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Abstract

This paper describes BomJi, a supervised sys-
tem for capturing discriminative attributes in
word pairs (e.g. yellow as discriminative for
banana over watermelon). The system relies
on an XGB classifier trained on carefully engi-
neered graph-, pattern- and word embedding-
based features. It participated in the SemEval-
2018 Task 10 on Capturing Discriminative At-
tributes, achieving an F1 score of 0.73 and
ranking 2nd out of 26 participant systems.

1 Introduction

The recent introduction of popular software
packages for training neural word embeddings
(Mikolov et al., 2013a,b; Levy and Goldberg,
2014) has led to an increase of the number of stud-
ies dedicated to lexical similarity and to remark-
able performance improvements on related tasks
(Baroni et al., 2014).

However, the validity of similarity estimation
as the only benchmark for semantic representa-
tions has been questioned, for several reasons.
One for all, most evaluation datasets provide
human-elicited similarity scores, with the conse-
quences that the ratings are subjective and the
performance of some automated systems is al-
ready above the upper bound of the inter-annotator
agreement (Batchkarov et al., 2016; Faruqui et al.,
2016; Santus et al., 2016a).

Originally proposed as an alternative bench-
mark for Distributional Semantic Models (DSMs),
the Discriminative Attributes task focuses in-
stead on the extraction of semantic differences
between lexical meanings (Krebs and Paperno,
2016): given two words and an attribute (i.e., a
discrete semantic feature), a system has to pre-
dict whether the attribute describes a difference
between the corresponding concepts or not (e.g.
wing is an attribute of plane, but not of helicopter).

Since even related words may differ for some
non-shared attributes (e.g. hypernyms and hy-
ponyms), the ability of automatically recognize
discriminative features would be an extremely
useful addition for the creation of ontologies and
other types of lexical resources and would make
machine decisions interpretable, enabling human
validation (Biemann et al., 2018). Moreover, one
can think to applications to many other NLP do-
mains, such as machine translation and dialogue
systems (Krebs and Paperno, 2016).

In the present contribution, we describe the
BomJi classification system, which we used for
the identification of discriminative features be-
tween concept pairs. According to the official
evaluation results provided by the organizers1, our
system ranked second out of 26 participants. Our
score, F1 = 0.73 lags slightly behind the best
score of 0.75. After the evaluation period, we run
further experiments including all investigated fea-
tures and found that the system can achieve up to
0.75 F1 score.

2 Capturing Discriminative Attributes

2.1 Task and Dataset Description

The task of capturing discriminative attributes be-
tween words can be described as a binary classi-
fication task, in which the system has to assign a
positive label if the feature is discriminative for the
first concept over the second one, and a negative
label otherwise.

In the test data, the first two words correspond to
the concepts being compared (they are called, re-
spectively, the pivot and the comparison term) and
the third word is the feature, which could describe
a discriminative attribute or not (some examples
are shown in Table 1). In the paper, we will refer

1https://competitions.codalab.org/
competitions/17326#results

https://competitions.codalab.org/competitions/17326#results
https://competitions.codalab.org/competitions/17326#results


Pivot Comparison Feature Label
belt plate buckles 1

orange cherry sections 1
razor brush mink 0

necklace bracelet clasp 0

Table 1: Examples of triples from the training dataset.

Dataset Examples Features Split P-N
Training 17,782 1,292 37.06%-62.94%

Validation 2,722 576 50.1%-49.9%
Test 2,340 577 44.74%-55.26%

Table 2: Number of examples, distinctive features and
Positive-Negative split for each dataset.

to the elements of the triples as w1, w2 and feat.
A training and validation set have been provided

for system development (figures in Table 2).

2.2 Embeddings and Graphs

For the Discriminative Attributes task, we com-
bined word embeddings, patterns and information
extracted from a graph-based distributional model.

