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Introduction

When we work with a linear dynamical system (X, T ), it is natural to study how its linear properties influence its dynamical properties. Here, X denotes a topological vector space and T is a continuous linear operator on X. We are mainly interested in hypercyclic operators: there exists x ∈ X, called a hypercyclic vector for T , such that {T n x; n ≥ 0} is dense in X (when X is a second-countable Baire space, this amounts to saying that T is topologically transitive). It is well known that the linear properties of (X, T ) reflects on HC(T ), the set of hypercyclic vectors for T : HC(T )∪{0} always contains a dense subspace ( [START_REF] Bourdon | Invariant manifolds of hypercyclic vectors[END_REF]) and there are nice criteria to determine if it contains a closed infinite-dimensional subspace (see [START_REF] González | Semi-Fredholm theory: hypercyclic and supercyclic subspaces[END_REF], [START_REF] Menet | Hypercyclic subspaces and weighted shifts[END_REF]). In this paper we assume that X is also a topological algebra and we ask whether HC(T ) ∪ {0} contains a nontrivial algebra; we will call this a hypercyclic algebra for T . We explore three relevant situations.

1.1. Convolution operators. Following the pioneering work of Birkhoff and MacLane, Godefroy and Shapiro have shown in [START_REF] Godefroy | Operators with dense, invariant, cyclic vector manifolds[END_REF] that a nonconstant operator which commutes with all translations τ a is hypercyclic on H(C). Such an operator may be written φ(D), where φ is an entire function of exponential type and D is the derivation operator. Bayart and Matheron in [START_REF] Bayart | Dynamics of linear operators[END_REF] and independently Shkarin in [START_REF] Shkarin | On the set of hypercyclic vectors for the differentiation operator[END_REF] have shown that D admits a hypercyclic algebra. The argument of [START_REF] Bayart | Dynamics of linear operators[END_REF], which is based on the Baire category theorem and the fact that n ker(D n ) is dense in H(C), was refined by Bès, Conejero and Papathanasiou in [START_REF] Bès | Convolution operators supporting hypercyclic algebras[END_REF] to prove that P (D) supports a hypercyclic algebra for all nonzero polynomials P with P (0) = 0 (see also the recent paper [START_REF] Falcó | Algebrability of the set of hypercyclic vectors for backward shift operators[END_REF] for the existence of hypercyclic algebras for weighted backward shifts in various Fréchet algebras). More recently, in the nice paper [START_REF] Bès | Hypercyclic algebras for convolution and composition operators[END_REF], the same authors provide further examples of entire functions φ such that φ(D) admits such an algebra. For instance, this holds true for φ(z) = cos(z) which does not satisfy φ(0) = 0 and which is not a polynomial. In stark contrast with this, it was observed in [START_REF] Aron | Powers of hypercyclic functions for some classical hypercyclic operators[END_REF] that the orbit of f 2 under λτ a (which corresponds to the case φ(z) = λe az ) can only contain functions for which the multiplicities of their zeros is even.

Our first main theorem characterizes the existence of a hypercyclic algebra for φ(D) when |φ(0)| < 1, or when |φ(0)| = 1 and φ has moderate growth. Theorem 1.1. Let φ be a nonconstant entire function with exponential type.

(1) Assume that |φ(0)| < 1. Then the following assertions are equivalent:

(i) φ(D) supports a hypercyclic algebra.

(ii) φ is not a multiple of an exponential function. [START_REF] Bayart | Dynamics of linear operators[END_REF] Assume that |φ(0)| = 1 and φ has subexponential growth. If either φ (0) = 0 or φ has order less than 1/2, then φ(D) supports a hypercyclic algebra.

In view of the previous result, it is tempting to conjecture that the assumption |φ(0)| ≤ 1 is a necessary condition for φ(D) to admit a hypercyclic algebra. Surprizingly, this is not the case.

Theorem 1.2. Let φ(z) = 2 exp(-z) + sin(z). Then φ(D) supports a hypercyclic algebra.

Another natural conjecture is that φ(D) always suppport a hypercyclic algebra as soon as φ is not a multiple of an exponential function. We do not know if this conjecture is true. Nevertheless, we still get an interesting result if we weaken the conclusion. Recall that a vector x ∈ X is a supercyclic vector for T ∈ L(X) provided {λT n x; λ ∈ C, n ≥ 0} is dense in X. If X is a topological algebra, then any subalgebra of X consisting entirely (but zero) of supercyclic vectors for T is said to be a supercyclic algebra.

Theorem 1.3. Let φ be a nonconstant entire function with exponential type. The following assumptions are equivalent:

(i) φ(D) supports a supercyclic algebra.

(ii) There exists f ∈ H(C) such that, for all m ≥ 1, f m is a hypercyclic vector for φ(D).

(iii) φ is not a multiple of an exponential function.

To our knowledge, the existence of f ∈ H(C) such that f m ∈ HC φ(D) for all m ≥ 1 was only known when φ has subexponential type [START_REF] Bernal-González | On universal functions with zero-free derivatives[END_REF].

Composition operators.

Let Ω ⊂ C be a simply connected domain and let ϕ be a holomorphic self-map of Ω. The composition operator C ϕ (f ) = f •ϕ is a bounded operator on H(Ω) which is hypercyclic if and only if ϕ is univalent and has no fixed point in Ω. Moreover, in that case, if P is a nonconstant polynomial, then P (C ϕ ) is hypercyclic (see [START_REF] Bès | Dynamics of composition operators with holomorphic symbol[END_REF]). It was observed in [START_REF] Bès | Hypercyclic algebras for convolution and composition operators[END_REF] that C ϕ never supports a hypercyclic algebra and it was asked whether P (C ϕ ) can support such an algebra. We provide an affirmative answer.

Theorem 1.4. Let Ω ⊂ C be a simply connected domain and let ϕ be a holomorphic self-map of Ω which is univalent and has no fixed point in Ω. Let also P be a nonconstant polynomial which is not a multiple of z and which satisfies |P (1)| < 1. Then P (C ϕ ) supports a hypercyclic algebra.

1.3. Backward shift operators. So far, our examples live only in F -algebras (namely in metrizable and complete topological algebras without assuming that the distance is induced by a norm) and the proofs of Theorems 1.1 and 1.4 depend heavily on the non Banach structure of the ambient space. We provide now an example in the Banach algebra

1 (N) = {(u n ) n≥0 ; n |u n | < +∞} endowed with the convolution product (u v)(k) = k j=0 u j v k-j .
It was already sketched in [START_REF] Bayart | Dynamics of linear operators[END_REF] that, denoting by B the backward shift operator, HC(2B) ∪ {0} contains a nontrivial algebra. Again, the density of n ker(B n ) was the key for the proof. We go much further (we denote by D the open unit disk and by T its boundary the unit circle).

Theorem 1.5. Let P ∈ C[X] be nonconstant and let B be the backward shift operator on 1 (N). Then the following assertions are equivalent.

(i) P (B) is hypercyclic.

(ii) P (B) admits a hypercyclic algebra.

(iii) P (D) ∩ T = ∅.

