
HAL Id: hal-01758734
https://hal.science/hal-01758734

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-flow Explicit Futures
Ludovic Henrio

To cite this version:
Ludovic Henrio. Data-flow Explicit Futures. [Research Report] I3S, Université Côte d’Azur. 2018.
�hal-01758734�

https://hal.science/hal-01758734
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS
UMR 7271

Data-flow Explicit Futures

Henrio Ludovic
EQUIPE COMRED

Rapport de Recherche

04-2018

Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS
2000, route des Lucioles — Les Algorithmes - bât. Euclide B — 06900 Sophia Antipolis — France

http://www.i3s.unice.fr

Data-flow Explicit Futures

Henrio Ludovic1

EQUIPE COMRED
04-2018 - 42 pages

Abstract : A future is a place-holder for a value being computed, and we generally say
that a future is resolved when the associated value is computed. In existing languages futures
are either implicit, if there is no syntactic or typing distinction between futures and non-future
values, or explicit when futures are typed by a parametric type and dedicated functions exist
for manipulating futures. One contribution of this article is to advocate a new form of future,
named data-flow explicit futures, with specific typing rules that do not use classical parametric
types. The new futures allow at the same time code reuse and the possibility for recursive
functions to return futures like with implicit futures, and let the programmer declare which
values are futures and where synchronisation occurs, like with explicit futures. We prove that
the obtained programming model is as expressive as implicit futures but exhibits a different
behaviour compared to explicit futures. The second and main contribution of this article is an
exhaustive overview and precise comparison of the semantics of futures in existing program-
ming languages. We show that, when classifying future implementations, the most distinctive
aspect is the nature of the synchronisation not the explicitness of the future declaration.

Key-words : Programming languages, Concurrency and Distribution, Synchronisation,
Futures, Typing.

1Laboratoire I3S – CNRS – <ludovic.henrio@cnrs.fr>

1 Introduction

In programming languages, a future [6] is an entity representing the result of an ongoing
computation. It is generally used to launch a sub-task in parallel with the current task
and later retrieve the result computed by the sub-task. Sometimes a distinction is made
between the future resolution, i.e. the availability of the result, and its update, i.e. the
replacement of a reference to a future by the computed value. This article compares the use of
futures in different programming languages and suggests a new paradigm for the design and
implementation of futures. While the major contribution of this article is a simple twist in the
way futures are designed and implemented, this contribution is justified by a formal description
of the model, its properties, and a formal comparison with the two classical alternative design
choices for futures.

This article first provides an overview of the different forms of future synchronisations and
future creations that exist. The main distinction between existing future paradigms depends
on whether the programmer is exposed to the notion of future. In some languages futures
are not visible by the programmer and are pure runtime entities, whereas most of modern
languages with futures use a parametric type to explicitly type futures, and the programmer
can synchronise the execution of some statements with the end of the computation represented
by the future. This synchronisation can either be a classical strict synchronisation blocking
the execution, or registering a continuation to be executed upon availability of the future.
Explicitly typed futures feature a crucial advantage and a crucial drawback. On the positive
side the explicit access to future exposes the programmer to the potential synchronisation
points in the program, and the potential delays that the programs can suffer, waiting for a
result. On the other side, the use of parametric types for futures limits code re-usability:
it is impossible to write a piece of code that would manipulate either a future or a value,
performing only the future synchronisation if necessary. This strictness in the type system
has major consequences concerning expressiveness, for example it is impossible to write a
function that returns, either a value or the future that will be computed by another function,
or at least not in a natural and simple way. Thus, writing a recursive function that calls itself
in a parallel manner is generally artificially difficult, even for terminal recursion. Concerning
implicit futures, they feature the complementary view: code re-usability is maximal as there is
no syntactic difference between futures and standard objects, synchronisation occurs optimally
when the result is needed, but the associated transparency makes the programmer unaware
of synchronisation points, and complicates the detection of deadlocks. This article uses a toy
example based a terminal recursive factorial function to illustrate these limitations.

Whereas previous studies [1, 7] focus on whether futures are explicit to distinguish several
models, this article demonstrates that the crucial distinction between the different future
constructs is rather the way synchronisation is performed. This becomes particularly visible
when a parallel computation returns the result of another parallel computation. With implicit
futures the synchronisation is data-driven: any future access will recursively wait for the
termination of as many tasks as necessary to obtain a result. With explicit futures, there
should be one synchronisation statement per recursive task: each synchronisation statement
waits for the execution of a single statement that is supposed to return the result. To illustrate
this, we introduce data-flow explicit futures that provide a compromise between usual explicit
and implicit futures.

Actors [2, 31] and active object [7] languages are based on asynchronous communications
between mono-threaded entities and massively use futures to represent replies to asynchronous

messages. We illustrate our proposal on a simple active object language but the approach is
generalisable to other languages using futures. We exemplify future usage with a single simple
and classical future usage primitive (get) that performs a strict synchronisation and discuss
other future access primitives as an extension of this work.
Proposal: Data-flow-synchronised explicit futures. We designed a future paradigm
providing the following characteristics:
Explicit futures Futures are explicitly typed and the point of access to a future is explicit

in the program. The programmer is exposed to the points of synchronisation that occur
in his/her program.

Dafa-flow synchronisation The language we propose has a simple synchronisation opera-
tion that is data-flow oriented: after a single synchronisation, the programmer is guaran-
teed to obtain a usable value: contrarily to explicit futures, it is never needed to perform
a get on the result of another get operation.

Dedicated type system Our proposal comes with a simple type system for futures. This
type system overcomes the limitations of the parametric types used in most of the type
systems for futures.

Code reuse In our model, the same variable can receive either a future or a real value,
provided it is declared of type future (which here means “potentially future”). For
example, if the programmer declares that one method parameter might contain a future,
this method can be invoked either with a future or with a normal value. In particular
this allows us to easily write terminal recursive methods with parallel delegation.

Approach: Behavioural equivalence and expressiveness. In this article we are inter-
ested in the expressive and synchronisation power of futures. For this reason we design three
languages only differing in the typing and synchronisation on futures. We investigate the exis-
tence of encodings from one language to the other without introducing powerful intermediate
entities. Our objective is to understand if the synchronisation featured by one kind of futures
can be simulated by the other kind, and not if one could simulate one kind of futures by adding
additional objects and threads. In practice, the translations that we define in Section 4 only
introduce additional variables and statements. Technically, the behavioural equivalence that
we prove in this section is a branching bisimulation.
Contribution and organisation. This article presents:
• An overview of the different semantics for futures in programming languages, in Sec-

tion 2.
• A proposal for a new kind of futures: explicit futures with data-flow synchronisation.

The proposal is expressed in a minimalist active object language called DeFfor data-
flow explicit futures. Section 3 describes the semantics of this language, inspired from
other semantics of active object languages, and its type system, mostly standard except
concerning the typing of futures.
• The proof that data-flow explicit futures are as expressive as implicit futures. To this

aim, Section 4 first expresses the semantics and typing of a language similar to DeF
except that futures are implicit, it is called IF(implicit futures). Then we show how,
only adding a few statements and variables, we can translate DeF programs into IF and
conversely; we then prove that the translation preserves the behaviour.
• Evidences of the differences between traditional explicit futures and DeF in Section 5. We

design a simple language with explicit futures, called EF, and show that the semantics
of EF is different from DeF: in both directions, we provide counter-examples of programs

that cannot be translated faithfully from one language into the other.
Our main objective in this paper is not necessarily to advocate one kind of future seman-

tics but to understand precisely and technically the differences between the different future
kinds. For this we introduce a new future construct that is an intermediate between the
existing ones, and that allow us to precisely and formally compare the semantics of explicit
and implicit future types, and their synchronisation mechanisms. We however believe that
the future paradigm of DeF is also a valuable compromise between the existing approaches,
and constitutes a solid contribution of this article. Additionally, this article studies briefly
another compromise between explicit and implicit futures: DeFs is a language similar to DeF
except that it does not feature code reuse, instead it ensures that all get statements are nec-
essary, and will perform a synchronisation. DeFs is only slightly different from DeF and will
be presented in Section 3.3. It is compared with the other languages in Section 6.1.

2 A Brief Survey of Futures in Programming Languages

The origins of futures. A future is a programming abstraction that has been introduced
by Baker and Hewitt [6]. It has then been used in programming languages like MultiLisp [19].
A future is not only a place-holder for a value being computed, it also provides naturally
some form of synchronisation that allows some instructions to be executed when the result
is computed. The synchronisation mechanism provided by futures is closely related with the
flow of data in the programs. In MultiLisp, the future construct creates a thread and returns
a future, the future can be manipulated by operations like assignment that do not need a real
value, but the program would automatically block when trying to use a future for an operation
that would require the future value (e.g. an addition). In MultiLisp, futures are implicit in
the sense that they do not have a specific type and that there is no specific instruction for
accessing a future but there is an explicit statement for creating them. The program only
blocks when the value computed by another thread is necessary. Typed futures appeared with
ABCL/f [30] in order to represent the result of asynchronous method invocations, i.e. methods
invocations that are performed in parallel with the code that triggered the method.

The first work on formalisation by semantic rules of Futures appeared in [14, 15] and
was intended at program optimisation. This work focused on the futures of MultiLisp, that
are explicitly created but implicitly accessed. The authors “compile” a program with futures
into a low-level program that does explicitly retrieves futures, and then optimise the number
of necessary future retrievals. In a similar vein, λpfutq is a concurrent lambda calculus with
futures with cells and handles. In [27], the authors define a semantics for this calculus, and two
type systems. Futures in λpfutq are explicitly created, similarly to MultiLisp. Alice ML [26]
can be considered as an implementation of λpfutq.

One notion related to futures is the concept of promises. In general, a promise a future
with an additional handler that can be used to resolve the future. In other words, there is an
object that can be transmitted and then used to fill the future, this is the case for example in
Akka promises. The advantage is that the resolution of the future is not anymore tight to a
given funciton or process. The difficulty then is to ensure that a promise is resolved exactly
once [32].
Futures for actors and active objects. An Actor is a mono-threaded entity that com-
municate with other actors by asynchronous message sending. An actor performs a single
instruction at a time. The absence of multi-threading inside an actor and the fact that each

data is handled by a single actor prevents any form of data-race. However race-conditions still
exist, typically when two actors send a message to the same third one, or when choosing the
next message to be processed. Active objects unify the notion of Actor and objects, they give
to each actor an object type and replace message passing by asynchronous method invocations:
active objects communicate by calling methods on other active objects, asynchronously.

ABCL/f paved the way for the appearance of active object languages and the use of
futures in these languages. In active object languages, to handle the asynchronous result of
a method invocation, a future is used. First active object languages include like Eiffel// [3],
ProActive [4], and Creol [23, 24].

