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THE DISCRETE LAPLACIAN ACTING ON 2−FORMS AND

APPLICATION

HATEM BALOUDI, SAYDA BELGACEM, AND AREF JERIBI

Abstract. In this paper, we study the discrete Laplacian acting on
2−forms that was introduced and investigated in [7]. We establish a
new criterion of essential self-adjointness using the Nelson lemma. More-
over, we give an upper bound on the infimum of the essential spectrum.
Furthermore, we establish a link between the adjacency matrix and the
discrete Laplacian on 2−forms.
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1. Introduction

Spectral graph theory is an active area of research. In the last few years,
the questions of the essential self-adjointness of discrete Laplacian operators
on infinite graphs have attracted a lot of interest, see [10, 17, 21, 16]. There
exist other definitions of the discrete Laplacian, e.g., [23, 15, 4, 2]. The one
we are studying here is the discrete Laplacian acting on 2-forms and denoted
by L2,skew, where skew stands for skew-symmetric. This operator was stud-
ied by Chebbi in [7]. The author gives a relation between χ−completeness
geometric hypothesis for the graph and essential self-adjointness for the dis-
crete Laplacian L2,skew. More specifically, the author has proved that L2,skew
is essential self-adjoint, when the triangulation (we refer to Section 2 for a
precise definition) is χ−complete. The aim of this article is to continue to
discuss the question of essential self-adjointness for L2,skew. Note that this
operator depends on the weight R on oriented triangular face and the weight
E on oriented edges, see Section 4 for more details. In the setting of electri-
cal networks, the weight E correspond to the conductance. We establish a
hypothesis on the weights R and E involving essential self-adjointness. Our
technique is based on the Nelson commutator theorem, see [25, Theorem
X.37]. Moreover, we give a upper bound on the infimum of the essential
spectrum σess(LF2,skew), where LF2,skew is the Friedreich extension of L2,skew.
Finally, we find a link between the adjacency matrix and the discrete Lapla-
cian L2,skew. In the case of 3−partite graph, we prove that L2,skew is unitarily
equivalent to the adjacency matrix of the triangular graph, see Section 7 for
more details.

Acknowledgment. We would like to thank Sylvain Golénia and Nassim
Athmouni for useful discussions and comments on the tex.

2. Generalities about graphs

We star with some definitions to fix notations for graphs and refer to
[8, 9, 23] for surveys on the matter. Let V be a countable set. We equip V
with the discrete topology. Let E : V × V −→ [0,+∞) and assume that E is
symmetric (i.e, E(x, y) = E(y, x), for all x, y ∈ V). Let m : V −→ (0,+∞).
We say that G = (V,m, E) is a weighted graph with vertices V, weight of
vertices m and weight of edges E . In the setting of electrical networks, the
weights correspond of the conductances. We say that x, y are neighbors if
E(x, y) 6= 0 and we denote it by x ∼ y. A graph G is simple if it has no loops
and E has values in {0, 1}. The set of neighbors of x ∈ V is denoted by

NG(x) := {y ∈ V : E(x, y) 6= 0}.

A graph is locally finite if ]NG(x) is finite for all x ∈ V. The weighted degree
of vertices is given by

dV(x) :=
1

m(x)

∑
y∼x
E(x, y).
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When G is simple, dV(x) = ]NG(x). A graph G is connected, if for all x, y ∈
V, there exists an x−y−path, i.e., there is a sequence (x1, ..., xN+1) ∈ VN+1

such that x1 = x, xN+1 = y and E(xn, xn+1) > 0 for all n ∈ {1, ..., N}. In
this case, we endow V with the metric dV defined by

dV(x, y) := inf{N ∈ N : there exists an x− y − path of length N}.

