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Efficiently exploiting the resources of data centers is a complex task that requires
efficient and reliable load balancing and resource allocation algorithms. The former
are in charge of assigning jobs to servers upon their arrival in the system, while the
latter are responsible for sharing server resources between their assigned jobs. These
algorithms should take account of various constraints, such as data locality, that re-
strict the feasible job assignments. In this paper, we propose a token-based mecha-
nism that efficiently balances load between servers without requiring any knowledge
on job arrival rates and server capacities. Assuming a balanced fair sharing of the
server resources, we show that the resulting dynamic load balancing is insensitive to
the job size distribution. Its performance is compared to that obtained under the
best static load balancing and in an ideal system that would constantly optimize
the resource utilization.

1 Introduction

The success of cloud services encourages operators to scale out their data centers and opti-
mize the resource utilization. The current trend consists in virtualizing applications instead
of running them on dedicated physical resources [2]. Each server may then process several
applications in parallel and each application may be distributed among several servers. Better
understanding the dynamics of such server pools is a prerequisite for developing load balancing
and resource allocation policies that fully exploit this new degree of flexibility.

Some recent works have tackled this problem from the point of view of queueing theory
[1, 15, 9, 4]. Their common feature is the adoption of a bipartite graph that translates practical
constraints such as data locality into compatibility relations between jobs and servers. These
models apply in various systems such as computer clusters, where the shared resource is the
CPU [9, 4], and content delivery networks, where the shared resource is the server upload band-
width [15]. However, these pool models do not consider simultaneously the impact of complex
load balancing and resource allocation policies. The model of [1] lays emphasis on dynamic
load balancing, assuming neither server multitasking nor job parallelism. The bipartite graph
describes the initial compatibilities of incoming jobs, each of them being eventually assigned to a
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Figure 1: A compatibility graph between types, classes and servers. Two consecutive servers
can be pooled to process jobs in parallel. Thus there are two classes, one for servers
1 and 2 and another for servers 2 and 3. Type-1 jobs can be assigned to any class,
while type-2 jobs can only be assigned to the latter. This restriction may result from
data locality constraints for instance.

single server. On the other hand, [9, 15, 4] focus on the problem of resource allocation, assuming
a static load balancing that assigns incoming jobs to classes at random, independently of the
system state. The class of a job in the system identifies the set of servers that can be pooled to
process it in parallel. The corresponding bipartite graph, connecting classes to servers, restricts
the set of feasible resource allocations.

In this paper, we introduce a tripartite graph that explicitly differentiates the compatibilities
of an incoming job from its actual assignment by the load balancer. This new model allows us
to study the joint effect of load balancing and resource allocation. A toy example is shown in
Figure 1. Each incoming job has a type that defines its compatibilities; these may reflect its
parallelization degree or locality constraints, for instance. Depending on the system state, the
load balancer matches the job with a compatible class that subsequently determines its assigned
servers. The upper part of our graph, which puts constraints on load balancing, corresponds to
the bipartite graph of [1]; the lower part, which restricts the resource allocation, corresponds to
the bipartite graph of [9, 15, 4].

We use this new framework to study load balancing and resource allocation policies that are
insensitive, in the sense that they make the system performance independent of fine-grained
traffic characteristics. This property is highly desirable as it allows service providers to di-
mension their infrastructure based on average traffic predictions only. It has been extensively
studied in the queueing literature [6, 7, 5, 15]. In particular, insensitive load balancing policies
were introduced in [5] in a generic queueing model, assuming an arbitrary insensitive allocation
of the resources. These load balancing policies were defined as a generalization of the static
load balancing described above, where the assignment probabilities of jobs to classes depend on
both the job type and the system state, and are chosen to preserve insensitivity.

Our main contribution is an algorithm based on tokens that enforces such an insensitive load
balancing without performing randomized assignments. To the best of our knowledge, this is
the first deterministic implementation of an insensitive load balancing that adapts dynamically
to the system state, under an arbitrary compatibility graph. The principle is as follows. The
assignments are regulated through a bucket containing a fixed number of tokens of each class.
An incoming job seizes the longest available token among those that identify a compatible class,
and is blocked if it does not find any. The rationale behind this algorithm is to use the release
order of tokens as an information on the relative load of their servers: a token that has been
available for a long time without being seized is likely to identify a server set that is less loaded
than others. As we will see, our algorithm mirrors the first-come, first-served (FCFS) service
discipline proposed in [4] to implement balanced fairness, which was defined in [7] as the most
efficient insensitive resource allocation.
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The closest existing algorithm we know is first-come, first-served and assign longest idle server
(FCFS-ALIS), introduced in reference [1] cited above. Note that [1] assumes that incoming jobs
are kept waiting if they do not find compatible tokens, while our algorithm would reject them.
Apart from this, FCFS-ALIS can be seen as a special case of our algorithm where each class
identifies a server with a single token. Our algorithm is also related to the blocking version of
Join-Idle-Queue [13] studied in [16]. More precisely, we could easily generalize our algorithm
to server pools with several load balancers, each with their own bucket. The corresponding
queueing model, still tractable using known results on networks of quasi-reversible queues [11],
extends that of [16].

Organization of the paper Section 2 recalls known facts about resource allocation in server
pools. We describe a standard pool model based on a bipartite compatibility graph and explain
how to apply balanced fairness in this model. Section 3 contains our main contributions. We
describe our pool model based on a tripartite graph and introduce a new token-based insensitive
load balancing mechanism. Numerical results are presented in Section 4.

2 Resource allocation

We first recall the model considered in [9, 15, 4] to study the problem of resource allocation in
server pools. This model will be extended in Section 3 to integrate dynamic load balancing.

2.1 Model

We consider a pool of S servers. There are N job classes and we let I = {1, . . . , N} denote the
set of class indices. For now, each incoming job is assigned to a compatible class at random,
independently of the system state. For each i ∈ I, the resulting arrival process of jobs assigned
to class i is assumed to be Poisson with a rate λi > 0 that may depend on the job arrival rates,
compatibilities and assignment probabilities. The number of jobs of class i in the system is
limited by `i, for each i ∈ I, so that a new job is blocked if its assigned class is already full.
Job sizes are independent and exponentially distributed with unit mean. Each job leaves the
system immediately after service completion.