ProActive [4] is a Java library for active objects; in ProActive futures are implicit like
in MultiLisp, they are implemented with proxies that hide the future and provide an object
interface similar to a standard object except that any access requiring the object’s value (e.g.
to call a method) may trigger a blocking synchronisation. The ASP calculus [10] formalises the
Java library, and in particular allowed the proof of results of partial confluence, i.e. confluence
under some restrictions. Indeed, futures are single-assignment entities; and the result of
the computation is not sensible to the moment when futures are resolved provided they are
accessed by a blocking synchronisation. Then, in a distributed setting, ProActive provides
several future update mechanisms [20] featuring lazy and eager strategies to transport future
values to their utilisation point.

Creol [24, 23] is also an active object language but with a non-blocking wait on future. A
future is accessed with an await statement that enables cooperative multi-threading based on
future availability: the execution of the current method is interrupted when reaching await,
and only continued when the future is resolved. In the meantime other methods can be
executed, which creates interleaving but prevents blocking the actor execution.

De Boer, Clarke, and Johnsen then provided in [11] the first richer version of future
manipulation through cooperative scheduling and provided a compositional proof theory for
the language. The future manipulation primitives of this language have been then used,
almost unchanged, in JCobox [28], ABS [22], and Encore [8] three more recent active object
languages. In those different works, futures are now explicitly typed with a parametric type
of the form FutăTą and can be accessed in various ways (see below).

At the same time another active object language, AmbientTalk, was developed; it features
a quite different semantics for future access. AmbientTalk [12] is based on the E Programming
Language [25] which implements an actor model with a communicating event-loop. Futures
in AmbientTalk are fully asynchronous: calls on futures trigger an asynchronous invocation
that will be scheduled when the future is available. A special construct when-becomes-catch
is used to define the continuations to be executed when the future is resolved.

In a more industrial setting, futures were introduced in Java in 2004 and used in one
of the standard Java libraries for concurrent programming. A parametric type is used for
future variables which are explicitly retrieved by a get primitive [17]. These simple futures
are explicitly created and have a blocking access. Akka [18, 31] is a scalable library for
implementing actors on top of Java and Scala. In Akka, futures are massively used, either to
allow actor messages to return a value, or more automatically in the messages of the typed
actors2. Akka also uses a parametric type for futures. Futures can be created explicitly with
a future construct that creates a new thread.
The different forms of future access. Originally, futures were designed as synchronisa-

2Akka’s typed actors are some kind of active objects.

tion entities, the first way to use futures is to block the thread that is trying to use a future.
When futures are created transparently for the programmer, it is possible to enable the trans-
mission of futures between entities without synchronisation; in this case the synchronisation
occurs only when the future value is strictly needed. This synchronisation paradigm is called
wait-by-necessity. Also in similar settings, futures that can be manipulated as any standard
object of the languages are sometimes called first-class futures. In MultiLisp and ASP, future
synchronisation is transparent and automatic.

Other languages provide future manipulation primitives; starting from touch/peek in AB-
CL/f, the advent of typed futures allowed the definition of richer and better checked future
manipulation statements but also changed the synchronisation pattern, switching from a syn-
chronisation on the availability of data to the synchronisation on a given instruction responsible
for fulfilling the future. For example, a get statement in ABS is resolved by a corresponding
return statement.

In some languages like Creol or AmbientTalk, futures can only be accessed asynchronously,
i.e. the constructs for manipulating a future only allows the programmer to register some
piece of code that will be executed when the future is resolved. In Creol, the principle is
to interrupt the execution of the current thread while waiting for the future. This breaks
the code sequentiality but enables more parallelism and can solve deadlock situations. In
AmbientTalk, such asynchronous continuation can also be expressed but additionally future
access can trigger an asynchronous method invocation that will be scheduled asynchronously
after the current method is finished.

Nowadays, most languages with explicit futures provide different future access primitives.
JCobox, Encore, and ABS let the programmer choose between a cooperative scheduling access
using await, or a strict synchronisation preventing thread interleaving, using a get primitive.
Interestingly, Encore also provides a way to trigger asynchronous method invocation on future
resolution called future chaining, similarly to AmbientTalk.

Akka has a distinguished policy concerning future access. Blocking future access is possible
in Akka (using Await.result or Await.ready, not to be confused with the await of ABS!).
Instead, asynchronous future accesses should be preferred according to the documentation, like
in AmbientTalk, by triggering a method invocation upon future availability. The underlying
principle is to use reactive programming, both for messages and for future updates. Akka
future manipulation comes with several advanced features such as ordering of asynchronous
future accesses, failure handling (a future can be determined as a success or a failure, i.e. an
exception), response time-out, etc.

Another interesting industrial use of futures is the Javascript language. Javascript features
promises that are accessed asynchronously, similarly to Akka futures. The then operation can
follow many resolve and thus the futures of Javascript are a form of data-flow synchronisation,
similarly to ASP. Javascript promises are of course untyped, and thus somehow implicitly
transmitted, while they are explicitly created and accessed. Somehow, Javascript promises
complement nicely the set of existing future implementations: it is a form of data-flow syn-
chronisation asynchronous futures with explicit synchronisation and implicit typing.
Complex synchronisation patterns with futures. It is worth mentioning that several
languages provide primitive implementing more complex synchronisation patterns. For exam-
ple, Encore can use futures to coordinate parallel computations [13], some operators gather
several futures, or perform computation pipelining. In ProActive, a group of futures repre-
sents the result of a group communication, enabling SPMD (single program, multiple data)

computation with active objects [5]. Akka also provides methods for pipelining, iterating, and
combining several future computations.

Discussion

We now discuss the different design choices that exist in the use of futures and present their
advantages and drawbacks. To illustrate these advantages, we refer to the 5 programs in
Figure 1 implementing the same example in four languages. The figure illustrates with a
minimal example the synchronisation aspects related to tail-recursive functions and the po-
tential code reuse. It expresses a terminal recursive version of a factorial function, invoked
twice from a main method, the second invocation passes the result of the first one to illustrate
the transmission of futures as method parameters. We describe in this section the examples
intuitively, a more precise description will be provided in the rest of the article, when the
semantics of each language is formally defined. The four languages used in the example are
our new language DeF, IF a language with implicit futures similar to ASP, and EF a language
with explicit futures similar to Creol or ABS, plus a variant of EF with the primitive await
that allows cooperative scheduling. The last example also uses EF but solves the deadlock of
the third listing by introducing additional objects.
Synchronous vs asynchronous future access. A first important design choice about
future access is whether the access to a future should be a synchronous or an asynchronous
operation. The different forms of future access have been discussed above. With purely
asynchronous future access there is no way to synchronise on a future at a given line of code.
This has the great advantage to provide a deadlock-free programming model at the expense of
an inversion of control forcing the programmer to face complex interleaving in code execution.
On the contrary synchronous future access allows the programmer to write complete pieces
of codes (e.g. the handling of a request) that run to completion if no deadlock appears. In
Akka both accesses are possible but Akka advocates not to use blocking access to prevent
deadlocks. Asynchronous access is adapted to reactive programming based on events, whereas
synchronous future access provides more guarantees in terms of determinacy of results and is
better adapted to the manipulation of stateful objects [10].

More advanced features like checking whether a future has been updated or waiting for the
first update among a group of futures can introduce sources of non-determinacy more difficult
to mitigate than asynchronous access.
Explicit or implicit futures; factorial running example. One crucial design choice
about futures is whether the creation and use of futures should be explicit, with a dedicated
type or syntax, or implicit, manipulated like any other object of the language. In most of
the languages with futures, variables that can contain futures are given a parametric future
type of the form Fut<T>, and some specific primitives must be used to create and manipulate
futures. For example in ABS, ! performs an asynchronous method call, returns a future, and
this future can be accessed by await or get primitives. Figure 1.d shows typical usage of
futures in ABS; note the await that occurs line 8: it retrieves the future but allows another
instance of the fact method to run in the meantime if the future is not resolved. Line 14
performs a get and retrieves the future value without letting the execution of another method
be interleaved at this point. Figure 1.c shows a similar example in a language that has no
await primitive. In this case a deadlock occurs during an execution of get because the active
object that is stuck in the get statement needs to run another method to resolve the future,
and each active object is mono-threaded. There are two important things to notice. First,

due to the use of parametric types, the method fact must perform a synchronisation on
Line 8 because the return statement expects a value of type int even if the result is not
used at this point. Second, because of the explicit synchronisation, the programmer knows
that synchronisation (and potentially deadlocks) necessarily occurs during a get statement.
This makes debugging easier, but also requires the programmer to place the synchronisation
himself/herself, sometimes not at the most efficient place, like in this example.

The advantages of explicit futures is the control given to the programmer, and the fact
that synchronisation points are explicit, and thus it is easier for the programmer to identify
potential deadlocks. Also explicit futures allow for complex operations on futures like co-
operative multi-threading or future chaining whereas, with implicit futures, only one default
semantics is given to future access (in practice additional primitives are often provided but
using them becomes complex).

On the other side, ASP is a typical example of a language with implicit futures. In ASP,
there is no specific future type: a future that will be filled by a value of type T also has
type T . A method call can be either synchronous or asynchronous depending on the object
that is invoked at runtime, and there is no primitive for accessing futures: an operation that
requires a concrete value triggers a synchronisation. Typically, a synchronisation occurs upon
method invocation on a future. In ProActive, implicit futures are implemented with proxies
that encapsulate the behaviour of the future and receive the computed value. This is shown
in Figure 1.b where variables that can contain futures are not statically identified, there is
no type “future”, and there is no synchronisation statement. We will see in Section 5 that a
slightly modified program could (unexpectedly) deadlock on line 4.

A major advantages of implicit futures is that parts of the program can remain oblivious
of whether they operate on regular values or on futures. Consequently, implicit future enable
wait-by-necessity where the program is blocked only when a value is really needed, and futures
can be transmitted transparently between program entities (methods, objects, etc.). Indeed,
with implicit futures; a method that has been written for manipulating a regular object can
as well receive a future.