In the sequel, we shall always consider graphs G, which are locally finite,
connected and have no loop. The path x − y is called a cycle or closed
when the origin and the end are identical, i.e x0 = xn with n ≥ 3. If no
cycle appear more than once in a path, the path is called a simple path. The
weighted triangulations is a quartet T = (V,m, E ,R) whereR : V×V×V −→
(0,+∞) is symmetric (i.e R(x, y, z) = R(z, y, z) for all (x, y, z) ∈ V×V×V)
and

(x, y, z) ∈ F ⇐⇒ R(x, y, z) > 0.

R is said the weight of faces. We say that T is simple if G := (V,m, E) is
simple and the weights of the faces equal 1. The set of vertices belonging to
the edge (x, y) is given by

F(x,y) := NG(x) ∩NG(y).

The weighted degree of edges is given by:

dE(x, y) :=
1

E(x, y)

∑
z∈F(x,y)

R(x, y, z).

When T is simple, dE(x, y) = ]F(x,y).

3. The symmetric and antisymmetric spaces

3.1. Hilbert structures on the set of edges. Let T = (V,m, E ,R) be a
weighted triangulation. Let E := {(x, y) ∈ V × V : E(x, y) > 0}. The set of
1−cochains (or 1-forms) is given by:

Cskew(E) :=
{
f : E → C, f(x, y) = −f(y, x) for all x, y ∈ V

}
,

where skew stands for skew-symmetric. This corresponds to fermionic sta-
tistics. The set of functions with finite support is denoted by Ccskew(E).
Concerning bosonic statistics, we define:

Csym(E) :=
{
f : E → C, f(x, y) = f(y, x) for all x, y ∈ V

}
.

The sets of functions with finite support is denoted by Ccsym(E).
We turn to the Hilbert structures.

`2skew(E) :=

f ∈ Cskew(E) such that ‖f‖2 :=
1

2

∑
x,y∈V

E(x, y)|f(x, y)|2 <∞


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and

`2sym(E) :=

f ∈ Csym(E) such that ‖f‖2 :=
1

2

∑
x,y∈V

E(x, y)|f(x, y)|2 <∞

 .

The associated scalar product is given by

〈f, g〉 :=
1

2

∑
(x,y)∈E

E(x, y)f(x, y)g(x, y),

when f and g are both in `2skew(E) or in `2sym(E).

3.2. Hilbert structures on the set of faces. Let T = (V,m, E ,R) be a
weighted triangulation. The set of 2−cochains or 2−forms is given by

Cskew(R) =
{
f : F −→ C : f(x, y, z) = −f(z, y, x)

}
.

The sets of functions with finite support is denoted by Ccskew(R). Concerning
the case symmetric, we define

Csym(R) =
{
f : F −→ C : f(x, y, z) = f(z, y, x)

}
.

The sets of functions with finite support is denoted by Ccsym(R). Let us

define the Hilbert spaces `2skew(R) and `2sym(R) as the sets of cochains with
finite norm, we have

`2skew(F) :=

f ∈ Cskew(R) : ‖f‖ =
1

6

∑
(x,y,z)∈F

R(x, y, z) | f(x, y, z) |2


and

`2sym(R) :=

f ∈ Csym(R) : ‖f‖ =
1

6

∑
(x,y,z)∈F

R(x, y, z) | f(x, y, z) |2
 .

The associated scalar product is given by

〈f, g〉 :=
1

2

∑
(x,y,z)∈F

R(x, y, z)f(x, y, z)g(x, y, z)

when f and g are both in `2skew(R) or in `2sym(R).

4. Operators

In this section, we recall the concept of exterior derivative operator as-
sociated to a faces space, we refer to [7] for more detail. This permits to
define the discrete Laplacian acting on 2−forms.
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4.1. Skew-symmetric case. We start by defining the operators in the
skew-symmetric case. The skew-symmetric exterior operator is the oper-
ator d1skew : Ccskew(E) −→ Ccskew(R), given by

d1skew(f)(x, y, z) = f(x, y) + f(y, z) + f(z, x).