The class of a job defines the set of servers that can be pooled to process it. Specifically,
for each i ∈ I, a job of class i can be served in parallel by any subset of servers within the
non-empty set Si ⊂ {1, . . . , S}. This defines a bipartite compatibility graph between classes
and servers, where there is an edge between a class and a server if the jobs of this class can be
processed by this server. Figure 2 shows a toy example.

µ1 µ2 µ3

λ1 λ2

Servers

Job classes

Figure 2: A compatibility graph between classes and servers. Servers 1 and 3 are dedicated,
while server 2 can serve both classes. The server sets associated with classes 1 and 2
are S1 = {1, 2} and S2 = {2, 3}, respectively.

When a job is in service on several servers, its service rate is the sum of the rates allocated
by each server to this job. For each s = 1, . . . , S, the capacity of server s is denoted by µs > 0.
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We can then define a function µ on the power set of I as follows: for each A ⊂ I,

µ(A) =
∑

s∈
⋃

i∈A Si

µs

denotes the aggregate capacity of the servers that can process at least one class in A, i.e., the
maximum rate at which jobs of these classes can be served. µ is a submodular, non-decreasing
set function [8]. It is said to be normalized because µ(∅) = 0.

2.2 Balanced fairness

We first recall the definition of balanced fairness [7], which was initially applied to server pools
in [15]. Like processor sharing (PS) policy, balanced fairness assumes that the capacity of each
server can be divided continuously between its jobs. It is further assumed that the resource
allocation only depends on the number of jobs of each class in the system; in particular, all jobs
of the same class receive service at the same rate.

The system state is described by the vector x = (xi : i ∈ I) of numbers of jobs of each class
in the system. The state space is X = {x ∈ NN : x ≤ `}, where ` = (`i : i ∈ I) is the vector
of per-class constraints and the comparison ≤ is taken componentwise. For each i ∈ I, we
let φi(x) denote the total service rate allocated to class-i jobs in state x. It is assumed to be
nonzero if and only if xi > 0, in which case each job of class i receives service at rate φi(x)/xi.

Queueing model Since all jobs of the same class receive service at the same rate, we can
describe the evolution of the system with a network of N PS queues with state-dependent
service capacities. For each i ∈ I, queue i contains jobs of class i; the arrival rate at this queue
is λi and its service capacity is φi(x) when the network state is x. An example is shown in
Figure 3 for the configuration of Figure 2.

φ1(x)

x1 = 3

λ1

φ2(x)

x2 = 2

λ2

Figure 3: An open Whittle network of N = 2 queues associated with the server pool of Figure 2.

Capacity set The compatibilities between classes and servers restrict the set of feasible resource
allocations. Specifically, the vector (φi(x) : i ∈ I) of per-class service rates belongs to the
following capacity set in any state x ∈ X :

Σ =

{
φ ∈ RN+ :

∑
i∈A

φi ≤ µ(A), ∀A ⊂ I

}
.

As observed in [15], the properties satisfied by µ guarantee that Σ is a polymatroid [8].
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Balance function It was shown in [6] that the resource allocation is insensitive if and only if
there is a balance function Φ defined on X such that Φ(0) = 1 and

φi(x) =
Φ(x− ei)

Φ(x)
, ∀x ∈ X , ∀i ∈ I(x), (1)

where ei is the N -dimensional vector with 1 in component i and 0 elsewhere and I(x) = {i ∈
I : xi > 0} is the set of active classes in state x. Under this condition, the network of PS queues
defined above is a Whittle network [14]. The insensitive resource allocations that respect the
capacity constraints of the system are characterized by a balance function Φ such that, for all
x ∈ X \ {0},

Φ(x) ≥ 1

µ(A)

∑
i∈A

Φ(x− ei), ∀A ⊂ I(x), A 6= ∅.

Recursively maximizing the overall service rate in the system is then equivalent to minimizing
Φ by choosing

Φ(x) = max
A⊂I(x),
A6=∅

(
1

µ(A)

∑
i∈A

Φ(x− ei)

)
, ∀x ∈ X \ {0}.

The resource allocation defined by this balance function is called balanced fairness.
It was shown in [15] that balanced fairness is Pareto-efficient in polymatroid capacity sets,

meaning that the total service rate
∑

i∈I(x) φi(x) is always equal to the aggregate capacity
µ(I(x)) of the servers that can process at least one active class. By (1), this is equivalent to

Φ(x) =
1

µ(I(x))

∑
i∈I(x)

Φ(x− ei), ∀x ∈ X \ {0}. (2)

Stationary distribution The Markov process defined by the system state x is reversible, with
stationary distribution

π(x) = π(0)Φ(x)
∏
i∈I

λi
xi , ∀x ∈ X . (3)

By insensitivity, the system state has the same stationary distribution if the jobs sizes within
each class are only i.i.d., as long as the traffic intensity of class i (defined as the average quantity
of work brought by jobs of this class per unit of time) is λi, for each i ∈ I. A proof of this result
is given in [6] for Cox distributions, which form a dense subset within the set of distributions
of nonnegative random variables.

2.3 Job scheduling

We now describe the sequential implementation of balanced fairness that was proposed in [4].
This will lay the foundations for the results of Section 3.

We still assume that a job can be distributed among several servers, but we relax the as-
sumption that servers can process several jobs at the same time. Instead, each server processes
its jobs sequentially in FCFS order. When a job arrives, it enters in service on every idle server
within its assignment, if any, so that its service rate is the sum of the capacities of these servers.
When the service of a job is complete, it leaves the system immediately and its servers are re-
allocated to the first job they can serve in the queue. Note that this sequential implementation
also makes sense in a model where jobs are replicated over several servers instead of being pro-
cessed in parallel. For more details, we refer the reader to [9] where the model with redundant
requests was introduced.
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Since the arrival order of jobs impacts the rate allocation, we need to detail the system state.
We consider the sequence c = (c1, . . . , cn) ∈ I∗, where n is the number of jobs in the system
and cp is the class of the p-th oldest job, for each p = 1, . . . , n. ∅ denotes the empty state, with
n = 0. The vector of numbers of jobs of each class in the system, corresponding to the state
introduced in §2.2, is denoted by |c| = (|c|i : i ∈ I) ∈ X . It does not define a Markov process in
general. We let I(c) = I(|c|) denote the set of active classes in state c. The state space of this
detailed system state is C = {c ∈ I∗ : |c| ≤ `}.

