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This paper describes BomJi, a supervised system for capturing discriminative attributes in word pairs (e.g. yellow as discriminative for banana over watermelon). The system relies on an XGB classifier trained on carefully engineered graph-, pattern-and word embeddingbased features. It participated in the SemEval-2018 Task 10 on Capturing Discriminative Attributes, achieving an F1 score of 0.73 and ranking 2nd out of 26 participant systems.

Introduction

The recent introduction of popular software packages for training neural word embeddings (Mikolov et al., 2013a,b;[START_REF] Levy | Neural Word Embedding as Implicit Matrix Factorization[END_REF] has led to an increase of the number of studies dedicated to lexical similarity and to remarkable performance improvements on related tasks [START_REF] Baroni | Don't Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors[END_REF].

However, the validity of similarity estimation as the only benchmark for semantic representations has been questioned, for several reasons. One for all, most evaluation datasets provide human-elicited similarity scores, with the consequences that the ratings are subjective and the performance of some automated systems is already above the upper bound of the inter-annotator agreement [START_REF] Batchkarov | A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models[END_REF][START_REF] Faruqui | Problems With Evaluation of Word Embeddings Using Word Similarity Tasks[END_REF]Santus et al., 2016a).

Originally proposed as an alternative benchmark for Distributional Semantic Models (DSMs), the Discriminative Attributes task focuses instead on the extraction of semantic differences between lexical meanings [START_REF] Krebs | Capturing Discriminative Attributes in a Distributional Space: Task Proposal[END_REF]: given two words and an attribute (i.e., a discrete semantic feature), a system has to predict whether the attribute describes a difference between the corresponding concepts or not (e.g. wing is an attribute of plane, but not of helicopter).

Since even related words may differ for some non-shared attributes (e.g. hypernyms and hyponyms), the ability of automatically recognize discriminative features would be an extremely useful addition for the creation of ontologies and other types of lexical resources and would make machine decisions interpretable, enabling human validation [START_REF] Biemann | A Framework for Enriching Lexical Semantic Resources with Distributional Semantics[END_REF]. Moreover, one can think to applications to many other NLP domains, such as machine translation and dialogue systems [START_REF] Krebs | Capturing Discriminative Attributes in a Distributional Space: Task Proposal[END_REF].

In the present contribution, we describe the BomJi classification system, which we used for the identification of discriminative features between concept pairs. According to the official evaluation results provided by the organizers1 , our system ranked second out of 26 participants. Our score, F 1 = 0.73 lags slightly behind the best score of 0.75. After the evaluation period, we run further experiments including all investigated features and found that the system can achieve up to 0.75 F1 score.

Capturing Discriminative Attributes

Task and Dataset Description

The task of capturing discriminative attributes between words can be described as a binary classification task, in which the system has to assign a positive label if the feature is discriminative for the first concept over the second one, and a negative label otherwise.

In the test data, the first two words correspond to the concepts being compared (they are called, respectively, the pivot and the comparison term) and the third word is the feature, which could describe a discriminative attribute or not (some examples are shown in Table 1). In the paper, we will refer to the elements of the triples as w1, w2 and f eat.

A training and validation set have been provided for system development (figures in Table 2).

Embeddings and Graphs

For the Discriminative Attributes task, we combined word embeddings, patterns and information extracted from a graph-based distributional model.

Concerning the word embeddings, we used the vectors produced by two popular frameworks for word embeddings: Word2Vec (Mikolov et al., 2013a,b) and GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF]. 2The Word2Vec Skip-Gram architecture is a singlelayer neural network, based on the dot-product between word vectors, in which the vector representation is optimized to predict the context of a target word given the word itself. The context generally consists of a word window of a fixed width around the target. The other framework, GloVe, is similar to traditional count models based on matrix factorization [START_REF] Peter | From Frequency to Meaning: Vector Space Models of Semantics[END_REF][START_REF] Baroni | Don't Count, Predict! A Systematic Comparison of Context-Counting vs. Context-Predicting Semantic Vectors[END_REF], in the sense that vectors are trained on global word-word co-occurrence counts. In the case of GloVe, the training objective is to learn word vectors such that their dot product equals the logarithm of the probability of the word to cooccur [START_REF] Pennington | Glove: Global vectors for word representation[END_REF].

As for graph-based information, we used the Jo-BimText architecture introduced by [START_REF] Biemann | Text: Now in 2D! A Framework for Lexical Expansion with Contextual Similarity[END_REF]. In JoBimText, lexical items are represented as the set of their p most salient contexts, where the contexts are words connected to the target by a given syntactic link or by a lexical pattern, and saliency is defined as an association measure between target and context, such as Positive Local Mutual Information [START_REF] Evert | The Statistics of Word Cooccurrences: Word Pairs and Collocations[END_REF]. Differently from vector models, similarity between words in JoBimText is simply based on the overlap count of their common contexts.

Regarding patterns, first we extracted sentences where words and their features co-occur from a web-scale sentence-based index of English web [START_REF] Panchenko | Building a Web-Scale Dependency-Parsed Corpus from Common Crawl[END_REF] and then we extracted the patterns connecting our target words.