The skew-symmetric co-exterior derivative operator is the formal adjoint of
d1skew, i.e. it is the operator δ1skew : Ccskew(R) −→ Ccskew(E), given by

∀f ∈ Ccskew(R), δ1skew(f)(x, y) =
1

E(x, y)

∑
z∈F(x,y)

R(x, y, z)f(x, y, z).

both operators are closable (see [7, Lemme 3.1]). We denote their closure by
the same symbol. The skew-symmetric discrete Laplacian operator acting
on 2−forms is given by

L2,skew(f)(x, y, z) = d1skewδ
1
skew(f)(x, y, z)

=
1

E(x, y)

∑
t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑
t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑
t∈F(z,x)

R(z, x, t)f(z, x, t),

with f ∈ Ccskew(R).

4.2. Symmetric case. We turn to the symmetric case. The symmetric
exterior derivative in the symmetric case, we define d1sym : Ccsym(E) −→
Ccsym(R) by

∀f ∈ Ccsym(E), d1skew(f)(x, y, z) = f(x, y) + f(y, z) + f(z, x).

The symmetric co-exterior derivative operator is the formal adjoint of d1sym,

i.e. it is the operator δ1sym : C1sym(R) −→ Ccsym(R), given by

∀f ∈ C1sym(R), δ1sym(f)(x, y) :=
1

E(x, y)

∑
z∈F(x,y)

R(x, y, z)f(x, y, z).

The symmetric discrete Laplacian operator acting on 2−forms is the oper-
ator L2,sym = d1symδ

1
sym, given by the same expression of L2,skew.

4.3. Relationship between L2,skew and L2,sym. The two operators L2,skew
and L2,sym have the same expression. However they do not act on the same
spaces. Namely, when T is tri-partite, we shall prove that the two operators
are unitarily equivalent.
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Definition 4.1. A triangulation T = (V,m, E ,R) is tri-partite if there there
are V1, V2 and V3 such that V1∩V2∩V3 = ∅ and such this implication hold

E(x, y) = 0 =⇒ (x, y) ∈ V21 ∪ V22 ∪ V23 .

Theorem 4.2. Let T = (V,m, E ,R) be a tri-partite weighted triangulation.
Then L2,skew and L2,sym are unitarily equivalent.

Proof. We consider the tri-partite decomposition {V1,V2,V3}. Let U : `2skew(R) −→
`2sym(R) be the unitary map given by

U(f)(x, y, z) = S(x, y, z)f(x, y, z),

where

S = 1V1×V2×V3 + 1V2×V3×V1 + 1V3×V1×V2 − 1V3×V2×V1 − 1V1×V3×V2 .

Note that

U−1(f) = U∗(f)

for all f ∈ `2sym(R). Therefore,

UL2,skewU−1(f)(x, y, z) = L2,sym(f)(x, y, z)

for all f ∈ Ccsym(R). �

5. A Nelson criterium

For the general theory of unbounded Hermitian operators and their ex-
tensions, we refer the reader to [24, 19, 26]. Let L2,max,skew be the following
mapping from Cskew(R) into itself:

L2,max,skew(f)(x, y, z) =
1

E(x, y)

∑
t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑
t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑
t∈F(z,x)

R(z, x, t)f(z, x, t).

Let L2,min,skew be the restrictions of L2,max,skew to

D(L2,min,skew) :=
{
f ∈ `2skew(R) such that L2,max,skewf ∈ `2skew(R)

}
.

Lemma 5.1. L∗2,skew = L2,min,skew.

Proof. Let f ∈ Ccskew(R) and let g ∈ Cskew(R). Let F00 the support of f and
set

F0 =
{

(x, y, z) ∈ F : ∃u ∈ V, {(x, y, u), (y, z, u), (z, x, u)} ∩ F00 6= ∅
}
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which is a finite set. Then supp(L2,skew) ⊂ F0 and the following relation
holds:

〈L2,skewf, g〉 =
1

6

∑
(x,y,z)∈F0

R(x, y, z)L2,skew(f)(x, y, z)g(x, y, z)

=
1

6

∑
(x,y,z)∈F0

R(x, y, z)
( 1

E(x, y)