Queueing model Each job is in service on all the servers that were assigned this job but not
those that arrived earlier. For each p = 1, . . . , n, the service rate of the job in position p is thus
given by ∑

s∈Scp\
⋃p−1

q=1 Scq

µs = µ(I(c1, . . . , cp))− µ(I(c1, . . . , cp−1)),

with the convention that (c1, . . . , cp−1) = ∅ if p = 1. The service rate of a job is independent of
the jobs arrived later in the system. Additionally, the total service rate µ(I(c)) is independent
of the arrival order of jobs. The corresponding queueing model is an order-independent (OI)
queue [3, 12]. An example is shown in Figure 4 for the configuration of Figure 2.

2 1 2 1 1

c = (1, 1, 2, 1, 2)

µ(I(c))
λ1
λ2

Figure 4: An OI queue with N = 2 job classes associated with the server pool of Figure 2. The
job of class 1 at the head of the queue is in service on servers 1 and 2. The third job,
of class 2, is in service on server 3. Aggregating the state c yields the state x of the
Whittle network of Figure 3.

Stationary distribution The Markov process defined by the system state c is irreducible. The
results of [12] show that this process is quasi-reversible, with stationary distribution

π(c) = π(∅)Φ(c)
∏
i∈I

λi
|c|i , ∀c ∈ C, (4)

where Φ is defined recursively on C by Φ(∅) = 1 and

Φ(c) =
1

µ(I(c))
Φ(c1, . . . , cn−1), ∀c ∈ C \ {∅}. (5)

We now go back to the aggregate state x giving the number of jobs of each class in the system.
With a slight abuse of notation, we let

π(x) =
∑
c:|c|=x

π(c) and Φ(x) =
∑
c:|c|=x

Φ(c), ∀x ∈ X .

As observed in [12, 4], if follows from (4) that

π(x) = π(∅)

 ∑
c:|c|=x

Φ(c)

∏
i∈I

λi
xi = π(0)Φ(x)

∏
i∈I

λi
xi
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in any state x. Using (5), we can show that Φ satisfies (2) with the initial condition Φ(0) =
Φ(∅) = 1. Hence, the stationary distribution of the aggregate system state x is exactly that
obtained in §2.2 under balanced fairness.

It was also shown in [4] that the average per-class resource allocation resulting from FCFS
service discipline is balanced fairness. In other words, we have

φi(x) =
∑
c:|c|=x

π(c)

π(x)
µi(c), ∀x ∈ X , ∀i ∈ I(x),

where φi(x) is the total service rate allocated to class-i jobs in state x under balanced fairness,
given by (1), and µi(c) denotes the service rate received by the first job of class i in state c
under FCFS service discipline:

µi(c) =
n∑
p=1
cp=i

(µ(I(c1, . . . , cp))− µ(I(c1, . . . , cp−1))).

Observe that, by (3) and (4), the rate equality simplifies to

φi(x) =
∑
c:|c|=x

Φ(c)

Φ(x)
µi(c), ∀x ∈ X , ∀i ∈ I(x). (6)

We will use this last equality later.
As it is, the FCFS service discipline is very sensitive to the job size distribution. [4] mitigates

this sensitivity by frequently interrupting jobs and moving them to the end of the queue, in
the same way as round-robin scheduling algorithm in the single-server case. In the queueing
model, these interruptions and resumptions are represented approximately by random routing,
which leaves the stationary distribution unchanged by quasi-reversibility [11, 14]. If the inter-
ruptions are frequent enough, then all jobs of a class tend to receive the same service rate on
average, which is that obtained under balanced fairness. In particular, performance becomes
approximately insensitive to the job size distribution within each class.

3 Load balancing

The previous section has considered the problem of resource sharing. We now focus on dynamic
load balancing, using the fact that each job may be a priori compatible with several classes and
assigned to one of them upon arrival. We first extend the model of §2.1 to add this new degree
of flexibility.

3.1 Model

We again consider a pool of S servers. There are N job classes and we let I = {1, . . . , N} denote
the set of class indices. The compatibilities between job classes and servers are described by a
bipartite graph, as explained in §2.1. Additionally, we assume that the arrivals are divided into
K types, so that the jobs of each type enter the system according to an independent Poisson
process. Job sizes are independent and exponentially distributed with unit mean. Each job
leaves the system immediately after service completion.

The type of a job defines the set of classes it can be assigned to. This assignment is performed
instantaneously upon the job arrival, according to some decision rule that will be detailed later.
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For each i ∈ I, we let Ki ⊂ {1, . . . ,K} denote the non-empty set of job types that can be
assigned to class i. This defines a bipartite compatibility graph between types and classes,
where there is an edge between a type and a class if the jobs of this type can be assigned to this
class. Overall, the compatibilities are described by a tripartite graph between types, classes,
and servers. Figure 1 shows a toy example.

For each k = 1, . . . ,K, the arrival rate of type-k jobs in the system is denoted by νk > 0. We
can then define a function ν on the power set of I as follows: for each A ⊂ I,

ν(A) =
∑

k∈
⋃

i∈AKi

νk

denotes the aggregate arrival rate of the types that can be assigned to at least one class in A. ν
satisfies the submodularity, monotonicity and normalization properties satisfied by the function
µ of §2.1.

3.2 Randomized load balancing

We now express the insensitive load balancing of [5] in our new server pool model. This extends
the static load balancing considered earlier. Incoming jobs are assigned to classes at random,
and the assignment probabilities depend not only on the job type but also on the system state.
As in §2.2, we assume that the capacity of each server can be divided continuously between its
jobs. The resources are allocated by applying balanced fairness in the capacity set defined by
the bipartite compatibility graph between job classes and servers.

Open queueing model We first recall the queueing model considered in [5] to describe the
randomized load balancing. As in §2.2, jobs are gathered by class in PS queues with state-
dependent service capacities given by (1). Hence, the type of a job is forgotten once it is
assigned to a class.