1.4. Organization of the paper and strategy for the proofs. The proofs of our results develop a method initiated in [START_REF] Bès | Hypercyclic algebras for convolution and composition operators[END_REF] and use eigenvalues and eigenvectors of our operators. In Section 2, we use eigenvalues of modulus slightly bigger than 1 to prove half of Theorem 1.1 and Theorem 1.4. In Section 3, we use eigenvalues with large modulus to prove the remaining part of Theorem 1.1 whereas in Section 4, we use unimodular eigenvalues to prove Theorem 1.5. There is also a significant difference between the first two cases and the last one: the product of two eigenvectors can or cannot be still an eigenvector. The latter situation is of course more difficult! In Section 5, we come back to convolution operators and study the case |φ(0)| > 1. As a consequence we prove Theorems 1.2 and 1.3.

Of course, if we know that an operator admits a hypercyclic algebra, then it is natural to ask how big it can be. Can it be dense? Can it be infinitely generated? These questions were investigated very recently in [START_REF] Bès | Algebrable sets of hypercyclic vectors for convolution operators[END_REF] where it is shown that for most of the examples exhibited in [START_REF] Bès | Hypercyclic algebras for convolution and composition operators[END_REF], one can improve the construction to get a dense and infinitely generated hypercyclic algebra. In Section 6, we show how to modify our proofs to obtain a similar improvement. We choose to postpone this in a separate section because the arguments become more technical and we think that the ideas appear more clearly by handling separately the case of singly generated algebras. We end up this introduction with the following lemma taken from [2, Remark 8.28], which gives a criterion for the existence of a hypercyclic algebra. It can be seen as a strong form of the property of topological transitivity.

Lemma 1.6. Let T be a continuous operator on some separable F -algebra X. Assume that, for any pair (U, V ) of nonempty open sets in X, for any open neighbourhood W of zero, and for any positive integer m, one can find u ∈ U and an integer N such that T N (u n ) ∈ W for all n < m and T N (u m ) ∈ V . Then T admits a hypercyclic algebra.

Small eigenvalues

2.1.

A general result for operators with small eigenvalues. We shall deduce part of Theorem 1.1 and Theorem 1.4 from the following general result.

Theorem 2.1. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and an entire function φ : C → C satisfying the following assumptions:

(1) for all λ ∈ C, T E(λ) = φ(λ)E(λ);

(2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ);

(3) for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X;

(4) φ is not a multiple of an exponential function; Then T supports a hypercyclic algebra.

We start with a lemma which explains why we have to exclude multiples of exponential functions.

Lemma 2.2. Let φ be an entire function which is not a multiple of an exponential function.

Then, for any w 0 ∈ C with φ(w 0 ) = 0 and any δ > 0, there exist w 1 , w 2 ∈ B(w 0 , δ),

w 1 = w 2 , such that the map [0, 1] → R, t → log |φ(tw 1 + (1 -t)w 2 )| is stricly convex.
Proof. Since φ(w 0 ) = 0, there exist some neighbourhood V of w 0 and a holomorphic function h : V → C such that φ(z) = exp h(z) for all z ∈ V . Since φ is not a multiple of an exponential function, we know that h is not an affine map. Thus there exists w 1 ∈ B(w 0 , δ) ∩ V such that h (w 1 ) = 0. Without loss of generality, we assume that w 1 = 0 and we write h(z)

= +∞ k=0 a k z k . Then log |φ(z)| = e h(z)
= e(a 0 ) + ( e(a 1 )x -m(a 1 )y) + e(a 2 ) x 2 -y 2 -2 m(a 2 )xy + o x 2 + y 2 if z = x + iy. Since a 2 = 0, one may find (x 0 , y 0 ) ∈ R 2 with e(a 2 ) x 2 0 -y 2 0 -2 m(a 2 )x 0 y 0 > 0.

Then

g(t) = e (h (t (x 0 + iy 0 ))) = b 0 + b 1 t + b 2 t 2 + o(t 2 ) with b 2 > 0 is strictly convex around 0.
Proof of Theorem 2.1. Let U, V, W be nonempty open subsets of X with 0 ∈ W and let m ≥ 1. By Lemma 1.6, it suffices to find u ∈ U and N ∈ N so that

T N (u n ) ∈ W, n = 1, . . . , m -1 (1) T N (u m ) ∈ V. (2) 
The assumptions give us for this value of m two complex numbers a and b. We set w 0 = mb. We then consider δ > 0 very small and w 1 , w 2 ∈ B(w 0 , δ) such that

• t ∈ [0, 1] → log |φ (tw 1 + (1 -t)w 2 )| is strictly convex; • |φ| > 1 on [w 1 , w 2 ];
• for all n ∈ {1, . . . , m}, for all d ∈ {0, . . . , n} with (n, d) = (m, m), for all λ 1 , . . . , λ d ∈ [w 1 , w 2 ] and all γ 1 , . . . , γ n-d ∈ B(a, δ),

(3) φ λ 1 + • • • + λ d m + γ 1 + • • • + γ n-d < 1.
We may ensure this last property because

λ 1 + • • • + λ d m + γ 1 + • • • + γ n-d = db + (n -d)a + z
where the norm of z is controlled by δ. Since B(a, δ) and [w 1 , w 2 ] have accumulation points, we may find p, q ∈ N, complex numbers a 1 , . . . , a p , b 1 , . . . , b q , complex numbers γ 1 , . . . , γ p ∈ B(a, δ) and complex numbers λ 1 , . . . , λ q in [w 1 , w 2 ] such that

p l=1 a l E (γ l ) ∈ U and q j=1 b j E (λ j ) ∈ V.
For N ≥ 1 and j ∈ {1, . . . , q}, let c j := c j (N ) be any complex number satisfying c m j = b j / φ(λ j )

N and define

u := u N = p l=1 a l E (γ l ) + q j=1 c j E (λ j /m) .
We claim that, for N large enough, u N belongs to U and satisfies (1) and [START_REF] Bayart | Dynamics of linear operators[END_REF]. That u N belongs to U is clear, since c j (N ) tends to zero as N goes to infinity. In order to prove the other points, we need to compute u n for 1 ≤ n ≤ m. To simplify the notations, let I p = {1, . . . , p} and for a multi-index l ∈ I d p , a l will stand for a l 1 • • • a l d with the convention that an empty product is equal to 1. Then we may write

u n = n d=0 l∈I n-d p j∈I d q α(l, j, d, n)a l c j E γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d m
for some coefficients α(l, j, d, n) that we do not try to compute, but which does not depend on N . To prove that T N (u n ) belongs to W for N large enough and 1 ≤ n < m, we only have to prove that, for any d ∈ {0, . . . , n} and any

l ∈ I n-d p , any j ∈ I d q , c j (N ) φ γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d m N -→ N →+∞ 0.
This follows from (3) and the fact that c j (N ) tends to zero. The case n = m is slightly different. We denote by D q the diagonal of I m q , namely the m-uples (j, . . . , j), 1 ≤ j ≤ q. Then we decompose u m into

u m = m-1 d=0 l∈I m-d p j∈I d q α(l, j, d, m)a l c j E γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d m + j∈I m q \Dq α(j, m)c j E λ j 1 + • • • + λ jm m + q j=1 c m j E (λ j ) =: v 1 + v 2 + v 3 .
The same considerations as above show that T N v 1 tends to zero as N goes to infinity. That T N v 2 tends also to zero follows from a convexity argument. Indeed, for j ∈ I m q \D q , the strict convexity of the map t → log |φ (tw

1 + (1 -t)w 2 )| implies that φ λ j 1 + • • • + λ jm m < |φ (λ j 1 )| 1/m • • • |φ (λ jm )| 1/m .
Moreover,

|c j (N )| × φ λ j 1 + • • • + λ jm m N ≤ |b j | 1/m φ λ j 1 +•••+λ jm m φ (λ j 1 ) 1/m • • • φ (λ jm ) 1/m N .
Since the left hand side of this inequality goes to zero, we get that T N v 2 tends to zero. We conclude the proof by observing that

T N v 3 = q j=1 b j E (λ j ) .
For the applications, we emphasize two corollaries of Theorem 2.1.