∑
t∈F(x,y)

R(x, y, t)f(x, y, t)

+
1

E(y, z)

∑
t∈F(y,z)

R(y, z, t)f(y, z, t)

+
1

E( z, x)

∑
t∈F(z,x)

R(z, x, t)f(z, x, t)
)
g(x, y, z)

=
1

6

∑
(x,y,z)∈F00

R(x, y, z)f(x, y, z)
( 1

E(x, y)

∑
u∈V
R(x, y, u)g(x, y, u)

+
1

E(y, z)

∑
u∈V
R(y, z, u)g(y, z, u)

+
1

E(z, x)

∑
u∈V
R(z, x, u)g(z, x, u)

)

(1) =
1

6

∑
x,y,z∈V

R(x, y, z)f(x, y, z)L2g(x, y, z).

Let g ∈ D(L2,min,skew). It flows from (1) that

〈L2,skewf, g〉 = 〈f,L2,min,skewg〉

for all f ∈ Ccskew(R), which implies that g ∈ D(L∗2,skew). Now let g ∈
D(L∗2,skew). Let (x, y, z) ∈ F and let

f =
1

R(x, y, z)

(
δx,y,z + δy,z,x + δz,x,y

)
− 1

R(z, y, x)

(
δz,y,x + δx,z,y + δy,x,z

)
.

Then f ∈ Ccskew(R) and we obtain from (1):

(L∗2,skewg)(x, y, z) = 〈f,L∗2,skewg〉
= 〈L2,skewf, g〉

=
1

6

∑
(u,v,w)∈F

R(u, v, w)L2,skewf(u, v, w)g(u, v, w)

=
1

6

∑
(u,v,w)∈F

R(u, v, w)f(u, v, w)L2,min,skewg(u, v, w)

= (L2,min,skewg)(x, y, z).
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which implies that L2,skewg = L2,min,skewg ∈ `2skew(F) by the definition of the
adjoint, it follows that g ∈ D(L2,min,skew). Hence L∗2,skew = L2,min,skew. �

Remark 5.2. Let L2,max,sym be the mapping from Cc(R) into itself given by
the same expression of L2,max,sym. Then L∗2,sym = L2,min,sym where L2,min,sym

is the restrictions of L2,max,sym to

D(L2,min,sym) :=
{
f ∈ `2sym(R) such that L2,max,symf ∈ `2sym(R)

}
.

Using the Nelson commutator theorem, we prove the criterium of essential
self-adjointness for L1,skew and L1,sym.

Theorem 5.3. Let T = (V,m, E ,R) be a weighted triangulation. Set

N (x, y, z) = 1 + dE(x, y) + dE(y, z) + dE(z, x).

Suppose that

sup
(x,y,z)∈F

∑
r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2<∞.

Then L2,skew is essentially self-adjoint on Ccskew(R) and L2,sym is essentially
self-adjoint on Ccsym(R).

Proof. Let N be the operator of multiplication by N (., ., .) ant take f ∈
Ccskew(F). We have:

‖L2,skewf‖2 ≤
2

3

∑
(x,y,z)∈F

R(x, y, z)
( 1

E2(x, y)
|
∑

t∈F(x,y)

R(x, y, t)f(x, y, t) |2

+
1

E2(y, z)
|
∑

t∈F(x,y)

R(y, z, t)f(y, z, t) |2

+
1

E2(y, z)
|
∑

t∈F(x,y)

R(y, z, t)f(y, z, t) |2
)

≤ 2
∑

(x,y,z)∈F

R(x, y, z)
1

E2(x, y)
|
∑

t∈F(x,y)

R(x, y, t)f(x, y, t) |2

≤ 2
∑

(x,y,z)∈F

R(x, y, z)
1

E2(x, y)

( ∑
r∈F(x,y)

R(x, y, r)
)
×

( ∑
t∈F(x,y)

R(x, y, t) | f(x, y, t) |2
)