Methodology

The predictions submitted for the evaluation of Task 10 were obtained with a system that consists of a classifier, the Extreme Gradient Boosting (or XGBoost, Chen and Guestrin ( 2016)), trained on vectors aggregating carefully engineered graph-, pattern-and word embedding features.

In this section, we provide an overview of each feature type, leaving the discussion of their contribution to Section 3. The total of 55,026 features we used can be divided into five major groups.

CO-OCCURRENCE. Thirteen features related to word and word-feature frequency were calculated on the basis of the information extracted from a corpus of 3.2B words, corresponding to about 20% of the Common Crawl. For each word-feature combination (i.e. w1 -f eat and w2 -f eat), we calculated: i) the co-occurrence count; ii) word count; iii) feature count; iv) Positive Pointwise Mutual Information (PPMI [START_REF] Church | Word Association Norms, Mutual Information, and Lexicography[END_REF])) between each word and the feature; v) Positive Local Mutual Information (PLMI [START_REF] Evert | The Statistics of Word Cooccurrences: Word Pairs and Collocations[END_REF])) between each word and the feature. Further, we added three features representing the subtractions between the values of i), iv) and v) for the two word-feature combinations.

JOBIMTEXT. Another set of twenty-four features comes directly from JoBimText. They were calculated after extracting information through the public accessible JoBimText API 3 , which returns a JSON file containing -for every target -a sorted list of N features and their association scores (up to N = 1, 000). As Jo-BimText distinguishes features according to their POS and dependency roles (i.e. features are in form WORD#POS#DEPENDENCY), a given f eat may appear multiple times in different POSdependency combinations. However, we found that f eat rarely appears in the top N features of w1 and w2, so we calculated our features not only for the given targets (i.e. w x ), but also for the first among their top 10 neighbors for which f eat was found (i.e. top(neighbor(w x ) f eat, max = 10)) and the first among the top 10 f eat neighbors for which the target was found (i.e. top(neighbor(f eat) w x , max = 10)). This allowed us to check also whether the neighbors of the given words were associated with the candidate discriminative attributes or vice versa. The features are defined as follows (here they are described only with reference to the query on w x , but this should be generalized to the other cases):

• prediction by rank: it is 1 if f eat is ranked higher for w1 than for w2, 0 otherwise;

• prediction by score: it is 1 if the total score between w1 -f eat is higher than for w2 -f eat, 0 otherwise;

• total score: sum of the scores of w1-f eat if prediction by score is 1, of w2 -f eat otherwise;

• top rank: top rank of f eat for w1 if prediction by score is 1, for w2 otherwise;

• bottom rank: last rank of f eat for w1 if prediction by score is 1, for w2 otherwise;

• number of occurrences: count of how many times a feature appears among the features of w1 if prediction by score is 1, otherwise the occurrences among the features w2 are counted;

• which neighbor?: integer showing whether the query was performed on w1/w2 (in this case it would be initialized to 0), or on its neighbors (in this case it would be initialized with the rank of the first neighbor where f eat was found);

• which f eat neighbor?: integer showing whether the query was performed on w1/w2 (in this case it would be initialized to 0) or on the f eat neighbors (in this case it would be initialized with the rank of the first f eat neighbor where w1 or w2 was found).

WORD EMBEDDING FEATURES. Mikolov et al. (2013a) showed how vector offsets encode semantic information. We decided to include five features computed from either the Word2Vec or the Glove vectors, in order to take advantage of the offset information.

They are computed, respectively, as: cos((w1 -w2), f eat), cos((w1 -f eat), (w2 -f eat)), cos((w1 -f eat), w2), cos((w2 -f eat), w1). Finally, also the cosine between the word vectors (i.e. cos((w1, w2)) has been included.

WORD EMBEDDING VECTORS. These features are the simple concatenation of the three vectors of w1, w2 and f eat. Again, we have two versions of these features, one for Word2Vec and one for Glove.

PATTERNS. In order to characterize the relation between words and features, we used an index to extract patterns occurring between them, independently of the order in which they appeared, and limited the maximum number of results to 10,000 sentences.

The patterns consist of sequences of either lemmatized tokens, POS or dependency tags, which are used to abstract from the surface form, thereby increasing the recall. Since the number of extracted patterns was far too high, we decided to use only patterns with a frequency higher than 100, obtaining a set of 53,136 items, using the observed pattern frequency per word pair as a predictor.

Experiments

Choosing the Training Set

During the practice phase, we noticed that the training set and the validation set show very different distributions. Running cross validation experiments on either dataset, we obtained very high scores (sometimes close to 0.95). However, such scores did not generalize to the other dataset, where they dropped to about 0.60.

