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Multiple front standing waves in the

FitzHugh-Nagumo equations

Chao-Nien Chen ∗ Éric Séré†

Abstract: There have been several existence results for the standing
waves of FitzHugh-Nagumo equations. Such waves are the connect-
ing orbits of an autonomous second-order Lagrangian system and the
corresponding kinetic energy is an indefinite quadratic form in the
velocity terms. When the system has two stable hyperbolic equilib-
ria, there exist two stable standing fronts, which will be used in this
paper as building blocks, to construct stable standing waves with
multiple fronts in case the equilibria are of saddle-focus type. The
idea to prove existence is somewhat close in spirit to [6]; however sev-
eral differences are required in the argument: facing a strongly indef-
inite functional, we need to perform a nonlocal Lyapunov-Schmidt
reduction; in order to justify the stability of multiple front standing
waves, we rely on a more precise variational characterization of such
critical points. Based on this approach, both stable and unstable
standing waves are established.

Key words: reaction-diffusion system, FitzHugh-Nagumo equa-
tions, standing wave, stability, Hamiltonian system, connecting or-
bit.

AMS subject classification: 34C37, 35J50, 35K57.

1 Introduction

Following a fascinating idea of Turing [47], reaction-diffusion systems [1, 8, 14,
26, 37] serve as models for studying pattern formation and wave propagation.
Significant progress [8, 18, 16, 19, 17, 23, 38, 42, 43, 48] on the self-organized
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patterns has been made for the system of FitzHugh-Nagumo equations

ut − duxx = f(u)− v, (1.1)

τvt − vxx = u− γv. (1.2)

Here f(ξ) = ξ(ξ − β)(1 − ξ), β ∈ (0, 1/2) and d, τ, γ ∈ (0,∞). Historically the
original model [26, 37] was derived as a simplification of the Hodgkin-Huxley
equations [28] for nerve impulse propagation. In recent years (1.1)-(1.2) has
been extensively studied as a paradigmatic activator-inhibitor system. Such
systems are of great interest to the scientific community as breeding grounds
for studying the generation of localized structures.

The standing wave solutions of (1.1)-(1.2) are the connecting orbits of a
second order Lagrangian system

−du′′ = f(u)− v, (1.3)

−v′′ = u− γv. (1.4)

Associated with (1.3)-(1.4), the Lagrangian is

L(u′, v′, u, v) =
d

2
(u′)2 − 1

2
(v′)2 + uv − γ

2
v2 −

∫ u

0

f(ξ)dξ. (1.5)

Since (1.3)-(1.4) is an autonomous Lagrangian system, the associated energy

E(u′, v′, u, v) :=
d

2
(u′)2 − 1

2
(v′)2 − uv +

γ

2
v2 +

∫ u

0

f(ξ)dξ (1.6)

is constant along any solution. Moreover (1.3)-(1.4) can be rewritten as a first-
order Hamiltonian system of Hamiltonian

H(p, q, u, v) :=
1

2d
p2 − 1

2
q2 − uv +

γ

2
v2 +

∫ u

0

f(ξ)dξ (1.7)

in the phase space R4. System (1.7) will be referred to as (HS).

As (1.4) is a linear equation, v can be solved from u; for a given φ ∈ H1(R),
let Lφ denote the unique solution, in H1(R), of the equation

−g′′ + γg = φ. (1.8)

Direct calculation shows that L is a self-adjoint operator from L2(R) to itself.
System (1.3)-(1.4) has two stable equilibria (u−, v−) = (0, 0) and (u+, v+) with
u+ > 0. Since we are interested in standing front solutions joining such two
equilibria, they must have the same energy E, and this imposes the condition
γ = 9(2β2 − 5β + 2)−1, as to be a basic assumption of the paper. Under this
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assumption, it is easy to see that (u+, v+) = (2(β + 1)/3, 2(β + 1)/3γ) and the
symmetry S with respect to the center (u+/2, v+/2) preserves the Lagrangian.

Recall from [18] that v̂ is a C∞-function satisfying

v̂(x) =

{

v+ for x ≥ 1
0 for x ≤ −1.

(1.9)

To show the existence of standing front solutions of (1.3)-(1.4), we work with
affine functional spaces of the form Hw = w + H1(R), with w = v̂, û, where
û = (γ − ∂2/∂x2)v̂. Then for u ∈ û + H1(R), Lu is the unique solution, in
v̂ +H1(R), of the equation

−v′′ + γv = u.

In what follows, L(u, v) stands for the Lagrangian defined by (1.5). For u ∈
û+H1(R), define

J(u) =

∫ ∞

−∞
L(u,Lu)dx, (1.10)

a variational formulation with a nonlocal term involved. It is not difficult to
verify that

J(u) = max
v∈v̂+H1(R)

∫ ∞

−∞
L(u, v)dx. (1.11)

In [18] the action functional J has been employed, through a minimization
argument, to obtain a basic type standing front solution of (1.1)-(1.2) as follows.

Theorem 1.1 If γ = 9(2β2 − 5β + 2)−1 and d > γ−2, there exists a standing
front solution (u∗, v∗) of (1.3)-(1.4) with asymptotic behavior (u∗, v∗) → (u−, v−)
as x → −∞ and (u∗, v∗) → (u+, v+) as x → ∞. Moreover, u∗ is a minimizer
of J over û+H1(R).

Clearly (u∗, v∗) is also a heteroclinic orbit of (1.3)-(1.4) if we define (u∗(x),
v∗(x)) = (u∗(−x), v∗(−x)). As a remark, such existence results can be extended
to more general nonlinearities; that is, f is not necessarily a cubic polynomial.

The goal of this paper is to construct multiple front solutions using (u∗, v∗)
together with the reverse orbit (u∗, v∗). We only deal with the case when the
equilibria are of saddle-focus type; that is, the linearization of the Hamiltonian
system associated with (1.3)-(1.4) at (u−, v−), as well as (u+, v+), has eigenval-
ues ±λ± iω. As to be seen in the Appendix, the values of the parameters have
to satisfy

β ∈ (0,
7−

√
45

2
), γ = 9/(2β2 − 5β + 2) and

1

γ
<

√
d <

2

γ
. (1.12)

We now state the main existence result of the paper.
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Theorem 1.2 Assume that (1.12) is satisfied. Then there are two real numbers
κ+, κ−, and, for each sufficiently small σ > 0, a large constantDσ > 0, such that
for any positive integer N and any sequence of positive integers n = (ni)1≤i≤N

with ni ≥ Dσ for every i, there exist positive numbers X1, · · · , XN and a solu-
tion (ûn, v̂n) of (1.3)-(1.4) satisfying the following properties:

(a) For i odd in [1, N ],

‖(ûn, v̂n)(·+ Ci)− (u∗, v∗)‖H1(−Ai,Ai+1) ≤ σ , |Xi − 2πni/ω − κ+| < σ .

(b) For i even in [0, N ],

‖(ûn, v̂n)(·+ Ci)− (u∗, v∗)‖H1(−Ai,Ai+1) ≤ σ , |Xi − 2πni/ω − κ−| < σ .

Here, A0 = −∞, C0 = 0, Ci = Ci−1 + Xi, Ai = Xi/2 for 1 ≤ i ≤ N , and
AN+1 = +∞ .

Let us remark that if N is odd, (ûn, v̂n) is homoclinic to (u−, v−) while for N
even, it is a heteroclinic connection between (u−, v−) and (u+, v+). Such orbits
are the standing waves of (1.1)-(1.2) with multiple fronts; for the Hamiltonian
system they are often called multi-bump solutions.

As already mentioned, the range of parameters under consideration is such
that the basic heteroclinics (u∗, v∗) and (u∗, v∗) connect two equilibria of saddle-
focus type. In this situation, multi-bump solutions are known to exist provided
the stable and unstable manifolds intersect transversally, as was proved by De-
vaney [24] by constructing a Smale horseshoe. Transversality condition in gen-
eral is difficult to check for a given Hamiltonian although it is generically true.
Instead of verifying transversality, we follow a strategy introduced in [6]. We
first prove that any critical point of J is isolated up to translation invariance in
the spatial variable, by solving an auxiliary boundary value problem. Then we
invoke this property to show the existence of multi-bump solutions by a varia-
tional argument.

The variational construction for multi-bump and chaotic solutions has a long
history and the comments below are not exhaustive. To our knowledge, the ear-
liest results were established by Bolotin [2, 3, 4] in the context of nonautonomous
second order Lagrangian systems, the connecting orbits being minimizers of the
action. In the case of twist maps on the annulus (also corresponding to nonau-
tonomous Lagrangian systems), Mather [36] constructed chaotic connecting or-
bits by a minimization method in the region between two invariant circles. For
non-autonomous first order Hamiltonian systems, multi-bump solutions were
found by min-max methods [44, 45] under the assumption that critical points
are isolated. This construction was extended to second order systems and el-
liptic PDEs in [21, 22]. We refer to [40] and references therein for more recent
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development and related results in this direction. For autonomous problems of
saddle-focus type a class of multi-bump solutions were obtained, in the special
case of a fourth order equation related to water wave theory, by Buffoni [5]
using a shooting argument. Subsequently a larger set of multi-bump solutions
was constructed [6] by variational and degree arguments. This method was then
adapted for studying the extended Fisher-Kolmogorov equations (of fourth or-
der) [30]. In subsequent works [31, 32], the authors introduced a refined but
more specific argument to obtain more precise results on the F-K model. As
already mentioned, the present work is close in spirit to [6]. Note, however, that
our system of autonomous second order Lagrangian equations is associated with
a strongly indefinite variational problem and to our knowledge, it cannot be
reduced to a fourth order equation which would allow a simpler variational
interpretation. Instead, we use a nonlocal Lyapunov-Schmidt reduction. More-
over our approach is purely variational, contrary to [6] where degree theory was
employed. Another novelty is our proof that all critical points are isolated up
to translations in x, while in [6] the first step just consisted in showing that the
basic one-bump solution is isolated. The purely variational construction and
the stronger isolatedness property are needed for the sake of stability analysis,
as always an important issue in considering pattern formation as well as wave
propagation.

For the stationary solutions of (1.1)-(1.2), stability questions have been
studied in [15, 16, 18, 17, 38, 49] by various methods. In conjunction with
strongly indefinite variational structure, the Maslov index [14, 16] and rela-
tive Morse index [15] provide useful information to determine the stability of
such solutions, obtained as the critical points of the action functional. Let
C

− = {ζ |ζ ∈ C and Reζ < 0}, where Reζ denotes the real part of ζ . Denote by
Λ the linearization of (1.1)-(1.2) at a standing wave solution (u, v). A standing
wave (u, v) is said to be non-degenerate if zero is a simple eigenvalue of Λ.