= 2
∑

(x,y,z)∈F

R(x, y, z)
( 1

E(x, y)

∑
t∈F(x,y)

R(x, y, t)
)2
| f(x, y, z) |2

≤ 12‖N (f)‖2.
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Moreover, noticing that N (., ., .) is symmetric and f(x, y, z) = −f(z, y, x)
and let J =| 〈f, [L2,skew,N ]f〉 |. We get:

J ≤ 1

12

∑
(x,y,z)∈F

R(x, y, z)
(
| f(x, y, z) |2

+ | [L2,skew,N ](f)(x, y, z) |2
)

≤ 1

2
‖N

1
2 (f)‖2 +

1

4

∑
(x,y,z)∈F

R(x, y, z) |
∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)×

(
N (x, y, t)−N (x, y, z)

)
f(x, y, t) |2

≤ 1

2
‖N

1
2 (f)‖2 +

1

4

∑
(x,y,z)∈F

R(x, y, z)
( ∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)

)
×

( ∑
r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2| f(x, y, r) |2

)
=

1

2
‖N

1
2 (f)‖2 +

1

4

∑
(x,y,z)∈F

R(x, y, z)
( ∑

t∈F(x,y)

1

E(x, y)
R(x, y, t)

)
×

∑
r∈V

1

E(x, y)
F(x, y, r) | N (x, y, r)−N (x, y, z) |2︸ ︷︷ ︸

≤C

| f(x, y, z) |2

≤ (
1 + 3C

2
)‖N

1
2 (f)‖.

Applying [25, Theorem X.37], the result follows. The proof of L2,sym may
be checked in the same way as the proof of L2,skew. �

Corollary 5.4. Let T = (V,m, E ,R) be a simple triangulation. Assume
that

sup
(x,y,z)∈F

∑
r∈F(x,y)

|]F(y,z) + ]F(z,x) − ]F(y,r) − ]F(r,x)|2 <∞.

Then L2,skew is essentially self-adjoint on Ccskew(R) and L2,sym is essentially
self-adjoint on Ccsym(R).

6. Essential spectrum

Let A be a closed, densely defined linear operator on a Banach space X,
and let σ(A) denote the spectrum of A. We denote by K(X) the set of
compact operators on X to itself. We define the essential spectrum of the
operator A by

σess(A) =
⋂

K∈K(X)

σ(A+K).
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It is well known that if A is a self-adjoint operator on a Hilbert space, the
essential spectrum of A is the set of limit points of the spectrum of A, i.e.,
all points of the spectrum except isolated eigenvalues of finite multiplicity,
see [29, 30]. Let T = (V,m, E ,R) be a weighted triangulation. Note that
L2,skew is non-negative symmetric operator on Ccskew(R). We consider the
quadratic form

q(f, g) = 〈f,L2,skewg〉+ 〈f, g〉

on Ccskew(R) × Ccskew(R). Let H1 be the completion of Ccskew(R) under the
norm

‖f‖q =

√
〈L2,skewf, f〉+ ‖f‖2.

We define the Friedrichs extension LF2,skew of L2,skew by:

i) A vector f is in domain D(LF2,skew) if and only if f ∈ H1 and Ccskew(R) 3
g 7−→ 〈f,L2,skewg〉+〈f, g〉 extends to a norm continuous function on `2skew(R).

(ii) For each f ∈ D(LF2,skew) there is a unique uf such that 〈f,L2,skewg〉 +

〈f, g〉 = 〈uf , g〉 by Riesz’ Theorem. The Friedrichs extension of L2,skew, is

given by LF2,skewf = uf − f . It is self-adjoint extension of L2,skew, e.g. see

[25, Theorem X.23].

Theorem 6.1. Let T = (V,m, E ,R) be a weighted triangulation and let
F0 = {K ⊂ F : K finite}. Then,

inf σ(LF2,skew) ≤ inf
(x,y,z)∈F

R(x, y, z)
( 1

E(x, y)
+

1

E(y, z)
+

1

E(z, x)

)
.

and

inf σess(LF2,skew) ≤ sup
K⊂F0

inf
(x,y,z)∈Kc

R(x, y, z)(
1

E(x, y)
+

1

E(y, z)
+

1

E(z, x)

)
.

