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Multiple front standing waves in the

FitzHugh-Nagumo equations

Chao-Nien Chen ∗ Éric Séré†

Abstract: There have been several existence results for the stand-
ing waves of FitzHugh-Nagumo equations. Such waves are the con-
necting orbits of an autonomous second-order Lagrangian system
and the corresponding kinetic energy is an indefinite quadratic form
in the velocity terms. When the system has two stable hyper-
bolic equilibria, there exist two stable standing fronts, which will
be used in this paper as building blocks, to construct stable stand-
ing waves with multiple fronts in case the equilibria are of saddle-
focus type. The idea to prove existence is somewhat close in spirit
to [6]. However several differences are required in the argument:
facing a strongly indefinite functional, we need to perform a nonlo-
cal Lyapunov-Schmidt reduction; in order to justify the stability of
multiple front standing waves, we rely on a more precise variational
characterization of such critical points. Based on this approach,
both stable and unstable standing waves are established.

Key words: reaction-diffusion system, FitzHugh-Nagumo equa-
tions, standing wave, stability, Hamiltonian system, connecting or-
bit.

AMS subject classification: 34C37, 35J50, 35K57.

1 Introduction

Following a fascinating idea of Turing [36], reaction-diffusion systems [1, 7, 10,
21, 29] serve as models for studying pattern formation and wave propagation.
Significant progress [7, 13, 12, 14, 15, 18, 30, 32, 33, 37] on the self-organized
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patterns has been made for the system of FitzHugh-Nagumo equations

ut − duxx = f(u)− v, (1.1)

τvt − vxx = u− γv. (1.2)

Here f(ξ) = ξ(ξ − β)(1 − ξ), β ∈ (0, 1/2) and d, τ, γ ∈ (0,∞). Historically the
original model [21, 29] was derived as a simplification of the Hodgkin-Huxley
equations [22] for nerve impulse propagation. In recent years (1.1)-(1.2) has
been extensively studied as a paradigmatic activator-inhibitor system. Such
systems are of great interest to the scientific community as breeding grounds
for studying the generation of localized structures.

The standing wave solutions of (1.1)-(1.2) are the connecting orbits of a
second order Hamiltonian system

−du′′ = f(u)− v, (1.3)

−v′′ = u− γv. (1.4)

Associated with (1.3)-(1.4), the Lagrangian is

L(ux, vx, u, v) =
d

2
ux

2 − 1

2
vx

2 + uv − γ

2
v2 −

∫ u

0

f(ξ)dξ. (1.5)

As (1.4) is a linear equation, v can be solved from u, for instance, by making
use of Green function. This leads to a variational formulation J(u), as to be
defined in (2.2) with a nonlocal term involved. In fact the action functional J
has been employed [13], through a minimization argument, to obtain a basic
type standing front solution of (1.1)-(1.2) as follows.

Theorem 1.1 Let (u−, v−) = (0, 0) and (u+, v+) = (2(β + 1)/3, 2(β + 1)/3γ).
If γ = 9(2β2 − 5β + 2)−1 and d > γ−2, there exists a heteroclinic orbit (u∗, v∗)
of (1.3)-(1.4) with asymptotic behavior (u∗, v∗) → (u−, v−) as x → −∞ and
(u∗, v∗) → (u+, v+) as x → ∞.

Clearly (u∗, v∗) is also a heteroclinic orbit of (1.3)-(1.4) if we define (u∗(x),
v∗(x)) = (u∗(−x), v∗(−x)). Note that two constant solutions (u−, v−) and
(u+, v+) are in the same energy level only if γ = 9(2β2−5β+2)−1. Like what is
known in the Allen-Cahn equation, standing fronts appear in reaction-diffusion
system with a balanced double-well potential. As a remark, such existence re-
sults can be extended to more general nonlinearities; that is, f is not necessary
to be a cubic polynomial.

The goal of this paper is to construct multiple front solutions using (u∗, v∗)
together with the reverse orbit (u∗, v∗). We only deal with the case when the
equilibria are of saddle-focus type; that is, the linearization of the Hamiltonian
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system associated with (1.3)-(1.4) at (u−, v−), as well as (u+, v+), has eigenval-
ues ±λ± iω. As to be seen in the Appendix, the values of the parameters have
to satisfy

β ∈ (0,
7−

√
45

2
), γ = 9/(2β2 − 5β + 2) and

1

γ
<

√
d <

2

γ
. (1.6)

Without loss of generality, we may assume that u∗x(0) 6= 0. With prime
denoting differentiation with respect to x, we occasionally use subscript for
differentiation in notation. We now state a main existence result of the paper.

Theorem 1.2 Assume that (1.6) is satisfied. Then there are two real numbers
κ+, κ−, and, for each sufficiently small σ > 0, a large constantDσ > 0, such that
for any positive integer N and any sequence of positive integers n = (ni)1≤i≤N

with ni ≥ Dσ for every i, there exist positive numbers X1, · · · , XN−1 and a
solution (ûn, v̂n) of (1.3)-(1.4) satisfying the following properties:

(a) ‖(ûn, v̂n)− (u∗, v∗)‖H1(−∞,A1) ≤ σ .

(b) For i odd in [1, N ],

‖(ûn, v̂n)(·+ Ci)− (u∗, v∗)‖H1(−Ai,Ai+1) ≤ σ , |Xi − 2πni/ω − κ+| < σ .

(c) For i even in [2, N ],

‖(ûn, v̂n)(·+ Ci)− (u∗, v∗)‖H1(−Ai,Ai+1) ≤ σ , |Xi − 2πni/ω − κ−| < σ .

Here, C1 = X1, Ci = Ci−1 +Xi, Ai = Xi/2 for 1 ≤ i ≤ N , and AN+1 = +∞ .

Let us remark that if N is odd, (ûn, v̂n) is homoclinic to (u−, v−) while for N
even, it is a heteroclinic connection between (u−, v−) and (u+, v+). Such orbits
are the standing waves of (1.1)-(1.2) with multiple fronts; for the Hamiltonian
system they are often called multi-bump solutions .