Definition: A non-degenerate standing wave (u, v) of (1.1)-(1.2) is spec-
trally stable if all the non-zero eigenvalues of Λ are in C−.

The following result follows immediately from an index method developed
in [10]:

Theorem 1.3 Let (u, v) be a non-degenerate standing wave of (1.1)-(1.2). Sup-
pose u is a local minimizer of J then (u, v) is spectrally stable, provided that
τ < γ2.

Note, however, that the non-degeneracy of a standing wave is equivalent
to the transversality of the stable and unstable manifolds, and we are unable
to prove such a property. Fortunately, we can go beyond the spectral stabil-
ity analysis, thanks to a Lyapunov functional introduced in [17] in a slightly
different context. In Section 5 we shall give an extension of this Lyapunov func-
tional, which can be applied to the standing waves of (1.1)-(1.2). Let us remark
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that the standing waves are in affine subspaces of H1
loc(R) × H1

loc(R) having
H1(R) × H1(R) as underlying vector space. The norm of H1(R) × H1(R) in-
duces the natural metric on such affine spaces, and we shall study the dynamical
stability of the standing waves for this metric.

Theorem 1.4 Let τ < γ2. Under the flow generated by (1.1)-(1.2) on the affine
space (ûn+H

1(R) )×(v̂n+H
1(R) ), the standing wave (ûn, v̂n) is asymptotically

stable for the H1(R)×H1(R) metric, up to a phase shift in spatial variable. More
precisely, there is ρn > 0 such that if (u(x, t), v(x, t)) is a solution of (1.1)-(1.2)
and

‖u(·, 0)− ûn‖H1(R) + ‖v(·, 0)− v̂n‖H1(R) < ρn,

then

inf
y∈R

{‖u(·, t)− ûn(· − y)‖H1(R) + ‖v(·, t)− v̂n(· − y)‖H1(R)} −→
t→+∞

0 .

As a final remark, there are plenty of unstable standing waves; however we
do not attempt to describe them all. We just state a result in the two-bump
case.

Theorem 1.5 As in Theorem 1.2, assume (1.12) and take sufficiently small σ
and large Dσ. For any positive integer n ≥ Dσ there exists a solution (ǔn, v̌n)
of (1.3)-(1.4) such that, for some X ∈ R with |X − π(2n+1)/ω−κ+| < σ and
κ+ as in Theorem 1.2, the following properties hold.

(i) ‖(ǔn, v̌n)− (u∗, v∗)‖H1(−∞,X/2) ≤ σ .

(ii) ‖(ǔn, v̌n)− (u∗, v∗)(· −X)‖H1(X/2,+∞) ≤ σ .

(iii) (ǔn, v̌n) is unstable in the following sense: for some ǫ0 > 0 and for any
ρ > 0, one can find τ∗(ρ) > 0 and a solution (u(x, t), v(x, t)) of (1.1)-(1.2) such
that

‖u(·, 0)− ǔn‖H1(R) + ‖v(·, 0)− v̌n‖H1(R) < ρ ,

while if t ≥ τ∗(ρ) then

inf
y∈R

{‖u(·, t)− ǔn(· − y)‖H1(R) + ‖v(·, t)− v̌n(· − y)‖H1(R)} ≥ ǫ0 .

The solution (ǔn, v̌n) will be found in Section 6 by a mountain-pass type
mini-max method. In the proof of (iii), the fact that (ǔn, v̌n) is an isolated
standing wave will be crucial.
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2 Preliminaries

In this section we recall the variational setting [18] used to study (u∗, v∗) and
discuss related properties, including a reduced functional J which is bounded
from below. In the sequel, we work with affine functional spaces of the form
Hw = w + H1(R), with w = 0, u+, v+, u∗, u

∗, v∗ or v∗. For au = 0, u+, u∗, u
∗

respectively, and u ∈ au +H1(R), we also denote Lu := av + L(u − au) , with
av = 0, v+, v∗, v

∗ respectively. Let us remark that Lu is the unique solution, in
av +H1(R), of the equation

−v′′ + γv = u.

Recall from (1.5) that the Lagrangian associated with (1.3)-(1.4) is L(u, v).
Note that the main difference with [6] is that the present system does not
seem to be reducible to an almost linear, fourth-order system having a simple
variational interpretation. So one has to deal with an indefinite Lagrangian
(1.5). Fortunately, this Lagrangian is concave in v. We exploit this property as
follows: Observe that

‖ d
dx

(v − av)‖2L2(R) + γ‖v − av‖2L2(R) =

∫ ∞

−∞
(u− au)(v − av)dx

≤ ‖u− au‖L2(R)‖v − av‖L2(R).

Hence there is a C0 > 0 such that

‖v − av‖H1(R) ≤ C0‖u− au‖L2(R). (2.1)

Given φ ∈ H1(R), define, for all ψ ∈ H1(R),

I(ψ) =

∫ ∞

−∞
(
1

2
|ψ′|2 + γ

2
ψ2 − φψ)dx

Lemma 2.1 Let φ ∈ H1(R). Then

I(ψ)− I(Lφ) =

∫ ∞

−∞

1

2
(ψ′ − (Lφ)′)2 + γ

2
(ψ − (Lφ))2dx

for all ψ ∈ H1(R).

Proof. It follows from straightforward calculation, by making use of

∫ ∞

−∞
((Lφ′)2 + γ(Lφ)2)dx =

∫ ∞

−∞
φLφdx
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and
∫ ∞

−∞
ψ′Lφ′ + γψLφdx =

∫ ∞

−∞
φψdx.

For w ∈ {0, u+, u∗, u∗} and all u ∈ Hw, define

J(u) =

∫ ∞

−∞
L(u,Lu)dx. (2.2)

The next lemma is an immediate consequence of Lemma 2.1.

Lemma 2.2 Taking au = 0, u+, u
∗, u∗ respectively and av = 0, v+, v

∗, v∗ respec-
tively, if u ∈ Hau then:

J(u) = max
v∈Hav

∫ ∞

−∞
L(u, v)dx. (2.3)

The operator L has a good control in terms of local estimates:

Lemma 2.3 There is a constant M such that, if B − A ≥ 1 and φ ∈ H1(R),
then

‖Lφ‖H2(A,B) ≤M(‖φ‖L2(A,B) + |Lφ(A)|+ |Lφ(B)|).

Proof. Let ψ be the restriction of Lφ to the interval [A,B]. Then ψ solves the
boundary value problem

−ψ′′ + γψ = φ in (A,B) , (2.4)

ψ(A) = Lφ(A) , ψ(B) = Lφ(B) .

Since G(x) = − 1
2
√
γ
e−

√
γ |x| satisfies of −G′′ + γG = δ0 , we give an integral

expression of ψ:

∀x ∈ [A,B] , ψ(x) = b1 e
−√

γ (x−A) + b2e
√
γ (x−B) +

∫ B

A

φ(t)G(x− t)dt.

Here b1 and b2 are uniquely determined by the boundary conditions ψ(A) =
Lφ(A) , ψ(B) = Lφ(B), from which we are led to solving

{

b1 + e−
√
γ(B−A)b2 = α1

b1e
−√

γ(B−A) + b2 = α2
(2.5)
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with

α1 = Lφ(A)−
∫ B

A

φ(t)G(A− t)dt

and

α2 = Lφ(B)−
∫ B

A

φ(t)G(B − t)dt .

The solution of (2.5) is

b1 =
α1 − e−

√
γ (B−A)α2

1− e−2
√
γ (B−A)

, b2 =
α2 − e−

√
γ (B−A)α1

1− e−2
√
γ (B−A)

.

Using the integral formula for ψ , we get

‖ψ‖L2(A,B) ≤ (|b1|+ |b2|)‖e−
√
γ t‖L2(0,∞) + ‖φ‖L2(A,B)‖G‖L1(R) . (2.6)

Since B − A ≥ 1, we obtain

|b1|+ |b2| ≤
1 + e−

√
γ

1− e−2
√
γ
(|α1|+ |α2|) .

Moreover
|α1| ≤ |Lφ(A)|+ ‖φ‖L2(A,B)‖G‖L2(−∞,0),

|α2| ≤ |Lφ(B)|+ ‖φ‖L2(A,B)‖G‖L2(0,∞) ,

and straightforward calculation gives

‖G‖L1(R) =
1

γ
, ‖e−

√
γ t‖L2(0,∞) = 2−1/2γ−1/4 , ‖G‖L2(R±) = 2−3/2γ−3/4.

Combining with (2.6) yields

‖ψ‖L2(A,B) ≤ C1(γ) (|Lφ(A)|+ |Lφ(B)|) + C2(γ) ‖φ‖L2(A,B)

with C1(γ) , C2(γ) independent of A, B. Similarly, using the integral formula

∀x ∈ [A,B] , ψ′(x) = −b1
√
γ e−

√
γ (x−A) + b2

√
γ e

√
γ (x−B) +

∫ B

A

φ(t)G′(x− t)dt

with G′(x) = − sign(x)
2

e−
√
γ |x| , ‖G′‖L1(R) =

1√
γ
, we get

‖ψ′‖L2(A,B) ≤ C3(γ) (|Lφ(A)|+ |Lφ(B)|) + C4(γ) ‖φ‖L2(A,B) .

Invoking (2.4) gives ‖ψ′′‖L2(A,B) ≤ γ‖ψ‖L2(A,B) + ‖φ‖L2(A,B) .

The following proposition, which was proved in [18], implies that all the
critical values of J on Hu∗ must be positive, since d− 1

γ2 > 0.
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Proposition 2.4 If u ∈ Hw (with w = u−, u+, u∗ or u∗), then

J(u) =

∫ ∞

−∞

{

1

2
[

(

d− 1

γ2

)

(u′)2 +

(

v′ − u′

γ

)2

+ γ

(

v − u

γ

)2

] +
1

4
u2(u− u+)

2

}

dx.

If J(u) ≤ C then Proposition 2.4 gives an upper bound on ‖u−w‖H1 . If, in
addition, u is a critical point of J , then, invoking (1.3)-(1.4), we obtain an L∞

bound for (u,Lu, u′,Lu′):

Corollary 2.5 Let u ∈ Hw (with w = u−, u+, u∗ or u∗) be a critical point of
J and J(u) ≤ C. Then there is a C ′ > 0 , depending only on C , such that

‖u− w‖H1 + ‖(u,Lu, u′,Lu′)‖L∞ ≤ C ′.