Concerning the word embeddings, we used the
vectors produced by two popular frameworks for
word embeddings: Word2Vec (Mikolov et al.,
2013a,b) and GloVe (Pennington et al., 2014). 2

The Word2Vec Skip-Gram architecture is a single-
layer neural network, based on the dot-product be-
tween word vectors, in which the vector represen-
tation is optimized to predict the context of a tar-
get word given the word itself. The context gen-
erally consists of a word window of a fixed width
around the target. The other framework, GloVe, is
similar to traditional count models based on ma-
trix factorization (Turney and Pantel, 2010; Baroni
et al., 2014), in the sense that vectors are trained
on global word-word co-occurrence counts. In the
case of GloVe, the training objective is to learn
word vectors such that their dot product equals
the logarithm of the probability of the word to co-
occur (Pennington et al., 2014).

As for graph-based information, we used the Jo-
BimText architecture introduced by Biemann and
Riedl (2013). In JoBimText, lexical items are rep-
resented as the set of their p most salient contexts,
where the contexts are words connected to the tar-
get by a given syntactic link or by a lexical pattern,
and saliency is defined as an association measure

2The pre-trained vectors are available, respectively,
at https://code.google.com/archive/p/
word2vec/ (Google News, 300 dimensions) and at
https://nlp.stanford.edu/projects/glove/
(Common Crawl, 840B tokens, 300 dimensions).

between target and context, such as Positive Lo-
cal Mutual Information (Evert, 2004). Differently
from vector models, similarity between words in
JoBimText is simply based on the overlap count
of their common contexts.

Regarding patterns, first we extracted sentences
where words and their features co-occur from a
web-scale sentence-based index of English web
(Panchenko et al., 2018) and then we extracted the
patterns connecting our target words.

2.3 Methodology

The predictions submitted for the evaluation of
Task 10 were obtained with a system that consists
of a classifier, the Extreme Gradient Boosting (or
XGBoost, Chen and Guestrin (2016)), trained on
vectors aggregating carefully engineered graph-,
pattern- and word embedding features.

In this section, we provide an overview of each
feature type, leaving the discussion of their contri-
bution to Section 3. The total of 55,026 features
we used can be divided into five major groups.

CO-OCCURRENCE. Thirteen features re-
lated to word and word-feature frequency were
calculated on the basis of the information ex-
tracted from a corpus of 3.2B words, correspond-
ing to about 20% of the Common Crawl. For each
word-feature combination (i.e. w1 − feat and
w2 − feat), we calculated: i) the co-occurrence
count; ii) word count; iii) feature count; iv) Posi-
tive Pointwise Mutual Information (PPMI (Church
and Hanks, 1990)) between each word and the fea-
ture; v) Positive Local Mutual Information (PLMI
(Evert, 2004)) between each word and the feature.
Further, we added three features representing the
subtractions between the values of i), iv) and v)
for the two word-feature combinations.

JOBIMTEXT. Another set of twenty-four fea-
tures comes directly from JoBimText. They were
calculated after extracting information through
the public accessible JoBimText API 3, which
returns a JSON file containing - for every tar-
get - a sorted list of N features and their as-
sociation scores (up to N = 1, 000). As Jo-
BimText distinguishes features according to their
POS and dependency roles (i.e. features are
in form WORD#POS#DEPENDENCY), a given
feat may appear multiple times in different POS-
dependency combinations. However, we found
that feat rarely appears in the top N features

3See www.jobimtext.org
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https://nlp.stanford.edu/projects/glove/
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of w1 and w2, so we calculated our features not
only for the given targets (i.e. wx), but also
for the first among their top 10 neighbors for
which feat was found (i.e. top(neighbor(wx) 3
feat,max = 10)) and the first among the top 10
feat neighbors for which the target was found (i.e.
top(neighbor(feat) 3 wx,max = 10)). This al-
lowed us to check also whether the neighbors of
the given words were associated with the candi-
date discriminative attributes or vice versa. The
features are defined as follows (here they are de-
scribed only with reference to the query on wx,
but this should be generalized to the other cases):

• prediction by rank: it is 1 if feat is ranked higher for
w1 than for w2, 0 otherwise;

• prediction by score: it is 1 if the total score between
w1− feat is higher than for w2 − feat, 0 otherwise;

• total score: sum of the scores of w1−feat if prediction
by score is 1, of w2 − feat otherwise;