Figure 1.a shows the same example written in DeF(i.e. with data-flow explicit futures),
where synchronisation is explicit and occurs at the place written by the programmer but no
synchronisation is needed inside fact because the type system is better adapted to the concept
of future. A single get operation is required and only in the main block, it synchronises on
the received parameter that can be a future. The deadlock mentioned above could also occur
at line 4 but this time it corresponds to a get statement and is thus easier to spot. Finally,
Figure 1.e illustrates a faithful encoding with explicit futures of the program 1.a, showing that
additional objects and threads are necessary to encode data-flow synchronisation of futures
in EF. Figure 1 also highlight the difference in the possibility to re-use code in each of future
model: in DeF and IF, the fact method can be invoked with either a future or an integer as
first parameter, it is not the case in the other languages.
Data-flow vs. control-flow synchronisation; a new future paradigm. The different
synchronisation patterns between explicit and implicit futures have been first highlighted
in [21] where the authors provide a backend for ABS implemented in ProActive, and the
only difference in the behaviour is due to the nature of futures. Indeed synchronisation on
an explicit future waits for the execution of the corresponding return statement whereas
synchronisation on an implicit future waits for the availability of some useful data. This is only
visible when a future contains another future, this is why such configurations were excluded

a) DeF(Fut«» is the constructor of future types)
1 Act{
2 Fut«Int» fact(Fut«Int» nf, Int r){
3 Fut«Int» y; Int n;
4 n=get nf;
5 if (n == 1) return r
6 else {
7 r = r*n;
8 y = this.fact(n-1,r);
9 return y }}

10 //MAIN
11 { Act a,b; Fut«Int» y,w; Int z;
12 a=new Act(); b=new Act();
13 y = a.fact (3,1);
14 w = b.fact(y,1);
15 z = get w }

b) IF (similar to ASP)
1 Act{
2 Int fact(Int n, Int r){
3 Int y;
4 if (n == 1) return r
5 else {
6 r = r*n;
7 y = this.fact(n-1,r);
8 return y }}
9 //MAIN

10 { Act a,b; Int y,w;
11 a=new Act(); b=new Act();
12 y = a.fact (3,1);
13 w = b.fact(y,1) }

c) EF (explicit futures with parametric type)
1 Act{
2 Int fact(Int n, Int r){
3 Fut <Int > x ; Int m ;
4 if (n==1) return r
5 else {
6 r = r*n;
7 x = this.fact(n-1,r);
8 m = get x; // DEADLOCK
9 return m }}

10 //MAIN
11 { Act a,b; Fut <int > y,w; Int z;
12 a=new Act(); b=new Act();
13 y = a.fact (3,1);
14 z = get y; // earlier synchro
15 w = b.fact(z,1);
16 z = get w }

d) EF with await (similar to ABS)
1 Act{
2 Int fact(Int n, Int r){
3 Fut <Int > x ; Int m ;
4 if (n==1) return r
5 else {
6 r = r*n;
7 x = this.fact(n-1,r);
8 m = await x;
9 return m }}

10 //MAIN
11 { Act a,b; Fut <int > y,w; Int z;
12 a=new Act(); b=new Act();
13 y = a.fact (3,1);
14 z = get y;
15 w = b.fact(z,1);
16 z = get w }

e) EF with additional active object)
1 FutProxy{
2 Int Unfold(Fut <Int > x) {
3 Int y;
4 y = get x;
5 return y }
6 Int MakeFuture(Int x) {
7 return x
8 }
9 }

10 Act{
11 Fut <Int > fact(Int n, Int r){
12 Fut <Int > x, m ; FutProxy fp;
13 fp=new FutProxy ();// creates

Active Object for future
management

14 if (n==1) {
15 m=fp.MakeFuture(r)
16 return m }
17 else {
18 r = r*n;
19 x = this.fact(n-1,r);
20 m = fp.Unfold(x);
21 return m }}
22 //MAIN
23 { Act a,b; Fut <Fut <Int >> t;

Fut <int > y,w; Int z;
24 a=new Act(); b=new Act();
25 t = a.fact (3,1);
26 y = get t; z = get y;
27 t = b.fact(z,1);
28 w = get t; z = get w }

Figure 1: A factorial example expressed in the different languages presented in this article.

in [21]. A stronger evidence that the two synchronisation patterns are fundamentally different
is shown in [16] where the authors highlight that data-flow synchronisation can potentially
wait for an arbitrary number of return statements, whereas with futures à la ABS each
synchronisation waits for a single return.

This article explains these results on a more streamlined set of languages, only differing
in the way futures are handled. We show that, even if previous results have highlighted the
different semantics between explicit and implicit futures, the true distinctive feature between
these approach is whether the synchronisation is data-flow or control-flow oriented. Implicit
futures comes with a data-flow synchronisation but the synchronisation of explicit futures is
based on the control-flow, it synchronises with the execution of the statement that fills the
future. As a consequence one type of synchronisation cannot be statically encoded into the
other one without creating additional objects or a complex control structure. To prove this
aspect, we design an intermediate future construct that is at the same time explicit and with
a data-flow synchronisation.

DeF is not only a useful tool to compare the expressiveness of the different languages,
it also provides a valuable compromise between the existing approaches for futures. DeF
provides explicit future type and explicit synchronisation points, helping the programmer to
understand synchronisations and deadlocks. It also features data-flow driven synchronisation
avoiding unnecessary get operations, and makes it possible to write pieces of code that are
oblivious of whether they operate on regular values or on futures. We will prove that the
obtained synchronisation patterns are similar to the ones of implicit futures, while making the
presence of futures and their synchronisation explicit.

3 DeF: A Language for Explicit Futures with Data-flow Synchro-
nisation

In this section we propose a core language for uniform active objects with explicit futures
equipped with a data-flow oriented synchronisation. The model could be viewed as a core
version of ABS with only a get primitive to access objects. The syntax is somehow inspired
from the one of ABS. The language is called DeF for data-flow synchronised explicit futures.
Except from the modelling of futures, we tried to adopt a design as simple as possible, but
still modelling the principles of existing actor and active object languages.
Notations. T denotes a list of elements T , unless stated otherwise this list is ordered. In the
syntax x, y, u range over variable names, m over method names, α, β range over active object
identifiers, f over future identifiers, and Act over class names. The set of binary operators
on values is represented by an abstract operator ‘, it replaces all the classical operations on
integer and booleans. Mappings are denoted rx ÞÑ as which builds a map from the two lists
x and a of identical length, mrx ÞÑ as updates a map, associating the value a to the entry x,
and ` merges two maps (taking values in the rightmost one in case of conflict). q#q (resp.
q#q) is the FIFO enqueue (resp. dequeue) operation.

3.1 Syntax and Semantics

Figure 2 shows the syntax of our language, including the type definitions discussed in the next
section. A program P is made of a set of classes named Act, each having a set of fields and
a set of methods, plus a main method. A method M has a name m a set of parameters and

P ::“ ActtT x Mu tT x su program

M ::“ T mpT xq tT x su method
s ::“ skip | x “ z | if v t s u else t s u | s ; s | return v statements
z ::“ e | v.mpvq | new Actpvq | get v right-hand-side of assignments
e ::“ v | v ‘ v expressions
v ::“ x | null | integer-and-boolean-values atoms
B ::“ Int | Bool | Act basic type
T ::“ B | FutÎBÏ Type

Figure 2: Static syntax of DeF.

a body, made of a set of local variables and a statement. Types and terms are standard of
object languages except that new creates an active object, get accesses a future, and v.mpvq
performs a method invocation on an active object and thus systematically creates a future
as will be shown in the semantics and the type system. The type constructor for future is
FutÎTÏ, we chose a notation different from the standard FutăTą of ABS or Akka. We
adopt this notation to syntactically show that a future type is not a standard parametrised
type, but follows specific typing rules. Sequence is denoted ; and is associative with a neutral
element skip. Consequently, each statement that is not skip can be rewritten as s; s1 with s
neither skip nor a sequence. ‘ denotes the (standard) operations on integers and booleans.
Several design choices had to be made in DeF, even if they are orthogonal to the subject of
the paper we discuss them briefly below:
• For simplicity, we suppose that local variables and fields have disjoint names.
• We specify a service of requests in FIFO order like in ASP or Rebeca [29]. Another service

policy could be specified. This choice is not related to the scope of the paper; we choose
FIFO service because it is supported by many actor and active object implementations,
probably because this makes programming of several interaction patterns easier.
• We define a sub-typing relation that only compares future and non-future types. Adding

an additional sub-typing relation (e.g. based on the class of objects) raises no issue but
is outside the scope of our study.
• In the design of a programming model for active objects, a crucial choice is to decide

whether all objects are active or only some of them are. DeF is a uniform active object
language, where all objects are active and all invocations are asynchronous and create
a future. Many recent active object languages either have a non-uniform model where
some (passive) objects can only be accessed synchronously by a single active objects, or
concurrent object groups where several objects share the same execution thread. The
interested reader is referred to [7] for a complete description of active object models.
This aspect is also mostly orthogonal to the subject of our study. However if some objects
can be invoked locally, a syntactic distinction between synchronous and asynchronous
invocation might be necessary to identify the points of creation of futures. For example
ABS and Creol use ! to identify asynchronous method invocations that create future.
Note that the syntactic identification of future creation points is less crucial in DeF than
in ABS because the sub-typing between futures and not futures allows us to perform a
synchronous invocation when an asynchronous one is syntactically expected.

cn ::“ αpa, p, qq fpKq fpwq configuration
p ::“ ∅ | q : t`|su currentrequestservice
q ::“ pf,m,wq request
w ::“ x | α | f | null | integer-values runtime values
` ::“ rx ÞÑ ws local store
a ::“ rx ÞÑ ws object fields
e ::“ w | v ‘ v expressions now can have runtime values
s ::“ skip | x “ z | if v t s u else t s u | s ; s | return v statements
z ::“ e | v.mpvq | new Actpvq | get w expressions with side effects

Figure 3: Runtime Syntax of DeF.

The operational semantics of DeF is shown in Figure 4; it expresses a small-step reduction
semantics as a transition relationship between runtime configurations. The syntax of config-
urations and runtime terms is defined in Figure 3, statements are the same as in the static
syntax except that they can contain runtime values like reference to an object or a future
(inside assignment or get statement). A configuration is an unordered set of active objects
and futures. Each active object is of the form αpa, p, qq where α is the active object identifier,
a stores the value of object fields, p is the request currently served, and q a list of pending
requests. The configuration also contains futures that can be either unresolved K or resolved
by a value. A request q is characterised by the corresponding future f , the invoked method
m, and a set of invocation parameters w. The currently served request is either empty ∅ or
made of the request identity q, and a pair t` | su containing a local environment `, and the
statement to be evaluated.