The choice of parameters made in this paper implies that z± = (u±, v±, 0, 0)
are equilibria of saddle-focus type: the linearized Hamiltonian system at these
points possesses four complex eigenvalues ±λ± ω. Hence there exist invertible
matrices P− and P+ such that if Y± = P±(u − u±, v − v±)

T then (1.3)-(1.4)
becomes Y ′′

± = µ2R2νY± +O(|Y±|2), where λ = µ cos ν , ω = µ sin ν , µ > 0 and
R2ν is the matrix of a rotation with angle 2ν in R2, and the notation T means
transposition.

With z± := (u±, v±, 0, 0) being hyperbolic equilibria, a non-constant solution
of (1.3)-(1.4) cannot stay near them for all values of x. This together with
Proposition 2.4 gives a positive lower bound ℓ for the value of J at critical
points. Let | · | be the euclidean norm in R2. We list a number of properties for
the Hamiltonian system (1.7), denoted by (HS).

Proposition 2.6 Suppose z(x) = (u(x), v(x), p(x), q(x)) is a non-constant so-
lution of (HS), then there exist positive numbers ρ0 and ℓ such that the following
properties hold.

(i) If |P±(u(x)−u±, v(x)− v±)
T| < ρ0 for all x ≤ 0, then z(0) ∈ W u(z±), and

there is an a1 > 0 such that |P±(u(a1)− u±, v(a1)− v±)
T| = ρ0,

d

dx
|P±(u(x)− u±, v(x)− v±)

T| ≥ λ

2
|P±(u(x)− u±, v(x)− v±)

T| (2.7)

for all x ≤ a1.
Similarly, if |P±(u(x) − u±, v(x) − v±)

T| < ρ0 for all x ≥ 0, then z(0) ∈
W s(z±), and there is an a2 < 0 such that |P±(u(a2)− u±, v(a2)− v±)

T| =
ρ0,

d

dx
|P±(u(x)− u±, v(x)− v±)

T| ≤ −λ
2
|P±(u(x)− u±, v(x)− v±)

T| (2.8)

for all x ≥ a2. Here both a1 and a2 depend continuously on the initial
datum z(0).
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(ii) Let uc be a non-constant critical point of J and us± = limx→±∞ uc(x),
with s± ∈ {−,+}. If ρ ∈ (0, ρ0) there exist x1 < x2 such that for
any x ∈ (−∞, x1), Ps−(uc,Luc)T(x) lies in the open disk D− of center
Ps−(us−, vs−)

T with radius ρ and Ps−(uc,Luc)T(x1) sits on the boundary
of D−, while for any x ∈ (x2,∞), Ps+(uc,Luc)T(x) lies in the open disk
D+ of center Ps+(us+, vs+)

T with radius ρ and Ps+(uc,Luc)T(x2) sits on
the boundary of D+.

(iii) If uc is a non-constant critical point of J in Hw (with w = u−, u+, u∗ or
u∗) then J(uc) ≥ ℓ. Moreover ‖u− u±‖H1 ≥ ℓ in case w = u±.

Proof. We prove (i) when |P±(u(x)− u±, v(x)− v±)
T| < ρ0 for all x ≤ 0; the

other case immediately follows from time reversal. With z± = (u±, v±, 0, 0) be-
ing hyperbolic equilibria, if ρ0 is small enough, then, by the Hartman-Grossman
Theorem, z(0) must lie in the local unstable manifold W u

loc(z±), which is an em-
bedded submanifold tangent to the unstable space Eu(z±), by the Stable Man-
ifold Theorem (see e.g. [33]). For any solution (u̇(x), v̇(x), ṗ(x), q̇(x)) of the lin-
earization of (HS) at z±, the equality d

dx
|P±(u̇(x), v̇(x))

T| = λ|P±(u̇(x), v̇(x))
T|

holds, provided that this solution lies in Eu(z±). Then, for the nonlinear flow
of (HS), (2.7) follows for small ρ0. Note that in (2.7), λ

2
could be replaced by

any number λ′ < λ, at the expense of choosing a smaller ρ0 when λ
′ is closer to

λ.

Next we prove (ii). For fix 0 < ρ ≤ ρ0, let X ∈ R be such that |Ps−(uc(x)−
us−,Luc(x) − vs−)

T| < ρ for all x ≤ −X and z(x) := (uc(x + X),Luc(x +
X), du′c(x+X),−Lu′c(x+X)). Since z satisfies the assumptions of (i), set

x1 = max{x ≤ a1 −X : |Ps−(uc(y)− us−,Luc(y)− vs−)
T| < ρ ∀y < x},

where a1 was defined by (i). Clearly x1 satisfies the required properties and x2
can be treated in the same manner. The continuity of x1, x2, as the functions
of z(0), follow from (2.7)-(2.8); indeed, using these properties together with the
real-analyticity of the system, we obtain a more precise information: x1, x2 are
real-analytic functions of z(0), as a consequence of the implicit function theorem
in the version of analytic class.

Finally if uc is a heteroclinic solution, (iii) follows from Proposition 2.4. For
a non-constant critical point uc of J in Hu±

, ‖u − u±‖H1 cannot be too small
either, for otherwise Ps−(uc(x1),Luc(x1))T cannot reach the boundary of D− .

Next we analyze the behavior of Palais-Smale sequences of J . Recall the
classical notion of Palais-Smale sequence.

Definition. A sequence {um} in Hw, with w ∈ {u±, u∗, u∗}, is called a
Palais-Smale sequence for J if {J(um)} is bounded and J ′(um) → 0 in H−1(R)
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as m→ ∞.

Due to translation invariance in x, a Palais-Smale sequence does not neces-
sarily have a convergent subsequence for the H1(R) metric. However, adapt-
ing the arguments of [18], we obtain the following result in the spirit of the
concentration-compactness theory by Pierre-Louis Lions [35].

Proposition 2.7 Let ρ0 be the number introduced in Proposition 2.6, w ∈
{u±, u∗, u∗} and us− := limx→−∞w(x), s− ∈ {−,+}. Suppose {um} is a Palais-
Smale sequence for J in Hw such that lim infm→∞ J(um) > 0 then there is a
ρ1 ∈ (0, ρ0) such that, for any fixed ρ ∈ (0, ρ1), the following properties hold.

(i) There exists {xm} ⊂ R such that, for all x ∈ (−∞, xm), Ps−(um,Lum)T(x)
lies in the open disk D− of center Ps−(us−,Lus−)T with radius ρ and
Ps−(um,Lum)T(xm) sits on the boundary of D−. Moreover, after extrac-
tion, ũm := um(· − xm) converges in H1

loc to a non-constant critical point
u(1) of J , with limx→−∞ u(1)(x) = us− and us+ = limx→+∞ u(1)(x) may
differ from limx→+∞w(x).

(ii) If lim inf ‖ũm − u(1)‖H1 > 0, i.e. the convergence of {ũm} does not hold
for the H1(R) metric, there exist two sequences tm → t ∈ R and t̄m →
+∞ such that for all x ∈ (tm, t̄m), Ps+(ũm,Lũm)T(x) lies in the open

disk D̃ of center Ps+(us+, vs+)
T with radius ρ, Ps+(ũm,Lũm)T(tm) and

Ps−(ũm,Lũm)T(t̄m) both sit on the boundary of D̃. Furthermore along
a subsequence, {ũm(· − t̄m)} converges in H1

loc to a non-constant critical
point u(2) of J and us+ = limx→+∞ u(1)(x) = limx→−∞ u(2)(x).

(iii) ℓ ≤ J(u(1)) ≤ lim sup J(um)− ℓ and ℓ ≤ J(u(2)) ≤ lim sup J(um)− ℓ .

Proof. Since f(ξ) + βξ = o(ξ) as ξ → 0, there exists ρ1 ∈ (0, ρ0) such that

|P−(u, v)
T| ≤ ρ1 implies −f(u)u ≥ βu2

2
. From the symmetry property of the

null-clines, |P−(u− u+, v − v+)
T| ≤ ρ1 implies −f(u)(u− u+) ≥ β(u−u+)2

2
.

To show the existence of {xm}, we assume by contradiction that for all
x ∈ R, Ps−(um,Lum)T(x) lies in D−. This is possible only if w = us−. As
em := −du′′m−f(um)+Lum → 0 in H−1 and êm := −(Lum)′′+γLum−um = 0,
it follows that ‖um‖H1 + ‖Lum‖H1 = O(1) and

ǫm :=< em, um − us− > + < êm,Lum − vs− >= o(1). (2.9)

By direct calculation

ǫm =

∫ ∞

−∞
{d(u′m)2 + (Lu′m)2 + γ(Lum − vs−)

2 − (um − us−)f(um)}. (2.10)
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With Ps−(um,Lum)T(x) lies in D− for all x ∈ R, invoking (2.9)-(2.10) yields

∫ ∞

−∞
{d(u′m)2 + (Lu′m)2 + γ(Lum − vs−)

2 +
β

2
(um − us−)

2 ≤ o(1) .

This implies ‖um − us−‖H1 → 0 and consequently J(um) → 0, which violates
lim infm→∞ J(um) > 0.

Next, set ũm := um(· −xm) . Since J(ũm) is bounded and J ′(ũm) → 0, using
an argument in [18] yields a critical point u(1) of J and a subsequence, still
denoted by {(um,Lum)}, converges to u(1) in H1

loc(R). Note that u(1) satisfies
|Ps−(u

(1)(x) − us−,Lu(1)(x) − vs−)
T| ≤ ρ1 for x ∈ (−∞, 0) and |Ps−(u

(1)(0) −
us−,Lu(1)(0)−vs−)T| = ρ1. By Proposition 2.6(i), it is clear that (u(1),Lu(1))(x)
converges to (us−, vs−) as x→ −∞.

Assuming that the convergence of ũm to u(1) does not hold for the H1(R)
metric, we now prove (ii) and set us+ = limx→+∞ u(1)(x) (s+ ∈ {−,+}). Let
b1 > 0 such that

|Ps+(u
(1)(x)− us+,Lu(1)(x)− vs+)

T| < ρ/2 for all x ≥ b1. (2.11)

By Proposition 2.6(ii), there is b2 < b1 such that |Ps+(u
(1)(b2)−us+ ,Lu(1)(b2)−

vs+)
T| = ρ0. Since ρ0 > ρ1 > ρ and {(ũm,Lũm)} uniformly converges to u(1) on

the interval [b2, b1], it follows that |Ps+(ũm(b2)− us+,Lũm(b2)− vs+)
T| > ρ and

|Ps+(ũm(b1)− us+,Lũm(b1)− vs+)
T| < ρ for m large enough. Set

tm := max{x ≤ b1 : |Ps+(ũm(x)− us+,Lũm(x)− vs+)
T| ≥ ρ} .