As already mentioned, the range of parameters under consideration is such
that the basic heteroclinics (u∗, v∗) and (u∗, v∗) connect two equilibria of saddle-
focus type. In this situation, multi-bump solutions are known to exist provided
the stable and unstable manifolds intersect transversally, as was proved by De-
vaney [19] by constructing a Smale horseshoe. Transversality condition in gen-
eral is difficult to check for a given Hamiltonian although it is generically true.
Instead to verify transversality, we follow a strategy, as introduced in [6], to
prove that the basic heteroclinic is isolated up to translation invariance in the
spatial variable, by solving an auxiliary boundary value problem. Then invoking
this fact to show the existence of multi-bump solutions by variational argument.
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The variational construction for multi-bump and chaotic solutions has a long
history and the comments below are not exhaustive. To our knowledge, the ear-
liest results were established by Bolotin [2, 3, 4] in the context of nonautonomous
second order Lagrangian systems, the connecting orbits being minimizers of the
action. In the case of twist maps on the annulus (also corresponding to nonau-
tonomous Lagrangian systems), Mather [28] constructed chaotic connecting or-
bits by a minimization method in the region between two invariant circles. For
non-autonomous first order Hamiltonian systems, multi-bump solutions were
found by min-max methods [34, 35] under the assumption that critical points
are isolated. This kind of approaches have been extended to second order sys-
tems and elliptic PDEs in [16, 17]. We refer to [31] and references therein for
more recent development and related results in this direction. For autonomous
problems of saddle-focus type a class of multi-bump solutions were obtained,
for the special case of a fourth order equation related to water wave theory, by
Buffoni [5] using a shooting argument. Subsequently a larger set of multi-bump
solutions was constructed [6] by variational and degree arguments. This method
was then adapted for studying the extended Fisher-Kolmogorov equations (of
fourth order) [24]. In subsequent works [25, 26], the authors introduced a refined
but more specific argument to obtain more precise results on the F-K model.
As already mentioned, the present work is close in spirit to [6]. Note, however,
that our system of autonomous second order Lagrangian equations is associ-
ated with a strongly indefinite variational problem and it cannot be reduced to
a fourth order equation. Instead, we use a nonlocal Lyapunov-Schmidt reduc-
tion. Moreover our approach is purely variational, contrary to [6] where degree
theory was employed; indeed such a variational construction is needed for the
sake of stability analysis, as always an important issue in considering pattern
formation as well as wave propagation.

For the stationary solutions of (1.1)-(1.2), stability questions have been
studied in [11, 12, 13, 15, 30, 38] by various methods. In conjunction with
strongly indefinite variational structure, the Maslov index [10, 12] and rela-
tive Morse index [11] provide useful information to determine the stability of
such solutions, obtained as the critical points of the action functional. Let
C− = {ζ |ζ ∈ C and Reζ < 0}, where Reζ denotes the real part of ζ . Denoted
by Λ the linearization of (1.1)-(1.2) at a standing wave solution (u, v). A stand-
ing wave (u, v) is said to be non-degenerate if zero is a simple eigenvalue of Λ.

Definition A non-degenerate standing wave (u, v) of (1.1)-(1.2) is spectrally
stable if all the non-zero eigenvalues of Λ are in C−.

First, we state a stability result obtained from an index method developed
in [9].
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Theorem 1.3 Let (u, v) be a non-degenerate standing wave of (1.1)-(1.2). Sup-
pose u is a local minimizer of J then (u, v) is spectrally stable, provided that
τ < γ2.

In addition, the Lyapunov functional [15] reveals more dynamical aspects
in the process of generating stable patterns. We give an extension of such a
Lyapunov functional, which can be applied to the standing waves of (1.1)-(1.2).

Theorem 1.4 Let τ < γ2. Under the flow generated by (1.1)-(1.2) in the
H1(R)× L2(R) topology, the standing wave (ûn, v̂n) is asymptotically stable up
to a phase shift in spatial variable. More precisely, for each ǫ > 0 there is ρn > 0
such that if (u(x, t), v(x, t)) is a solution of (1.1)-(1.2) and

‖u(·, 0)− ûn‖H1(R) + ‖v(·, 0)− v̂n‖L2(R) < ρn,

then for all t > 0,

inf
Y ∈R

{‖u(·, t)− ûn(· − Y )‖H1(R) + ‖v(·, t)− v̂n(· − Y )‖L2(R)} < ǫ

and

inf
Y ∈R

{‖u(·, t)− ûn(· − Y )‖H1(R) + ‖v(·, t)− v̂n(· − Y )‖L2(R)} −→
t→+∞

0 .

As a final remark, there are plenty of unstable standing waves; however we
do not attempt to describe all of them here but just state one result in the
two-bump case.

Theorem 1.5 As in Theorem 1.2, assume (1.6) and take sufficiently small σ
and large Dσ. For any positive integer n ≥ Dσ there exists a solution (ǔn, v̌n)
of (1.3)-(1.4). Moreover, for some X ∈ R with |X − π(2n + 1)/ω − κ+| < σ
and κ+ as in Theorem 1.2, the following properties hold.

(i) ‖(ǔn, v̌n)− (u∗, v∗)‖H1(−∞,X/2) ≤ σ .

(ii) ‖(ǔn, v̌n)− (u∗, v∗)(· −X)‖H1(X/2,+∞) ≤ σ .

(iii) (ǔn, v̌n) is unstable in the following sense: for any ρ0 > 0, there exist
ǫ0 > 0, T0 > 0 and a solution (u(x, t), v(x, t)) of (1.1)-(1.2) such that

‖u(·, 0)− ǔn‖H1(R) + ‖v(·, 0)− v̌n‖L2(R) < ρ0 ,

while if t ≥ T0 then

inf
Y ∈R

{‖u(·, t)− ǔn(· − Y )‖H1(R) + ‖v(·, t)− v̌n(· − Y )‖L2(R)} ≥ ǫ0 .

The solution (ǔn, v̌n) follows from mountain-pass argument, as to be shown
in Section 6.
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2 Variational setting

In this section we recall the variational setting [13] used to study (u∗, v∗) and
discuss related properties, including a reduced functional J which is bounded
from below. Recall from (1.5) that the Lagrangian associated with (1.3)-(1.4)
is L(ux, vx, u, v), which will be simply written as L(u, v) frequently. Note that
the main difference with [6] is that the present system is not reducible to a
simple, almost linear, fourth-order system. So one has to deal with an indefinite
Lagrangian (1.5). Fortunately, this Lagrangian is concave in v. We exploit this
property as follows:

For a given φ ∈ H1(R), let Lφ be the unique solution, in H1(R), of the
equation

−g′′ + γg = φ.

In the sequel, we work with affine functional spaces of the formHw = w+H1(R),
with w = 0, u+, v+, u∗, u

∗, v∗ or v∗. For au = 0, u+, u∗, u
∗ respectively, and

u ∈ au +H1(R), we also denote Lu := av + L(u − au) , with av = 0, v+, v∗, v
∗

respectively.
Note that Lu is the unique solution, in av +H1(R), of the equation

−v′′ + γv = u.

