A 1−dimensional decomposition of the graph G =
(V,m, E) is a family of finite sets (Sn)n∈N which forms a partitions of V,
that is V = ∪n∈NSn, and such that for all x ∈ Sn, y ∈ Sm,

E(x, y) > 0 =⇒ |n−m| ≤ 1

The following definition is introduced in [7].

Definition 7.11. Let T := (V,m, E ,R) be a weighted triangulation and
(Sn)n∈N a 1−dimensional decomposition of the graph G = (V,m, E). We
say that T is a book-like triangulation if

1) ♯S0 = 1, ♯S2n+1 = 2 and ♯(S2
2n+1 ∩ E) = 1, for all n ∈ N.

2) x, y ∈ S2n+2 =⇒ E(x, y) = 0,
3) ∀x ∈ S2n+1, NG(x) = S2n ∪ S2n+2.

S0

S1

S2

S3

S4

S5

A book-like triangulation

We recall [7, Proposition 6.5]:

Proposition 7.12. Let T be a simple book-like triangulation. Assume that

(2) n 7−→
♯S2n

♯S2(n+1)
∈ ℓ1(N).

Then, L2,skew is not essentially self-adjoint on Cc
skew(R).

Corollary 7.13. Let T = (V,m, E ,R) be a simple book-like triangulation

satisfying (2). Then, A
Ĝ
is not essentially self-adjoint on Cc(V̂).

Proof. Set S0 = {x00}, S2n+1 = {x0n, x
1
n}, V0 = ∪nS2n, V1 = ∪n{x

0
n : n ∈ N}

and V2 = ∪n{x
1
n : n ∈ N}. Then,

V = V0 ∪ V1 ∪ V2 and E ∩ (V2
0 ∪ V2

1 ∪ V2
2 ) = ∅.
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So, T is tri-partite. Using Theorem 4.2, Proposition 7.3 and Proposition
7.12, the result holds. �

7.5. Triangular anti-tree. Let T = (V,m, E ,R) be a weighted triangula-
tion. The sphere of radius n ∈ N around a vertex v ∈ V is the set

Sn(v) :=
{
w ∈ V : dV(v,w) = n

}
.

We recall that Cn denotes the n−cycle graph, i.e. V = Z/nZ, where
E(x, y) > 0 if and only if |x − y| = 1. Let G(Sn(o)) = (Sn(v), E

′) where
E ′ = E |Sn(v)×Sn(v).

Definition 7.14. Let T = (V,m, E ,R) be a weighted triangulation. We say
that T is anti-tree if there exists a vertex o ∈ V such that

1) For all n ∈ N
∗ and v ∈ Sn(o), we have

NG(v)\Sn(o) = Sn−1(o) ∪ Sn+1(o).

2) For all n ∈ N
∗,G(Sn(o)) ≃ C♯Sn(o).

o

S0(o) S1(o) S2(o) S3(o)

An triangular anti-tree with spheres S0(o), S1(o), S2(o), S3(o).

Theorem 7.15. Let T = (V,m, E ,R) be a simple triangular anti-tree whose
root in o. Set sn = ♯Sn(o) and assume that

(3) n 7−→
s2n
sn+2

∈ ℓ1(N).

Then L2,sym does not essentially self-adjoint on Cc
sym(R).
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Proof. Set f ∈ ℓ2sym(F)\{0} such that f ∈ ker(L∗
2,sym+ i) and such that f is

constant on Sn × S2
n+1 ∪ S2

n × Sn+1, n ∈ N
∗. We denote the constant value

by Cn. It takes the value 0 on S2
n. We have the following equation:

(sn + 4 + i)Cn + sn+2Cn+1 = 0.

Therefore,

‖f |Sn+1×S2
n+2

‖2 = ‖f |S2
n+1×Sn+2

‖2

=
1

2
sn+2sn+1|Cn+1|

2

≤
|sn + 4 + i|2

snsn+2
‖f |Sn×S2

n+1
‖2.

Since lim
n→∞

s2n
sn+2

= 0, we get by induction:

M := sup
n∈N∗

‖f |Sn×S2
n+1

‖2 < ∞.

Then, we have

‖f |Sn+1×S2
n+2

‖2 ≤ M
|i+ 4 + sn|

snsn+2
.

From Eq. (3), we infer that f ∈ ℓ2sym(F). Using [26, Theorem X.36], we
conclude that L2,sym is not essentially self-adjoint. �

Corollary 7.16. Let T = (V,m, E ,R) be a simple triangular anti-tree sat-

isfying (3). Then, A
Ĝ
is not essentially self-adjoint on Cc(V̂).
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