Then b2 < tm < b1 and we may assert that tm → t after extracting a subse-
quence. By uniform convergence of {(ũm,Lũm)} on compact sets, we conclude
that |Ps+(u

(1)(t)− us+,Lu(1)(t)− vs+)
T| = ρ and |Ps+(u

(1)(x)− us+,Lu(1)(x)−
vs+)

T| ≤ ρ for all x ≥ t.

Now we define t̄m := sup{x ∈ R : |Ps+(ũm(x)− us+,Lũm(x)− vs+)
T| < ρ} .

We claim t̄m → ∞. Indeed, {ũm} uniformly converges to u(1) on [b1, b1 + b̄] for
any b̄ > 0. This together with (2.11) verifies the claim. Moreover we may pick
any ρ in (0, ρ1).

Set u
(2)
m (x) := ũm(x) − u(1)(x) + us+. Then {u(2)m } is a Palais-Smale se-

quence for J , and lim inf J(u
(2)
m ) > 0 follows from the fact that {ũm} fails to

converge for the H1(R) metric. Let D̂ be the disk of center Ps+(us+, vs+)
T

with radius (ρ1 + ρ)/2. As in the above argument, if m is sufficiently large

Ps+(u
(2)
m ,Lu(2)m )T(x) has to exit from D̂, from which we know t̄m <∞ since ρ <

(ρ1+ ρ)/2. Then the same argument as above shows that, along a subsequence,

{u(2)m (·−t̄m)} converges inH1
loc(R) to a non-constant critical point u

(2). By Propo-

sition 2.6(i), limx→−∞(u(2),Lu(2))(x) = (us+, vs+), since Ps+(u
(2),Lu(2))T(x)
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stays in the closed disk of center Ps+(us+, vs+)
T with radius ρ for all x ≤ 0.

This complete the proof of (ii).

In view of the construction of u
(2)
m , J(u(1))+ lim supJ(u

(2)
m ) = lim sup J(um).

Thus J(u(1)) + J(u(2)) ≤ lim sup J(um) and the proof is complete.

A consequence of Proposition 2.7 gives a local Palais-Smale compactness
property as follows:

Corollary 2.8 Let ℓ be the number as defined in Proposition 2.6. Suppose a
Palais-Smale sequence satisfies ‖um − un‖H1 ≤ ℓ/2 for all m,n, then it has a
convergent subsequence for the H1(R) metric.

Proof. For the Palais-Smale sequence {um}, we pick out the point xm
from each um as in Proposition 2.7(i). We argue indirectly by assuming that
the assertion of the corollary is false. If {xm} has a convergent subsequence
then along this subsequence, a consequence of Proposition 2.7(i) tells that
{ũm(· − xm)} converges in H1

loc(R) to a non-constant critical point u(1) of J
but the convergence for the H1(R) metric fails. Hence lim inf ‖ũm − u(1)‖H1 >
0. Applying Proposition 2.7(ii) yields a non-constant critical point u(2) of J
and limx→+∞ u(1)(x) = limx→−∞ u(2)(x) = us+. Moreover lim supm→∞ ‖u(1) −
um‖H1 = +∞ if (u(2),Lu(2)) is a heteroclinic solution and lim supm→∞ ‖u(1) −
um‖H1 ≥ ‖u(2) − us+‖H1 when (u(2),Lu(2)) is homoclinic to (u±, v±).

Next we turn to the case when {xm} has no convergent subsequence. Again
{ũm(· − xm)} converges in H1

loc(R) to a non-constant critical point u(1) of J .
Moreover lim supm→∞ ‖u(1) − um‖H1 = +∞ if (u(1),Lu(1)) is a heteroclinic so-
lution and lim supm→∞ ‖u(1) − um‖H1 ≥ ‖u(1) − us−‖H1 when (u(1),Lu(1)) is ho-
moclinic to (u±, v±). Together with Proposition 2.6 yields lim supm→∞ ‖u(1) −
um‖H1 ≥ ℓ in all cases. This leads to a contradiction and completes the proof.

In the construction of multi-front solutions, the trajectories between two
fronts will need to be in good control. Such trajectories are very close to one
of the two stable equilibria with asymptotical behavior being dominated by the
linearized equations. Recall from (1.6) that if (u, v) is a solution of (1.3)-(1.4)
then E(u′, v′, u, v) is constant along the trajectory. In particular, for any critical
point u of J , the energy E(u′,Lu′, u,Lu) is identically zero. We now state a
lemma in the same spirit as Lemmas 3.1, A.1, A.2 and A.3 of [6].

Lemma 2.9 Let ν ∈ (0, π
2ω
) and δ be small positive numbers. There exists a

small radius r̄ > 0 such that for any given points (η1, η2) and (ζ1, ζ2) ∈ R2, if
P+(η1, η2)

T and P+(ζ1, ζ2)
T are within a distance less than r̄ from P+(u+, v+)

T,
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then the boundary value problem

−du′′ = f(u)− v, (2.12)

−v′′ = u− γv, (2.13)

(u(0), v(0)) = (η1, η2), (u(T ), v(T )) = (ζ1, ζ2), (2.14)

has a solution, denoted by (Ū , V̄ )T,η1,η2,ζ1,ζ2(·), staying in a small neighborhood
of (u+, v+) and it is the only one having this property. Moreover, if ±λ± iω are
the eigenvalues of the linearization of (HS) at (u+, v+, 0, 0) and Eη1,η2,ζ1,ζ2(T )
denotes the associated energy for the solution (Ū , V̄ )T,η1,η2,ζ1,ζ2, then the function
Eη1,η2,ζ1,ζ2(·) has the following properties:

(i) Let (rη, θη) and (rζ , θζ) be the polar coordinates of P+(η1−u+, η2−v+)T and
P+(ζ1−u+, ζ2−v+)T, respectively. Then, for T large enough, Eη1,η2,ζ1,ζ2(T )
is positive if cos(θζ − θη − Tω + ϕ+) > δ while Eη1,η2,ζ1,ζ2(T ) is negative
if cos(θζ − θη − Tω + ϕ+) < −δ. Here, ϕ+ is a phase independent of the
parameters.

(ii) There is a real number κ+ and, for each r ≤ r̄/2, a smaller radius ǫ(r)
proportional to r, such that, if |(u∗(z), v∗(z))− (u+, v+))| = r, |(η1, η2) −
(u∗(z), v∗(z))| < ǫ, |(ζ1, ζ2) − (u∗(z), v∗(z))| < ǫ and ñ ≥ 1/ǫ with ñ an
integer, then

Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πñ/ω − ν) > 0,

Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πñ/ω + ν) < 0.

(iii) Similar assertions hold when replacing (u+, v+) by (u−, v−), P+ by P−,
(u∗, v∗) by (u∗, v∗) and ϕ+, κ+ by possibly different phases ϕ−, κ−.

We refer to [6] for a proof; there the existence and local uniqueness of (Ū , V̄ )
follow from Lemma A.3. The sign property (i) of the energy is a consequence of
Lemma A.2, and see Lemma 3.1 for the detail. Finally, (ii) is a consequence of
(i). Note that the formula for the sign of E in (i) or (ii) is correct for a suitable
choice of P+, for other choices the sign in front of Tω has to be changed.

3 Isolated critical points

The aim of this section is to show that all critical points of J are isolated, up to
translations in x. As already mentioned in the introduction, for the construction
of multi-front solutions we would just need to know that the basic heteroclinic
u∗ is isolated up to translations, as in [6]. Showing that all critical points are
isolated is considerably more difficult, however this stronger property will be
needed for working out the stability analysis in the last part of this paper.
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Proposition 3.1 Any critical point uc of J is an isolated critical point for the
H1(R) metric, up to translations in x.

Proposition 3.1 will follow from two facts. The first one is an alternative.
Its proof is delicate and relies crucially on the results of Section 2 and the
real-analyticity of the Hamiltonian:

Lemma 3.2 Either the stable and unstable manifolds of the hyperbolic points
(u−, v−, 0, 0) and (u+, v+, 0, 0) are bounded, or every critical point of J is isolated
up to translation in x.

Note that the four manifolds mentioned in Lemma 3.2 are all bounded (resp.
unbounded) if at least one of them is bounded (resp. unbounded), since the La-
grangian L(u′, v′, u, v) is invariant under time reversal and under the symmetry
of center (u+/2, v+/2).

The second fact is stated in the next proposition, in which we find tra-
jectories which are either on the unstable manifold of (u−, v−, 0, 0) or on the
stable manifold of (u+, v+, 0, 0), and that reach a point of arbitrarily large size.
This shows that the stable and unstable manifolds mentioned in Lemma 3.2 are
unbounded, and thus Proposition 3.1 is established:

Proposition 3.3 For any b ∈ R, there is a solution (u, v) of (1.3)-(1.4) which
satisfies u(0) = γ

2
v(0) = b and one of the following conditions:

(i) limx→−∞(u(x), v(x)) = (u−, v−) and

∫ 0

−∞
L(u, v)dx ≥

∫ 0

−∞

1

2

(

d− 1

γ2

)

(u′)2 +
1

4
(u− u−)

2(u− u+)
2dx. (3.1)

(ii) limx→∞(u(x), v(x)) = (u+, v+) and

∫ ∞

0

L(u, v)dx ≥
∫ ∞

0

1

2

(

d− 1

γ2

)

(u′)2 +
1

4
(u− u−)

2(u− u+)
2dx. (3.2)

Proof. Let F (u) = −
∫ u

0
f(ξ)dξ. Suppose that (u, v) satisfies (1.3)-(1.4),

u(0) = γ
2
v(0) = b and limx→−∞(u(x), v(x)) = (u−, v−). Multiplying (1.4) by v

and integrating over (−∞, 0), we get

− vv′
∣

∣

∣

0

−∞
+

∫ 0

−∞
(v′)2 + γv2dx =

∫ 0

−∞
uvdx.
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By direct calculation

∫ 0

−∞

{

d

2
(u′)2 +

1

2
uv + F (u)

}

dx

=

∫ 0

−∞

{

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γv2 + F (u)

}

dx− 1

2
vv′
∣

∣

0

−∞

=

∫ 0

−∞

{

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γ

(

v − u

γ

)2

+

(

uv − u2

γ

)

}

dx

+

∫ 0

−∞

(

F (u) +
1

2γ
u2
)

dx− 1

2
vv′
∣

∣

0

−∞. (3.3)

Next, multiplying (1.4) by −u/γ and integrating over [−η, η], we have

∫ 0

−∞

(

uv − u2

γ

)

dx =

∫ 0

−∞

1

γ
uv′′dx =

1

γ
uv′
∣

∣

∣

∣

0

−∞
−
∫ 0

−∞

1

γ
u′v′dx. (3.4)

Since γ = 9(2β2 − 5β + 2)−1, it follows from direct calculation that

F (u) +
u2

2γ
=

1

4
(u− u−)

2(u− u+)
2,

Substituting (3.4) into (3.3) yields

∫ 0

−∞

{

d

2
(u′)2 +

1

2
uv + F (u)

}

dx

=

∫ 0

−∞

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γ

(

v − u

γ

)2

− 1

γ
u′v′ +

1

4
(u− u−)

2(u− u+)
2dx

− 1

2
vv′
∣

∣

0

−∞+
1

γ
uv′
∣

∣

∣

∣

0

−∞

=

∫ 0

−∞

1

2

(

d− 1

γ2

)

(u′)2 +
1

2

(

v′ − u′

γ

)2

+
1

2
γ

(

v − u

γ

)2

dx

+

∫ 0

−∞

1

4
(u− u−)

2(u− u+)
2dx− 1

2
vv′
∣

∣

0

−∞+
1

γ
uv′
∣

∣

∣

∣

0

−∞
.