The semantics uses the following auxiliary functions. The bind operator creates an execu-
tion context in order to evaluate a method. If the object α is of type Act, and m is defined in
Act, i.e. Actt..T mpT xq tT y su..u is one class of the program P , then3: bindpα, pf,m,wqq fi
t r this ÞÑ α, x ÞÑ w s | s u

To deal with assignment, we use a dedicated operator for updating the current fields or
local variables: pa` `qrx ÞÑ ws “ a1 ` `1 ðñ a1 “ arx ÞÑ ws and `1 “ `, if x P dompaq,

a1 “ a and `1 “ `rx ÞÑ ws, else
The semantics of a DeF program features the classical elements of active object program-

ming [9, 22], the stateful aspects of the language are expressed as accesses to either local
variables (`) or object fields (a). The three first rules of the semantics define an evaluation
operator rressa`` that evaluates an expression. It is important to note that rressa`` “ w implies
that w can only be an object or future name, null, or an integer or boolean value. The
semantics of Figure 4 contains the following rules. Assign deals with assignment to either
local variables or object fields. New creates a new active object at a fresh location β. Method
invocation Invk enqueues a request in the target active object and systematically creates an
undefined future f , the reference to the future can then be used (stored) by the invoker α.
The rule Invk-Self deals with the particular case where the target is the invoking object. Re-
turn evaluates a return statement and resolves the corresponding futures, finishing a request

3It is not necessary to initialize the local variables in the local environment because of the way the update
operation on store and object fields is defined.

w is not a variable
rrwss` “ w

x P domp`q
rrxss` “ `pxq

rrvss` “ k rrv1ss` “ k1

rrv ‘ v1ss` “ k ‘ k1

Assign
rressa`` “ w pa` `qrx ÞÑ ws “ a1 ` `1

αpa, q : t` | x “ e ; su, q1q Ñ αpa1, q : t`1 | su, q1q

Context
cnÑ cn1

cn cn2 Ñ cn1 cn2

New
rrvssa`` “ w β fresh y “ fieldspActq

αpa, q :t` | x “ new Actpvq ; su, q1q Ñ αpa, q :t` | x “ β ; su, q1q βpry ÞÑ ws,∅,∅q

Invk
rrvssa`` “ β rrvssa`` “ w β ‰ α f fresh

αpa, q :t` |x“v.mpvq;su, q1q βpa1, p, qβq Ñ αpa, q :t` |x“f;su, q1q βpa1, p, qβ#pf,m,wqq fpKq

Invk-Self
rrvssa`` “ α rrvssa`` “ w f fresh

αpa, q : t` | x “ v.mpvq ; su, q1q Ñ αpa, q : t` | x “ f ; su, q1#pf,m,wqq fpKq

Return
rrvssa`` “ w

αpa, pf,m,wq : t` | return vu, qq fpKq
Ñ αpa,∅, qq fpwq

Serve
bindpα, qq “ tl|su

αpa,∅, q#q1q Ñ αpa, q : tl|su, q1q

Get-Update
rrwssa`` “ f

αpa, q : t` | y “ get w ; su, q1q fpw1q
Ñ αpa, q : t` | y “ get w1 ; su, q1q fpw1q

Get-Resolved
rrwssa`` “ w1 Ef.w1 “ f

αpa, q : t` | y “ get w ; su, q1q
Ñ αpa, q : t` | y “ w1 ; su, q1q

If-True
rrvssa`` “ true

αpa, q : t` | if v t s1 u else t s2 u ; su, q1q
Ñ αpa, q : t` | s1 ; su, q1q

If-False
rrvssa`` ‰ true

αpa, q : t` | if v t s1 u else t s2 u ; suu, q1q
Ñ αpa, q : t` | s2 ; suu, q1q

Figure 4: Semantics of DeF.

service so that a new request can be served. Serve occurs when no request is being served,
it dequeues a request and starts its execution. These rules ensure a strict single-threaded
execution of each request one after the other. The most original and interesting aspect of
the semantics is the two rules that deal with the get statement: Get-Update fetches the
value associated to a future but this value is kept under the get statement, this rule is applied
repetitively until the rule Get-Resolved is applicable, i.e. until the value inside get is not a
reference to a future, at this point the get statement is removed. This way the get statement
always returns a usable value. Note that a get can perfectly be called on a value that is not
a future, in which case it has no effect.

(T-Var)

Γ $ x : Γpxq

(T-Null)

Γ $ null : Act

(T-Subtype)

Γ $ z : T

Γ $ z : FutÎTÏ

(T-Assign)

Γpxq “ T Γ $ e : T

Γ $ x “ e

(T-New)

fieldspActq “ T x Γ $ v : T

Γ $ new Actpvq : Act

(T-Expression)

Γ $ v : T Γ $ v1 : T 1 ‘ : T ˆ T 1 Ñ T 2

Γ $ v ‘ v1 : T 2

(T-Get)

Γ $ v : FutÎBÏ

Γ $ get v : B

(T-Invk)

Γ $ v : Act ΓpActqpmq “ T Ñ T 1 Γ $ v : T
if T 1 is of the form FutÎBÏ then T 2 “ T 1 else T 2 “ FutÎT 1Ï

Γ $ v.mpvq : T 2

(T-If)

Γ $ v : Bool Γ $ s1 Γ $ s2

Γ $ if v t s1 u else t s2 u

(T-Return)

Γ $ e : T ΓpActqpmq “ T Ñ T

Γ $ return e

(T-Seq)

Γ $ s Γ $ s1

Γ $ s ; s1

(T-Method)

Γ1 “ Γrx ÞÑ T srx1 ÞÑ T 1s Γ1 $ s

Γ $ T 2 m pT xqtT 1 x1 su

(T-Skip)

Γ $ skip

(T-Program)

Γrx1 ÞÑ T 1s $ s @ActtT x,Mu P ActtT x,Mu ¨ @M PM ¨ Γrx ÞÑ T s $M

Γ $ ActtT x,Mu tT 1 x1 su

Figure 5: Type system (each operator ‘ has a predefined signature).

The initial configuration for running a DeF program ActtT x Mu tT x su consists of a
single object serving a single request with body defined by the main method, the identity of
the request is useless as no other object will fetch the result: αp∅, pf,m,∅q : t∅|su,∅q

3.2 A Type System for DeF

We define a simple type system for DeF (the syntax of types is in Figure 2). Most of the type
system is standard, but the typing of the new future type requires some specific rules. In DeF
a standard value may always be used when a future is expected, and this must be reflected
in the type system. In other words, FutÎTÏ is not a parametrised type but tags the type T
with the information that the term may be a future. On the contrary, T is the type of an entity
that is not a future. In DeF, it is not possible to write a type of the form FutÎFutÎTÏÏ;
indeed get unfolds as many future accesses as necessary to obtain a real value. Somehow,
FutÎTÏ would correspond, in a parametric type system for futures, to any positive or null
number of embedded future construct fut˚ ă T ą .

The type checking rules are defined in Figure 5. The sub-typing rule T-Subtype states
that a non-future term can always be considered as of type future. The rule T-Get guarantees
that the type of the term obtained after a get is a basic type, and thus the result of a get

can be used directly. The other non-trivial rule is the typing of method invocation (T-Invk).
This rule tags as “future” the result of the method invocation, if the method is declared to
return a basic type we add the fut tag, but if the method is declared to return a future (e.g.
because the return statement returns the result of another method invocation) then no tag
is added; we do not have a fut type constructor contained in another one like one could have
in ABS. The initial typing environment Γ, which types the program, associates to each class
name a mapping from method names to method signatures. If m is a method of class Act

defined as follow T 2 m pT xqtT 1 x1 su, we will have Γpmq “ T Ñ T 2.
This type system allows code reuse because a method that accepts a future can be invoked

with a non-future value. The programmer can also write a recursive method that can either
return a future or a standard value, it is sufficient to declare that this method potentially
returns a future.
Example. Figure 1.a illustrates DeF and shows the possibility to return and to accept as
parameter either an integer or a future. It also shows that it is easy to express tail-recursion
because the typing of futures entails that a term tagged as future can require to unfold zero
or many futures to access the value4. The synchronisation point is clearly marked with a get
statement. The method fact first synchronises the integer passed as parameter, in case it
is a future. We create two active objects a and b because if both invocations to fact were
addressing the same active object, depending on request ordering a deadlock might occur (the
active object would be blocked in the get statement at line 4).
Properties of the type system. Properties of the type system rely on the extension of the
type system to runtime configurations. It is not possible to type configurations based on the
only informations recorded in the semantics of Figure 4. Indeed, the main information missing
is the type of active objects and futures. Even if the type of active object could potentially be
inferred, it is impossible to infer the type of the futures because of the possibility to create a
cycle of futures and obtain a configuration of the form cn fpfq. Indeed the ASP example cre-
ating a cycle of futures defined in [9] can be written in DeF (see Appendix 1 for the DeFversion).
Thus, to type configurations we annotate activities and futures with their types (we record
the type of each object and each future at creation): cn ::“ αActpa, p, qq fT pKq fT pwq. Except
from this point, extending the type system to configurations is trivial. We write Γ $ cn if the
configuration cn is well-typed in the environment Γ (where Γ is the initial typing environment
defined above).

It is easy to check that DeF type system verifies subject reduction: if Γ $ cn and cnÑ cn1

then Γ $ cn1. For example the correct typing of the future value is ensured by the fact that
the return statement is well-typed in the initial configuration (i.e. it has the return type of
the method). This also ensures that the get statement is well-typed (accordingly to the future
type and the return type of the method), and thus the Get-Update reduction rule does not
change the type of the term under the get statement.

One can then notice that runtime values of type B cannot be futures (see Figure 2).
Consequently, concerning objects, variables of type Act either are null or point to an object
of the right type. Thus, except for non-initialised objects, method invocations always succeed,
and in particular: (1) each invocation creates a request on a method existing in the target
object, and (2) the invoked object cannot be a future. Similar conclusions can be drawn for
primitive types. This is in particular reflected in the property below that states that DeF has
the desirable characterisation of blocked tasks: an object can only be blocked if it is idle, it is

4Note that the fact method must be given the return type FutÎIntÏ.

accessing null, or it is waiting for a future to be resolved.

Property 1 (Blocked activity). For any configuration cn for any object αpa, p, qq of this
configuration, A reduction rule involving the object α can always be applied except if:
• The object is idle: p “ ∅ and q “ ∅; or
• The object invokes null: p “ t`|x “ v.mpvq; su and rrvssa`` “ null; or
• The object is waiting for a future resolution: p “ t`|x “ get v; su and there is a future
identifier f such that rrvssa`` “ f and fpKq P cn.

This property can be seen as a soundness theorem ensuring that all accesses to asyn-
chronous results are protected by a get. It would be easy and classical to prove a “no message
not understood” theorem, from Property 1 and subject reduction the proof features no par-
ticular interest or difficulty.