Corollary 2.3. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and an entire function φ : C → C satisfying the following assumptions:

(1) for all λ ∈ C, T E(λ) = φ(λ)E(λ);

(2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ);

(3) for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X;

(4) φ is not a multiple of an exponential function;

(5) for all ρ ∈ (0, 1), there exists w 0 ∈ C with |φ (w 0 )| > 1 and, for all r ∈ (0, ρ],

|φ (rw 0 )| < 1.
Then T supports a hypercyclic algebra.

Proof. We show that Assumption (5) of Theorem 2.1 is satisfied. Let m ≥ 1 and ε ∈ (0, 1/m). Set ρ = m-1 m + mε. We get the existence of w 0 . We set b = w 0 /m and a = εw 0 /m. Then, for any d ≤ m -1 and any n ≤ m,

|db + (n -d)a| ≤ m -1 m + ε |w 0 | ≤ ρ|w 0 | showing that |φ(db + (n -d)a)| < 1.
Corollary 2.4. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and an entire function φ : C → C satisfying the following assumptions:

(

1) for all λ ∈ C, T E(λ) = φ(λ)E(λ); (2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ); (3) 
for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X;

(4) φ is not a multiple of an exponential function;

(5) |φ(0)| < 1.

Then T supports a hypercyclic algebra.

Proof. We prove that Assumption (5) of Corollary 2.3 is satisfied. Denote by M (r) = sup{|φ(z)|; |z| = r} which is a continuous and increasing function of r satisfying M (0) < 1.

Let r 0 > 0 with M (r 0 ) = 1 and let r 1 > r 0 with ρr 1 < r 0 . Any w 0 ∈ C such that |w 0 | = r 1 and |φ(w 0 )| = M (r 1 ) > 1 does the job.

Remark 2.5. An operator on a Banach space cannot satisfy the assumptions of Theorem 2.1. Indeed, they imply that its spectrum is unbounded. We shall see later how it remains possible to get a hypercyclic algebra in a Banach algebra context. Proof.

Recall that if z = x + iy, then | cos(z)| 2 = cos 2 x + sinh 2 y. Let us set ψ(t) = cos 2 (2t) + sinh 2 (t)
. Using standard calculus one may prove that there exists t 0 > 0 such that ψ is decreasing on (0, t 0 ) and increasing on (t 0 , +∞). Let t 1 > 0 be such that ψ(t 1 ) = 1. It then suffices to consider w 0 = (1 + η)(2 + i)t 1 for some sufficiently small η > 0.

Example 2.7. Let φ(z) = e z -2. Then φ(D) supports a hypercyclic algebra.

Proof. Let t 1 > 0 be such that φ(t 1 ) = 1. It suffices to consider w 0 = (1 + η)t 1 for some sufficiently small η > 0.

We now give a surprizing example of an entire function φ with |φ(0)| > 1 and φ(D) supports a hypercyclic algebra.

Example 2.8. Let φ(z) = 2e -z + sin z. Then φ(D) supports a hypercyclic algebra.

Proof. We just need to show that φ satisfies Assumption (5) of Theorem 2.1. We let a = kπ for some sufficiently large k and b = kπ + π 2m . Then

|φ (db + (n -d)a)| = sin nkπ + dπ 2m + 2 exp -nkπ - dπ 2m .
Provided k is large enough, this is less than 1 as soon as d < m, whereas |φ(mb)| > 1.

2.3. Applications to composition operators. In this subsection, we prove Theorem 1.4. Recall that given a simply connected domain Ω ⊂ C and ϕ a holomorphic self-map of Ω, C ϕ is hypercyclic if and only if ϕ is univalent and without fixed points. We first prove Theorem 1.4 when Ω = C. In that case ϕ is also entire hence ϕ is a translation ϕ(z) = z + a, a = 0. Thus P (C ϕ ) = φ(D), where φ(z) = P • exp(az) and the result is a particular case of Theorem 1.1. Otherwise, by the Riemann mapping theorem, we may assume that Ω = D. We simplify the proof by using the linear fractional model (see for instance [START_REF] Bourdon | Cyclic phenomena for composition operators[END_REF]): since ϕ has no fixed points in D, there exists a univalent map σ : D → C and a linear fractional map ψ such that σ • ϕ = ψ • σ. Moreover

• either ψ can be taken to be a dilation ψ(z) = rz for some 0 < r < 1;

• or ψ can be taken to be a translation ψ(z) = z + a for some a ∈ C\{0} and σ(D) ⊂ {z; e(z) > 0}.

The functional equation guarantees that σ(D) =: U is preserved by ψ and that P (C ϕ ) acting on H(D) and P (C ψ ) acting on H(U) are quasi-conjugate by C σ . Since C σ is a multiplicative map, it is sufficient to prove that P (C ψ ) admits a hypercyclic algebra (see [START_REF] Bès | Hypercyclic algebras for convolution and composition operators[END_REF]Remark 6]). The translation case. We denote T = P (C ψ ) and E(λ)(z) = exp(λz) so that T E(λ) = φ(λ)E(λ) with φ(λ) = P (exp(aλ)). Then the assumptions of Corollary 2.4 are satisfied provided we are able to prove that, for any Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in H(U). The proof is exactly similar to that for H(C), since the polynomials are dense in H(U) (recall that U is simply connected) -see for instance [START_REF] Godefroy | Operators with dense, invariant, cyclic vector manifolds[END_REF].

The dilation case. We still denote T = P (C ψ ) but now we set E(λ) = z λ . This defines a holomorphic function on U since U ⊂ {z; e(z) > 0}. Moreover, T E(λ) = φ(λ)E(λ) with φ(λ) = P (exp(λ log r)). Again the assumptions of Corollary 2.4 are satisfied provided that, for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in H(U). Let L be a linear form on H(U) which vanishes on span (E(λ); λ ∈ Λ). By the Riesz representation theorem, there exists K a compact subset of U and µ a complex measure supported in K such that, for all f ∈ H(U), L(f ) = K f dµ. The map λ → L(z λ ) is holomorphic and has an accumulation point of zeros. Hence it is identically zero. Therefore, L vanishes on each monomial z n , hence on H(U) since U is simply connected. This shows that span (E(λ); λ ∈ Λ) is dense in H(U).

Large eigenvalues

As in Section 2, we shall deduce Part (2) of Theorem 1.1 from a more general statement. Theorem 3.1. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and a nonconstant entire function φ : C → C satisfying the following assumptions:

(1) for all λ ∈ C, T E(λ) = φ(λ)E(λ); (2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ); (3 
) for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X; (4) |φ(0)| = 1, φ has subexponential growth and either φ (0) = 0 or φ has order less than 1/2.