Then (3.1) easily follows in view of the boundary conditions on u and v.
Next we prove the existence of such a solution. Let v̂ be a C∞-function such

that v̂(0) = 2b
γ
, −v̂xx(0)+ γv̂(0) = b and v̂(x) = 0 if x ≤ −1. For convenience in

notation, we define Hw = w +H1
0 (−∞, 0). Set û = γv̂ − v̂xx. For w ∈ Hû, let

Ĵ(w) =

∫ 0

−∞

1

2
[d(w′)2 + wL̂w] + F (w)dx, (3.5)
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where L̂w denotes the unique solution of

−v′′ + γv = w, v ∈ Hv̂. (3.6)

As in the proof of Theorem 1.1 of [18], we pick a minimizing sequence um ∈ Hû

which converges to u in H1
loc. Moreover u ∈ Hû and

Ĵ(u) = inf
w∈Hû

Ĵ(w).

Letting v = L̂u, we see that (u, v) satisfies (1.3)-(1.4), u(0) = γ
2
v(0) = b and

limx→−∞(u(x), v(x)) = (u−, v−). This proves (i).

The above argument also shows that either limx→−∞(u(x), v(x)) = (u−, v−)
or limx→−∞(u(x), v(x)) = (u+, v+). In the latter case, we replace (u(x), v(x))
by (u(−x), v(−x)) to establish (ii), since the proof of (3.2) is not different from
that of (3.1).

Proof of Lemma 3.2 and Proposition 3.1. We actually just need to
prove Lemma 3.2, since Proposition 3.1 then immediately follows.

Let uc be a non-constant critical point of J and limz→−∞ uc(z) = us−,
limz→+∞ uc(z) = us+, s−, s+ ∈ {−,+}. Note that zs−= (us−, vs−, 0, 0) is a
hyperbolic equilibrium of a first order Hamiltonian system (HS) with Hamilto-
nian function H(u, v, p, q), which is associated to the second order Lagrangian
system (1.3)-(1.4). Here, p denotes the momentum conjugate to u and q the mo-
mentum conjugate to v. With the Hamiltonian H being real analytic, the local
unstable manifold W u

loc(zs−) of zs− is a real analytic submanifold of R4. More-
over the unstable space of the linearization of (HS) at zs− is the graph of a linear
map from R2 to itself, henceW u

loc(zs−) is the graph of a real analytic map ϕ from
a small neighborhood Us− of (us−, vs−) into R2, and ϕ(us−, vs−) = (0, 0). Simi-
larly, zs+ = (us+ ,vs+ , 0, 0) is hyperbolic and its local stable manifold W s

loc(zs+)
is the graph of a real analytic map ψ = (ψp, ψq) from a small neighborhood Us+

of (us+, vs+) into R2, and ψ(us+, vs+) = (0, 0).

Recall that we use the same ρ1 as introduced in Proposition 2.7. Also,
in Lemma 2.9, we choose δ = 1/2 with the associated r̄ > 0. To employ
Proposition 2.7, we pick 0 < ρ ≤ min{ρ1/2, r̄} so that |Ps±(u−us±, v−vs±)| ≤ ρ

implies (u, v) ∈ Us±. Given θ ∈ R, we denote (u,v)Tθ := P−1
s−

(ρ cos θ, ρ sin θ)T +

(us−, vs−)
T and zθ := ((u,v)θ, ϕ((u, v)θ)) .

Let vc = Luc. Remembering that ρ1 < ρ0, we may take x1, x2 associated
to uc as in Proposition 2.6(ii). Let Φ = (U, V,ΠU ,ΠV ) be the flow of (HS) at
time T = x2 − x1 + 1 (both η and T depend on the critical point uc under
consideration). Then Ps−(uc(x1) − us−, vc(x1) − vs−)

T = (ρ cos θc, ρ sin θc)
T for

some angle θc, and Ps+ (U(zθc), V (zθc))
T lies in the open disk D+ of center

Ps+(us+, vs+)
T with radius ρ.
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From now on in this proof, let us assume that uc is not isolated up to trans-
lations, for the H1 metric in the set of critical points of J . Let u be a critical
point of J sufficiently close to uc in the H1(R) topology but not equal to a
translate of uc. Then the trajectory parametrized by (u,Lu, du′,−Lu′) in the
phase space must contain a point zθ with θ arbitrarily close, but not equal, to
the angle θc. Moreover, since Ps+ (U(zθc), V (zθc))

T lies in the open disk D+ of

center Ps+(us+, vs+)
T with radius ρ, the same is true for Ps+ (U(zθ), V (zθ))

T if
u is close enough to uc in H1(R) topology. As a consequence, θ is a zero of
each of the functions χ1(θ) = ΠU(zθ)− ψp(U(zθ), V (zθ)) and χ2(θ) = ΠV (zθ)−
ψq(U(zθ), V (zθ)).

The above argument shows that θc is not an isolated zero of the real-analytic
functions χ1 and χ2, which are defined in a small open interval I containing θc.
So these functions are identically zero on I, which means that the flow η sends
all the points zθ near zθc to points of W s

loc(zs+).

To each θ in I, we associate the solution Zθ of the Hamiltonian system with
initial value Zθ(0) = zθ . Let uθ(x) be the first component of the vector Zθ(x)
and let j(θ) := J(uθ). Then it is not hard to see that the function θ ∈ I → uθ
is continuous, and even of class C1, for the H1(R) metric on the target space.
Thus, by the chain rule, d

dθ
j(θ) = 0, and j(θ) = J(θc). Moreover, all the angles

in I correspond to critical points uθ that are not isolated, up to translation, in
H1(R) topology.

Denote by Θ the set of angles θ associated to all non-isolated critical points
J which converge to us− as x→ −∞. We have shown that Θ is an open subset
of R, and by assumption it contains θc. Clearly Θ is 2π-periodic, and the above
argument shows that j is a 2π-periodic and locally constant function on Θ. Let
J be the maximal open interval in Θ containing θc and let θ̂ := supJ . If
θ̂ = +∞, then J = Θ = R and j is constant on R, so Corollary 2.5 gives an
L∞ estimate on all the solutions Zθ. Moreover these solutions converge to zs±
as x → ±∞, and W u(zs−) = W s(zs+) =

⋃

(θ,x)∈[0,2π)×R
Zθ(x) is bounded. So,

to complete the proof of Lemma 3.2, we just need to study the remaining case
when θ̂ is a finite number.

Then, as θ → θ̂, θ ∈ J , Zθ converges in the C1
loc topology to Zθ̂, by

continuous dependence of the solutions of the Hamiltonian system with re-
spect to initial data. Since θ̂ /∈ J , the convergence of uθ to uθ̂ does not
hold for the H1(R) metric. As a consequence, from Proposition 2.7(iii), uθ̂
is a critical point of j satisfying the estimate ℓ ≤ j(uθ̂) ≤ j(θc) − ℓ. From
now on, set (us1, vs1) = limx→+∞(uθ̂,Luθ̂)(x), s1 ∈ {−,+}. Let t ∈ R be
such that for all x > t, Ps1(uθ̂,Luθ̂)T(x) lies in the open disk D1 of center
Ps1(us1, vs1)

T with radius ρ, while Ps1(uθ̂,Luθ̂)T(t) sits on the boundary of D1.

Then, for θ close enough to θ̂, there are two numbers tθ < t̄θ such that for all
x ∈ (tθ, t̄θ), Ps1(uθ,Luθ)T(x) lies in the open disk D1, while Ps1(uθ,Luθ)T(tθ)
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and Ps1(uθ,Luθ)T(t̄θ) both sit on the boundary of D1. Moreover limθ→θ̂ tθ = t
and limθ→θ̂ t̄θ = +∞ . The existence of tθ is due to the convergence of Zθ in C

1
loc,

and the existence of t̄θ is due to the lack of convergence in the H1(R) metric.

Now, it follows from the Harman-Grobman theorem that the distance be-
tween Zθ(tθ) and W s

loc(zs1) tends to zero as θ → θ̂, since (t̄θ − tθ) → ∞. As
a consequence, remembering that (2.8) holds on W s

loc(zs1), we obtain a similar

estimate when θ is sufficiently close to θ̂:

d

dx
|Ps1(uθ(tθ)− us1,Luθ(tθ)− vs1)

T| ≤ −λ
4
|Ps1(uθ(tθ)− us1,Luθ(tθ)− vs1)

T| .

Such an inequality, together with the implicit function theorem gives the conti-
nuity, and even the real-analyticity, of tθ as a function of θ on a small interval
(θ̂ − ε, θ̂) ⊂ J . The continuity of t̄θ can be proved in the same manner, using
an inequality analogous to (2.7).

So we can define two continuous functions α , ᾱ : (θ̂ − ε, θ̂) → R which
satisfy

Ps1(uθ − us1,Luθ − vs1)
T(tθ) = ρ (cosα(θ), sinα(θ))T ,

Ps1(uθ − us1,Luθ − vs1)
T(t̄θ) = ρ (cos ᾱ(θ), sin ᾱ(θ))T .

Since limθ→θ̂(uθ,Luθ)(tθ) = (uθ̂,Luθ̂)(t), α(θ) has a finite limit α(θ̂) as θ → θ̂.
In order to study the limit of ᾱ, we are going to use Lemma 2.9, remembering
that we have fixed δ = 1/2 and chosen ρ ≤ r̄. Since uθ is a critical point of J ,
its energy is zero, so Euθ(tθ),Luθ(tθ),uθ(t̄θ),Luθ(t̄θ)

(t̄θ − tθ) = 0 . Then, from (ii) in
Lemma 2.9, we find a phase ϕ1 independent of the parameters, such that, for θ
close enough to θ̂,

cos(ᾱ(θ)− α(θ)− (t̄θ − tθ)ω + ϕ1) ∈ [−1/2, 1/2] .