In particular, if T is a simple triangulation then LF2,skew is not with compact
resolvent.

Proof. Let (x0, y0, z0) ∈ F and let

f =
δx0,y0,z0 + δy0,z0,x0 + δz0,x0,y0 − δz0,y0,x0 − δx0,z0,y0 − δy0,x0,z0√

R(x0, y0, z0)
.

Then ‖f‖ = 1 and

〈f,L2,skewf〉 = R(x0, y0, z0)
( 1

E(x0, y0)
+

1

E(y0, z0)
+

1

E(z0, x0)

)
Applying [20, Proposition 3], the result follows. �



THE DISCRETE LAPLACIAN ACTING ON 2−FORMS AND APPLICATION 11

7. Application to the study of the adjacency matrix

7.1. Adjacency matrix. The adjacency matrix has some important impli-
cations for example it solves the equation of heat, see [5]. Let G = (V,m, E)
be a weighted graph. We define the set of 0−cochains on V by

C(V) = {f : V −→ C}.

We denote by Cc(V) the 0−cochains with finite support in V. We associate
a Hilbert space to V :

`2(V) =
{
f ∈ C(V) such that ‖f‖2 =

∑
x∈V

m(x)|f(x)|2 <∞
}
.

The associated scalar product is given by

〈f, g〉 =
∑
x∈V

m(x)f(x)g(x), for f, g ∈ `2(V).

We define the adjacency matrix:

AG(f)(x) =
1

m(x)

∑
y∈V
E(x, y)f(y), f ∈ Cc(V).

It is symmetric and thus closable. We denote its closure by the same symbol.
When m=1, we have that AG is unbounded if and only if it is unbounded
from above and if and only if the degree is unbounded, see [14].

7.2. Triangular graph.

Definition 7.1. Let T = (V,m, E ,R) be a weighted triangulation. The

triangular graph of T is the graph T̂ = (V̂, m̂, Ê) where V̂ = F , m̂ = 1 and

Ê((x0, y0, z0), (x, y, z)) =
√
R(x0, y0, z0)

(√R(x, y, z)

E(x, y)
1x=x0, y=y0

+

√
R(x, y, z)

E(y, z)
1y=y0, z=z0 +

√
R(x, y, z)

E(z, x)
1z=z0, x=x0

)
if (x0, y0, z0) 6= (x, y, z) and 0 otherwise.

A triangulation T Tiangular graph Ĝ
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A Triangulation T Complete triangular graph Ĝ

Remark 7.2. Let T = (V,m, E ,R) be a triangulation. The adjacency ma-

trix on Ĝ is given by

AĜ(f)(x0, y0, z0) :=
∑

z∈V, z 6=z0

√
R(x0, y0, z0)R(x0, y0, z)

E(x0, y0)
f(x0, y0, z)

+
∑

x∈V, x6=x0

√
R(x0, y0, z0)R(x, y0, z0)

E(y0, z0)
f(x, y0, z0)

+
∑

y∈V, y 6=y0

√
R(x0, y0, z0)R(x0, y, z0)

E(z0, x0)
f(x0, y, z0)

for all f ∈ Cc(V̂).

Proposition 7.3. Let T = (V,m, E ,R) be a weighted triangulation. Then
L2,sym is unitarily equivalent to

AĜ +Q(V )

where

V (x0, y0, z0) =
E(x0, y0, z0)

R(x0, y0)
+
R(x0, y0, z0)

E(y0, z0)
+
R(x0, y0, z0)

E(z0, x0)

and Q(V ) be the operator of multiplication by V .

Proof. Set U : `2sym(R) −→ `2(V̂) as the operator given by

U(f)(x, y, z) =
√
R(x, y, z)f(x, y, z).