• top rank: top rank of feat for w1 if prediction by score
is 1, for w2 otherwise;

• bottom rank: last rank of feat for w1 if prediction by
score is 1, for w2 otherwise;

• number of occurrences: count of how many times a
feature appears among the features of w1 if prediction
by score is 1, otherwise the occurrences among the fea-
tures w2 are counted;

• which neighbor?: integer showing whether the query
was performed on w1/w2 (in this case it would be ini-
tialized to 0), or on its neighbors (in this case it would
be initialized with the rank of the first neighbor where
feat was found);

• which feat neighbor?: integer showing whether the
query was performed on w1/w2 (in this case it would
be initialized to 0) or on the feat neighbors (in this
case it would be initialized with the rank of the first
feat neighbor where w1 or w2 was found).

WORD EMBEDDING FEATURES. Mikolov
et al. (2013a) showed how vector offsets encode
semantic information. We decided to include five
features computed from either the Word2Vec or
the Glove vectors, in order to take advantage of
the offset information.

They are computed, respectively, as: cos((w1−
w2), feat), cos((w1 − feat), (w2 − feat)),
cos((w1− feat), w2), cos((w2− feat), w1). Fi-
nally, also the cosine between the word vectors
(i.e. cos((w1, w2)) has been included.

WORD EMBEDDING VECTORS. These
features are the simple concatenation of the three
vectors of w1, w2 and feat. Again, we have two

versions of these features, one for Word2Vec and
one for Glove.

PATTERNS. In order to characterize the rela-
tion between words and features, we used an index
to extract patterns occurring between them, inde-
pendently of the order in which they appeared, and
limited the maximum number of results to 10,000
sentences.

The patterns consist of sequences of either lem-
matized tokens, POS or dependency tags, which
are used to abstract from the surface form, thereby
increasing the recall. Since the number of ex-
tracted patterns was far too high, we decided to use
only patterns with a frequency higher than 100,
obtaining a set of 53,136 items, using the observed
pattern frequency per word pair as a predictor.

3 Experiments

3.1 Choosing the Training Set

During the practice phase, we noticed that the
training set and the validation set show very dif-
ferent distributions. Running cross validation ex-
periments on either dataset, we obtained very high
scores (sometimes close to 0.95). However, such
scores did not generalize to the other dataset,
where they dropped to about 0.60.

This was only partially due to lexical memo-
rization (some lexemes were present in multiple
triples of the same dataset, cf. Levy et al. (2015);
Santus et al. (2016b)). In fact, investigating the
frequency of the words in the triples, we found
that, on average, in our index, the first and the
second words, w1 and w2, were about four times
more frequent in the validation than in the train-
ing set (respectively 4.7M and 5.4M versus 0.9M
and 1M ); similarly, the third word (i.e. feat)
was almost twice more frequent in the validation
than in the training set (i.e. 3.9M versus 2.9M ).
When the test set was made available, we could
verify that its frequency distribution resembled the
one in the validation set, with the first and second
words respectively at 3.3M and 2M , and the third
at about 4.5M occurrences.

Given these differences, we have chosen to train
our system only on the validation set, tuning the
hyper-parameters by means of 5-fold cross vali-
dation. Because of its small size, we decided to
train our second submission on a derived train-
ing set (henceforth New Validation), consisting of
the 2,722 triples from the validation set plus 2,278
triples randomly extracted from the training, for a



Feature Type # Feat
Training/Test Validation/Test NewValidation/Test
17547 vs. 2340 2722 vs 2340 5000 vs 2340

F1 F1++ F1 F1++ F1 F1++
1 Co-occurrence 13 0.68 0.68 0.72 0.72 0.72 0.72
2 W2V Features 5 0.55 NA 0.66 NA 0.63 NA
3 W2V + Vectors 905 0.57 0.68 (1 & 3) 0.67 0.75 (1 & 3) 0.66 0.73 (1 & 3)
4 Glove Features 5 0.61 NA 0.66 NA 0.67 NA
5 Glove + Vectors 905 0.62 0.66 (1 & 5) 0.68 0.74 (1 & 5) 0.68 0.73 (1 & 5)