But (t̄θ − tθ) → ∞ and α(θ) → α(θ̂) as θ → θ̂. Moreover ᾱ depends contin-
uously on θ. So we must have limθ→θ̂ ᾱ(θ) = ∞. As a consequence, given any

α ∈ [0, 2π) , there is a sequence {θ(n)α } such that ᾱ(θ
(n)
α ) = α + 2nπ for all n

large enough, and θ
(n)
α → θ̂ as n → ∞. Passing to a subsequence if necessary,

it follows from Proposition 2.7 that {u
θ
(n)
α
(· − t̄

θ
(n)
α
)} converges for the local H1

topology to a non-constant critical point of J , denoted by u
(2)
α , with Ps1(u

(2)
α −

us1,Lu(2)α −vs1)T(0) = ρ (cosα, sinα)T and ℓ ≤ J(u
(2)
α ) ≤ J(uc)−ℓ. Then Corol-

lary 2.5 gives an L∞ estimate on Z
(2)
α = (u

(2)
α ,Lu(2)α , d(u

(2)
α )′,−L(u(2)α )′), which

is independent of α. So W u(zs1) =
⋃

(α,x)∈[0,2π)×R
Z

(2)
α (x) is bounded. This com-

pletes the proof of Lemma 3.2, so Proposition 3.1 is true.

Recall that the Lagrangian L(u′, v′, u, v) is autonomous and u∗ is a non-
constant solution. By taking a small translation in x if necessary, from now on
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we always assume that u′∗(0) 6= 0. This condition also holds for u∗, since it is
the reverse orbit of u∗.

As a consequence of Proposition 3.1, we obtain the following result.

Corollary 3.4 There exist h0, σ0 > 0 and, for any 0 < h < h0, a radius
σ̄(h) > 0 with lim

h→0
σ̄(h) = 0, such that the local sublevel set

Vh = {u ∈ Hu∗ : u(0) = u∗(0) , ‖u− u∗‖H1(R) ≤ σ0 and J(u) ≤ J(u∗) + h}

satisfies the following property:

u ∈ Vh ⇒ ‖u− u∗‖H1(R) < σ̄(h) .

Proof. From Corollary 2.8, for σ1 small enough, the functional J satisfies the
Palais-Smale condition on the closed ball of center u∗ with radius σ1 of H1(R)-
norm. Since u′∗(0) 6= 0, by Proposition 3.1 there exists σ0 ≤ σ1 such that u∗
is the unique critical point of J on the closed ball of center u∗ with radius σ0,
so does u∗. Consequently in this closed ball, Theorem 1.1 tells that u∗ is the
unique minimizer of J , which completes the proof.

Consider a sufficiently large number z and define

Vh,z := {u ∈ H1(−z, z) : u ≡ û on [−z, z] for some û ∈ Vh} . (3.7)

Now, for u ∈ Vh,z with h small and z large, the functional J is C2 and strictly
convex on

Cu := {ũ ∈ Hu∗ : ũ ≡ u on [−z, z] and ‖ũ− u∗‖H1(R) ≤ σ̄(h)} ,

which is a closed, bounded and convex subset of Hu∗ . Indeed, if ũ ∈ Cu, any
other element of Cu near ũ is of the form ũ + w with ‖w‖H1(R) small and w ≡
0 on [−z, z]. Thus a direct calculation gives

D2J(ũ) · w · w =

∫

R

{d(w′)2 − f ′(ũ)w2 + (Lw′)2 + γ(Lw)2} ≥ k̂‖w‖H1(R)

for some k̂ > 0 . Moreover, if a function ũ ∈ Cu satisfying ‖ũ− u∗‖H1(R) = σ̄(h),
then J(ũ) > J(u∗)+h ≥ minCu J . So J has a minimizer, denoted by b(u), which
does not saturate the constraint ‖ũ − u∗‖H1(R) ≤ σ̄(h); that is, (b(u),Lb(u))
solves the system (1.3)-(1.4) outside the interval [−z, z], and by the implicit
function theorem, b is well-defined as a smooth function of u in H1 topology.
This provides a Lyapunov-Schmidt reduction Jz = J ◦ b of J defined on Vh,z,
and the following corollary holds.
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Corollary 3.5 For h0 small enough, there is z0 > 0 such that if h ∈ (0, h0)
and z > z0, then

ρ(h) := inf{‖J ′
z(u)‖(H1(−z,z))∗ : u ∈ Vz,h and Jz(u) = J(u∗) + h} > 0 .

Proof. Suppose that the assertion of the corollary is false. Then ρ(h) = 0
for small h and Corollary 2.8 implies that a Palais-Smale sequence converges to
a critical point of J in a small ball of center u∗ at the critical level J(u∗) + h.
Hence there would exist critical points of J in any small neighborhood of u∗.
This is contrary to Proposition 3.1.

4 Construction of multi-front waves

With u′∗(0) 6= 0, we now get into details about how to construct the multi-
front solutions. Let h > 0 be small and D > 0 large (to be determined later
as depending on h). Pick an arbitrary finite interval of integers [1, N ] and an
arbitrary finite sequence of positive integers n = (ni)1≤i≤N such that ni ≥ D
for all i. Take z > 0 large enough so that (u∗(−z)−u−)

2+(v∗(−z)− v−)
2 ≤ r̄2

and (u∗(z)− u+)
2 + (v∗(z)− v+)

2 ≤ r̄2, where r̄ is the small radius considered
in Lemma 2.9.

Recall Vh,z from (3.7) and introduce a smooth map bn from (Vh,z)
N+1 ×

[−ν, ν]N intoH1
loc(R,R), defined as follows. For (u,x) = ((ui)0≤i≤N , (xi)1≤i≤N) ∈

(Vh,z)
N+1×[−ν, ν]N , we associate a unique function u = bn(u,x), which satisfies

the following conditions:

(S1) ∀i ∈ [0, N ] ∩ 2Z , u ≡ ui(· − Ci) on (Ci − z, Ci + z),

(S2) ∀i ∈ [0, N ] ∩ (2Z+ 1) , u ≡ ui(Ci − ·) on (Ci − z, Ci + z),

(S3) ‖u− u−‖H1(−∞,−z) ≤ Kr̄,

(S4) ∀i ∈ [0, N − 1] ∩ 2Z , ‖u− u+‖H1(Ci+z,Ci+1−z) ≤ Kr̄,

(S5) ∀i ∈ [0, N − 1] ∩ (2Z+ 1) , ‖u− u−‖H1(Ci+z,Ci+1−z) ≤ Kr̄,

(S6) ‖u− u±‖H1(CN+z,∞) ≤ Kr̄, where u± = u+ for N even, u± = u− for

N odd,

(S7) C0 = 0 , Ci+1 = Ci +Xi (0 ≤ i ≤ N − 1) ,

(S8) X2j = x2j + κ+ +
2πn2j

ω
,

(S9) X2j+1 = x2j+1 + κ− +
2πn2j+1

ω
,

(S10) (u,Lu) satisfies (1.3)-(1.4) on each of the intervals (−∞,−z] ,
[Ci + z, Ci+1 − z] , [CN + z,+∞) .

22



Choosing r̄ small enough and a large K not depending on r̄, we claim that
conditions (S1)-(S10) determine u in a unique way, and explain why the cor-
responding function bn(u,x) is smooth. Observe that one can define the set
U(u,x) consisting of all functions u satisfying conditions (S1)-(S6). This set is
convex, bounded, closed in the H1 topology. Moreover, the controls (S3)-(S6)
on u imply the strict convexity on J restricted to U(u,x). Indeed, if u ∈ U(u,x),
any other element of U(u,x) near u is of the form u+w with ‖w‖H1(R) small and
w ≡ 0 on

⋃

1≤i≤N [Ci − z, Ci + z], and then a direct calculation gives

D2J(u) · w · w =

∫

R

{d(w′)2 − f ′(u)w2 + (Lw′)2 + γ(Lw)2} ≥ k̄‖w‖H1(R)

for some k̄ > 0 , exactly as in the proof of Corollary 3.4.

So J has a unique minimizer in U(u,x). Moreover for K large enough, if a
function u belongs to U(u,x), and saturates at least one of the constraints (S3)-
(S6) then J(u) > minU(u,x)

J . In conclusion, the minimizer does not saturate
any of the constraints, so it is the only solution of (S10) in U(u,x) and the implicit
function theorem gives a smooth function bn of (u,x) in the H1 topology.

Up to this stage, a Lyapunov-Schmidt reduction has been performed, and
the next task is to minimize the reduced functional J = J ◦ bn. The existence
of a minimizer is easily established. Indeed, the set Vh is a bounded, closed
sublevel set of the weakly lower semicontinuous functional J , thus it is weakly
compact in H1(−z, z). By the weak lower semicontinuity of J, there exists a
minimizer (ū, x̄) in the weakly compact set (Vh,z)

N+1 × [−ν, ν]N .

Lemma 4.1 Given z large, h small and choose D large enough, if ni ≥ D for
every i. then ûn := bn(ū, x̄) is a local minimizer of J .

To prove Lemma 4.1, we introduce the set O =
⋃

(u,x)∈(Vh,z)N+1×[−ν,ν]N U(u,x)

consisting of functions u satisfying (S1)-(S6) for some (u,x) ∈ (Vh,z)
N+1 ×

[−ν, ν]N . The next lemma shows that O contains a small ball in H1(R) with
center at ûn. Clearly ûn minimizes J on O, by virtue of the construction used
in the variational argument, and thus Lemma 4.1 is an immediate consequence.

Lemma 4.2 Given z large and h small. Suppose that D is chosen large enough
and ni ≥ D for all i. If (ū, x̄) = ((ūi)0≤i≤N , (x̄i)1≤i≤N ) is a minimizer of J in
(Vh,z)

N+1 × [−ν, ν]N then
(i) Jz(ūi) < J(u∗) + h for all 0 ≤ i ≤ N ,
(ii) −ν < x̄i < ν for all 1 ≤ i ≤ N .

The following lemma will be used to prove Lemma 4.2.
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Lemma 4.3 Let z and h be given as above, both are not depending on N . For
any α > 0 there exists D̄(α), not depending on N , such that if ni ≥ D̄(α) ∀
1 ≤ i ≤ N then

‖J ′
z(ui)− ∂ui

J‖(H1(−z,z))∗ < α , ∀(u,x) ∈ (Vh,z)
N+1 × [−ν, ν]N , 0 ≤ i ≤ N .