3.3 DeFs: A variant of DeF without useless get operations

Because DeF is designed so that a method can receive as parameter an int or a future (provided
the programmer takes care of the future case), we need to accept get x statements where x
can be mapped to 3 or a future of value 3. As a consequence a get operation can perfectly lead
to no synchronisation at all. It would be possible to design another future type system, call it
DeFs a language with data-flow explicit futures and strict synchronisation. DeFs is identical
to DeF except there is no future subtyping rule (T-Subtype). If the FutÎTÏ construct of
DeF can be informally understood as a Fut*<T> type, the FutÎTÏ construct of DeFs can be
seen as a Fut+<T>, meaning one or more imbricated futures. DeFs allows the definition of
recursive asynchronous functions and ensure necessity of get operation: each get performs
one or several synchronisations. This is formalised as follows:

Property 2 (In DeFs every get is a synchronisation). In DeFs, any get operation performs
a synchronisation. In other words, every Get-Resolved reduction is preceded by a Get-
Update reduction on the same activity. More formally, for any initial configuration cn0, for
any reduction chain: cn0 Ñ˚ cn1

T
Ñ cn2 Ñ˚ cn3

Get-Resolved
Ñ cn4 where cn3

Get-Resolved
Ñ cn4

occurs on α and cn2 Ñ˚ cn3 are reductions not occurring on α5, and cn1
T
Ñ cn2 occurs in α,

then cn1
T
Ñ cn2 is a synchronisation reduction and thus T “ Get-Update.

In this work, we favour code reusability instead of preventing useless get for software
engineering reasons, this is why we mostly focus on DeF. However DeFs provides another
compromise between IF and EF. DeFs has one additional property with no useless get, despite
the absence of code reusability.

4 Comparison with Implicit Futures

In this section we describe a programming language with implicit futures. More precisely, we
show the syntax and the semantics of a language similar to our proposal, only differing in the
way futures are created and declared, i.e., a language with a semantics for futures similar to
the one of ASP but keeping our simplistic formalisation of objects. We call this language IF

5Invocation Invk is considered to occur on the source activity because only the request queue of the
destination is modified by the rule.

s ::“ skip | x “ z | if v t s u else t s u | s ; s | return v statements
T ::“ B Type

Figure 6: The Syntax of IF and IF types (terms identical to DeF omitted).

Update
rrxssa`` “ f pa` `qrx ÞÑ ws “ a1 ` `1

αpa, q : t` | su, q1qq fpwq

ÑI αpa
1, q : t`1 | su, q1q fpwq

(T-Invk)

Γ $I v : Act ΓpActqpmq “ T Ñ T 1

Γ $I v : T

Γ $I v.mpvq : T 1

Figure 7: Semantics and type system of IF (the other rules are identical to DeF).

for “implicit futures”, this language also has a data-flow synchronisation, since the programmer
is not aware of the location of futures and can only trigger a synchronisation when trying to
use a variable that holds a future. This calculus is a typical example of the notion of wait-
by-necessity that consists in blocking the execution of a program only when a future value is
absolutely needed: there is no way to wait for the resolution of a future except using the value
that is stored in it. We show that both languages have a similar expressiveness as it is possible
to translate one into the other in a quite natural way. The translation however highlights the
particularities of the two languages.

4.1 Semantics of Implicit Futures (IF)

Compared to DeF, the syntax of IF has no get statement, and there is no future type, see
Figure 6. The semantics of IF is denoted ÑI . It is the same as the one of DeF except that
the two rules Get-Update and Get-Resolved are replaced by a single Update rule shown
in Figure 7. This rule can be triggered at any point when a variable holds a reference to a
future that has been resolved; it replaces the value of a variable holding the future reference
by the future value. Note that this rule changes the local store of an activity in a transparent
manner, but this makes sense in IF because there is no future type, and a variable holding
a future reference is considered, by the programmer, as directly containing the value that is
returned by the method invocation (after some time).

Typing is also simple; we denote $I the new typing judgement. The rules T-Get and
T-Subtype can be removed as they are not useful. Rule T-Invk is modified as shown in
Figure 6. As there is no syntactic difference between futures and other values, the method
invocation simply returns a basic type. Note that, except null, each term has a single type, it
was not the case in DeF because of the sub-typing between future and non-future types. The
initial configuration for an IF program is identical to the one for DeF.
Example. Figure 1.b shows an IF program for the factorial computation. Futures are not
declared explicitly, and tail-recursive functions can be expressed easily. The Update rule will
automatically transmit the computed result, in several steps, to the point of utilisation. The
code reuse is even stronger than in DeF because the method can be written without stating
that the parameter can be a future, and thus methods that were written in a sequential setting
can be invoked with a future. The synchronisation automatically occurs as late as possible, in

JT mpT xq tT 1 x1 suKIFÑDeF fi T mpT xq tT 1 x1tT yT , T zT |Dv P s. $I v : T u su

JBKIFÑDeF fi FutÎBÏ

Jif v t s u else t s1 uKIFÑDeF fi yBool “ get v; if yBool t s u else t s
1 u

$I v : T

Jx “ v.mpvqKIFÑDeF fi yT “ get v;
x “ yT .mpvq

$I v : T $I v
1 : T 1

Jx “ v ‘ v1KIFÑDeF fi yT “ get v;
zT 1 “ get v1;
x “ yT ‘ zT 1

Figure 8: Translation from IF to DeF (other terms are unchanged).

this case, at the same point as in the Figure 1.a. The main drawback of this approach is that
it can be difficult for the programmer to analyse synchronisation points and deadlocks. For
example if a “ b, both factorial invocations target the same object and the active object may
be blocked at line 4 (when checking if a future equals 1). The programmer would probably
not notice that this line could be a synchronisation point.

4.2 Encoding IF into DeF

In this section we show how to encode an IF program into a DeF program that has the same
behaviour. The translation is relatively simple and highlights the fact that DeF makes explicit
the synchronisation points. The principle of the translation is to suppose that every IF term
can be a future, and to generate too many get statements, one at each point a statement uses
a value. At runtime, most of those get statements will have no effect and be immediately
resolved by the rule Get-Resolved. This is made possible because a term that is not a future
can always replace a term that is supposed to be a future in DeF, we can thus suppose that
all entities are futures even if most of them are not.

First, we adopt the following abuse of notation. We use $I v : T to type the atom v
when placed in the adequate typing context Γ without having to specify Γ (it corresponds to
the point of the program considered). We will use the same abusive notation for all the type
judgements. Except for the adaptation explained below and the rules defined in Figure 8 an
IF term is translated identically into a DeF term.
Additional variables. We first add to each method two local variables of each possible
type: For any v appearing in the method body, if $I v : T then two fresh variables yT and zT
of type T are declared in the method containing v. They will be used as intermediate variables
in the encoding. See first line of Figure 8.
Typing translation. In IF every variable can be a future. To reflect this fact, we translate
every type into a type tagged as future (recall that T and B are identical in IF). See the
second line of Figure 8. The only variables with a non-future types are the additional variables
introduced above.
Statement translation. Only statements potentially triggering a wait-by-necessity, i.e. a
transparent synchronisation on a future, need to be changed. For each such statement we add
one (or two) get statement retrieving the future value in case the accessed variable contains

cn, cnd,∅,∅ $ aR1 ad cn, cnd,∅,∅ $ `R1NoTmpp`dq cn, cnd,∅,∅ $ qR1 qd
cn, cnd,∅,∅ $ q1R1 q1d cn, cnd, a` `, ad ` `d $ sR1 sd cnR1 cnd

αpa, q : t`|su, q1q cn R1 αpad, qd : t`d|sdu, q1dq cnd

cnR1 cnd

fpKq cn R1 fpKq cnd

fpwq cn, fpwdq cnd,∅,∅ $ wR1wd
cnR1 cnd

fpwq cn R1 fpwdq cnd

fpwqPcn
cn, cnd, `, `d$ wR1wd

cn, cnd, `, `d $ f R1wd

fpwdqPcnd cn, cnd, `, `d$ wR1wd

cn, cnd, `, `d $ w R1 f cn, cnd, `, `d $ s R1 JsKIFÑDeF

´

JsKIFÑDeF “
uT “ get v;
s1

_ JsKIFÑDeF “

yT 1 “ get v1;
uT “ get v;
s1

¯

sd “ puT “ get wd;s1q cn, cnd, `, `d $ rrvss`R1 rrwdss`d

cn, cnd, `, `d $ s R1 sd

´

JsKIFÑDeF “
uT “ get v;
s1

_ JsKIFÑDeF “

yT 1 “ get v1;
uT “ get v;
s1

¯

sd “ puT “ wd;s1q cn, cnd, `, `d $ rrvss`R1 rrwdss`d

cn, cnd, `, `d $ s R1 sd

´

JsKIFÑDeF “
uT “ get v;
sd

_ JsKIFÑDeF “

yT 1 “ get v1;
uT “ get v;
sd

¯

cn, cnd, `, `d $ rrvss`R1 rruT ss`d

cn, cnd, `, `d $ s R1 sd

Figure 9: Equivalence between IF and DeF configurations. Term-by-term equivalence and
syntactic equality omitted. NoTmpp`q “ trx ÞÑ `pxq| $ x : Bu

a future. See the three last cases of Figure 8.
Correctness of the translation. We prove here that the translation defined above preserves
the behaviour of the original IF program. More precisely we prove that, considering some of
the reduction rules as non-observable, there is a branching bisimulation between the execution
of an IF program and the execution of its translation.

The reductions that cannot be observed faithfully are the following ones:
• The IF rule Update: This rule happens automatically and transparently at any point

in time whereas future update occurs upon need in DeF.
• symmetrically DeF rules Get-Update and Get-Resolved only occur at a specific point

in DeF and cannot be faithfully matched with the transparent future update of IF.

• finally, the assignment (Assign) of the variables yT introduced by the translation cannot
be matched with any IF rule. Note that this concerns local variables that have a non-
future type in the translation: $ yT : B for some basic type B.

Despite the non observability of these rules, the other reductions, like method invocations,
are simulated faithfully, and thus the program features the correct behaviour. We let τ range
over these non-observable transitions. Additionally, we label each reduction step by the name
of the only applied rule that is not Context. By convention, in the rest of this section we use
td to range over terms of DeF and t over terms of IF.

Figure 9 defines a relation R1 between a configuration reached when evaluating an IF
program and a configuration reached when evaluating the translation in DeF of this program.
The relation R1 is either of the form cnR1 cnd, checking the equivalence between an IF
configuration cn and a DeF configuration cnd, or of the form cn, cnd, `, `d $ tR1 td, checking
the equivalence between a term t (inside the IF configuration cn) and a term td (inside the
DeF configuration cnd); in this case ` (resp. `d) contain the values of the variables that can be
referred by t (resp. td). Term-by-term and syntactic equality are omitted in the figure (e.g.,
mappings are equivalent if the value associated to each variable is equivalent). The three
first rules deal with equivalence of activities and futures; temporary variables introduced by
the translation are ignored when comparing stores, the other elements are compared term-
by-term. The next two rules handle the following of future references: in IF and in DeF the
update of futures do not occur at the same moment, thus we allow the equivalence relation
R1 to follow future references, both in IF and DeF (one should finally arrive to a common term
to assert equivalence). The last four rules define statement equivalence; when one statement
can be translated into several with explicit synchronisation, the execution in DeF can be at
any intermediate step. We now state correctness of the translation.