Clearly

‖ d
dx

(v − av)‖2L2(R) + γ‖v − av‖2L2(R) =

∫ ∞

−∞
(u− au)(v − av)dx

≤ ‖u− au‖L2(R)‖v − av‖L2(R).

Hence there is a C0 > 0 such that

‖v − av‖H1(R) ≤ C0‖u− au‖L2(R). (2.1)

Given φ ∈ H1(R), define, for all ψ ∈ H1(R),

I(ψ) =

∫ ∞

−∞
(
1

2
|ψ′|2 + γ

2
ψ2 − φψ)dx

Lemma 2.1 Let φ ∈ H1(R). Then

I(ψ)− I(Lφ) =

∫ ∞

−∞

1

2
(ψ′ − (Lφ)′)2 + γ

2
(ψ − (Lφ))2dx

for all ψ ∈ H1(R).
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Proof. It follows from straightforward calculation, by making use of
∫ ∞

−∞
((Lφ′)2 + γ(Lφ)2)dx =

∫ ∞

−∞
φLφdx

and
∫ ∞

−∞
ψ′Lφ′ + γψLφdx =

∫ ∞

−∞
φψdx.

For w ∈ {0, u+, u∗, u∗} and all u ∈ Hw, define

J(u) =

∫ ∞

−∞
L(u,Lu)dx. (2.2)

The next lemma is an immediate consequence of Lemma 2.1.

Lemma 2.2 Taking au = 0, u+, u
∗, u∗ respectively and av = 0, v+, v

∗, v∗ respec-
tively, if u ∈ Hau then:

J(u) = max
v∈Hav

∫ ∞

−∞
L(u, v)dx. (2.3)

The operator L has a good control in terms of local estimates:

Lemma 2.3 There is a constant M such that, if B − A ≥ 1 and φ ∈ H1(R),
then

‖Lφ‖H1(A,B) ≤M(‖φ‖L2(A,B) + |Lφ(A)|+ |Lφ(B)|).

Proof. Let θ̃ be a smooth real-valued function defined on [0, 1/2] such that
θ̃ ≡ 1 in a neighborhood of zero and θ̃ ≡ 0 in a neigborhood of 1/2. A test
function ψA,B is introducd as follows:

ψA,B ≡ Lφ away from [A,B],

ψA,B ≡ 0 on [A+ 1/2, B − 1/2],

ψA,B ≡ θ̃(· − A)Lφ on [A,A+ 1/2],

ψA,B ≡ θ̃(B − ·)Lφ on [B − 1/2, B].

By direct calculation
∫ B

A

((Lφ′ − ψ′
A,B)

2 + γ(Lφ− ψA,B)
2)dx

=

∫ B

A

(−ψ′′
A,B + γψA,B − φ)(ψA,B − Lφ)dx

≤ (‖ − ψ′′
A,B + γψA,B‖L2(A,B) + ‖φ‖L2(A,B))‖ψA,B −Lφ‖L2(A,B).
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Denoted by O(s) a number bounded by Cs with C being a constant not de-
pending on A,B, φ. Then

‖ψA,B − Lφ‖H1(A,B) = O(‖ − ψ′′
A,B + γψA,B‖L2(A,B) + ‖φ‖L2(A,B)).

Applying the triangular inequality yields

‖Lφ‖H1(A,B) = O(‖ψA,B‖H1(A,B) + ‖ − ψ′′
A,B + γψA,B‖L2(A,B) + ‖φ‖L2(A,B)).

By the definition of ψA,B

‖ψA,B‖H1(A,B) + ‖−ψ′′
A,B + γψA,B‖L2(A,B) = O(|Lφ(A)|+ |Lφ(B)|+ ‖φ‖L2(A,B)).

Now the proof is complete.

3 Isolated critical points

The aim in this section is to show that any critical point of J is an isolated
critical point, up to translations in x.

Proposition 3.1 Suppose that uc is a critical point of J in Hu∗ and satisfies
uc(0) = u∗(0). Then in the set of critical points of J having the same constraint
at x = 0, uc is an isolated point in the H1 topology. The same assertion holds
if Hu∗ is replaced by Hu∗

or Hu−
or Hu+.

In order to prove this Proposition, we use an alternative as in [6]: as
the system is real analytic, either all trajectories of the unstable manifold of
(u−, v−, 0, 0) converge to (u+, v+, 0, 0) and have the same action, or every het-
eroclinic is isolated. In the next proposition we will find a trajectory in the
unstable manifold of (u−, v−, 0, 0) which does not converge to (u+, v+, 0, 0) as
x → +∞ or, if it does, has an action larger than the action of (u∗, v∗). This
will allow us to prove Proposition 3.1.

Proposition 3.2 For any b ∈ R, there is a solution (u, v) of (1.3)-(1.4) which
satisfies u(0) = γ

2
v(0) = b and one of the following conditions:

(i) limx→−∞(u(x), v(x)) = (u−, v−) and

∫ 0

−∞
L(u, v)dx ≥

∫ 0

−∞

1

2

(

d− 1

γ2

)

(u′)2 +
1

4
(u− u−)

2(u− u+)
2dx. (3.1)

(ii) limx→∞(u(x), v(x)) = (u+, v+) and
∫ ∞

0

L(u, v)dx ≥
∫ ∞

0

1

2

(

d− 1

γ2

)

(u′)2 +
1

4
(u− u−)

2(u− u+)
2dx. (3.2)
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Proof. Suppose that (u, v) satisfies (1.3)-(1.4), u(0) = γ
2
v(0) = b and

limx→−∞(u(x), v(x)) = (u−, v−). Multiplying (1.4) by v and integrating over
(−∞, 0), we get

− vv′
∣

∣

∣

0

−∞
+

∫ 0

−∞
(v′)2 + γv2dx =

∫ 0

−∞
uvdx.