Similarly, we record the job arrivals depending on the class they are assigned to, regardless
of their type before the assignment. The Poisson arrival assumption ensures that, given the
system state, the time before the next arrival at each class is exponentially distributed and
independent of the arrivals at other classes. The rates of these arrivals result from the load
balancing. We write them as functions of the vector y = `−x of numbers of available positions
at each class. Specifically, λi(y) denotes the arrival rate of jobs assigned to class i when there
are yj available positions in class j, for each j ∈ I.

φ1(x)

x1 = 3

φ2(x)

x2 = 2

λ1(`− x)

λ2(`− x)

(a) An open Whittle network with state-dependent
arrival rates.

λ1(y)

y1 = 1

λ2(y)

y2 = 2

φ1(x)

x1 = 3

φ2(x)

x2 = 2

Class-1
tokens

Class-2
tokens

(b) A closed queueing system consisting of two
Whittle networks.

Figure 5: Alternative representations of a Whittle network associated with the server pool of
Figure 1. At most `1 = `2 = 4 jobs can be assigned to each class.
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The system can thus be modeled by a network of N PS queues with state-dependent arrival
rates, as shown in Figure 5a.

Closed queueing model We introduce a second queueing model that describes the system
dynamics differently. It will later simplify the study of the insensitive load balancing by drawing
a parallel with the resource allocation of §2.2.

Our alternative model stems from the following observation: since we impose limits on the
number of jobs of each class, we can indifferently assume that the arrivals are limited by the
intermediary of buckets containing tokens. Specifically, for each i ∈ I, the assignments to class
i are controlled through a bucket filled with `i tokens. A job that is assigned to class i removes
a token from this bucket and holds it until its service is complete. The assignments to a class
are suspended when the bucket of this class is empty, and they are resumed when a token of
this class is released.

Each token is either held by a job in service or waiting to be seized by an incoming job. We
consider a closed queueing model that reflects this alternation: a first network of N queues
contains tokens held by jobs in service, as before, and a second network of N queues contains
available tokens. For each i ∈ I, a token of class i alternates between the queues indexed by i
in the two networks. This is illustrated in Figure 5b.

The state of the network containing tokens held by jobs in service is x. The queues in this
network apply PS service discipline and their service capacities are given by (1). The state of
the network containing available tokens is y = ` − x. For each i ∈ I, the service of a token
at queue i in this network is triggered by the arrival of a job assigned to class i. The service
capacity of this queue is thus equal to λi(y) in state y. Since all tokens of the same class are
exchangeable, we can assume indifferently that we pick one of them at random, so that the
service discipline of the queue is PS.

Capacity set The compatibilities between job types and classes restrict the set of feasible
load balancings. Specifically, the vector (λi(y) : i ∈ I) of per-class arrival rates belongs to the
following capacity set in any state y ∈ X :

Γ =

{
λ ∈ RN+ :

∑
i∈A

λi ≤ ν(A), ∀A ⊂ I

}
.

The properties satisfied by ν guarantee that Γ is a polymatroid.

Balance function Our token-based reformulation allows us to interpret dynamic load balancing
as a problem of resource allocation in the network of queues containing available tokens. This
will allow us to apply the results of §2.2.

It was shown in [5] that the load balancing is insensitive if and only if there is a balance
function Λ defined on X such that Λ(0) = 1, and

λi(y) =
Λ(y − ei)

Λ(y)
, ∀y ∈ X , ∀i ∈ I(y). (7)

Under this condition, the network of PS queues containing available tokens is a Whittle network.
The Pareto-efficiency of balanced fairness in polymatroid capacity sets can be understood as

follows in terms of load balancing. We consider the balance function Λ defined recursively on
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X by Λ(0) = 1 and

Λ(y) =
1

ν(I(y))

∑
i∈I(y)

Λ(y − ei), ∀y ∈ X \ {0}. (8)

Then Λ defines a load balancing that belongs to the capacity set Γ in each state y. By (7), this
load balancing satisfies ∑

i∈I(y)

λi(y) = ν(I(y)), ∀y ∈ X ,

meaning that an incoming job is accepted whenever it is compatible with at least one available
token.

Stationary distribution The Markov process defined by the system state x is reversible, with
stationary distribution

π(x) =
1

G
Φ(x)Λ(`− x), ∀x ∈ X , (9)

where G is a normalization constant. Note that we could symmetrically give the stationary
distribution of the Markov process defined by the vector y = ` − x of numbers of available
tokens. As mentioned earlier, the insensitivity of balanced fairness is preserved by the load
balancing.

3.3 Deterministic token mechanism

Our closed queueing model reveals that the randomized load balancing is dual to the balanced
fair resource allocation. This allows us to propose a new deterministic load balancing algorithm
that mirrors the FCFS service discipline of §2.3. This algorithm can be combined indifferently
with balanced fairness or with the sequential FCFS scheduling; in both cases, we show that it
implements the load balancing defined by (7).

All available tokens are now sorted in order of release in a single bucket. The longest available
tokens are in front. An incoming job scans the bucket from beginning to end and seizes the
first compatible token; it is blocked if it does not find any. For now, we assume that the server
resources are allocated to the accepted jobs by applying the FCFS service discipline of §2.3.
When the service of a job is complete, its token is released and added to the end of the bucket.

We describe the system state with a couple (c, t) retaining both the arrival order of jobs and
the release order of tokens. Specifically, c = (c1, . . . , cn) ∈ C is the sequence of classes of (tokens
held by) jobs in service, as before, and t = (t1, . . . , tm) ∈ C is the sequence of classes of available
tokens, ordered by release, so that t1 is the class of the longest available token. Given the total
number of tokens of each class in the system, any feasible state satisfies |c|+ |t| = `.

Queueing model Depending on its position in the bucket, each available token is seized by
any incoming job whose type is compatible with this token but not with the tokens released
earlier. For each p = 1, . . . ,m, the token in position p is thus seized at rate∑

k∈Ktp\
⋃p−1

q=1 Ktq

νk = ν(I(t1, . . . , tp))− ν(I(t1, . . . , tp−1)).