This was only partially due to lexical memorization (some lexemes were present in multiple triples of the same dataset, cf. [START_REF] Levy | Do Supervised Distributional Methods Really Learn Lexical Inference Relations[END_REF]; Santus et al. (2016b)). In fact, investigating the frequency of the words in the triples, we found that, on average, in our index, the first and the second words, w1 and w2, were about four times more frequent in the validation than in the training set (respectively 4.7M and 5.4M versus 0.9M and 1M ); similarly, the third word (i.e. f eat) was almost twice more frequent in the validation than in the training set (i.e. 3.9M versus 2.9M ). When the test set was made available, we could verify that its frequency distribution resembled the one in the validation set, with the first and second words respectively at 3.3M and 2M , and the third at about 4.5M occurrences.

Given these differences, we have chosen to train our system only on the validation set, tuning the hyper-parameters by means of 5-fold cross validation. Because of its small size, we decided to train our second submission on a derived training set (henceforth New Validation), consisting of the 2,722 triples from the validation set plus 2,278 triples randomly extracted from the training, for a 1 &6) 0.67 (1, 3 &6) 0.66 (1, 5 &6) 0.62 0.74 (1 &6) 0.75 (1, 3 &6) *0.74 (1, 5 &6) 0.62 0.74 (1 &6) 0.75 (1, 3 &6) *0.73 (1, 5 &6 75 (1, 3, 6 &7) 0.74 (1, 5, 6 &7) 0.74 (1, 3, 5, 6 &7) 0.51 0.71 (1, 3, 6 &7) 0.69 (1, 5, 6 &7) 0.69 (1, 3, 5, 6 & 7) Table 3: Results both in absolute (F1) and in incremental terms (F1++: in brackets the features used to obtain the score) on the test set, organized by training set. In bold, we report the best results. In bold-italics, we report the submitted systems. total of 5,000 samples. The use of different training data was the only difference between the two submissions.

Model Selection

During the practice phase, we performed experiments with several classifiers, including K-Neighbors (with K = 3), Decision Tree (with max depth = 5), Random Forest (with max depth = 5, n estimators = 10 and max f eatures = 1), Multi-layer Perceptron (with alpha = 1), AdaBoost and XGB (the latter two with default settings).

Before running the classifiers, we also used Linear Support Vector Classification (SVC) with penalty = l1 and we tested several values of C (i.e. 0.05, 0.1, 0.25, 0.5, 1) for feature selection.

In almost all settings we found that the best performing classifiers were the Random Forest, the Multilayer Perceptron and, above all others, XGB. With respect to the value of C for the feature selection, instead, we noticed that it varied in relation to the feature types, with minor influence on the performance of XGB (+/-2%). In the final submission, therefore, we opted for removing this step from the pipeline and for keeping the full vector.

Concerning feature selection, we found that the pattern features had a neutral effect on the performance during cross validation. Similarly we noticed that Glove and Word2Vec performed comparably. Thus, we opted for submitting the output of the systems without using the pattern features and adopting only Glove features (Word2Vec had lower coverage on the dataset). As it can be noticed in Table 3, however, this decision has slightly lowered the performance of our system in the competition.

Feature Contribution

In order to measure the contribution of the features, we re-ran the experiments over the test set, after training our model on the three available sets: training, validation and new validation sets.

Results are reported in Table 3, in which it is easy to notice a few things: the performance is strongly related to the choice of the training set, with Validation being better that New Validation, which is in turn better than the original Training set; the thirteen co-occurrence features are those that provide the major contribution to the performance, reaching a F1 score of 0.72. Further useful features are the word embedding vectors (900 features), the word embedding features (5 features) and, to some extent, the information from JoBim-Text. Pattern-based features perform the worst, almost on par with random guessing.

The submitted systems do not correspond to the systems obtaining the best performance in postevaluation experiments (see the bold and bolditalics scores in Table 3); this was due to the use of Glove instead of Word2Vec in our submitted systems, because none of the embedding models had an edge over the other in the validation process.

Conclusions

In this paper we have presented BomJi, a supervised system for capturing discriminative attributes in word pairs (e.g. yellow as discriminative for banana over watermelon). BomJi relies on an XGB classifier trained on carefully engineered graph-, pattern-and word embedding-based features. In the paper we have reported the contribution for each features, discussing the model selection and showing that a major factor affecting the performance was the choice of the training data.

In the official Task 10 evaluation, our submitted systems achieved an F1 score of 0.73, ranking 2nd out of 26 participant systems.

Table 1 :

 1 Examples of triples from the training dataset.

	Pivot	Comparison Feature Label
	belt		plate	buckles	1
	orange	cherry	sections	1
	razor	brush	mink	0
	necklace	bracelet	clasp	0
	Dataset	Examples Features	Split P-N
	Training		17,782	1,292	37.06%-62.94%
	Validation		2,722	576	50.1%-49.9%
	Test		2,340	577	44.74%-55.26%

Table 2 :

 2 Number of examples, distinctive features and Positive-Negative split for each dataset.

https://competitions.codalab.org/ competitions/17326#results

The pre-trained vectors are available, respectively, at https://code.google.com/archive/p/ word2vec/ (Google News,

dimensions) and at https://nlp.stanford.edu/projects/glove/ (Common Crawl, 840B tokens, 300 dimensions).

See www.jobimtext.org