The proof of Lemma 4.3 is standard (see e.g. [6]). We omit it.

Proof of Lemma 4.2. We argue indirectly. Suppose that Jz(ūl) = J(u∗) + h
for some l ∈ (0, N), applying Lemma 4.3 yields

〈

∂ul
J(ū, x̄),∇H1(−z,z)Jz(ūl)

〉

≥ ρ(h)

2
,

with ρ(h) given by Corollary 3.5. Then moving ul slightly in the direction of
−∇H1(−z,z)Jz(ūl) would decrease J(u,x), which contradicts the minimality of
J(ū, x̄). The proof of (i) is complete.

We next apply Lemma 2.9 to prove (ii). Fix z large and h small enough so
that

r := |(u∗(z), v∗(z))− (u+, v+))| ≤ r̄/2 ,

|(ūi(±z),Lūi(±z))− (u∗(±z), v∗(±z))| < ǫ

with ǫ as in Lemma 2.9 and ni ≥ 1/ǫ being imposed. Suppose x̄l = −ν for some
l ∈ (1, N − 1), it follows from Lemma 2.9 that

∂xl
J(ū, x̄) = −Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πn/ω − ν) < 0 ,

where η1 = ūl(Cl+z), η2 = Lūl(Cl+z), ζ1 = ūl+1(Cl+1−z), ζ2 = Lūl+1(Cl+1−z).
Then increasing xl slightly would make J small, which again contradicts the min-
imality of J(ū, x̄). Likewise, if x̄l = ν we could decrease J by slightly decreasing
xl. Now the proof of Lemma 4.2 is complete.

We are now ready to prove the existence result of multi-front solutions,
stated in Theorem 1.2. The stability of such solutions will be investigated in
the next section.

Proof of Theorem 1.2. Take r̄ small enough so that Kr̄ < σ, the small radius
required as in the statement. Pick z large and h small enough so that the small
number σ̄(h), defined in Corollary 3.4, is less than σ, and this then enables us
to apply Lemma 4.1. To complete the existence proof, simply assign Dσ to be
the number D stated in Lemma 4.1.
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5 Stability

In this section a Lyapunov functional will be introduced to prove Theorem 1.4.
This Lyapunov functional is well-defined for u ∈ au+H

1(R) and v ∈ av+H
1(R).

From in the proof of Theorem 1.2, we know that ûn is a local minimizer of J
and v̂n = Lûn. To prove Theorem 1.4, we define

E(u, v) := J(u) +
γ

2(1 + δ̂)
‖v − L(u)‖2 (5.1)

for u ∈ ûn + H1(R) and v ∈ v̂n + H1(R). This together with Proposition 3.1
shows that (ûn, v̂n) is a local minimizer of E for the natural topology of the affine
space (ûn +H1(R) )× (v̂n + L2(R) ), and it is an isolated critical point of E up
to translation in spatial variable. Also, E satisfies the Palais-Smale condition in
a small neighborhood of (ûn, v̂n).

Consider the Cauchy problem:

ut − duxx = f(u)− v, (5.2)

τvt − vxx = u− γv, (5.3)

with the initial data in the function space Y = Yu×Yv. Here Yu = (ûn+H
1(R))∩

Cb(R), Yv = v̂n+H
1(R)∩Cb(R) and Cb(R) is the set of bounded uniformly con-

tinuous functions on R. For (u1, v1), (u2, v2) ∈ Y , define ||(u1, v1)− (u2, v2)||Y =
||u1 − u2||H1(R) + ||u1 − u2||L∞(R) + ||v1 − v2||H1(R) + ||v1 − v2||L∞(R). Then with
slightly modification, Theorem 2.1 of [41] (see also [46], Theorem 14.2) shows
that, for given initial data in Y , (5.2)-(5.3) has a unique solution (u(·, t), v(·, t)).
This is the result for the local existence of solutions. Indeed this solution exists
globally in time and (u(·, t), v(·, t)) ∈ C([0,∞), Y ). For the proofs, we refer
to [41, 46] for the detail, including using the method of contracting rectangles.
Similar results hold if we work on different function space; for instance, take
Yu = ûn+C

2
0 (R) and Yv = v̂n+C

2
0 (R) with the natural topology inherited from

C2
0(R). Here C

2
0(R) is the set of twice continuously differentiable functions with

compact support.

The above results will be used in the proofs of Theorem 1.4 and Theorem
1.5. The next proposition shows that E(u, v) is a Lyapunov functional for the
evolution flow generated by (1.1)-(1.2).

Proposition 5.1 Assume that 0 < τ < γ2. Let δ̂ > 0 and satisfy 1 + δ̂/2 <
γ2/τ . Then for any smooth solution (u(x, t), v(x, t)) of (1.1)-(1.2),

d

dt
E(u(·, t), v(·, t)) ≤ − δ̂

2(1 + δ̂)
‖ut‖2

− 1

1 + δ̂

(

γ2

τ
− 1− δ̂

2

)

‖v − L(u)‖2 − γ

(1 + δ̂)τ
‖ ∂
∂x

(v −L(u))‖2.
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Here ‖ · ‖ is the norm of L2(R).

Proof. Let w = v − L(u). If u ∈ Yu and v ∈ Yv then v − L(u) ∈ H1(R).
By Theorem 2.3 of [41] (see also [46], Theorem 14.3) and density argument,
it suffices to treat the case Yu = ûn + C2

0(R) and Yv = v̂n + Ck
0 (R). Clearly

(1.1)-(1.2) is equivalent to

ut = duxx + u(u− β)(1− u)− L(u)− w, (5.4)

τ(wt + L(ut)) = wxx − γw. (5.5)

In terms of (u, w), we rewrite (5.1) as

E1(u, w) := J(u) +
γ

2(1 + δ̂)
‖w‖2. (5.6)

Let (u(x, t), w(x, t)) be a solution of (5.4)-(5.5). Multiplying (5.5) by w and
integrating by parts, we obtain

τ [(w,wt)L2 + (w,L(ut))L2] + ‖wx‖2 + γ‖w‖2 = 0. (5.7)

Recall that L is a self-adjoint operator from L2(R) to itself. Hence

(w,L(ut))L2 = (L(w), ut)L2 . (5.8)

By making use of (5.7)-(5.8), a direct calculation gives

d

dt
E1(u(·, t), w(·, t))

= −
∫ ∞

−∞
(duxx + u(u− β)(1− u)− L(u))utdx+

γ

1 + δ̂
(w,wt)L2

= −‖ut‖2 − (w, ut)L2 − γ

1 + δ̂

(

(w,L(ut))L2 +
1

τ
(‖wx‖2 + γ‖w‖2)

)

≤ −1

2
‖ut‖2 +

1

2
‖w‖2 − γ

(1 + δ̂)
(L(w), ut)L2

− γ2

(1 + δ̂)τ
‖w‖2 − γ

(1 + δ̂)τ
‖wx‖2

≤ −1

2
‖ut‖2 +

1

2
‖w‖2 + 1

(1 + δ̂)
‖w‖‖ut‖ −

γ2

(1 + δ̂)τ
‖w‖2 − γ

(1 + δ̂)τ
‖wx‖2

≤ −1

2

(

1− 1

1 + δ̂

)

‖ut‖2 +
(

1

2
+

1

2(1 + δ̂)
− γ2

(1 + δ̂)τ

)

‖w‖2

− γ

(1 + δ̂)τ
‖wx‖2

≤ − δ̂

2(1 + δ̂)
‖ut‖2 −

1

1 + δ̂

(

γ2

τ
− 1− δ̂

2

)

‖w‖2 − γ

(1 + δ̂)τ
‖wx‖2 ≤ 0.
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Thus E(u, v) and E1(u, w) are non-increasing functions of t along the trajectory
of a solution of (1.1)-(1.2).

Proof of Theorem 1.4. First by Proposition 3.1 and a slightly modified ver-
sion of the proof of Corollary 3.4, the following assertion holds:

There exist h2, σ2 > 0 and, for any 0 < h < h2, a radius σ̂(h) > 0 with
lim
h→0

σ̂(h) = 0, such that the local sublevel set

Yh = {u ∈ ûn+H
1(R) : u(0) = ûn(0) , ‖u−ûn‖H1(R) ≤ σ2 and J(u) ≤ J(ûn)+h}

satisfies the property that if u ∈ Yh then ‖u − ûn‖H1(R) < σ̂(h) . Moreover in
Yh, ûn is the unique critical point of J .

Let h̄ < h2

O = {u ∈ ûn +H1(R) : u(0) = ûn(0) and ‖u− ûn‖H1(R) ≤ σ̂(h̄)}.

and

∂O = {u ∈ ûn +H1(R) : u(0) = ûn(0) and ‖u− ûn‖H1(R) = σ̂(h̄)}.

Define

ĥ = inf
u∈∂O

J(u)− J(ûn). (5.9)

If h̄ is sufficiently small then ĥ ∈ (0, h2

2
). Set O∗ = ∪y∈R{u : u(·+ y) ∈ O} and

∂O∗ = ∪y∈R{u : u(· + y) ∈ ∂O}. Then any critical point of J in O∗ must be
ûn(·+ y) for some y ∈ R. Consider the initial data which satisfy

‖u(·, 0)− ûn‖H1(R) + ‖v(·, 0)− v̂n‖H1(R) < ρn. (5.10)

Recall that there is a C0 > 0 such that

‖L(u(·, t))− v̂n‖H1(R) ≤ C0‖u(·, t)− ûn‖L2(R). (5.11)

Let ρn < min(σ̂(h̄), (C0 + 1)−1

√

ĥ(1+δ̂)
2γ

). If we take ρn sufficiently small then

J(u(·, 0)) < J(ûn) +
ĥ
4
. Invoking (5.10)-(5.11) yields

‖v(·, 0)−L(u(·, 0))‖H1(R)

≤ ‖v(·, 0)− v̂n‖H1(R) + ‖L(u(·, 0))− v̂n‖H1(R)

≤ C0‖u(·, 0)− ûn‖L2(R) + ‖L(u(·, 0))− v̂n‖H1(R)

< (C0 + 1)ρn. (5.12)
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Hence

γ

2(1 + δ̂)
‖v(·, 0)−L(u(·, 0))‖2H1(R) <

γ(C0 + 1)2ρ2
n

2(1 + δ̂)
≤ ĥ

4

and consequently

E(u(·, 0), v(·, 0)) < J(ûn) +
ĥ

4
+
ĥ

4
< J(ûn) +

ĥ

2
. (5.13)

It follows from Proposition 5.1 that, for all t > 0,

J(u(·, t)) ≤ E(u(·, t), v(·, t)) < J(ûn) +
ĥ

2
. (5.14)

Recall that (u(·, t), v(·, t)) ∈ C([0,∞), Y ). Invoking (5.9) and (5.14) yields
(u(·, t) ∈ O∗ for all t > 0.