The seizing rate of a token is independent of the tokens released later. Additionally, the total
rate at which available tokens are seized is ν(I(y)), independently of their release order. The
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bucket can thus be modeled by an OI queue, where the service of a token is triggered by the
arrival of a job that seizes this token.

The evolution of the sequence of tokens held by jobs in service also defines an OI queue, with
the same dynamics as in §2.3. Overall, the system can be modeled by a closed tandem network
of two OI queues, as shown in Figure 6.

2 1 2 1 1

c = (1, 1, 2, 1, 2)

µ(I(c))

1 2 2

t = (1, 2, 2)

ν(I(t))

Figure 6: A closed tandem network of two OI queues associated with the server pool of Figure 1.
At most `1 = `2 = 4 jobs can be assigned to each class. The state is (c, t), with
c = (1, 1, 2, 1, 2) and t = (1, 2, 2). The corresponding aggregate state is that of the
network of Figure 5. An incoming job of type 1 would seize the available token in first
position (of class 1), while an incoming job of type 2 would seize the available token
in second position (of class 2).

Stationary distribution Assuming Si 6= Sj or Ki 6= Kj for each pair {i, j} ⊂ I of classes, the
Markov process defined by the detailed state (c, t) is irreducible. The proof is provided in the
appendix. Known results on networks of quasi-reversible queues [11] then show that this process
is quasi-reversible, with stationary distribution

π(c, t) =
1

G
Φ(c)Λ(t), ∀c, t ∈ C : |c|+ |t| = `,

where Φ is defined by the recursion (5) and the initial step Φ(∅) = 1, as in §2.3; similarly, Λ is
defined recursively on C by Λ(∅) = 1 and

Λ(t) =
1

ν(I(t))
Λ(t1, . . . , tm−1), ∀t ∈ C \ {∅}.

We go back to the aggregate state x giving the number of tokens of each class held by jobs
in service. With a slight abuse of notation, we define its stationary distribution by

π(x) =
∑
c:|c|=x

∑
t:|t|=`−x

π(c, t), ∀x ∈ X . (10)

As in §2.3, we can show that we have

π(x) =
1

G
Φ(x)Λ(`− x), ∀x ∈ X ,

where the functions Φ and Λ are defined on X by

Φ(x) =
∑
c:|c|=x

Φ(c) and Λ(y) =
∑
t:|t|=y

Λ(t), ∀x, y ∈ X ,

11



respectively. These functions Φ and Λ satisfy the recursions (2) and (8), respectively, with
the initial conditions Φ(0) = Λ(0) = 1. Hence, the aggregate stationary distribution of the
system state x is exactly that obtained in §3.2 by combining the randomized load balancing
with balanced fairness.

Also, using the definition of Λ, we can rewrite (6) as follows: for each x ∈ X and i ∈ I(x),

φi(x) =
∑
c:|c|=x

1
GΦ(c)

∑
t:|t|=`−x Λ(t)

1
GΦ(x)Λ(`− x)

µi(c),

=
∑
c:|c|=x

∑
t:|t|=`−x

π(c, t)

π(x)
µi(c).

Hence, the average per-class service rates are still as defined by balanced fairness. By symmetry,
it follows that the average per-class arrival rates, ignoring the release order of tokens, are as
defined by the randomized load balancing. Specifically, for each y ∈ X and i ∈ I(y), we have

λi(y) =
∑

c:|c|=`−y

∑
t:|t|=y

π(c, t)

π(`− y)
νi(t),

where λi(y) is the arrival rate of jobs assigned to class i in state y under the randomized load
balancing, given by (7), and νi(t) denotes the rate at which the first available token of class i is
seized under the deterministic load balancing:

νi(t) =
m∑
p=1
tp=i

(ν(I(t1, . . . , tp))− ν(I(t1, . . . , tp−1))).

As in §2.3, the stationary distribution of the system state is unchanged by the addition of
random routing, as long as the average traffic intensity of each class remains constant. Hence
we can again reach some approximate insensitivity to the job size distribution within each class
by enforcing frequent job interruptions and resumptions.

Application with balanced fairness As announced earlier, we can also combine our token-
based load balancing algorithm with balanced fairness. The assignment of jobs to classes is
still regulated by a single bucket containing available tokens, sorted in release order, but the
resources are now allocated according to balanced fairness. The corresponding queueing model
consists of an OI queue and a Whittle network, as represented in Figure 7.

2 2 1

t = (1, 2, 2)

ν(I(t))

φ1(x)

x1 = 3

φ2(x)

x2 = 2

Class-1
tokens

Class-2
tokens

Figure 7: A closed queueing system, consisting of an OI queue and a Whittle network, associated
with the server pool of Figure 1. At most `1 = `2 = 4 jobs can be assigned to each
class.
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The intermediary state (x, t), retaining the release order of available tokens but not the arrival
order of jobs, defines a Markov process. Its stationary distribution follows from known results
on networks of quasi-reversible queues [11]:

π(x, t) =
1

G
Φ(x)Λ(t), ∀x ∈ X , ∀t ∈ C : x+ |t| = `.

We can show as before that the average per-class arrival rates, ignoring the release order of
tokens, are as defined by the dynamic load balancing of §3.2.

The insensitivity of balanced fairness to the job size distribution within each class is again
preserved. The proof of [6] for Cox distributions extends directly. Note that this does no imply
that performance is insensitive to the job size distribution within each type. Indeed, if two job
types with different size distributions can be assigned to the same class, then the distribution
of the job sizes within this class may be correlated to the system state upon their arrival. This
point will be assessed by simulation in Section 4.

Observe that our token-based mechanism can be applied to balance the load between the
queues of an arbitrary Whittle network, as represented in Figure 7, independently of the system
considered. Examples or such systems are given in [5].

4 Numerical results

We finally consider two examples that give insights on the performance of our token-based
algorithm. We especially make a comparison with the static load balancing of Section 2 and
assess the insensitivity to the job size distribution within each type. We refer the reader to [10]
for a large-scale analysis in homogeneous pools with a single job type, along with a comparison
with other (non-insensitive) standard policies.