Notice that

U−1(f)(x, y, z) = U∗(f)(x, y, z) =
1√

R(x, y, z)
f(x, y, z)
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for all f ∈ `2(V̂). Notice now that on Cc(V̂)

UL2,symU−1(f)(x0, y0, z0) =
∑
t∈V

√
R(x0, y0, z0)R(x0, y0, t)

E(x0, y0)
f(x0, y0, t)

+
∑
t∈V

√
R(x0, y0, z0)R(y0, z0, t)

E(y0, z0)
f(y0, z0, t)

+
∑
t∈V

√
R(x0, y0, z0)R(z0, x0, t)

E(z0, x0)
f(z0, x0, t).

Using Remark 7.2, we obtain the result. �

Corollary 7.4. Let T = (V,m, E ,R) be a weighted 3−partite triangulation.
If V is bounded on F , then

AĜ ≥ sup
(x,y,z)F

V (x, y, z).

In particular, AĜ ≥ −3 when T is simple.

Proof. Since L2,sym is non-negative operator, then

〈AĜf, f〉 ≥ −3 ‖f‖2

for all f ∈ Cc(V̂) �

Corollary 7.5. Let T = (V,m, E ,R) be a 3−partite weighted triangulation.
Set

N (x, y, z) = 1 +
∑
r∈V

(
dE(x, y) + dE(y, z) + dE(z, x)

)
.

Suppose that

sup
(x,y,z)∈F

∑
r∈F(x,y)

1

E(x, y)
R(x, y, r) | N (x, y, r)−N (x, y, z) |2<∞.

and V is bounded. Then, AĜ is essentially self-adjoint on Cc(V̂).

Proof. Combine Proposition 7.3, Theorem 5.3 and Theorem 4.2. �

7.3. Geometric Hypothesis. We recall the two following definitions:

Definition 7.6. [1, Definition 8] The graph G := (V,m, E) is χ−complete
if there exists a increasing sequence of finite set (Vn)n such that V = ∪nVn
and there exist related functions χn satisfying the following three conditions:

1) χn ∈ Cc(V), 0 ≤ χn ≤ 1,
2) χn(x) = 1 if x ∈ Vn,
3) ∃C > 0, ∀n ∈ N, x ∈ V,

1

m(x)

∑
y∈V
E(x, y)|χn(x)− χn(y)|2 ≤ C.



14 HATEM BALOUDI, SAYDA BELGACEM, AND AREF JERIBI

Definition 7.7. [7, Definition 4.2] A weighted triangulation T = (V,m, E ,R)
is χ−complete, if

1) G = (V,m, E) is χ−complete.
2) ∃M > 0, ∀n ∈ N, (x, y) ∈ E

1

E(x, y)

∑
t∈F(x,y)

R(x, y, t)|2χn(t)− χn(x)− χn(y)|2 ≤M.

We recall the criterion obtained in [7].

Theorem 7.8. Let T = (V,m, E ,R) be a χ−complete weighted triangula-
tion then L2,skew is essentially self-adjoint on Ccskew(R).

Corollary 7.9. Let T = (V,m, E ,R) be a χ−complete weighted triangula-

tion. If T is tri-partite then AĜ is essentially self-adjoint on Cc(V̂).

Proof. Combine Proposition 7.3, Theorem 4.2 and Theorem 7.8.

8. Examples

8.1. Book-like triangulation. We recall the definition of 1−dimensional
decomposition given in [6] for the case of graphs.

Definition 8.1. A 1−dimensional decomposition of the graph G = (V,m, E)
is a family of finite sets (Sn)n∈N which forms a partitions of V, that is
V = ∪n∈NSn, and such that for all x ∈ Sn, y ∈ Sm,

E(x, y) > 0 =⇒ |n−m| ≤ 1

The following definition is introduced in [7].

Definition 8.2. Let T := (V,m, E ,R) be a weighted triangulation and
(Sn)n∈N a 1−dimensional decomposition of the graph G = (V,m, E). We
say that T is a book-like triangulation if

1) ]S0 = 1, ]S2n+1 = 2 and ](S2
2n+1 ∩ E) = 1, for all n ∈ N.