Then T supports a hypercyclic algebra.

The proof of Theorem 3.1 shares many similarities with that of Theorem 2.1. Nevertheless, we will now choose the complex numbers λ j with |φ (λ j )| very large (instead of being slightly bigger than 1). In this way, because φ has subexponential growth, we will ensure that |φ(λ j )| is bigger than |φ(2λ j )| 1/2 . Thus, when we will take the powers of u and apply T N , the main term will change. We will also need a more careful interaction between the λ j ' and the γ k '. This is the content of the following key lemma, which uses the fact that we control the growth of φ.

Lemma 3.2. Let φ be a nonconstant entire function with subexponential growth and |φ(0)| = 1. Assume that either φ (0) = 0 or φ has order less than 1/2. Then for all m ≥ 2, there exist z 0 ∈ C\{0} and w 0 = ρz 0 for some ρ > 0 such that

• |φ| < 1 on (0, z 0 ]; • |φ(w 0 )| > 1; • |φ(w 0 )| > |φ(dw 0 )| 1/d for all d = 2, . . . , m. • t → |φ(w 0 + tz 0 )| is increasing on some interval [0, η), η > 0.
Proof. We first show the existence of z 0 , z 1 ∈ C with z 0 ∈ (0, z 1 ), |φ| < 1 on (0, z 0 ] and |φ(z 1 )| > 1. The proof differs here following the assumptions made on φ. Assume first that φ has order less than 1/2. Write φ(z) = e iθ 0 + ρ p e iθp z p + o(z p ) with ρ p > 0. Then, φ te -i(θp-θ 0 +π)/p = e iθ 0 -ρ p t p e iθ 0 + o(t p ) has modulus less than 1 provided t is small enough. We then set z 0 = te -i(θp-θ 0 +π)/p for some small t. We then find z 1 since any nonconstant entire function of order less than 1/2 cannot be bounded on a half-line (see [START_REF] Boas | Entire functions[END_REF]Theorem 3.1.5]).

On the other hand, suppose now that φ (0) = 0. Without loss of generality we may assume that φ(z) = 1 -az + o(z) for some a > 0. Now, a nonconstant entire function with subexponential growth cannot be bounded on a half-plane (see [START_REF] Boas | Entire functions[END_REF]Theorem 1.4.3]). Thus, there exists z 1 = r 1 e iα 1 with r 1 > 0 and

α 1 ∈ (-π/2, π/2) such that |φ(z 1 )| > 1.
It is easy to check that, for t > 0 small enough, |φ(tz 1 )| < 1 and we set z 0 = tz 1 for such a small t > 0.

We now proceed with the construction of w 0 . Without loss of generality we may assume z 0 = 1. We set ψ(t) = |φ(t)| 2 . We proceed by contradiction and we assume that there does not exist w 0 > 0 such that the last three points of the lemma are satisfied. We fix a sequence (ε n ) in (0, 1) such that κ := +∞ n=1 (1 -ε n ) > 0. We shall construct two sequences (t n ) n≥0 and (r n ) n≥1 of positive real numbers such that, for all n ≥ 0,

       ψ(t n ) > 1, ψ (t n ) > 0 t n = r n t n-1 r n ∈ (1, m] ψ(t n ) ≥ max ψ(t n-1 ) (1-εn)rn , ψ(t n-1 ) 3/2 .
First, the existence of z 1 leads to some positive real number t 0 > 1 such that ψ(t 0 ) > 1 and ψ (t 0 ) > 0. Next, assume that the construction has been done until step n and let us proceed with step n + 1. Since we assumed that the conclusion of Lemma 3.2 is false, there exists k n+1 ∈ {2, . . . , m} such that

ψ(k n+1 t n ) ≥ ψ(t n ) k n+1 > max ψ(t n ) (1-ε n+1 )k n+1 , ψ(t n ) 3/2 .
If ψ (k n+1 t n ) > 0, then we are done by choosing t n+1 = k n+1 t n . Otherwise, let

τ := sup{t ∈ [t n , k n+1 t n ]; ψ (t) > 0}. Then ψ(τ ) ≥ ψ(k n+1 t n ).
Thus, there exists t n+1 ∈ [t n , τ ] such that ψ (t n+1 ) > 0 and

ψ(t n+1 ) > max ψ(t n ) (1-ε n+1 )k n+1 , ψ(t n ) 3/2 .
Now, t n+1 = r n+1 t n for some r n+1 ∈ (1, k n+1 ) so that

ψ(t n+1 ) > max ψ(t n ) (1-ε n+1 )r n+1 , ψ(t n ) 3/2
as required to prove step n + 1. The sequence (t n ) we have just built satisfies, for all n ≤ N ,

ψ(t n ) ≥ (ψ(t 0 )) (3/2) n .
In particular, (ψ (t n )), hence (t n ), go to infinity. Now

ψ(t n ) ≥ ψ(t 0 ) n k=1 (1-ε k )r k ≥ ψ(t 0 ) κtn/t 0 .
This is a contradiction since ψ has subexponential growth.

Proof of Theorem 3.1. Let w 0 , z 0 = 0 be given by Lemma 3.2. Then we may find γ 1 ∈ (0, z 0 /m) which is sufficiently close to 0 so that

• |φ (w 0 + (m -1)γ 1 )| > 1; • |φ (w 0 + (m -1)γ 1 )| > |φ (dw 0 + sγ 1 )| 1/d
for all d ∈ {2, . . . , m} and for all s ∈ {0, . . . , m -d};

• |φ (w 0 + (m -1)γ 1 )| > |φ (w 0 + sγ 1 )| for all s ∈ {0, . . . , m -2}.
We then fix δ > 0 sufficiently small so that • for all λ ∈ B(w 0 , δ), |φ (λ + (m -1)γ 1 )| > 1;

• for all d ∈ {1, . . . , m}, for all s ∈ {0, . . . , m -d} with (d, s) = (1, m -1), for all λ, λ 1 , . . . λ d ∈ B(w 0 , δ), for all z ∈ B(0, δ),

|φ (λ + (m -1)γ 1 )| > |φ (λ 1 + • • • + λ d + sγ 1 + z)| 1/d .
Let p, q be integers, let a 1 , . . . , a p , b 1 , . . . , b q be complex numbers, let γ 2 , . . . , γ p ∈ (0, z 0 /m)∩ B(0, δ/m) and let λ 1 , . . . , λ q ∈ B(w 0 , δ) be such that

p l=1 a l E (γ l ) ∈ U q j=1 b j E (λ j + (m -1)γ 1 ) ∈ V.
Without loss of generality we may assume a 1 = 0. For N ≥ 1 and j ∈ {1, . . . , q}, let c j := c j (N ) be defined by

c j = b j ma m-1 1 φ (λ j + (m -1)γ 1 )
N and let us set

u := u N = p l=1 a l E (γ l ) + q j=1 c j E (λ j )
(observe that now we do not divide λ j by m). As before, for N large enough, u belongs to U . Moreover, the formula for u n is similar:

u n = n d=0 l∈I n-d p j∈I d q α(l, j, d, n)a l c j E γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d .
Assume first that n < m and let us show that, for all d ∈ {0, . . . , n}, for all l ∈ I n-d p and all j ∈ I d q ,