Performance metrics for Poisson arrival processes and exponentially distributed sizes with unit
mean follow from (9). By insensitivity, these also give the performance when job sizes within
each class are i.i.d., as long as the traffic intensity is unchanged. We resort to simulations to
evaluate performance when the job size distribution is type-dependent.

Performance is measured by the job blocking probability and the resource occupancy. For
each k = 1, . . . ,K, we let

βk =
1

G

∑
x≤`:

xi=`i, ∀i∈I:k∈Ki

Φ(x)Λ(`− x)

denote the probability that a job of type k is blocked upon arrival. The equality follows from
PASTA property [14]. Symmetrically, for each s = 1, . . . , S, we let

ψs =
1

G

∑
x≤`:

xi=0, ∀i∈I:s∈Si

Φ(x)Λ(`− x)

denote the probability that server s is idle. These quantities are related by the conservation
equation

K∑
k=1

νk(1− βk) =
S∑
s=1

µs(1− ψs). (11)
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We define respectively the average blocking probability and the average resource occupancy by

β =

∑K
k=1 νkβk∑K
k=1 νk

and η =

∑S
s=1 µs(1− ψs)∑S

s=1 µs
.

There is a simple relation between β and η. Indeed, if we let ρ = (
∑K

k=1 νk)/(
∑S

s=1 µs) denote
the total load in the system, then we can rewrite (11) as ρ(1− β) = η.

As expected, minimizing the average blocking probability is equivalent to maximizing the
average resource occupancy. It is however convenient to look at both metrics in parallel. As
we will see, when the system is underloaded, jobs are almost never blocked and it is easier to
describe the (almost linear) evolution of the resource occupancy. On the contrary, when the
system is overloaded, resources tend to be maximally occupied and it is more interesting to
focus on the blocking probability.

Observe that any stable server pool satisfies the conservation equation (11). In particular,
the average blocking probability β in a stable system cannot be less than 1− 1

ρ when ρ > 1. A
similar argument applied to each job type imposes that

βk ≥ max

0, 1− 1

νk

∑
s∈

⋃
i:k∈Ki

Si

µs

 , (12)

for each k = 1, . . . ,K.

4.1 A single job type

We first consider a pool of S = 10 servers with a single type of jobs (K = 1), as shown in
Figure 8. Each class identifies a unique server and each job can be assigned to any class. Half
of the servers have a unit capacity µ and the other half have capacity 4µ. Each server has ` = 6
tokens and applies PS policy to its jobs. We do not look at the insensitivity to the job size
distribution in this case, as there is a single job type.

Servers with capacity µ Servers with capacity 4µ

ν

Figure 8: A server pool with a single job type. Classes are omitted because each of them
corresponds to a single server.

Comparison We compare the performance of our algorithm with that of the static load bal-
ancing of Section 2, where each job is assigned to a server at random, independently of system
state, and blocked if its assigned server is already full. We consider two variants, best static and
uniform static, where the assignment probabilities are proportional to the server capacities and
uniform, respectively. Ideal refers to the lowest average blocking probability that complies with
the system stability. According to (11), it is 0 when ρ ≤ 1 and 1− 1

ρ when ρ > 1. One can think
of it as the performance in an ideal server pool where resources would be constantly optimally
utilized. The results are shown in Figure 9.
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Figure 9: Performance of the dynamic load balancing in the pool of Figure 8. Average blocking
probability (bottom plot) and resource occupancy (top plot).

The performance gain of our algorithm compared to the static policies is maximal near the
critical load ρ = 1, which is also the area where the delta with ideal is maximal. Elsewhere, all
load balancing policies have a comparable performance. Our intuition is as follows: when the
system is underloaded, servers are often available and the blocking probability is low anyway;
when the system is overloaded, resources are congested and the blocking probability is high
whichever scheme is utilized. Observe that the performance under uniform static deteriorates
faster, even when ρ < 1, because the servers with the lowest capacity, concentrating half of the
arrivals with only 1

5 -th of the service capacity, are congested whenever ρ > 2
5 . This stresses the

need for accurate rate estimations under a static load balancing.

Asymptotics when the number of tokens increases We now focus on the impact of the
number of tokens on the performance of the dynamic load balancing. A direct calculation
shows that the average blocking probability decreases with the number ` of tokens per server,
and tends to ideal as `→ +∞. Intuitively, having many tokens gives a long run feedback on the
server loads without blocking arrivals more than necessary (to preserve stability). The results
are shown in Figure 10.
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Figure 10: Impact of the number of tokens on the average blocking probability under the dy-
namic load balancing in the pool of Figure 8.

We observe that the convergence to the asymptotic ideal is quite fast. The largest gain
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is obtained with small values of ` and the performance is already close to the optimal with
` = 10 tokens per server. Hence, we can reach a low blocking probability even when the
number of tokens is limited, for instance to guarantee a minimum service rate per job or respect
multitasking constraints on the servers.

4.2 Several job types

We now consider a pool of S = 6 servers, all with the same unit capacity µ, as shown in
Figure 11. As before, there is no parallel processing. Each class identifies a unique server that
applies PS policy to its jobs and has ` = 6 tokens. There are two job types with different arrival
rates and compatibilities. Type-1 jobs have a unit arrival rate ν and can be assigned to any of
the first four servers. Type-2 jobs arrive at rate 4ν and can be assigned to any of the last four
servers. Thus only two servers can be accessed by both types. Note that heterogeneity now lies
in the job arrival rates and not in the server capacities.

ν 4ν

Servers with
capacity µ

Figure 11: A server pool with two job types.

Comparison We again consider two variants of the static load balancing: best static, in which
the assignment probabilities are chosen so as to homogenize the arrival rates at the servers as
far as possible, and uniform static, in which the assignment probabilities are uniform. Note
that best static assumes that the arrival rates of the job types are known, while uniform static
does not. As before, ideal refers to the lowest average blocking probability that complies with
the system stability. The results are shown in Figure 12.