2) x, y ∈ S2n+2 =⇒ E(x, y) = 0,
3) ∀x ∈ S2n+1, NG(x) = S2n ∪ S2n+2.

S0

S1

S2

S3

S4

S5

A book-like triangulation

We recall [7, Proposition 6.5]:
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Proposition 8.3. Let T be a simple book-like triangulation. Assume that

(2) n 7−→ ]S2n
]S2(n+1)

∈ `1(N).

Then, L2,skew is not essentially self-adjoint on Ccskew(R).

Corollary 8.4. Let T = (V,m, E ,R) be a simple book-like triangulation

satisfying (2). Then, AĜ is not essentially self-adjoint on Cc(V̂).

Proof. Set S0 = {x00}, S2n+1 = {x0n, x1n}, V0 = ∪nS2n, V1 = ∪n{x0n : n ∈ N}
and V2 = ∪n{x1n : n ∈ N}. Then,

V = V0 ∪ V1 ∪ V2 and E ∩ (V20 ∪ V21 ∪ V22 ) = ∅.

So, T is tri-partite. Using Theorem 4.2, Proposition 7.3 and Proposition
8.3, the result holds. �

8.2. Triangular anti-tree. Let T = (V,m, E ,R) be a weighted triangula-
tion. The sphere of radius n ∈ N around a vertex v ∈ V is the set

Sn(v) :=
{
w ∈ V : dV(v, w) = n

}
.

We recall that Cn denotes the n−cycle graph, i.e. V = Z/nZ, where
E(x, y) > 0 if and only if |x − y| = 1. Let G(Sn(o)) = (Sn(v), E ′) where
E ′ = E |Sn(v)×Sn(v).

Definition 8.5. Let T = (V,m, E ,R) be a weighted triangulation. We say
that T is anti-tree if there exists a vertex o ∈ V such that

1) For all n ∈ N∗ and v ∈ Sn(o), we have

NG(v)\Sn(o) = Sn−1(o) ∪ Sn+1(o).

2) For all n ∈ N∗,G(Sn(o)) ' C]Sn(o).
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o

S0(o) S1(o) S2(o) S3(o)

An triangular anti-tree with spheres S0(o), S1(o), S2(o), S3(o).

Theorem 8.6. Let T = (V,m, E ,R) be a simple triangular anti-tree whose
root in o. Set sn = ]Sn(o) and assume that

(3) n 7−→ s2n
sn+2

∈ `1(N).

Then L2,sym does not essentially self-adjoint on Ccsym(R).

Proof. Set f ∈ `2sym(F)\{0} such that f ∈ ker(L∗2,sym + i) and such that f is

constant on Sn × S2n+1 ∪ S2n × Sn+1, n ∈ N∗. We denote the constant value

by Cn. It takes the value 0 on S2n. We have the following equation:

(sn + 4 + i)Cn + sn+2Cn+1 = 0.

Therefore,

‖f |Sn+1×S2n+2
‖2 = ‖f |S2n+1×Sn+2

‖2

=
1

6
sn+2sn+1|Cn+1|2

≤ |sn + 4 + i|2

snsn+2
‖f |Sn×S2n+1

‖2.

Since lim
n→∞

s2n
sn+2

= 0, we get by induction:

M := sup
n∈N∗

‖f |Sn×S2n+1
‖2 <∞.
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Then, we have

‖f |Sn+1×S2n+2
‖2 ≤M |i+ 4 + sn|

snsn+2
.

From Eq. (3), we conclude that f ∈ `2sym(F). Using [25, Theorem X.36], we
conclude that L2,sym is not essentially self-adjoint. �

Corollary 8.7. Let T = (V,m, E ,R) be a simple triangular anti-tree satis-

fying (3). Then, AĜ is not essentially self-adjoint on Cc(V̂).
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