By direct calculation

∫ 0

−∞

{

d

2
(u′)2 +

1

2
uv + F (u)

}

dx

=

∫ 0

−∞

{

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γv2 + F (u)

}

dx− 1

2
vv′
∣

∣

0

−∞

=

∫ 0

−∞

{

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γ

(

v − u

γ

)2

+

(

uv − u2

γ

)

}

dx

+

∫ 0

−∞

(

F (u) +
1

2γ
u2
)

dx− 1

2
vv′
∣

∣

0

−∞. (3.3)

Next, multiplying (1.4) by −u/γ and integrating over [−η, η], we have

∫ 0

−∞

(

uv − u2

γ

)

dx =

∫ 0

−∞

1

γ
uv′′dx =

1

γ
uv′
∣

∣

∣

∣

0

−∞
−
∫ 0

−∞

1

γ
u′v′dx. (3.4)

Since

F (u) +
u2

2γ
=

1

4
(u− u−)

2(u− u+)
2,

substituting (3.4) into (3.3) yields

∫ 0

−∞

{

d

2
(u′)2 +

1

2
uv + F (u)

}

dx

=

∫ 0

−∞

d

2
(u′)2 +

1

2
(v′)2 +

1

2
γ

(

v − u

γ

)2

− 1

γ
u′v′ +

1

4
(u− u−)

2(u− u+)
2dx

− 1

2
vv′
∣

∣

0

−∞+
1

γ
uv′
∣

∣

∣

∣

0

−∞

=

∫ 0

−∞

1

2

(

d− 1

γ2

)

(u′)2 +
1

2

(

v′ − u′

γ

)2

+
1

2
γ

(

v − u

γ

)2

dx

+

∫ 0

−∞

1

4
(u− u−)

2(u− u+)
2dx− 1

2
vv′
∣

∣

0

−∞+
1

γ
uv′
∣

∣

∣

∣

0

−∞
.

Then (3.1) easily follows in view of the boundary conditions on u and v.
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Next we prove the existence of such a solution. Let v̂ be a C∞-function
such that v̂(0) = 2b

γ
, −v̂xx(0) + γv̂(0) = b and v̂(x) = 0 if x ≤ −1. Define

Hw = w +H1
0 (−∞, 0) and set û = γv̂ − v̂xx. For w ∈ Hû, we define

Ĵ(w) =

∫ 0

−∞

1

2
[d(w′)2 + wL̂w] + F (w)dx, (3.5)

where L̂w denotes the unique solution of

−v′′ + γv = w, v ∈ Hv̂. (3.6)

As in the proof of Theorem 1.1 of [13], we pick a minimizing sequence um ∈ Hû

which converges to u in H1
loc. Moreover u ∈ Hû and

Ĵ(u) = inf
w∈Hû

Ĵ(w).

Letting v = L̂u, we see that (u, v) satisfies (1.3)-(1.4), u(0) = γ
2
v(0) = b and

limx→−∞(u(x), v(x)) = (u−, v−). This proves (i).
The above argument also shows that either limx→−∞(u(x), v(x)) = (u−, v−)

or limx→−∞(u(x), v(x)) = (u+, v+). In the latter case, we replace (u(x), v(x))
by (u(−x), v(−x)) to establish (ii), since the proof of (3.2) is not different from
that of (3.1).

Proof of Proposition 3.1. We only treat the case of Hu∗ , the others are
analogue.

Note that z−= (u−, v−, 0, 0) is a hyperbolic equilibrium of a first order Hamil-
tonian system (HS) with Hamiltonian function H(u, v, p, q), which is associated
to the second order Lagrangian system (1.3)-(1.4). With the Hamiltonian H
being real analytic, the local unstable manifold W u

loc(z−) of z− is a real analytic
submanifold of R4. Moreover the unstable space of the linearization of (HS) at
z− is the graph of a linear map from R2 to itself, hence W u

loc(z−) is the graph
of a real analytic map ϕ from a ball of center (u−, v−) with radius 2ρ into R2,
and ϕ(u−, v−) = (0, 0). Similarly, z+= (u+, v+, 0, 0) is hyperbolic and its local
stable manifold W s

loc(z+) is the graph of a real analytic map ψ = (ψp, ψq) from
a ball of center (u+, v+) with radius 2ρ into R

2, and ψ(u+, v+) = (0, 0).
Let uc be a critical point of J in Hu∗ such that uc(0) = u∗(0) and vc = Luc.

Take x1 to be the smallest value of x such that (u−−uc(x))2+(v−−vc(x))2 = ρ2

and x2 the largest value of x such that (u+ − uc(x))
2 + (v+ − vc(x))

2 = ρ2. Let
η = (U, V, P,Q) be the flow of (HS) at time T = x2 − x1. For any θ ∈ R,
zθ = (ρ cos θ, ρ sin θ, ϕ(ρ cos θ, ρ sin θ)) is in W u

loc(z−). If u is a critical point of
J satisfying the constraint u(0) = u∗(0) and sufficiently close to uc in the H1

topology, then the heteroclinic trajectory parametrized by (u,Lu, dux,−Lux)
in the phase space must contain a point zθ with θ arbitrarily close, but not
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equal, to the angle θc satisfying (ρ cos θc, ρ sin θc) = (uc, vc)(x1). This implies
that θ is a zero of each of the functions χ1(θ) = P (zθ)− ψp(U(zθ), V (zθ)) and
χ2(θ) = Q(zθ)− ψq(U(zθ), V (zθ)).

If uc were not isolated as critical point of J satisfying u(0) = u∗(0), then θc
would not be an isolated zero of the real-analytic functions χ1 and χ2. Then
these functions would be identically zero near θc, which would mean that the
flow η sends all the points zθ near zθc to points of W s

loc(z+), and using again
analyticity, this property would hold to all real values of θ. As a consequence,
W u(z−) would coincide with W s(z+) and all the trajectories in W u(z−) would
be heteroclinic connections, and the corresponding functions uθ would form a
real-analytic curve in H1. Being critical points of J , they would all be in the
same critical level of the functional. This leads to a contradiction, since Propo-
sition 3.2 gives a trajectory in W u(z−) with action larger than this critical level.
Thus at least one of χi is non-constant and being real analytic it has isolated
zeroes. Hence u∗ is an isolated critical point, as expected; the proof is complete.

Corollary 3.3 There exist h0, σ0 > 0 and, for any 0 < h < h0, a radius
σ̄(h) > 0 with lim

h→0
σ̄(h) = 0, such that the local sublevel set

Vh = {u ∈ Hu∗ : u(0) = u∗(0) , ‖u− u∗‖H1(R) ≤ σ0 and J(u) ≤ J(u∗) + h}
satisfies the following property:

u ∈ Vh ⇒ ‖u− u∗‖H1(R) < σ̄(h) .

Proof. For σ1 small enough, the functional J satisfies the Palais-Smale condi-
tion on the closed ball of center u∗ with radius σ1 (in H

1-norm). By Proposition
3.1, there exists σ0 ≤ σ1 such that u∗ is the unique minimizer of J on the closed
ball of center u∗ with radius σ0. Thus the proof is complete.