Regardless of the policy, the slope of the resource occupancy breaks down near the critical
load ρ = 5

6 . The reason is that the last four servers support at least 4
5 -th of the arrivals with

only 2
3 -rd of the service capacity, so that their effective load is 6

5ρ. It follows from (12) that
the average blocking probability in a stable system cannot be less than 4

5(1− 5
6
1
ρ) when ρ ≥ 5

6 .
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Figure 12: Performance of the dynamic load balancing in the pool of Figure 11. Average block-
ing probability (bottom plot) and resource occupancy (top plot).
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Under ideal, the slope of the resource occupancy breaks down again at ρ = 5
3 . This is the point

where the first two servers cannot support the load of type-1 jobs by themselves anymore.
Otherwise, most of the observations of §4.1 are still valid. The performance gain of the

dynamic load balancing compared to best static is maximal near the first critical load ρ = 5
6 .

Its delta with ideal is maximal near ρ = 5
6 and ρ = 5

3 . Elsewhere, all schemes have a similar
performance, except for uniform static that deteriorates faster.

Overall, these numerical results show that our dynamic load balancing algorithm often out-
performs best static and is close to ideal. The configurations (not shown here) where it was not
the case involved very small pools, with job arrival rates and compatibilities opposite to the
server capacities. Our intuition is that our algorithm performs better when the pool size or the
number of tokens allow for some diversity in the assignments.

(In)sensitivity We finally evaluate the sensitivity of our algorithm to the job size distribution
within each type. Figure 13 shows the results. Lines give the performance when job sizes
are exponentially distributed with unit mean, as before. Marks, obtained by simulation, give
the performance when the job size distribution within each type is hyperexponential: 1

3 -rd of
type-1 jobs have an exponentially distributed size with mean 2 and the other 2

3 -rd have an
exponentially distributed size with mean 1

2 ; similarly, 1
6 -th of type-2 jobs have an exponentially

distributed size with mean 5 and the other 5
6 -th have an exponentially distributed size with

mean 1
5 .
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Figure 13: Blocking probability under the dynamic load balancing in the server pool of Fig-
ure 11, with either exponentially distributed job sizes (line plots) or hyperexpo-
nentially distributed sizes (marks). Each simulation point is the average of 100
independent runs, each built up of 106 jumps after a warm-up period of 106 jumps.
The corresponding 95% confidence interval, not shown on the figure, does not exceed
±0.001 around the point.

The similarity of the exact and simulation results suggests that insensitivity is preserved even
when the job size distribution is type-dependent. Further evaluations, involving other job size
distributions, would be necessary to conclude.

Also observe that the blocking probability of type-1 jobs increases near the load ρ = 5
3 , which

is twice less than the upper bound ρ = 10
3 given by (12). This suggests that the dynamic load

balancing compensates the overload of type-2 jobs by rejecting more jobs of type 1.
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5 Conclusion

We have introduced a new server pool model that explicitly distinguishes the compatibilities
of a job from its actual assignment by the load balancer. Expressing the results of [5] in
this new model has allowed us to see the problem of load balancing in a new light. We have
derived a deterministic, token-based implementation of a dynamic load balancing that preserves
the insensitivity of balanced fairness to the job size distribution within each class. Numerical
results have assessed the performance of this algorithm.

For the future works, we would like to evaluate the performance of our algorithm in broader
classes of server pools. We are also interested in proving its insensitivity to the job size distri-
bution within each type.
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Appendix: Proof of the irreducibility

We prove the irreducibility of the Markov process defined by the state (c, t) of a tandem network
of two OI queues, as described in §3.3. Throughout the proof, we will simply refer to such a
network as a tandem network, implicitly meaning that it is as described in §3.3.

Assumptions We first recall and name the two main assumptions that we use in the proof.

• Positive service rate. For each i ∈ I, Ki 6= ∅ and Si 6= ∅.

• Separability. For each pair {i, j} ⊂ I, either Si 6= Sj or Ki 6= Kj (or both).

Result statement The Markov process defined by the state of the tandem network is irre-
ducible on the state space S = {(c, t) ∈ C2 : |c|+ |t| = `} comprising all states with `i tokens of
class i, for each i ∈ I.

Outline of the proof We provide a constructive proof that exhibits a series of transitions
leading from any feasible state to any feasible state with a nonzero probability. We first describe
two types of transitions and specify the states where they can occur with a nonzero probability.

• Circular shift : service completion of a token at the head of a queue. This transition is
always possible thanks to the positive service rate assumption. Consequently, states that
are circular shifts of each other can communicate. We will therefore focus on ordering
tokens relative to each other, keeping in mind that we can eventually apply circular shifts
to move them in the correct queue.

• Overtaking : service completion of a token that is in second position of a queue, before
its predecessor completes service. Such a transition has the effect of swapping the order
of these two tokens. By reindexing classes if necessary, we can work on the assumption
that class-i tokens can overtake the tokens of classes 1 to i − 1 in (at least) one of the
two queues, for each i = 2, . . . , N . The proof of this statement relies on the separability
assumption.
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1 2 3 4

µ1 µ2 µ3

ν1 ν2 Job types

Job classes

Servers

Figure 14: A technically interesting toy configuration. We have K2 = K3 and S3 ( S2, so that
class-2 tokens can overtake class-3 tokens in the queue of tokens held by jobs in
service but not in the queue of available tokens. On the other hand, K1 ( K2 and
S1 = S2, so that class-2 tokens can overtake class-1 tokens in the queue of available
tokens but not in the queue of tokens held by jobs in service. In none of the queues
can class-2 tokens overtake tokens of classes 1 and 3 at once.

It is tempting to consider more sophisticated transitions, for instance where a token overtakes
several other tokens at once. Unfortunately, our assumptions do not guarantee that such tran-
sitions can occur with a nonzero probability. An example is shown in Figure 14. The two
operations circular shift and overtaking will prove to be sufficient. We first combine them to
show the following intermediary result:

• From any feasible state, we can reach the state where all class-N tokens are gathered at
some selected position in one of the two queues while the position of the other tokens is
unchanged.

We finally prove the irreducibility result by induction on the numberN of classes. As announced,
the proof is constructive: it gives a series of transitions leading from any state to any other
state. The induction step can be decomposed in two parts:

• By repeatedly moving class-N tokens at a position where they do not prevent other tokens
from overtaking each other, we can order the tokens of classes 1 toN−1 as if class-N tokens
were absent. The induction assumption ensures that we can perform this reordering.