Since E(u(·, t), v(·, t)) is bounded from below, it follows from Proposition 5.1
that

∫ ∞

0

‖ut(·, t)‖2L2(R)dt <∞, (5.15)

∫ ∞

0

‖v(·, t)−L(u(·, t))‖2L2(R)dt <∞ (5.16)

and
∫ ∞

0

‖ ∂
∂x

(v(·, t)− L(u(·, t)))‖2L2(R)dt <∞. (5.17)

Hence there exists a sequence {tj} such that as tj → ∞, ‖ut(·, tj)‖L2(R) → 0,
‖v(·, tj) − L(u(·, tj))‖H1(R) → 0 and u(·, tj) converges to a critical point of J
in O∗. Since any critical point of J in O∗ must be ûn(· + y) for some y ∈ R

and (u(·, t), v(·, t)) ∈ C([0,∞), Y ), it follows that as t → ∞, J(u(·, t)) con-
verges to J(ûn) and u(·, t) converges to ûn(·+ y) for some y ∈ R. This implies
‖L(u(·, t))− v̂n(· + y)‖H1(R) → 0. Together with ‖v(·, t)− L(u(·, t))‖H1(R) → 0
yields ‖v(·, t) − v̂n(· + y)‖H1(R) → 0. The fact ‖u(·, t) − ûn(· + y)‖H1(R) → 0
follows from J(u(·, t))− J(ûn) → 0.

6 Unstable waves

In this section the same notation as in the proof of Theorem 1.2 will be used
to prove Theorem 1.5. We employ the mountain-pass principle to obtain such
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critical points. Starting with the set Vh,z defined by (3.7), we construct a smooth
map b̌n from (Vh,z)

2× [−ν, ν] to H1(R); here to each (u0, u1, x) in V2
h,z × [−ν, ν],

we associate the unique function u ∈ H1(R) satisfying the following conditions:

(S ′
1) u ≡ u1(X − ·) on (X − z,X + z),

(S ′
2) u ≡ u0 on (−z, z),

(S ′
3) ‖u− u−‖H1(−∞,−z) ≤ Kr̄,

(S ′
4) ‖u− u−‖H1(X+z,∞) ≤ Kr̄,

(S ′
5) X = x+ κ+ +

π(2n+ 1)

ω
,

(S ′
6) (u,Lu) satisfies (1.3)-(1.4) on each of the intervals (−∞,−z] ,

[z,X − z] , [X + z,+∞) .

With this definition of b̌n, we define J̌ := J ◦ b̌n. Then b̌n(u0, u1, x) is a critical
point of J if (u0, u1, x) is a critical point of J̌ in V2

h,z × [−ν, ν].

Note that Lemma 4.3 still holds in the present situation. Hence for n large
enough, there exists ρ̌h > 0 such that if (u0, u1, x) ∈ V2

h,z × [−ν, ν] and Jz(ūl) ∈
[J(u∗) + h/2, J(u∗) + h] with l = 0 or 1 then

〈

∂ul
J̌(u0, u1, x),∇H1(−z,z)Jz(ul)

〉

≥ ρ̌h . (6.1)

Moreover, adapting Lemma 2.9 to the present situation, we see that, for each n
large enough, there is a small µn such that if x ∈ [−ν,−ν/2] then

∂xJ̌(u0, u1, x) ≥ µn , (6.2)

while for x ∈ [ν/2, ν],
∂xJ̌(u0, u1, x) ≤ −µn . (6.3)

Pick a ∈ (Vh,z)
2 × {−ν} be such that J̌(a) ≤ inf(Vh,z)2×{−ν} J̌ + µnν/4 and

b ∈ (Vh,z)
2 × {ν} be such that J̌(b) ≤ inf(Vh,z)2×{ν} J̌ + µnν/4. Set

Γ := {γ̄ ∈ C([0, 1], (Vh,z)
2 × [−ν, ν]) : γ̄(0) = a , γ̄(1) = b }

and define
cn := inf

γ̄∈Γ
max
[0,1]

J̌ ◦ γ̄ .

It follows from (6.2) and (6.3) that cn ≥ max(J̌(a), J̌(b)) + µnν/4.

For any γ̄ ∈ Γ, (6.1) together with the standard deformation theory gives a
γ̃ ∈ Γ such that max[0,1] J̌ ◦ γ̃ ≤ max[0,1] J̌ ◦ γ̄ and the image of γ̃ stays in the
set V2

h/2,z × [−ν, ν]. Moreover, it follows from Corollary 2.8 that J̌ satisfies the

Palais-Smale condition. Since the critical points of J̌ are isolated, we may apply
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a result of Hofer [29] to find a “mountain-pass’ type critical point (u♯0, u
♯
1, x

♯) of J̌ .
This tells that for any neighborhood Ω of (u♯0, u

♯
1, x

♯) there exists (u′0, u
′
1, x

′) ∈ Ω
such that J̌(u′0, u

′
1, x

′) < cn. Setting (ǔn, v̌n) := (b̌n(u
♯
0, u

♯
1, x

♯),Lb̌n(u♯0, u♯1, x♯))
gives a two-bump solution of (1.3)-(1.4). Moreover (ǔn, v̌n) satisfies Theorem
1.5(i),(ii) and J(ǔn) = cn.

Let us recall the Lyapunov functional E defined in Section 5 for showing the
instability of (ǔn, v̌n). With H1 ×H1 topology, we can find a neighborhood of
(ǔn, v̌n) which possesses a single critical point only. Inside this set, any smaller
neighborhood of (ǔn, v̌n) contains a point (ũ, ṽ) := (b̌n(u

′
0, u

′
1, x

′),Lb̌n(u′0, u′1, x′))
with the property J(ũ) < E(ũ, ṽ) < cn. If (u(x, t), v(x, t)) is a solution of (1.1)-
(1.2) with the initial datum (u(x, 0), v(x, 0)) = (ũ(x), ṽ(x)), it is clear that
J(u(x, t)) ≤ E(u(x, t), v(x, t)) < E(ũ, ṽ) < E(ǔn, v̌n) < cn. Hence there exist
τ∗ > 0 and a small neighborhood N of (ǔn, v̌n) such that (u(x, t), v(x, t)) /∈ N
if t ≥ τ∗. This completes the proof of (iii), so does Theorem 1.5.

7 Appendix

As a byproduct of [18], the proof of Theorem 1.1 shows that there exists a
heteroclinic solution for the system

−du′′ = k(u− u3)− v, (7.1)

−v′′ = u− γv. (7.2)

Here (u+, v+) is replaced by (
√

1− 1/(kγ),
√

1− 1/(kγ)/γ) and (u−, v−) =
(−u+,−v+). The nonlinearity in (7.1) is an odd function, which gives the same
type of potential as in the Allen-Cahn equation. The following observation
indicates that system (1.3)-(1.4) can be converted into (7.1)-(7.2).

Suppose that (ū, v̄) is a heteroclinic solution of (7.1)-(7.2). By setting k =
1
3
(β2 − β + 1) and

{

u∗ = (β + 1)/3 +
√
kū,

v∗ = (β + 1)/3γ +
√
kv̄,

(7.3)

a simple calculation easily verifies that (u∗, v∗) is a heteroclinic solution of (1.3)-
(1.4).

In this Appendix, we clarify the conditions on the parameters such that both
(u−, v−) and (u+, v+) are saddle-focus equilibria. First from the assumptions of
Theorem 1.1, γ = 9/(2β2 − 5β + 2) and dγ2 > 1. In view of (7.1)-(7.2), since
u2+ = 1− 1

γk
, it follows that kγ > 1. Therefore

k(1− 3u2+)− γd =
1

γ
(3− 2kγ − γ2d) < 0. (7.4)

Consider the linearization of (7.1)-(7.2) at (
√

1− 1/(kγ),
√

1− 1/(kγ)/γ). If

[k(1− 3u2+)− γd]2 − 4d < 0, (7.5)
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then all the eigenvalues are complex numbers, which is case of saddle-focus.
Combining (7.4) with (7.5) yields

1

γ
(3− 2kγ − γ2d) > −2

√
d,

which can be rewritten as

γd− 2
√
d+ (2k − 3

γ
) < 0. (7.6)

Solving (7.6) gives

1−√
4− 2γk

γ
<

√
d <

1 +
√
4− 2γk

γ
, (7.7)

provided that kγ < 2. Note that kγ = 3β2−3β+3
2β2−5β+2

= 3
2
+ 9β

2(2β2−5β+2)
> 3

2
for

β ∈ (0, 1
2
). This together with kγ < 2 implies

9β

2β2 − 5β + 2
< 1

and consequently 9β < 2β2 − 5β + 2. Solving β2 − 7β + 1 > 0 yields

β <
7−

√
45

2
, (7.8)

as β ∈ (0, 1
2
) rules out the possibility of β > 7+

√
45

2
. Since kγ > 3

2
, it follows

from (7.7) and dγ2 > 1 that

1

γ
<

√
d <

2

γ
. (7.9)

In summary, the equilibria (u−, v−) and (u+, v+) are saddle-focus if and only
if

β ∈ (0,
7−

√
45

2
), γ = 9/(2β2 − 5β + 2) and

1

γ
<

√
d <

2

γ
,

as stated in (1.12).
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Dauphine, and Séré was visiting the National Tsing Hua University and National
Center for Theoretical Sciences, Taiwan.

31



References

[1] M. Bode, A. W. Liehr, C. P. Schenk and H. -G. Purwins, Interac-
tion of dissipative solitons: particle-like behaviour of localized structures in
a three-component reaction-diffusion system, Physica D 161 (2002), 45-66.

[2] S. Bolotin, Variational criteria for nonintegrability and chaos in Hamil-
tonian systems, pp.173-179 in: Hamiltonian Mechanics, J. Seimenis, ed.,
Proceedings of a NATO Advanced Research Workshop, NATO Adv. Sci.
Inst. Ser. B Phys. 331, 1994.

[3] S. Bolotin, Variational methods of constructing chaotic motions in rigid-
body dynamics, J. Appl. Math. Mech. 56 (1992), 198-205.

[4] S. Bolotin, The effect of singularities of the potential energy on the in-
tegrability of mechanical systems, U.S.S.R. 48 (1984), 255-260.

[5] B. Buffoni, Infinitely many large amplitude homoclinic orbits for a class
of autonomous Hamiltonian systems, J. Differential Equations 121 (1995),
109-120.
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