Theorem 1. [Correctness of the translation] R1 is a branching bisimulation between the op-
erational semantics of the IF program P and the operational semantics of the DeF program
JP KIFÑDeF. The transitions Update, Get-Update, Get-Resolved, and Assign of the local
intermediate variables are non-observable. More formally, with R (resp. τ) ranging over ob-
servable (resp. non-observable) rule names, if cnR1 cnd then:

cn τ
ÑI

˚
cn1 ùñ cn1R1 cnd cnd

τ
Ñ
˚
cn1d ùñ cnR1 cn

1
d

cn R
ÑI

˚

cn1 ùñ Dcn1d. cnd
τ
Ñ
˚ R
Ñ cn1d ^ cn1R1 cn1d

cnd
R
Ñ
˚

cn1d ùñ Dcn1. cn τ
ÑI

˚ R
ÑI cn1 ^ cn1R1 cn1d

Appendix 2 details the proof. It consists of a classical case analysis on the applied rule,
and relies on a few crucial lemmas concerning the equivalence relation. Those lemmas provide
a more convenient characterisation of value equivalence (by following future references), and
provide properties on the evaluation of expressions in equivalent terms.
Note on the equivalence. By construction, when there is a future in DeF this future
can be updated in IF because update is transparent and can occur earlier than the explicit
synchronisation whereas the synchronisation is automatically introduced just before using the
value. A future in IF almost always correspond to a future in DeF but the converse is not
true. The only case when a future in IF does not correspond to a future in DeF is between
the application of the Get-Update rule and the use of the obtained value (triggering a wait-
by-necessity in IF). Note that, if instead of branching bisimulation, weak bisimulation was
sufficient, then we could simulate a Get-Update rule of DeF by an Update rule of IF and
systematically have less futures in IF than in DeF, thus simplifying the definition of R1 .

JFutÎBÏKDeFÑIF fi B
$ v : FutÎActÏ

Jx “ get vKDeFÑIF fi if pv ““ nullActq tx “ v u else tx “ v u

$ v : FutÎIntÏ

Jx “ get vKDeFÑIF fi x “ v ` 0

$ v : FutÎBoolÏ

Jx “ get vKDeFÑIF fi x “ v ^ True

Figure 10: Translation from DeF to IF (other terms are unchanged).

4.3 Encoding DeF into IF

This section defines an encoding from a DeF program into IF, maintaining the same semantics
and creating the same objects and futures. The translation is shown in Figure 10.
Typing. Compared to DeF, in IF, the future type does not exist and thus should be removed
in a translation.
Synchronisation, statement translation. There is no get operation, but the synchroni-
sation happens automatically when needed. To maintain the same semantics we must ensure
that the synchronisation occurs at the same place, for that we trigger a dummy computation
using the future to simulate the get of DeF (see the last three rules of Figure 10). In case of an
object, we suppose that in IF there is an ““ operation on objects that operates on non-future
values. We also introduce a set of reserved variables nullAct for each object type Act, all
these variables have value null. These variables could safely be replaced by the null value
in practice but using reserved variables allows us to identify the operation of synchronisation
on an object in the proof of bisimulation.
Correctness of the translation. Figure 11 shows a relation R2 that relates an IF con-
figuration on the left with a DeF configuration on the right, where the IF configuration has
been obtained by evaluating the translation of a DeF program as described above. Like in the
preceding section td denotes terms of DeF. The first three rules of the figure describe the com-
parison of activities and futures, ignoring additional variables introduced by the translation.
The next two rules are similar to R1 and allows the equivalence to follow future references
on both sides. The last three rules deal with the equivalence on statements and especially
with the intermediate states reached when evaluating the translation of a get statement. The
first one deals with direct translation. The last two rules deal with the intermediate states
reached when evaluating a get statement. In both rules, there are four cases, three for the
possible translation of get, ans one case about the assignment in IF of a non-future value, this
case deals with the intermediate state reached when an object has been synchronised (after a
comparison to nullAct) In the last rule, one premise checks that wd is not a future and ensures
that wd is the result of a get operation; this is always true when the other premises are true
and the evaluated program is the result of the translation but the hypothesis is used the proof
of the branching bisimulation theorem below; it avoids proving a technical additional lemma
related to these points in the program.

Concerning transitions that cannot be observed in the bisimulation relation, similarly to
the other directions, future updates occur at different moments, and are thus considered non-
observable. Additionally, reduction rules resulting of synchronisation operations introduced by
the translation cannot be observed faithfully, this only concerns the evaluation of if statements

cn, cnd,∅,∅ $ aR2 ad cn, cnd,∅,∅ $ NoTmpp`qR2 `d cn, cnd,∅,∅ $ qR2 qd
cn, cnd,∅,∅ $ q1R2 q1d cn, cnd, a` `, ad ` `d $ sR2 sd cnR2 cnd

αpa, q : t`|su, q1q cn R2 αpad, qd : t`d|sdu, q1dq cnd

cnR2 cnd

fpKq cn R2 fpKq cnd

fpwq cn, fpwdq cnd,∅,∅ $ wR2wd cnR2 cnd

fpwq cn R2 fpwdq cnd

fpwq P cn cn, cnd, `, `d $ wR2wd

cn, cnd, `, `d $ f R2 wd

fpwdq P cnd cn, cnd, `, `d $ wR2wd

cn, cnd, `, `d $ w R2 f

cn, cnd, `, `d $ JsdKDeFÑIF R2 sd

ˆ

s “ px “ w`0q _ s “ px “ w^Trueq _ pps “ px “ wqq ^ Ef.rrwss` “ fq
_s “ pif pw ““ nullActq tx “ w u else tx “ w uq

˙

cn, cnd, `, `d $ rrwss`R2 rrwdss`d

cn, cnd, `, `d $ s ; JsdKDeFÑIF R2 px “ get wdq ; sd
ˆ

s “ px “ w ` 0q _ s “ px “ w ^ Trueq _ pps “ px “ wqq ^ Ef.rrwss` “ fq
_s “ pif pw ““ nullActq tx “ w u else tx “ w uq

˙

Ef.rrwdss`d “ f cn, cnd, `, `d $ rrwss`R2 rrwdss`d

cn, cnd, `, `d $ s ; JsdKDeFÑIF R2 px “ wdq ; sd

Figure 11: Equivalence between a configuration of a DeF program (on the right) and a config-
uration of its translation in IF(on the left). Term-by-term equivalence and syntactic equality
are omitted. NoTmpp`q “ trx ÞÑ `pxq| $ x : B ^B ‰ nullActu

where the condition is the comparison to a nullAct reserved variable.

Theorem 2. [Branching bisimulation] The translation of an DeF program into IF behaves
identically to the original one: R2 is a branching bisimulation between the operational se-
mantics of the DeF program P and the operational semantics of the IF program JP KDeFÑIF.
The transitions Update, Get-Update, Get-Resolved, and If-True and If-False where the
condition contain one nullAct variable. In other words: With R ranging over observable rule
names, and τ over non-observable rules, we have, if cnR2 cnd then:

cn τ
ÑI

˚
cn1 ùñ cn1R2 cnd cnd

τ
Ñ
˚
cn1d ùñ cnR2 cn1d

cn R
ÑI

˚

cn1 ùñ Dcn1d. cnd
τ
Ñ
˚ R
Ñ cn1d ^ cn1R2 cn1d

cnd
R
Ñ
˚

cn1d ùñ Dcn1. cn τ
ÑI

˚ R
ÑI cn1 ^ cn1R2 cn1d

The proof of this theorem can be found in Appendix 3. It is done by a classical case
analysis and relies on the fact that R2 verifies the same preliminary lemmas as R1 . Like in
the case of R1 the following of futures inside DeF configuration is only necessary to ensure
branching bisimulation. It is only needed to ensure equivalence in well identified temporary
configurations and could be avoided if weak bisimulation was sufficient.

4.4 Concluding Remarks

We proved that IF and DeF feature a similar behaviour. However, the two different future
constructs are not controlled in the same way by the programmer. On one side, DeF requires
the programmer to be more precise because some entities are tagged as futures and some not,
on the other side, in IF any entity can be a future. This is visible in the translation from IF into
DeF that consider all objects as potentially a future and adds a lot of get operations, but also in
the other directions where synchronisation is enforced only at the specific points corresponding
to a get operation. This increased precision would make the implementation of DeF futures
more efficient, increase the accuracy of static analyses, and help the programmer identify
potential deadlocks at the cost of additional instruction and exposure of the programmer to
the notion of futures.

Concerning code reuse, both IF and DeF allow some form of code reuse in the sense that
a piece of program can be written the same way independently of which variables contain a
future or not. However, IF allows the programmer to reuse code written in a sequential setting
without knowing that some variables might contain futures whereas, in DeF reusable code must
take into account that some variable may contain futures (the programmer should perform
the adequate gets). Thus more code is reusable in IF but the recycling code with additional
unplanned synchronisation could easily lead to undesired synchronisations or deadlocks. In
DeF the programmer has to plan the possible synchronisations on futures and is thus aware of
the potential synchronisations when writing his/her code.

Finally, the translation from IF to DeF highlights the property that a single get operation
is always sufficient to allow an operation accessing a future to succeed.

5 Comparison with Classical Explicit Futures

This section takes DeF as a basis and shows the minimal syntax and semantics changes to define
a language with parametric typing of explicit futures called EF. Recall that this kind of explicit
futures come with a control-flow synchronisation where a synchronisation statement waits for
the resolution of a single future, and this synchronisation is released by the execution of a
single return statement. In active object languages with explicit futures, the synchronisation
on a future is resolved as soon as the corresponding request finishes, even if this request
returned another future.

Futures of EF are similar to the ones of languages like Encore, Creol, ABS, Akka, or Java,
even if the future creation and manipulation in these languages is generally richer than the
simplified semantics proposed here. Indeed EF only has one primitive for accessing futures
(get). We will additionally discuss the advantages of an await primitive, especially because
it can simulate the behaviour of data-flow synchronised futures in some cases.

5.1 Semantics of Explicit Futures

The syntax of EF is the same as the one of DeF. Only the syntax of types is changed to allow
several future type constructors to be nested. We denote Fută ą the parametric future type
constructor. This allows typing a variable that holds a future that will itself be resolved into
a future:

T ::“ B | FutăTą Non-basic type

Get-Resolved
rrvssa`` “ f

αpa, q : t` | y “ get v ; su, q1q fpwq ÑE αpa, q : t` | y “ w ; su, q1q fpwq

(T-Get)

Γ $E v : FutăTą

Γ $E get v : T

(T-Invk)

Γ $E v : Act ΓpActqpmq “ T Ñ T 1 Γ $E v : T

Γ $E v.mpvq : FutăT 1ą

Get-Update is removed T-Subtype is removed

Figure 12: Operational semantics and typing rules for EF(compared to DeF).