Consider a sufficiently large number z and define

Vh,z := {u ∈ H1(−z, z) : u ≡ û on [−z, z] for some û ∈ Vh} . (3.7)

Now, for u ∈ Vh,z with h small and z large, the functional J is C2 and strictly
convex on

Cu := {ũ ∈ Hu∗ : ũ ≡ u on [−z, z] and ‖ũ− u∗‖H1(R) ≤ σ̄(h)} ,
which is a closed, bounded and convex subset of Hu∗ . Indeed, if ũ ∈ Cu, any
other element of Cu near ũ is of the form ũ + w with ‖w‖H1(R) small and w ≡
0 on [−z, z], and thus direction calculation gives

D2J(ũ) · w · w =

∫

R

{d(w′)2 − f ′(ũ)w2 + (Lw′)2 + γ(Lw)2} ≥ k̂‖w‖H1(R)

11



for some k̂ > 0 .
Moreover, if a function ũ ∈ Cu satisfying ‖ũ− u∗‖H1(R) = σ̄(h), then J(ũ) >

J(u∗) + h ≥ minCu J . So J has a minimizer, denoted by b(u), which does
not saturate the constraint ‖ũ − u∗‖H1(R) ≤ σ̄(h); that is, (b(u),Lb(u)) solves
the system (1.3)-(1.4) outside the interval [−z, z], and by the implicit function
theorem, b is well-defined as a smooth function of u in H1 topology. This
provides a Lyapunov-Schmidt reduction Jz = J ◦ b of J defined on Vh,z, and the
following corollary holds.

Corollary 3.4 For h0 small enough, there is z0 > 0 such that if h ∈ (0, h0)
and z > z0, then

ρ(h) := inf{‖J ′
z(u)‖(H1(−z,z))∗ : u ∈ Vz,h and Jz(u) = J(u∗) + h} > 0 .

This corollary is easily proved by a indirect argument. If ρ(h) = 0, a Palais-
Smale sequence converges to a critical point of J in a small ball of center u∗ at
the critical level J(u∗) +h. Suppose the assertion of the corollary is false, there
would exist critical points of J in any small neighborhood of u∗, which would
violate Proposition 3.1.

4 Construction of multi-front waves

In the construction of multi-front solutions, the trajectories between two fronts
need to be in good control. Such trajectories are very close to one of the two
stable equilibria with asymptotical behavior being dominated by the linearized
equations. Note that for any solution of the autonomous Lagrangian system
(1.3)-(1.4), its energy

E(ux, vx, u, v) =
d

2
ux

2 − 1

2
vx

2 − uv +
γ

2
v2 +

∫ u

0

ξ(ξ − β)(1− ξ)dξ (4.1)

is conserved; that is, being constant along the trajectory. We now state a lemma
in the same spirit of Lemma 3.1 of [6].

Lemma 4.1 Take any 0 < ν < π
2ω
. There exists a small radius r̄ > 0 such that

for any given points (η1, η2) and (ζ1, ζ2) ∈ R2 within a distance less than r̄ from
(u+, v+), the boundary value problem

−du′′ = f(u)− v,

−v′′ = u− γv,

(u(0), v(0)) = (η1, η2), (u(T ), v(T )) = (ζ1, ζ2),

has a solution, denoted by (Ū , V̄ )T,η1,η2,ζ1,ζ2(·), staying in a small neighbor-
hood of (u+, v+) and it is the only one having this property. Moreover, if
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±λ ± iω are the eigenvalues of the linearization of (HS) at (u+, v+, 0, 0) and
Eη1,η2,ζ1,ζ2(T ) denotes the associated energy for the solution (Ū , V̄ )T,η1,η2,ζ1,ζ2,
then the sign of the function Eη1,η2,ζ1,ζ2(·) has the following property: there is
a real number κ+ and, for each r ≤ r̄/2, a smaller radius ǫ(r) proportional to
r, such that, if |(u∗(z), v∗(z)) − (u+, v+))| = r, |(η1, η2) − (u∗(z), v∗(z))| < ǫ,
|(ζ1, ζ2)− (u∗(z), v∗(z))| < ǫ and ñ ≥ 1/ǫ with ñ an integer, then

Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πñ/ω − ν) > 0,

Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πñ/ω + ν) < 0.

A similar assertion holds when replacing (u+, v+) by (u−, v−) and (u∗, v∗) by

(u∗, v∗), but here κ+ should be replaced by a possibly different phase κ−.

We refer to [6] for a proof; there the existence and local uniqueness of (Ū , V̄ )
follow from Lemma A.3, the sign property of the energy is a consequence of
Lemma A.2, and see Lemma 3.1 for the detail.

We now get into details about how to construct the multi-front solutions.
Let h > 0 be small and D > 0 large (to be determined later as depending on
h). Pick an arbitrary finite interval of integers [1, N ] and an arbitrary finite
sequence of positive integers n = (ni)1≤i≤N such that ni ≥ D for all i. Take
z > 0 large enough so that (u∗(−z)− u−)

2 + (v∗(−z)− v−)
2 ≤ r̄2 and (u∗(z)−

u+)
2+(v∗(z)− v+)

2 ≤ r̄2, where r̄ is the small radius considered in Lemma 4.1.

Recall Vh,z from (3.7) and introduce a smooth map bn from (Vh,z)
N+1 ×

[−ν, ν]N into H1
loc(R,R), defined as follows:

For (u,x) = ((ui)0≤i≤N , (xi)1≤i≤N) ∈ (Vh,z)
N+1 × [−ν, ν]N , we associate a

unique function u = bn(u,x), which satisfies the following conditions:

(S1) ∀i ∈ [0, N ] ∩ 2Z , u ≡ ui(· − Ci) on (Ci − z, Ci + z),

(S2) ∀i ∈ [0, N ] ∩ (2Z+ 1) , u ≡ ui(Ci − ·) on (Ci − z, Ci + z),

(S3) ‖u− u−‖H1(−∞,−z) ≤ Kr̄,

(S4) ∀i ∈ [0, N − 1] ∩ 2Z , ‖u− u+‖H1(Ci+z,Ci+1−z) ≤ Kr̄,

(S5) ∀i ∈ [0, N − 1] ∩ (2Z+ 1) , ‖u− u−‖H1(Ci+z,Ci+1−z) ≤ Kr̄,

(S6) ‖u− u±‖H1(CN+z,∞) ≤ Kr̄, where u± = u+ for N even, u± = u− for

N odd,

(S7) C0 = 0 , Ci+1 = Ci +Xi (0 ≤ i ≤ N − 1) ,

(S8) X2j = x2j + κ+ +
2πn2j

ω
,

(S9) X2j+1 = x2j+1 + κ− +
2πn2j+1

ω
,

(S10) (u,Lu) satisfies (1.3)-(1.4) on each of the intervals (−∞,−z] ,
[Ci + z, Ci+1 − z] , [CN + z,+∞) .
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Choosing r̄ small enough and a large K not depending on r̄, we claim that
conditions (S1)-(S10) determine u in a unique way, and explain why the cor-
responding function bn(u,x) is smooth. Observe that one can define the set
U(u,x) consisting of all functions u satisfying conditions (S1)-(S6). This set is
convex, bounded, closed in the H1 topology. Moreover, the controls (S3)-(S6)
on u imply the strict convexity on J restricted to U(u,x). Indeed, if u ∈ U(u,x),
any other element of U(u,x) near u is of the form u+w with ‖w‖H1(R) small and
w ≡ 0 on

⋃

1≤i≤N [Ci − z, Ci + z], and then direction calculation gives

D2J(u) · w · w =

∫

R

{d(w′)2 − f ′(u)w2 + (Lw′)2 + γ(Lw)2} ≥ k̄‖w‖H1(R)

for some k̄ > 0 , exactly as in the proof of Corollary 3.3.

So J has a unique minimizer in U(u,x). Moreover for K large enough, if a
function u belongs to U(u,x), and saturates at least one of the constraints (S3)-
(S6) then J(u) > minU(u,x)

J . In conclusion, the minimizer does not saturate
any of the constraints, so it is the only solution of (S10) in U(u,x) and the implicit
function theorem gives a smooth function bn of (u,x) in the H1 topology.

Up to this stage, a Lyapunov-Schmidt reduction has been performed, and
the next task is to minimize the reduced functional J = J ◦ bn. The existence
of a minimizer is easily established. Indeed, the set Vh is a bounded, closed
sublevel set of the weakly lower semicontinuous functional J , thus it is weakly
compact in H1(−z, z). By the weak lower semicontinuity of J, there exists a
minimizer (ū, x̄) in the weakly compact set (Vh,z)

N+1 × [−ν, ν]N .

Lemma 4.2 Given z large, h small and choose D large enoughI if ni ≥ D for
every i. then ûn := bn(ū, x̄) is a local minimizer of J .

To prove Lemma 4.2, we introduce the set O =
⋃

(u,x)∈(Vh,z)N+1×[−ν,ν]N U(u,x)

consisting of functions u satisfying (S1)-(S6) for some (u,x) ∈ (Vh,z)
N+1 ×

[−ν, ν]N . The next lemma shows that O contains a small ball in H1(R) with
center at ûn. Clearly ûn minimizes J on O, by virtue of the construction used
in the variational argument, and thus Lemma 4.2 is an immediate consequence.

Lemma 4.3 Given z large and h small. Suppose that D is chosen large enough
and ni ≥ D for all i. If (ū, x̄) = ((ūi)0≤i≤N , (x̄i)1≤i≤N ) is a minimizer of J in
(Vh,z)

N+1 × [−ν, ν]N then
(i) Jz(ūi) < J(u∗) + h for all 0 ≤ i ≤ N ,
(ii) −ν < x̄i < ν for all 1 ≤ i ≤ N .

The following lemma will be used to prove Lemma 4.3.
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Lemma 4.4 Let z and h be given as above, both are not depending on N . For
any α > 0 there exists D̄(α), not depending on N , such that if ni ≥ D̄(α) ∀
1 ≤ i ≤ N then

‖J ′
z(ui)− ∂ui

J‖(H1(−z,z))∗ < α , ∀(u,x) ∈ (Vh,z)
N+1 × [−ν, ν]N , 0 ≤ i ≤ N .

The proof of Lemma 4.4 is standard (see e.g. [6]). We omit it.

Proof of Lemma 4.3. We argue indirectly. Suppose that Jz(ūl) = J(u∗) + h
for some l ∈ (0, N), applying Lemma 4.4 yields

〈

∂ul
J(ū, x̄),∇H1(−z,z)Jz(ūl)

〉

≥ ρ(h)

2
,

with ρ(h) given by Corollary 3.4. Then moving ul slightly in the direction of
−∇H1(−z,z)Jz(ūl) would decrease J(u,x), which contradicts the minimality of
J(ū, x̄). The proof of (i) is complete.

We next apply Lemma 4.1 to prove (ii). Fix z large and h small enough so
that

r := |(u∗(z), v∗(z))− (u+, v+))| ≤ r̄/2 ,

|(ūi(±z),Lūi(±z))− (u∗(±z), v∗(±z))| < ǫ

with ǫ as in Lemma 4.1 and ni ≥ 1/ǫ being imposed. Suppose x̄l = −ν for some
l ∈ (1, N − 1), it follows from Lemma 4.1 that

∂xl
J(ū, x̄) = −Eη1,η2,ζ1,ζ2(κ+ − 2z + 2πn/ω − ν) < 0 ,

where η1 = ūl(Cl+z), η2 = Lūl(Cl+z), ζ1 = ūl+1(Cl+1−z), ζ2 = Lūl+1(Cl+1−z).
Then increasing xl slightly would make J small, which again contradicts the min-
imality of J(ū, x̄). Likewise, if x̄l = ν we could decrease J by slightly decreasing
xl. Now the proof of Lemma 4.3 is complete.

We are now ready to prove the existence result of multi-front solutions,
stated in Theorem 1.2. The stability of such solutions will be investigated in
the next section.

Proof of Theorem 1.2. Take r̄ small enough so that Kr̄ < σ, the small radius
required as in the statement. Pick z large and h small enough so that the small
number σ̄(h), defined in Corollary 3.3, is less than σ, and this then enables us
to apply Lemma 4.2. To complete the existence proof, simply assign Dσ to be
the number D stated in Lemma 4.2.
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5 Stability

In this section a Lyapunov functional will be introduced to prove Theorem 1.4.
For u ∈ au +H , v ∈ av +H , define

E(u, v) := J(u) +
γ

2(1 + δ̂)
‖v −L(u)‖2. (5.1)

As in the proof of Theorem 1.2, ûn is a local minimizer of J and v̂n = Lûn.
This together with Proposition 3.1 shows that (ûn, v̂n) is a local minimizer of
E in the H1(R)× L2(R) topology, and it is an isolated critical point of E up to
translation in spatial variable. Moreover E satisfies the Palais-Smale condition
in a small neighborhood of (ûn, v̂n).