6 JoBim Features 24 0.53
0.68 (1 & 6)

0.67 (1, 3 & 6)
0.66 (1, 5 & 6)

0.62
0.74 (1 & 6)

0.75 (1, 3 & 6)
*0.74 (1, 5 & 6)

0.62
0.74 (1 & 6)

0.75 (1, 3 & 6)
*0.73 (1, 5 & 6)

7 Patterns 53176 0.56
0.67 (1, 3, 6 & 7)
0.67 (1, 5, 6 & 7)

0.68 (1, 3, 5, 6 & 7)
0.52

0.75 (1, 3, 6 & 7)
0.74 (1, 5, 6 & 7)

0.74 (1, 3, 5, 6 & 7)
0.51

0.71 (1, 3, 6 & 7)
0.69 (1, 5, 6 & 7)

0.69 (1, 3, 5, 6 & 7)

Table 3: Results both in absolute (F1) and in incremental terms (F1++: in brackets the features used to obtain the
score) on the test set, organized by training set. In bold, we report the best results. In bold-italics, we report the
submitted systems.

total of 5,000 samples. The use of different train-
ing data was the only difference between the two
submissions.

3.2 Model Selection

During the practice phase, we performed ex-
periments with several classifiers, including K-
Neighbors (with K = 3), Decision Tree
(with max depth = 5), Random Forest (with
max depth = 5, n estimators = 10 and
max features = 1), Multi-layer Perceptron
(with alpha = 1), AdaBoost and XGB (the lat-
ter two with default settings).

Before running the classifiers, we also used
Linear Support Vector Classification (SVC) with
penalty =′ l1′ and we tested several values of C
(i.e. 0.05, 0.1, 0.25, 0.5, 1) for feature selection.

In almost all settings we found that the best per-
forming classifiers were the Random Forest, the
Multilayer Perceptron and, above all others, XGB.
With respect to the value of C for the feature se-
lection, instead, we noticed that it varied in rela-
tion to the feature types, with minor influence on
the performance of XGB (+/-2%). In the final sub-
mission, therefore, we opted for removing this step
from the pipeline and for keeping the full vector.

Concerning feature selection, we found that the
pattern features had a neutral effect on the perfor-
mance during cross validation. Similarly we no-
ticed that Glove and Word2Vec performed compa-
rably. Thus, we opted for submitting the output
of the systems without using the pattern features
and adopting only Glove features (Word2Vec had
lower coverage on the dataset). As it can be no-
ticed in Table 3, however, this decision has slightly

lowered the performance of our system in the com-
petition.

3.3 Feature Contribution
In order to measure the contribution of the fea-
tures, we re-ran the experiments over the test set,
after training our model on the three available sets:
training, validation and new validation sets.

Results are reported in Table 3, in which it is
easy to notice a few things: the performance is
strongly related to the choice of the training set,
with Validation being better that New Validation,
which is in turn better than the original Training
set; the thirteen co-occurrence features are those
that provide the major contribution to the perfor-
mance, reaching a F1 score of 0.72. Further useful
features are the word embedding vectors (900 fea-
tures), the word embedding features (5 features)
and, to some extent, the information from JoBim-
Text. Pattern-based features perform the worst, al-
most on par with random guessing.

The submitted systems do not correspond to the
systems obtaining the best performance in post-
evaluation experiments (see the bold and bold-
italics scores in Table 3); this was due to the use of
Glove instead of Word2Vec in our submitted sys-
tems, because none of the embedding models had
an edge over the other in the validation process.

4 Conclusions

In this paper we have presented BomJi, a su-
pervised system for capturing discriminative at-
tributes in word pairs (e.g. yellow as discrimina-
tive for banana over watermelon). BomJi relies on
an XGB classifier trained on carefully engineered



graph-, pattern- and word embedding-based fea-
tures. In the paper we have reported the contribu-
tion for each features, discussing the model selec-
tion and showing that a major factor affecting the
performance was the choice of the training data.

In the official Task 10 evaluation, our submitted
systems achieved an F1 score of 0.73, ranking 2nd
out of 26 participant systems.
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