The semantics of EF is denotedÑE . Its only difference compared to DeF is that a single rule
is necessary for handling the get statement. Indeed, get unfolds one level of future indirection,
and thus a future is resolved in one step, but in EF this future resolution can return another
future. Contrarily to DeF one might have to do several consecutive get statements to access
a single data, this depends on the type of the accessed value, for example if a term is of
type FutăFutăIntąą then two consecutive get operations are needed to access the integer
value. Figure 12 shows the small-step operational semantics and the typing rules for EF; rules
identical to DeF are not repeated (note that two rules of DeF semantics and its type system
strictly need to be removed). The type judgement for EF is denoted $E , the type system is
simpler than the one of DeF. There is no T-Subtype rule for explicit futures because a value
cannot be used where a future is expected in EF. T-Get is changed accordingly to the type
syntax, a basic type is not necessarily obtained after the operation succeeds. The typing of
the method invocation is simpler than in DeF because several Fut type constructors can be
nested. It is thus sufficient to add one future type constructor upon each invocation.

5.2 Comparison with DeF

We study here the expressiveness of EF compared to DeF. Like in Section 4, we are interested
in the expressiveness of the future construct only and thus we study whether it is possible to
design translations between EF and DeF only relying on the addition of additional variables
and statements. We show below that futures in DeF and EF are not equivalent and there are
DeF programs that cannot be expressed in the same way in EF, and thus a faithful translation
from DeF to EF would need to encode a future by introducing additional objects and methods.
We also identify an EF program that cannot be simulated in DeF, except by instrumenting each
future with additional information. We briefly explain how a more complex encoding could
simulate data-flow synchronisation and encode terminal recursive methods in EF, but this is
not in the scope of the paper because it relies on the introduction of additional constructs and
threads and we do not formalise this translation or its properties.
Encoding DeF futures into EF. Somehow, the simplicity of the semantics and the type
system of EF justifies the fact that the explicit future construct with parametric type is the
most massively used. However the type system constrains the usage of futures comparatively to
the data-flow oriented models (DeF and IF). This was already highlighted in the introduction
of [16] where the authors proved that the existing deadlock analysis for ABS could not be
reused to analyse implicit futures. The main reason for this impossibility is that, with implicit

futures, there is no static bound on the number of synchronisations performed at a single
program point, and thus a translation would require to declare a type with an unbound
number of enclosed Futăą constructs.

The semantics and type system of EF allow us to highlight the fact that parametric future
types limit code re-usability and do not allow tail-recursive parallel methods like DeF or IF.
To illustrate this point we try to implement the factorial example of Figure 1.a in EF. The
type system does not allow the method to return either an integer or a future: in EF, fact(1,1)
should return a term of type Int but fact(3,1) should return a Fut<Fut<Fut<Int>>>. The simplest
solution is to declare that the method returns an integer, and add a synchronisation line 8,
before the return statement (to retrieve the integer value). This is shown in Figure 1.c.
Unfortunately this program deadlocks because the get instruction that was added to ensure
correct typing, and allow fact to return an Int, waits for the scheduling of another fact request
in the same active object. This request cannot be executed because the active object is mono-
threaded and blocked on the get statement. Additionally, there is no way to allow the fact

method to potentially accept a future, and thus the programmer has to synchronise with the
result of the first call before calling another fact method (line 14). An alternative solution is
to create two fact methods with different signatures.

However, many languages with parametric types for futures allow cooperative multi-
threading: there is a primitive called await in ABS that allows the current thread to be
interrupted while a future is awaited. This breaks the property that in EF, a request runs
to completion but allows to solve many deadlocks. Figure 1.d shows the same program as
it would be implemented in EF augmented with an await primitive that releases the current
thread and allow starting the execution of another method. This is a reasonable way to imple-
ment a tail-recursive factorial in ABS. This program does not deadlock, but contrarily to DeF
and IF n methods are interrupted in order to ensure the transmission of the result all the way
back to the caller. This solution additionally requires the fact method to be scheduled again
in order to transmit the result. Not only this semantics is a bit different, but also if another
request is served but never finishes (e.g. a request enqueued during the execution of fact(0)

that is scheduled before the await statement is released), this prevents the transmission of the
result to the main method which is not the case in EF. Thus a systematic translation from DeF
into EF cannot simply rely on await. It is possible to encode a similar awaiting task inside EF
and without relying neither on the availability of the original active object nor on cooperative
thread release. This can be performed by creating a new active object before each return,
and return directly the future obtained by the call to a method Unfold as shown in Figure 1.e.
Each active object of type FutProxy plays the same role as a future in EF. But then fact must
return a Fut<Fut<Int>> that needs to be accessed by two successive get, line 26 and 28. return r

must also be modified to return a future instead (lines 15,16). This example shows a possible
way to return a future from a method in EF and a good sketch of a correct encoding from DeF
to EF but it relies on additional active objects, and shows that EF futures are not sufficient
to encode the semantics of DeF futures. Interestingly, the future chaining operation (-->) of
Encore [8] can be used to encode the desired behaviour, in a much lighter and efficient way.
Future chaining can be performed in attached mode (on the same thread as the active object)
and have a similar behaviour to the use of await in Figure 1.d, or in detached mode because
no race condition is possible and feature the same behaviour as the additional active object
with the Unfold method (like in Figure 1.e).

Concerning code reuse and the possibility to provide a value where a future is expected,
this could be encoded by adding intermediate objects that act as future proxies, but again

1 Act{
2 Fut <Int > foo(){ // in DeF: Fut«int» foo()
3 Fut <Int > z; // in DeF: Fut«int» z;
4 z=this.loop();
5 return z
6 }
7 Int loop(){ // never terminates; in DeF: Fut«int» loop()
8 Fut <Int > x; // in DeF: Fut«int» x;
9 x=this.loop();

10 get x; // Deadlocks
11 return 0
12 }
13 }
14 //MAIN
15 { Act x; Int z; Fut <Fut <int >> y; // in DeF: Fut«int» y
16 x = new Act();
17 y = x.foo();
18 z = get y // Terminates in EF but not in DF
19 }

Figure 13: An EF program that has no equivalent in DeF (comments show the differences in
DeF).

this requires the addition of new constructs to encode the semantics of DeF futures.
To summarise, adding additional objects that would be used instead of futures, it is possible

to encode DeF futures in EF. However such an encoding would be complex, and very difficult to
prove correct. In any case, we showed here that the two future constructs have a fundamentally
different semantics and that translating DeF programs into EF would rely on other features of
the languages (additional threads, objects, or primitives).
Encoding EF futures into DeF. An impossibility result also holds in the other direction: the
data-flow nature of the synchronisation in DeF cannot simulate exactly the synchronisation that
occurs in EF. Indeed, the synchronisation in EF is control-flow oriented: a get synchronises
with the execution of a single return instruction whereas synchronisation in DeF is data-
flow oriented: a get synchronises with the availability of some data, which can require the
execution of an unknown number of return instructions. This was highlighted in [21] where
the authors provide a systematic translation from ABS to multi-threaded active objects with
implicit futures and prove that the translation is correct. The authors highlighted two weak
simulations between the execution of an ABS program and the execution of its translation
in multi-active objects with implicit futures. One of the limitations of the translation is the
“absence of futures of futures” stating that the translation is not always correct if the value of
a future is another future.

Figure 13 provides an example inspired from [21] that illustrates the impossibility to sim-
ulate faithfully explicit futures with data-flow synchronisation. It shows an EF program that
terminates, but for which the similar DeF program (differences shown in comments) does not
terminate. There is no way in DeF to check that the foo method terminated without checking
that the loop method terminated. This is due to the fact that in EF it is possible to only
check whether a single future has been resolved, i.e. a given method has finished whereas
in DeF, a future access checks whether a real value (with a basic type) is accessible. In this
case accessing the future results in a deadlock in DeF because the future referenced by y is

in fact a reference to another future that is never resolved. More precisely, the execution of
the program reaches a configurations (i) futpf, f 1q futpf 1,Kq which can be distinguished from
the configuration (ii) futpf,Kq in EF whereas the two configurations are observationally iden-
tical in DeF (no future access primitive can distinguish the two configuration). The data-flow
synchronisation of DeF is intrinsically different from the synchronisation of explicit futures.
One can notice that this impossibility result is a bit artificial as it relies on an example that
retrieves a result that cannot be used for a practical computation but it seems impossible to
produce a non-artificial example here.

In [21], a solution to this limitation was suggested: “It is possible to have a wrapper
for futures values: a future value that is an object containing a future.” One can simulate
the behaviour of explicit futures by introducing intermediate objects. Anyway, it is also not
possible to encode all EF programs into DeF without adding intermediate structures.

6 Concluding Remarks

6.1 Comparing DeFs to the other languages

The counter-examples showing the intrinsic difference between IF and DeF also allow us to
distinguish DeFs from the other languages. Concerning the return of futures and the encoding
of recursive terminal functions, DeFs is similar to DeF, and thus cannot be translated into
EF. Code reuse of DeF cannot be encoded into DeFs. If we consider the example of Figure 1,
the same program in DeFs is similar to the DeF code (Figure 1.a), except that the function
cannot accept a future and the same get operation as in Line 14 of Figure 1.c must be applied.
This distinguishes DeFs from DeF and IF. Finally, the program of Figure 13 also allows us to
distinguish DeFs from EF, because in DeFs the synchronisation is driven by the data-flow (the
program does not terminate in DeFs neither).

6.2 Other synchronisation patterns

This section briefly reviews several primitives for manipulating futures that exist in languages
with explicit futures and investigates whether these primitives would make sense and could
be specified and implemented for explicit futures with data-flow synchronisation, i.e. added
to the semantics of DeF and used in an implementation of DeF.
Await. Await is a primitive used in active object languages with cooperative multi-threading.
It releases the current thread to allow another method to execute. Its semantics could easily
be specified in DeF with the obvious difference that the await should succeed when the get
operation on the future would succeed (when a basic value is available).
Asynchronous future access. Several languages like Akka and AmbientTalk feature asyn-
chronous invocations on futures, which is triggered after the future value is available. In
AmbientTalk for example a new request is added to the actor when the future is resolved.
A similar constructs could be featured by data-flow explicit futures, like in AmbientTalk an
asynchronous invocation on a future would be enqueued when the future is resolved with a
proper object, i.e. in a data-flow oriented manner. Future chaining of Encore is a bit similar
to asynchronous future access but is control-flow oriented because based on explicit futures.
Encoding future-chaining in DeF would be similar to asynchronous invocation on futures, ex-
cept that future-chaining operations can sometimes be performed in parallel with the single
thread of the active object.