(4)

|c j (N )| × φ γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d N -→ N →+∞ 0.
Assume first d ≥ 1 and let s = card {i;

l i = 1}. Then γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d = λ j 1 + • • • + λ j d + sγ 1 + z with |z| < δ and s ≤ m -2. So, writing |c j (N )| × φ γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d N = |b j | m d |a 1 | (m-1)d d i=1 |φ (λ j 1 + • • • + λ j d + sγ 1 + z)| 1/d |φ (λ j i + (m -1)γ 1 )| N
we observe that (4) is true. If d = 0 (in that case, c j (N ) = 1), ( 4) remains also true since

γ l 1 + • • • + γ ln ∈ (0, z 0 ] so that |φ (γ l 1 + • • • + γ ln )| < 1.
This yields that T N (u n ) tends to zero. The case n = m requires small modifications. We now decompose u m into

u m = ma m-1 1 q j=1 c j E (λ j + (m -1)γ 1 ) + m d=0 d =1 l∈I m-d p j∈I d q α(l, j, d, m)a l c j E γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d + l∈I m-1 p j∈I 1 q l =(1,...,1) α(l, j, d, m)a l c j E γ l 1 + • • • + γ l n-d + λ j 1 + • • • + λ j d =: v 1 + v 2 + v 3 .
With exactly the same argument as above, one shows that T N (v 2 + v 3 ) tends to zero. Furthermore,

T N (v 1 ) = m j=1 b j E (λ j + (m -1)γ 1 ) ∈ V,
which closes the argument.

Unimodular eigenvalues

4.1. Proof of Theorem 1.5. In this section, we provide a proof for Theorem 1.5. As before, P (B) admits a natural family of eigenvectors: for any λ ∈ D, (λ k ) is an eigenvector of P (B) associated to P (λ). Nevertheless, we do not have a so simple formula for the product of two eigenvectors.

Lemma 4.1. Let Θ = (θ 1 , . . . , θ n ) ∈ C n and let µ 1 , . . . , µ r be pairwise distinct complex numbers such that {θ 1 , . . . , θ n } = {µ 1 , . . . , µ r }. For j = 1, . . . , r, let κ j = card{k; θ k = µ j }. Then there exist polynomials P Θ,j , 1 ≤ j ≤ r, with degree less than or equal to κ j -1 such that

θ k 1 • • • θ k n = r j=1 P Θ,j (k)µ k j .
When all the θ i are equal to the same λ, then

λ k • • • λ k = P n (k)λ k where deg(P n ) = n -1.
The statement of this lemma motivates the study of the effect of P (B) N on the vectors (k d λ k ).

Lemma 4.2. Let P ∈ C[X] and let d ≥ 0. Let also λ ∈ D with λP (λ)P (λ) = 0. There exist complex numbers (A d,N,s ) N ≥0, 0≤s≤d , such that, for all N ≥ 0, ( 5)

P (B) N k d λ k = d s=0 P (λ) N +s-d A d,N,s k s λ k with A d,N,s ∼ N →+∞ ω d,s N d-s for some nonzero ω d,s .
We point out that in the statement of the previous lemma, the complex number ω d,s may depend on λ; later we will sometimes denote them ω d,s (λ).

We will also need a density lemma. We postpone the proof of these lemmas to give that of Theorem 1.5. Let U, V, W be nonempty open subsets of 1 with 0 ∈ W . Let m ≥ 1. We may find p, q ∈ N, complex numbers γ 1 , . . . ,

Proof of

γ p ∈ Λ 2 , λ 1 , . . . , λ q ∈ Λ 1 , a 1 , . . . , a p , b 1 , . . . , b q such that p l=1 a l γ k l ∈ U and q j=1 b j λ k j ∈ V.
We then set, for j = 1, . . . , q, N ≥ 0,

c j := c j (N ) = b j ω m-1,0 (λ j )N m-1 P (λ j ) N -m+1
1/m (we take any m-th root) and

u := u N = p l=1 a l γ k l + q j=1 c j λ k j so that, if N is large enough, u belongs to U . As usual, for n ∈ N, u n = n d=0 l∈I n-d p j∈I d q α(l, j, d, n)a l c j γ k l 1 • • • γ k l n-d λ k j 1 • • • λ k j d .
Let us fix for a while n ≤ m, d ∈ {0, . . . , n}, l ∈ I n-d p and j ∈ I d q . Applying Lemma 4.1, we observe that γ k l 1

• • •

λ k j d writes as a linear combination of k s µ k for some µ ∈ {γ l 1 , . . . , λ j d } and s ≤ card {l; γ l = µ} + card {j; λ j = µ} -1. Moreover, by Lemma 4.2,

P (B) N k s µ k ≤ CN s |P (µ)| N . In particular, if µ ∈ γ l 1 , . . . , γ l n-d , so that |P (µ)| < 1, then |c j (N )| × P (B) N k s µ k tends to zero. If µ ∈ {λ j 1 , . . . , λ j d }, then (6) |c j (N )| × P (B) N k s µ k ≤ C N s N d× m-1 m .
Assume first that n < m. Then

s d ≤ d -1 d ≤ n -1 n < m -1 m .
Hence, the right hand side of (6) goes to zero as N tends to +∞. This implies in particular that P (B) N (u n ) goes to zero as N tends to +∞. Assume now that n = m. The same argument shows that |c j (N )

| × P (B) N k s µ k tends to zero, except if s = d -1 = m -1.
Namely, c j (N )P (B)

N γ k l 1 • • • γ k l n-d λ k j 1 • • • λ k j d tends to zero except for the terms c j (N )P (B) N λ k j • • • λ k j .
Applying again Lemma 4.1 and Lemma 4.2, we find that

P (B) N λ k j • • • λ k j = P (λ) N -m+1 ω m-1,0 (λ j )N m-1 (λ k j ) + o(N m-1 ).
Hence, by the definition of c j ,

c j P (B) N λ k j • • • λ k j = b j (λ k j ) + o(1).
This achieves the proof that P (B) N (u m ) belongs to V provided N is large enough. 

k d λ k λ k = Q d (k)λ k .
Fact 2. For any d ≥ 0, for any λ, µ ∈ D with λ = µ, there exist a polynomial Q d,λ,µ with deg(Q d,λ,µ ) ≤ d and a complex number B d,λ,µ such that

k d λ k µ k = Q d,λ,µ (k)λ k + B d,λ,µ µ k .
The proof of Fact 1 is easy. Denoting k d λ k λ k by (u k ), we have

u k = k j=0 j d λ k so that the result is proved with Q d the polynomial of degree d + 1 such that Q d (k) = k j=0 j d for all k ∈ N.
The proof of Fact 2 can be done by induction on d. For d = 0, we simply write λ k µ k as (u k ) with

u k = k j=0 λ j µ k-j = λ λ -µ λ k + µ µ -λ µ k .
For the induction step, we write using Fact 1

k d+1 λ k = a k d λ k λ k + P (k)λ k
with deg(P ) ≤ d (to simplify the notations, we do not write the subscripts on the complex numbers and on the polynomials involved, but they clearly depend on d, λ, and later on µ). Thus,

k d+1 λ k µ k = a λ k k d λ k µ k + P (k)λ k µ k .
We then apply the induction hypothesis to both k d λ k µ k and P (k)λ k µ k to get 

k d+1 λ k µ k = a λ k Q(k)λ k + b µ k + R(k)λ k + c µ k with deg(Q), deg(R) ≤ d
P (B) k d λ k = d s=0 Q d,s (λ) k s λ k where Q d,d (λ) = P (λ) and Q d,d-1 (λ) = dλP (λ).
Proof. We start from