The next proposition shows that E(u, v) is a Lyapunov functional for the
evolution flow generated by (1.1)-(1.2), from which Theorem 1.4 immediately
follows.

Proposition 5.1 Assume that 0 < τ < γ2. Let δ̂ > 0 and satisfy 1 + δ̂/2 <
γ2/τ . Then for any smooth solution (u(x, t), v(x, t)) of (1.1)-(1.2),

d

dt
E(u(·, t), v(·, t)) ≤ − δ̂

2(1 + δ̂)
‖ut‖2

− 1

1 + δ̂

(

γ2

τ
− 1− δ̂

2

)

‖v −L(u)‖2 − γ

(1 + δ̂)τ
‖∇(v − L(u))‖2.

Proof. Let w = v −L(u). It is easy to verify that (1.1)-(1.2) is equivalent to

ut = d∆u+ u(u− β)(1− u)− L(u)− w, (5.2)

τ(wt + L(ut)) = ∆w − γw. (5.3)

In terms of (u, w), we rewrite (5.1) as

E1(u, w) := J(u) +
γ

2(1 + δ̂)
‖w‖2. (5.4)

Let (u(x, t), w(x, t)) be a smooth solution of (5.2)-(5.3). Since (w,L(ut))L2 =
(L(w), ut)L2, a direct calculation gives

d

dt
E1(u(·, t), w(·, t))

= −
∫

Ω

(d∆u+ u(u− β)(1− u)−L(u))utdx+
γ

1 + δ̂
(w,wt)L2

= −‖ut‖2 − (w, ut)L2 − γ

1 + δ̂

(

(w,L(ut))L2 +
1

τ
(‖∇w‖2 + γ‖w‖2)

)
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≤ −1

2
‖ut‖2 +

1

2
‖w‖2 − γ

(1 + δ̂)
(L(w), ut)L2

− γ2

(1 + δ̂)τ
‖w‖2 − γ

(1 + δ̂)τ
‖∇w‖2

≤ −1

2
‖ut‖2 +

1

2
‖w‖2 + 1

(1 + δ̂)
‖w‖‖ut‖ −

γ2

(1 + δ̂)τ
‖w‖2 − γ

(1 + δ̂)τ
‖∇w‖2

≤ −1

2

(

1− 1

1 + δ̂

)

‖ut‖2 +
(

1

2
+

1

2(1 + δ̂)
− γ2

(1 + δ̂)τ

)

‖w‖2

− γ

(1 + δ̂)τ
‖∇w‖2

≤ − δ

2(1 + δ̂)
‖ut‖2 −

1

1 + δ̂

(

γ2

τ
− 1− δ̂

2

)

‖w‖2 − γ

(1 + δ̂)τ
‖∇w‖2 ≤ 0.

Thus E(u, v) and E1(u, w) are non-increasing functions of t along the trajectory
of a solution of (1.1)-(1.2).

6 Unstable waves

In this section the same notation as in the proof of Theorem 1.2 will be used to
prove Theorem 1.5. We employ the mountain-pass principle to seek such critical
points. Starting with the set Vh,z defined by (3.7), we construct a smooth map
b̌n from (Vh,z)

2 × [−ν, ν] to H1(R); here to each (u0, u1, x) in V2
h,z × [−ν, ν], we

associate the unique function u ∈ H1(R) satisfying the following conditions:

(S ′
1) u ≡ u1(X − ·) on (X − z,X + z),

(S ′
2) u ≡ u0 on (−z, z),

(S ′
3) ‖u− u−‖H1(−∞,−z) ≤ Kr̄,

(S ′
4) ‖u− u−‖H1(X+z,∞) ≤ Kr̄,

(S ′
5) X = x+ κ+ +

π(2n+ 1)

ω
,

(S ′
6) (u,Lu) satisfies (1.3)-(1.4) on each of the intervals (−∞,−z] ,

[z,X − z] , [X + z,+∞) .

With this definition of b̌n, we define J̌ := J ◦ b̌n. Then b̌n(u0, u1, x) is a critical
point of J if (u0, u1, x) is a critical point of J̌ in V2

h,z × [−ν, ν].

Note that Lemma 4.4 still holds in the present situation. Hence for n large
enough, there exists ρ̌h > 0 such that if (u0, u1, x) ∈ V2

h,z × [−ν, ν] and Jz(ūl) ∈
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[J(u∗) + h/2, J(u∗) + h] with l = 0 or 1 then

〈

∂ul
J̌(u0, u1, x),∇H1(−z,z)Jz(ul)

〉

≥ ρ̌h . (6.1)

Moreover, adapting Lemma 4.1 to the present situation, we see that, for each n
large enough, there is a small µn such that if x ∈ [−ν,−ν/2] then

∂xJ̌(u0, u1, x) ≥ µn , (6.2)

while for x ∈ [ν/2, ν],
∂xJ̌(u0, u1, x) ≤ −µn . (6.3)

Pick a ∈ (Vh,z)
2 × {−ν} be such that J̌(a) ≤ inf(Vh,z)2×{−ν} J̌ + µnν/4 and

b ∈ (Vh,z)
2 × {ν} be such that J̌(b) ≤ inf(Vh,z)2×{ν} J̌ + µnν/4. Set

Γ := {γ̄ ∈ C0([0, 1], (Vh,z)
2 × [−ν, ν]) : γ̄(0) = a , γ̄(1) = b }

and define
cn := inf

γ̄∈Γ
max
[0,1]

J̌ ◦ γ̄ .

It follows from (6.2) and (6.3) that cn ≥ max(J̌(a), J̌(b)) + µnν/4.

For any γ̄ ∈ Γ, (6.1) together with the standard deformation theory gives a
γ̃ ∈ Γ such that max[0,1] J̌ ◦ γ̃ ≤ max[0,1] J̌ ◦ γ̄ and the image of γ̃ stays in the
set V2

h/2,z × [−ν, ν]. Moreover it easily checked that J̌ satisfies the Palais-Smale

condition. Since the critical points of J̌ are isolated, we may apply a result of
Hofer [23] to find a “mountain-pass’ type critical point (u♯0, u

♯
1, x

♯) of J̌ . This
tells that for any neighborhood O of (u♯0, u

♯
1, x

♯) there exists (u′0, u
′
1, x

′) ∈ O
such that J̌(u′0, u

′
1, x

′) < cn. Setting (ǔn, v̌n) := (b̌n(u
♯
0, u

♯
1, x

♯),Lb̌n(u♯0, u♯1, x♯))
gives a two-bump solution of (1.3)-(1.4) which satisfies Theorem 1.5(i),(ii), and
J(ǔn) = cn.