• Once the tokens of classes 1 to N − 1 are well ordered, class-N tokens can be positioned
among them.

We now detail the steps of the proof one after the other.

Circular shift Because of the positive service rate assumption, a token at the head of either of
the two queues has a nonzero probability of completing service and moving to the end of the
other queue. We refer to such a transition as a circular shift.

Now let (c, t) ∈ S and (c′, t′) ∈ S, with c = (c1, . . . , cn), t = (t1, . . . , tm), c′ = (c′1, . . . , c
′
n′)

and t′ = (t′1, . . . , t
′
m′). Assume that the sequence (c1, . . . , cn, t1, . . . , tm) is a circular shift of the

sequence (c′1, . . . , c
′
n′ , t

′
1, . . . , t

′
m′). Then we can reach state (c′, t′) from state (c, t) by applying

many circular shifts if necessary. An example is shown in Figure 15 for the configuration of
Figure 14. All states that are circular shifts of each other can therefore communicate.

Overtaking We say that a token in second position of one of the two queues overtakes its
predecessor if it completes service first. Such a transition allows us to exchange the positions
of these two tokens, therefore escaping circular shifts to access other states.
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(a) Initial state
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(b) Final state

Figure 15: Circular shift. Sequence of transitions to reach state (b) from state (a): all tokens
complete service in the first queue; all tokens before that of class 3 complete service
in the second queue; the first two tokens complete service in the first queue.

Can such a transition occur with a nonzero probability? It depends on the classes of the
tokens in second and first positions, denoted by i and j respectively. The token in second
position can overtake its predecessor if it receives a nonzero service rate. In the queue of tokens
held by jobs in service, this means that there is at least one server that can process class-i jobs
but not class-j jobs, that is Si * Sj . In the queue of available tokens, this means that there is
at least one job type that can seize class-i tokens but not class-j tokens, that is Ki * Kj . Since
states that are circular shifts of each other can communicate, the queue where the overtaking
actually occurs does not matter.

The separability assumption ensures that, for each pair of classes, the tokens of at least one of
the two classes can overtake the tokens of the other class, in at least one of the two queues. We
now show a stronger result: by reindexing classes if necessary, we can work on the assumption
that class-i tokens can overtake the tokens of classes 1 to i− 1 in at least one of the two queues
(possibly not the same), for each i = 2, . . . , N .

We first use the inclusion relation on the power set of {1, . . . ,K} to order the type sets Ki
for i ∈ I. Specifically, we consider a topological ordering of these sets induced by their Hasse
diagram, so that a given type set is not a subset of any type set with a lower index. An example
is shown in Figure 16a. The tokens of a class with a given type set can thus overtake (in the
first queue) the tokens of all classes with a lower type set index. Only classes with the same
type set are not dissociated.

Symmetrically, we use the inclusion relation on the power set of {1, . . . , S} to order the server
sets Si for i ∈ I. We consider a topological ordering of these sets induced by their Hasse
diagram, so that a given server set is not a subset of any server set with a lower index, as
illustrated in Figure 16b. The tokens of a class with a given server set can thus overtake (in the
second queue) the tokens of all classes with a lower server set index. Thanks to the separability
assumption, if two classes are not dissociated by their type sets, then they are dissociated by
their server sets.

This allows us to define a permutation of the classes as follows: first, we order classes by
increasing type set order, and then, we order the classes that have the same type set by increasing
server set order. The separability assumption ensures that all classes are eventually sorted. The
tokens of a given class can overtake the tokens of all classes with a lower index, either in the
queue of available tokens or in the queue of tokens held by jobs in service (or both).
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(a) Hasse diagram of the type sets. (K1 = {1},
K4 = {2}, K2 = K3 = {1, 2}) is a possible
topological ordering.
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(b) Hasse diagram of the server sets. (S3 = {2},
S4 = {3}, S1 = S2 = {1, 2}) is a possible topo-
logical ordering.

Figure 16: A possible ordering of the classes of Figure 14 is 1, 4, 3, 2.

Moving class-N tokens Using the two operations circular shift and overtaking, we show that,
from any given state, we can reach the state where all class-N tokens are gathered at some
selected position in one of the two queues, while the position of the other tokens is unchanged.
We proceed by moving class-N tokens one after the other, starting with the token that is closest
to the destination (in number of tokens to overtake) and finishing with the one that is furthest.

Consider the class-N token that is closest to the destination but not well positioned yet (if
any). This token can move to the destination by overtaking its predecessors one after the other.
Indeed, the token that precedes our class-N token has a class between 1 and N − 1, so that our
class-N token can overtake it in (at least) one of the two queues. By applying many circular
shifts if necessary, we can reach the state where this overtaking can occur. Once this state is
reached, our class-N token can then overtake its predecessor, therefore arriving one step closer
to the destination. We reiterate this operation until our class-N token is well positioned.

For example, consider the state of Figure 15a and assume that we want to move all tokens
of class 2 between the two tokens of classes 1 and 3 that are closest to each other. One of
the class-2 tokens is already in the correct position. Let us consider the next class-2 token,
initially positioned between tokens of classes 3 and 4. We first apply circular shifts to reach the
state depicted in Figure 15b. In this state, there is a nonzero probability that our class-2 token
overtakes the class-3 token, which would bring our class-2 token directly in the correct position.

Proof by induction We finally prove the stated irreducibility result by induction on the number
N of classes. For N = 1, applying circular shifts is enough to show the irreducibility because
all tokens are exchangeable. We now give the induction step.

Let N > 1. Assume that the Markov process defined by the state of any tandem network with
N − 1 classes that satisfies the positive service rate and separability assumptions is irreducible.
Now consider a tandem network with N classes that also satisfies these assumptions. We have
shown that, starting from any feasible state, we can move class-N tokens at a position where
they do not prevent other tokens from overtaking each other. In particular, to reach a state
from another one, we can first focus on ordering the tokens of classes 1 and N − 1, as if class-N
tokens were absent. This is equivalent to ordering tokens in a tandem network with N − 1
classes that satisfies the positive service rate and separability assumptions. This reordering is
feasible by the induction assumption. Once it is performed, we can move class-N tokens in a
correct position, by applying the same type of transitions as in the previous paragraph.
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