B n k d λ k = (k + n) d λ k+n = λ n P n,d (k)λ k where P n,d is a monic polynomial of degree d. More precisely, P n,d (k) = k d + dnk d-1 + • • • .
The result follows now from a linear combination of these equalities. Observe that if

P (X) = n j=0 α j X j , then Q d,d-1 (λ) = n j=1 α j djλ j = dλP (λ).
Proof of Lemma 4.2. We first prove by induction on N that the relation [START_REF] Bès | Convolution operators supporting hypercyclic algebras[END_REF], which is clearly true for N = 0, holds for all N and we get an induction formula for the complex numbers A d,N,s . Indeed, assuming ( 5) is true for N and using Lemma 4.4, we have

(P (B)) N +1 (k d λ k ) = d r=0 P (λ) N +r-d A d,N,r r s=0 Q r,s (λ) k s λ k = d s=0 d r=s P (λ) N +r-d A d,N,r Q r,s (λ) k s λ k .
Thus, ( 5) is true for N + 1 with the induction formula

(7) A d,N +1,s = d r=s P (λ) r-s-1 A d,N,r Q r,s (λ) 
.

When s = d, using Q d,d (λ) = P (λ), this formula simply writes A d,N +1,d = A d,N,d so that A d,N,d = 1 for all N . When s = d-1, using Q d-1,d-1 (λ) = P (λ) and Q d,d-1 (λ) = dλP (λ), we have A d,N +1,d-1 = dλP (λ)A d,N,d + A d,N,d-1 so that A d,N,d-1 = N dλP (λ)
. Assume now that we have shown that A d,N,r ∼ N →+∞ ω d,r N d-r for r = s + 1, . . . , d and let us prove it for s. Rewriting (7) we get

A d,N +1,s = A d,N,s + (s + 1)λP (λ)A d,N,s+1 + d r=s+2 P (λ) r-s-1 A d,N,r Q r,s (λ). 
We sum these equalities and use that A d,N,r ∼ N →+∞ ω d,r N d-r for r ≥ s + 1 to get

A d,N,s = (s + 1)λP (λ) N n=0 A d,n,s+1 + O N n=0 n d-(s+2) .
The result follows now easily.

4.4.

Proof of Lemma 4.3. Let u ∈ ∞ (N) which is orthogonal to all λ k for λ ∈ Λ and let F (λ) = u, λ k . Then F is a holomorphic function in D with an accumulation point of zeros inside D. Therefore, F and u are zero, which means that λ k ; λ ∈ Λ spans a dense subspace in 1 (N). Theorem 5.1. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and an entire function φ : C → C satisfying the following assumptions:

(1) for all λ ∈ C, T E(λ) = φ(λ)E(λ);

(2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ);

(3) for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X;

(4) φ is not a multiple of an exponential function.

Then there exists a residual set of vectors u ∈ X such that, for all m ≥ 1, u m ∈ HC(T ).

Proof. Let us set E = {u ∈ X; ∀m ≥ 1, u m ∈ HC(T )}. Fixing (V j ) j≥1 a basis of open subsets of X, we set

O j,m = u ∈ X; ∃N ≥ 1, T N (u m ) ∈ V j .
Then E = j,m≥1 O j,m so that, since each O j,m is clearly open, one just has to prove that these sets are dense. Thus, let U, V be nonempty open subsets of X and let m ≥ 1. We are looking for a vector u ∈ U and for an integer m |w 0 -a| + δ and |φ(w)| > 1 if w ∈ B(w 0 , δ). Let finally, as usual(!), w 1 , w 2 ∈ B(w 0 , δ) such that t ∈ [0, 1] → log |φ (tw 1 + (1 -t)w 2 )| is strictly convex. One may find p, q ∈ N, complex numbers a 1 , . . . , a p , b 1 , . . . , b q , complex numbers γ 1 , . . . , γ p ∈ B(a, δ) and λ 1 , . . . , λ q ∈ [w 1 , w 2 ] such that

N ≥ 1 such that T N (u m ) ∈ V . Let a ∈ C
p l=1 a l E (γ l /m) ∈ U and q j=1 b j E (λ j ) ∈ V.
For N ≥ 1 and j ∈ {1, . . . , q}, let c j := c j (N ) be any complex number satisfying c m j = b j / φ(λ j )

N and define

u := u N = p l=1 a l E (γ l /m) + q j=1 c j E (λ j /m) so that u m = m d=0 l∈I m-d p j∈I d q α(l, j, d, m)a l c j E γ l 1 + • • • + γ l m-d + λ j 1 + • • • + λ j d m .
We write γ l = a + z l with |z l | < δ and λ j = w 0 + z j with |z j | < δ. Then

γ l 1 + • • • + γ l m-d + λ j 1 + • • • + λ j d m = (m -d)a + dw 0 m + Z with |Z| < δ. Moreover, provided m < d, (m -d)a + dw 0 m -a = d m |w 0 -a| ≤ m -1 m |w 0 -a| .
Therefore, φ

γ l 1 +•••+γ l m-d +λ j 1 +•••+λ j d m < 1 and c j (N )T N E γ l 1 + • • • + γ l m-d + λ j 1 + • • • + λ j d m -→ N →+∞ 0.
When d = m, we conclude exactly as we have done before.

Proof of Theorem 1.3. That (i) or (ii) implies (iii) is already contained in [START_REF] Aron | Powers of hypercyclic functions for some classical hypercyclic operators[END_REF]. The proof of (iii) implies (i) is easy if we observe that, for any λ ∈ C\{0}, a hypercyclic algebra for λφ(D) is a supercyclic algebra for φ(D). Finally, the implication (iii) implies (ii) is a consequence of Theorem 5.1 for T = φ(D).

6.

Infinitely generated and dense hypercyclic algebras 6.1. Notations. We use several specific notations for this section. We denote by N the set of nonnegative integers and by N (∞) the set of sequences (α 1 , α 2 , . . . ) with α i ∈ N for all i and α i = 0 for all large i. For α ∈ N (∞) , |α| stands for the sum +∞ i=1 α i . If A is a finite subset of N (∞) , A = ∅, then L(A) denotes sup{|α|; α ∈ A}. For f ∈ X N and α ∈ N (∞) , with α i = 0 for i > d, the notation f α simply means the product

f α 1 1 • • • f α d d .
If A is a finite subset of N (∞) \{(0, . . . )}, we will often consider it as a subset of some N d , since we may choose d ≥ 1 such that α i = 0 for all i ≥ d + 1 and all α ∈ A.

6.2.