Let us recall the Lyapunov functional E defined in Section 5 for showing the
instability of (ǔn, v̌n). With H1 × L2 topology, we can find a neighborhood of
(ǔn, v̌n) which possesses a single critical point only. Inside this set, any smaller
neighborhood of (ǔn, v̌n) contains a point (ũ, ṽ) := (b̌n(u

′
0, u

′
1, x

′),Lb̌n(u′0, u′1, x′))
with the property J(ũ) < cn. If (u(x, t), v(x, t)) is a solution of (1.1)-(1.2) with
the initial datum (u(x, 0), v(x, 0)) = (ũ(x), ṽ(x)), it is clear that E(u(x, t), v(x, t)) <
E(ũ, ṽ) < E(ǔn, v̌n). Hence there exist T0 > 0 and a small neighborhood N of
(ǔn, v̌n) such that (u(x, t), v(x, t)) /∈ N if t ≥ T0. This completes the proof of
(iii), so does Theorem 1.5.
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7 Appendix

As a byproduct of [13], the proof of Theorem 1.1 shows that there exists a
heteroclinic solution for the system

−du′′ = k(u− u3)− v, (7.1)

−v′′ = u− γv. (7.2)

Here (u+, v+) is replaced by (
√

1− 1/(kγ),
√

1− 1/(kγ)/γ) and (u−, v−) =
(−u+,−v+). The nonlinearity in (7.1) is an odd function, which gives the same
type of potential as in the Allen-Cahn equation. The following observation
indicates that system (1.3)-(1.4) can be converted into (7.1)-(7.2).

Suppose that (ū, v̄) is a heteroclinic solution of (7.1)-(7.2). By setting k =
1
3
(β2 − β + 1) and

{

u∗ = (β + 1)/3 +
√
kū,

v∗ = (β + 1)/3γ +
√
kv̄,

(7.3)

a simple calculation easily verifies that (u∗, v∗) is a heteroclinic solution of (1.3)-
(1.4).

In this Appendix, we clarify the conditions on the parameters such that both
(u−, v−) and (u+, v+) are saddle-focus equilibria. First from the assumptions of
Theorem 1.1, γ = 9/(2β2 − 5β + 2) and dγ2 > 1. In view of (7.1)-(7.2), since
u2+ = 1− 1

γk
, it follows that kγ > 1. Therefore

k(1− 3u2+)− γd =
1

γ
(3− 2kγ − γ2d) < 0. (7.4)

Consider the linearization of (7.1)-(7.2) at (
√

1− 1/(kγ),
√

1− 1/(kγ)/γ). If

[k(1− 3u2+)− γd]2 − 4d < 0, (7.5)

then all the eigenvalues are complex numbers, which is case of saddle-focus.
Combining (7.4) with (7.5) yields

1

γ
(3− 2kγ − γ2d) > −2

√
d,

which can be rewritten as

γd− 2
√
d+ (2k − 3

γ
) < 0. (7.6)

Solving (7.6) gives

1−√
4− 2γk

γ
<

√
d <

1 +
√
4− 2γk

γ
, (7.7)
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provided that kγ < 2. Note that kγ = 3β2−3β+3
2β2−5β+2

= 3
2
+ 9β

2(2β2−5β+2)
> 3

2
for

β ∈ (0, 1
2
). This together with kγ < 2 implies

9β

2β2 − 5β + 2
< 1

and consequently 9β < 2β2 − 5β + 2. Solving β2 − 7β + 1 > 0 yields

β <
7−

√
45

2
, (7.8)

as β ∈ (0, 1
2
) rules out the possibility of β > 7+

√
45

2
. Since kγ > 3

2
, it follows

from (7.7) and dγ2 > 1 that

1

γ
<

√
d <

2

γ
. (7.9)

In summary, the equilibria (u−, v−) and (u+, v+) are saddle-focus if and only
if

β ∈ (0,
7−

√
45

2
), γ = 9/(2β2 − 5β + 2) and

1

γ
<

√
d <

2

γ
,

as stated in (1.6).
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[6] B. Buffoni and E. Séré, A global condition for quasi-random behavior
in a class of conservative systems, Comm. Pure Appl. Math. 49 (1996),
285-305.

[7] C.-N. Chen and Y. Choi, Standing pulse solutions to FitzHugh-Nagumo
equations, Arch. Rational Mech. Anal. 206 (2012), 741-777.

[8] C.-N. Chen and Y. Choi, Traveling pulse solutions to FitzHugh-Nagumo
equations, Calculus of Variations and Partial Differential Equations 54
(2015), 1-45.

[9] C. -N. Chen, Y. Choi and X. Hu, An index method for stability analysis
of traveling and standing waves, preprint.

[10] C. -N. Chen and X. Hu, Maslov index for homoclinic orbits of Hamilto-
nian systems, Ann. Inst. H. Poincare Anal. Non Linearie 24 (2007), 589-603.

[11] C. -N. Chen and X. Hu, Stability criteria for reaction-diffusion sys-
tems with skew-gradient structure, Comm. Partial Differential Equations
33 (2008), 189-208.

[12] C. -N. Chen and X. Hu, Stability analysis for standing pulse solutions to
FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential
Equations, 49 (2014), 827-845.

[13] C. -N. Chen, S.-Y. Kung and Y. Morita, Planar standing wavefronts
in the FitzHugh-Nagumo equations, SIAM J. Math. Anal. 46 (2014), 657-
690.

[14] C. -N. Chen and K. Tanaka, A variational approach for standing waves
of FitzHugh-Nagumo type systems, J. Differential Equations 257 (2014),
109-144.

[15] C. -N. Chen, S. Jimbo and Y. Morita, Spectral comparison and
gradient-like property in the FitzHugh-Nagumo type equations, Nonlinearity
28 (2015), 1003-1016.

[16] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second
order Hamiltonian systems possessing superquadratic potentials, J. Amer.
Math. Soc. 4 (1991), 693-727.

21



[17] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for
a semilinear elliptic PDE on R

n, Comm. Pure Appl. Math. 45 (1992),
1217-1269.

[18] E. N. Dancer and S. Yan, A minimization problem associated with
elliptic systems of FitzHugh-Nagumo type, Ann. Inst. H. Poincaré Anal.
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