A criterion à la Birkhoff for the existence of a dense and infinitely generated hypercyclic algebra. To prove the existence of a dense and infinitely generated algebra of hypercyclic vectors, we need a reinforcement of Lemma 1.6. This is achieved by the following natural proposition, which simplifies a statement of [START_REF] Bès | Algebrable sets of hypercyclic vectors for convolution operators[END_REF] since it does not use the notion of pivot. Proposition 6.1. Let T be a continuous operator on the separable F -algebra X. Let ≺ be a total order on N (∞) . Assume that, for any d ≥ 1, for any finite and nonempty subset A ⊂ N (∞) \{(0, . . . )}, for any nonempty open subsets U 1 , . . . , U d , V of X, for any neighbourhood W of 0, there exist u = (u 1 , . . . , u

d ) ∈ U 1 × • • • × U d and N ≥ 1 such that, setting β = max(α; α ∈ A), T N (u β ) ∈ V T N (u α ) ∈ W for all α ∈ A, α = β.
Then T admits a dense and not finitely generated hypercyclic algebra.

Proof. Let (V k ) be a basis of open neighbourhoods of X. For A ⊂ N (∞) \{(0, . . . )}, A = ∅, A finite, for s, k ≥ 1, define E(A, s) = P (z) = α∈A P (α)z α ; P (β A ) = 1 and | P (α)| ≤ s A(A, s, k) = f ∈ X N ; ∀P ∈ E(A, s), ∃N ≥ 1, T N (P (f )) ∈ V k
where β A = max(α; α ∈ A). The set A being fixed, A may be considered as a subset of N d and E(A, s) as a subset of C[X 1 , . . . , X d ]. Moreover this set E(A, s) is compact. By continuity of the maps (f, P ) → T N (P (f )), this implies that each set A(A, s, k) is open. Moreover, the assumptions of the theorem clearly imply that each such set is dense. Hence, G := A,s,k A(A, s, k) is a residual subset of X N . Observe also that the set of f in X N that induce a dense algebra in X is residual in X N (see [START_REF] Bès | Algebrable sets of hypercyclic vectors for convolution operators[END_REF]). Hence we may pick f ∈ X N belonging to A,s,k A(A, s, k) and inducing a dense algebra in X.

We show that for all nonzero polynomials P , P (f ) belongs to HC(T ). Let A be the spectrum of P , let β = max(α; α ∈ A), let Q = 1 P (β) P and let s ≥ 1 be such that Q ∈ E(A, s). Since f belongs to k A(A, s, k), we conclude that Q(f ), hence P (f ), is a hypercyclic vector for T . It remains to show that the algebra generated by f is not finitely generated. Assume on the contrary that it is generated by a finite number of f α(1) , . . . , f α(p) . In particular, it is generated by a finite number of f 1 , . . . , f q . Then there exists a polynomial Q ∈ C[z 1 , . . . , z q ] such that f q+1 = Q(f 1 , . . . , f q ). Define P (z) = z q+1 -Q(z). Then P is a nonzero polynomial. Nevertheless, P (f ) = 0, which contradicts the fact that P (f ) is a hypercyclic vector for T . Remark 6.2. The last part of the proof may be formulated in the following way: let f ∈ X N be such that P (f ) is never zero for any nonzero polynomial P . Then the algebra generated by f is not finitely generated. We could avoid this by using the following lemma, proved in [START_REF] Bès | Algebrable sets of hypercyclic vectors for convolution operators[END_REF]: the set of sequences f ∈ X N whose induced algebra is not finitely generated is residual in X. Nevertheless, the proof of this last statement seems more complicated. 6.3. On the existence of infinitely generated hypercyclic algebras. We now show how to adapt our proofs to the existence of a dense and infinitely generated algebra. We have to pay the price of additional technical difficulties and we restrict ourselves to an analogue of Corollary 2.3. Theorem 6.3. Let X be an F-algebra and let T ∈ L(X). Assume that there exist a function E : C → X and an entire function φ : C → C satisfying the following assumptions:

(1) for all λ ∈ C, T E(λ) = φ(λ)E(λ);

(2) for all λ, µ ∈ C, E(λ)E(µ) = E(λ + µ);

(3) for all Λ ⊂ C with an accumulation point, span (E(λ); λ ∈ Λ) is dense in X; (4) φ is not a multiple of an exponential function;

(5) for all ρ ∈ (0, 1), there exists w 0 ∈ C with |φ (w 0 )| > 1 and, for all r ∈ (0, ρ],

|φ (rw 0 )| < 1.

Then T supports a hypercyclic algebra which is dense and is not finitely generated.

Proof. We intend to apply Proposition 6.1. Thus, let d ≥ 1, let A be a finite and nonempty subset of N (∞) \{(0, . . . )}. Enlarging d if necessary, we may and shall assume that A ⊂ N d . We choose for total order on N d the lexicographical order and we denote by β the maximal element of A for this order. Without loss of generality, we assume that β 1 = 0. Let also U 1 , . . . , U d , V be nonempty open subsets of X and let W be an open neighbourhood of 0. We set

I β = {i ∈ {2, . . . , d}; β i = 0} Ω A = {α ∈ A; α 1 = β 1 } \{β} ∪ α ∈ N d ; ∀i ∈ I β , α i ≤ β i and ∃i ∈ I β , α i < β i .
We first consider the case I β = ∅ (the other case, which is easier, will be discussed at the end of the proof). Observe that, for any α ∈ Ω A , there exists i 0 ∈ I β such that, for all i ≤ i 0 , α i = β i and α i 0 < β i 0 . Therefore it is easy to construct a sequence (ρ i ) i∈I β ⊂ (0, 1) satisfying

i∈I β ρ i = 1 ∀α ∈ Ω A , i∈I β ρ i × α i β i < 1.
Let η > 0 be such that

∀α ∈ Ω A , i∈I β ρ i × α i β i ≤ 1 -η.
We finally choose ε > 0 and ρ ∈ (0, 1) satisfying

   ρ > (1 -ε) β 1 -1 β 1 + L(A)ε ρ > (1 -ε) + (1 -η)ε = 1 -ηε.
This is possible for instance by setting ρ = 1 -ηε/2 for a sufficiently small ε > 0. For this value of ρ, we get w 0 ∈ C with |φ(w 0 )| > 1 and |φ(rw 0 )| < 1 if r ∈ (0, ρ]. We set κ = εw 0 and z 0 = (1 -ε)w 0 = w 0 -κ and we summarize some properties of w 0 , z 0 and κ below: By continuity, there exists δ > 0 such that these properties remain valid respectively in B(w 0 , δ), B(z 0 +rκ, δ), B(tz 0 +sκ, δ). Let (as usual!) w 1 = w 2 in B(w 0 , δ/2) such that t → log |φ(tw 1 +(1-t)w 2 )| is stricly convex on [0, 1]. We then choose integers p, q, complex numbers a 1,i , . . . , a p i ,i , b 1 , . . . , b q , complex numbers γ 1,i , . . . , γ p i ,i ∈ B(0, δ/2L(A)) ∩ (0, ρw 0 ), complex numbers λ 1 , . . . , λ q in [w 1 , w 2 ] such that ∀i ∈ {1, . . . , d}, p i l=1 a l,i E(γ l,i ) ∈ U i and q j=1

b j E(λ j ) ∈ V.

We define for j = 1, . . . , q, z j = λ j -κ. We then set

u 1 (N ) = p 1 l=1
a l,1 E(γ l,1 ) + q j=1 c j (N )E(z j /β 1 ),

u i = p i l=1
a l,i E(γ l,i ) + ωE(ρ i κ/β i ), provided i ∈ I β ,

u i = p i l=1 a l,i E(γ l,i )
otherwise, namely if i / ∈ I β and i > 1. Above, ω is any positive real number small enough so that all u i belong to U i for i ≥ 2, and c j (N ) is any complex number such that c j (N ) β 1 = b j φ(λ j ) N ω i∈I β β i .

Since c j (N ) goes to zero, u 1 (N ) belongs to U 1 for N large enough. It remains to show that T N (u β ) ∈ V and T N (u α ) ∈ W for α ∈ A\{β} and N large enough. Let us first compute u β . Let us examine u β 1 1 . As in the proof of Theorem 2.1, we can distinguish three different kinds of terms:

• the terms c j (N ) β 1 E(z j ), for j = 1, . . . , q;

• the terms c j (N )E

z j 1 +•••+z j β 1 β 1 for j ∈ I β 1 q nondiagonal;
• a finite number of terms a(j, γ, N )E

z j 1 +•••+z j l β 1
+ γ with j ∈ I l q , l < β 1 and |γ| < β 1 δ/2L(A).

Observe that the terms a(j, γ, N ) may depend on N by involving c j (N ) (this happens if j ∈ I l q for l > 0) but that they are uniformly bounded in N . Let us now inspect u

β 2 2 • • • u β d d .
For this product, we distinguish two kinds of terms: • the term ω i∈I β β i E(κ); • a finite number of terms b(r, γ )E(rκ + γ ) with 0 ≤ r ≤ 1 -η and |γ | < (β 2 +

• • • + β d )δ/2L(A) ≤ δ/2. Here, r is equal to i∈I β α i ρ i /β i for some α ∈ Ω A , which explains why r ≤ 1 -η.

Thus, taking the product u β , we get six kinds of terms:

• the terms c j (N ) β 1 ω i∈I β β i E(λ j ) for j = 1, . . . , q. But the choice of c j (N ) ensures that

T N   q j=1 c j (N ) β 1 ω i∈I β β i E(λ j )   = q j=1
b j E(λ j ).

• the terms c j (N ) β 1 b(r, γ )E(z j + rκ + γ ), with 1 ≤ j ≤ q, 0 ≤ r ≤ 1 -η and |γ | < δ/2. Since |z j + rκ + γ -(z 0 + rκ)| < δ, we deduce from (9) that T N c j (N ) β 1 b(r, γ )E(z j + rκ + γ ) → N →+∞ 0.

• the terms c j (N )ω i∈I β β i E

λ j 1 +•••+λ j β 1 β 1
for j ∈ I β 1 q nondiagonal. But as in the proof of Theorem 2.1, the choice of [w 1 , w 2 ] ensures that for all j ∈ I β 1 q nondiagonal,

T N c j (N )ω i∈I β β i E λ j 1 + • • • + λ j β 1 β 1 → N →+∞ 0.
• the terms c j (N )b(r, γ )E

z j 1 +•••+z j β 1 β 1
+ rκ + γ . As before, (9) ensures that

T N c j (N )b(r, γ )E z j 1 + • • • + z j β 1 β 1 + rκ + γ → N →+∞ 0.

( 5 )

 5 for all m ∈ N, there exist a, b ∈ C such that |φ(mb)| > 1 and, for all n ∈ {1, . . . , m}, all d ∈ {0, . . . , n}, with (n, d) = (m, m), |φ(db + (n -d)a)| < 1.

2. 2 .

 2 Applications to convolution operators. We now show how to deduce the first half of Theorem 1.1 from Corollary 2.4. Thus, let φ be an entire function of exponential type which is not a multiple of an exponential function. Then we let X = H(C) and T = φ(D). The map E is defined by E(λ)(z) = exp(λz); it satisfies (1), (2) and (3) of Corollary 2.4. Corollary 2.3 may also be applied to functions satisfying |φ(0)| = 1. We give here two examples which are not covered by Theorem 1.1. Example 2.6. ([6]) Let φ(z) = cos(z). Then φ(D) supports a hypercyclic algebra.

Lemma 4 . 3 .

 43 Let Λ ⊂ D with an accumulation point inside D. Then λ k ; λ ∈ Λ spans a dense subspace of 1 (N).

Theorem 1 . 5 .

 15 Since the spectrum of a hypercyclic operator has to intersect the unit circle, if P (D) is hypercyclic, then P (D) ∩ T = ∅. Hence the only difficult implication is (iii) =⇒ (ii). Thus we start with a nonconstant polynomial satisfying P (D) ∩ T = ∅. Let Λ 1 ⊂ D with an accumulation point in D such that |P (λ)| = 1 and λP (λ) = 0 for all λ ∈ Λ 1 . Let also Λ 2 ⊂ D with an accumulation point in D such that |P (λ)| < 1 and λP (λ) = 0 for all λ ∈ Λ 2 .

4. 2 . 1 .

 21 Proof of Lemma 4.1. The proof of Lemma 4.1 relies on the following facts and an easy induction. Fact For any d ≥ 0, for any λ ∈ D, there exists a polynomial Q d with deg(Q d ) = d + 1 such that

4 . 3 .Lemma 4 . 4 .

 4344 and b, c ∈ C. We conclude by using again either Fact 1 or the case d = 0. Proof of Lemma 4.2. We first isolate the case N = 1. Let P ∈ C[X], d ≥ 0. There exist polynomials (Q d,s ), 0 ≤ s ≤ d, such that, for all λ ∈ D,

5 .

 5 Convolution operators, the case |φ(0)| > 1 Example 2.8 relies clearly on the periodicity of the zeros of the sine function. We do not know what happens for other examples of entire functions with |φ(0)| > 1, for instance for φ(z) = e z -λ with |λ -1| > 1. Nevertheless, we have a general result for the existence of powers of hypercyclic vectors.

  be such that |φ(a)| < 1. Arguing as in the proof of Corollary 2.4, we may find w 0 ∈ C with |φ(w 0 )| > 1 and, for any z ∈ C with |z -a| ≤ m-1 m |w 0 -a|, then |φ(z)| < 1. Then we fix δ > 0 sufficiently small so that |φ(z)| < 1 if |z -a| ≤ m-1

  |φ(z 0 + rκ)| < 1 if r ∈ [0, 1 -η]

( 10 )

 10 |φ(tz 0 + sκ)| < 1 if t ≤ β 1 -1 β 1 and s ≤ L(A).
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• the terms a(j, γ, N )ω i∈I β β i E

with |γ | < δ, we deduce from (10) that

• the terms a(j, γ, N )b(r, γ )E

Hence, as expected, provided N is large enough, T N (u(N ) β ) ∈ V . Let us now consider α ∈ A with α ≺ β and let us show that T N (u(N ) α ) goes to zero as N goes to +∞. The analysis is similar but simpler. Either

Then applying T N to each term of u α will lead to a sequence going to zero. Or α 1 < β 1 , and now in u α 1 1 appear only terms like a(j, l, N )E

with t ≤ α 1 , namely terms like a(j, γ, N

A last application of [START_REF] Bourdon | Cyclic phenomena for composition operators[END_REF] shows that

We need finally to consider the case I β = ∅. In that case, the proof of Theorem 2.1 works almost mutatis mutandis. Indeed, the situation is simplified because now u β = u β 1 1 . We then set

with c j (N ) β 1 = b j / (φ(λ j )) N and we follow a completely similar proof. Observe in particular that if α ∈ A satisfies α ≺ β, then α 1 < β 1 .