6.3 Conclusion

In this article we design a new future construct that is both a promising programming
paradigm, and a convenient tool to compare the semantics of futures in existing program-
ming languages. Our work show that the distinctive feature of the different future constructs
is the way synchronisation is performed: either it is data-driven like with implicit futures
and a synchronisation corresponds to a process expecting the availability of some data, or
it is control-driven like with explicit futures and a synchronisation corresponds to a process
waiting for the execution of a given instruction, like the return statement of a method.

Our future construct offers a valuable compromise between explicit and implicit futures.
It forces the programmer to state where the synchronisation occurs, and thus makes him
aware of synchronisation points and potential deadlocks. Indeed, in DeF, an active object can
only be blocked if it is performing a get operation on an unresolved future. DeF also allows
writing functions that return a future, and in particular recursive asynchronous function calls,
like with implicit futures. We explained why writing such functions was impossible or very
difficult with explicit futures. Finally, DeF allows better code reuse than explicit futures: a
piece of code that is written to access a future can be executed with a non-future value. The
code re-usability is however lower than with implicit futures where a piece of code written
in a sequential setting can be invoked with a future. This is compensated by more safety
because the programmer has to declare which code can accept a future, and is aware that
(s)he must handle the potential synchronisations and deadlocks. From a typing perspective,
in DeF, FutÎTÏ types a term of type T possibly needing the resolution of one or several
futures (but always a single get statement) to be accessed.

This article did not discuss type inference, but intuitively, the translation from IF to DeF
shows a naive and ineffective but safe inference of future types. A classical static analysis
can then propagate the non-future types that are obtained after a get or after an assignment
that is not an asynchronous call. Inferring future types in method parameters would also be
possible provided the whole program is known.

Even if no implementation of the future construct presented in this paper exists yet, such
an implementation could rely on several existing solutions. On one side, we have shown
that the implementation of implicit futures features the same behaviour as DeF futures, thus
one solution to implement DeF would be to provide a type system in a language for implicit
futures and implement the future semantics based on the translation presented in Section 4.3.
ASP is the language that would fit the best this approach but its implementation, ProActive,
is a Java library and it is difficult to implement a dedicated type system in this context.
The distributed Java backend for ABS [21] can be considered as a better first step for the
implementation of DeF. Indeed, this backend implements a data-driven synchronisation, and
thus an implementation of DeF could rely on an adaptation of the ABS type system and minor
modifications of the backend. Even if this is not very efficient, a first simple implementation
of DeF would consist in encoding DeF futures as a datatype in ABS, as shown in Appendix ??.

Bibliography

[1] Futures and promises. URL: https://en.wikipedia.org/wiki/Futures_and_promises.
2

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
1986. 2

[3] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. Formal Properties of the Eiffel//
Model. In Object-Oriented Parallel and Distributed Computing. Hermes Science Pub.,
2000. 5

[4] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet,
Matthieu Morel, and Romain Quilici. Programming, Composing, Deploying for the Grid,
pages 205–229. Springer London, London, 2006. 5

[5] Laurent Baduel, Françoise Baude, and Denis Caromel. Object-oriented spmd. In Proceed-
ings of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CC-
Grid’05) - Volume 2 - Volume 02, CCGRID ’05, pages 824–831, Washington, DC, USA,
2005. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=1169223.
1169589. 7

[6] Henry. G. Baker Jr. and Carl Hewitt. The incremental garbage collection of processes.
In Proc. Symp. on Artificial Intelligence and Programming Languages, pages 55–59. New
York, NY, USA, 1977. 2, 4

[7] Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko
Fernandez-Reyes, and Albert Mingkun Yang. A survey of active object languages. ACM
Comput. Surv., 50(5):76:1–76:39, October 2017. URL: http://doi.acm.org/10.1145/
3122848, doi:10.1145/3122848. 2, 11

[8] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch
Johnsen, Ka I. Pun, S. Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang.
Parallel objects for multicores: A glimpse at the parallel language Encore. In Marco
Bernardo and Einar Broch Johnsen, editors, Formal Methods for Multicore Programming,
volume 9104, pages 1–56. 2015. 5, 25

[9] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects. Springer-Verlag,
2004. 12, 15

[10] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and deterministic
objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 123–134. ACM Press, 2004. 5, 7

[11] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the
future. In Proc. 16th European Symposium on Programming (ESOP’07), volume 4421,
pages 316–330. Springer, 2007. 5

29

https://en.wikipedia.org/wiki/Futures_and_promises
http://dl.acm.org/citation.cfm?id=1169223.1169589
http://dl.acm.org/citation.cfm?id=1169223.1169589
http://doi.acm.org/10.1145/3122848
http://doi.acm.org/10.1145/3122848
http://dx.doi.org/10.1145/3122848

[12] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Ambient-
oriented programming in ambienttalk. In Proceedings of 20th European Conference on
Object-oriented Programming (ECOOP). Springer, 2006. 5

[13] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. ParT: An asynchronous par-
allel abstraction for speculative pipeline computations. In Alberto Lluch-Lafuente and
José Proença, editors, Coordination Models and Languages - 18th IFIP WG 6.1 Interna-
tional Conference, COORDINATION 2016, Held as Part of the 11th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,
Greece, June 6-9, 2016, Proceedings, volume 9686 of Lecture Notes in Computer Science,
pages 101–120. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-39519-7_
7, doi:10.1007/978-3-319-39519-7_7. 6

[14] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in program
optimization. pages 209–220, 1995. 4

[15] Cormac Flanagan and Matthias Felleisen. The semantics of future and an application.
Journal of Functional Programming, 9(1):1–31, 1999. 4

[16] Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Actors may
synchronize, safely! In PPDP 2016 18th International Symposium on Principles and
Practice of Declarative Programming , Edinburgh, United Kingdom, September 2016.
URL: https://hal.inria.fr/hal-01345315. 10, 24

[17] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea.
Java Concurrency in Practice. Addison-Wesley, 2006. 5

[18] Phillip Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009. 5

[19] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems (TOPLAS), 7(4):501–538,
1985. doi:http://doi.acm.org/10.1145/4472.4478. 4

[20] Ludovic Henrio, Muhammad Uzair Khan, Nadia Ranaldo, and Eugenio Zimeo. First class
futures: Specification and implementation of update strategies. In Mario R. Guarracino,
Frédéric Vivien, Jesper Larsson Träff, Mario Cannataro, Marco Danelutto, Anders Hast,
Francesca Perla, Andreas Knüpfer, Beniamino Di Martino, and Michael Alexander, edi-
tors, Selected Papers Coregrid Workshop On Grids, Clouds and P2P Computing, volume
6586, pages 295–303. August 2010. 5

[21] Ludovic Henrio and Justine Rochas. Multiactive objects and their applications. Logical
Methods in Computer Science, Volume 13, Issue 4, November 2017. URL: http://lmcs.
episciences.org/4079, doi:10.23638/LMCS-13(4:12)2017. 8, 10, 26, 27, 28

[22] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Stef-
fen. ABS: A core language for abstract behavioral specification. In Bernhard Aichernig,
Frank S. de Boer, and Marcello M. Bonsangue, editors, Proc. 9th Intl. Symp. on Formal
Methods for Components and Objects (FMCO), volume 6957, pages 142–164. 2011. 5, 12

https://doi.org/10.1007/978-3-319-39519-7_7
https://doi.org/10.1007/978-3-319-39519-7_7
http://dx.doi.org/10.1007/978-3-319-39519-7_7
https://hal.inria.fr/hal-01345315
http://dx.doi.org/http://doi.acm.org/10.1145/4472.4478
http://lmcs.episciences.org/4079
http://lmcs.episciences.org/4079
http://dx.doi.org/10.23638/LMCS-13(4:12)2017

[23] Einar Broch Johnsen and Olaf Owe. An asynchronous communication model for dis-
tributed concurrent objects. 6(1):35–58, March 2007. 5

[24] Einar Broch Johnsen, Olaf Owe, and Marte Arnestad. Combining active and reactive
behavior in concurrent objects. In Dag Langmyhr, editor, Proc. of the Norwegian Infor-
matics Conference (NIK’03), pages 193–204. Tapir Academic Publisher, November 2003.
5

[25] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concurrency among strangers:
Programming in E as plan coordination. In Trustworthy Global Computing, volume 3705
of Lecture Notes in Computer Science, pages 195–229. 2005. 5

[26] Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan Schwinghammer. Ob-
servational semantics for a concurrent lambda calculus with reference cells and futures.
In 23rd Conference on Mathematical Foundations of Programming Semantics, ENTCS,
New Orleans, April 2007. 4

[27] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus
with futures. Theoretical Computer Science, 364(3):338–356, November 2006. 4

[28] Jan Schafer and Arnd Poetzsch-Heffter. Jcobox: Generalizing active objects to concurrent
components. ECOOP 2010–Object-Oriented Programming, pages 275–299, 2010. 5

[29] Marjan Sirjani, Frank S. de Boer, and Ali Movaghar-Rahimabadi. Modular verification of
a component-based actor language. Journal of Universal Computer Science, 11(10):1695–
1717, 2005. 11

[30] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. Abcl/f: A future-based poly-
morphic typed concurrent object-oriented language - its design and implementation. In
Proceedings of the DIMACS workshop on Specification of Parallel Algorithms, pages 275–
292. American Mathematical Society, 1994. 4

[31] Derek Wyatt. Akka Concurrency. Artima, 2013. 2, 5

[32] Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Steffen. Behavioral interface
description of an object-oriented language with futures and promises. The Journal of
Logic and Algebraic Programming, 78(7):491 – 518, 2009. The 19th Nordic Workshop on
Programming Theory (NWPT 2007). URL: http://www.sciencedirect.com/science/
article/pii/S1567832609000022, doi:https://doi.org/10.1016/j.jlap.2009.01.
001. 4

http://www.sciencedirect.com/science/article/pii/S1567832609000022
http://www.sciencedirect.com/science/article/pii/S1567832609000022
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2009.01.001
http://dx.doi.org/https://doi.org/10.1016/j.jlap.2009.01.001

Appendices

These appendices will be published in a research report if the paper is accepted, and the report
will be cited in the published paper.

1 Creating a Cycle of Futures in DeF

The following DeF program creates a cycle of futures, i.e. a runtime configuration containing
f1pf1q. This justifies the fact that information about the type of future entries must be
recorded at runtime in the configuration in order to type it (and to prove subject reduction
for example). Indeed, at runtime, without static information on the future type it is not
possible to infer the type of a future in a cycle. Fut«» is the future type constructor.

1 Act{ Fut«Int» field;
2 Int start(Act y) {
3 field = y.f1(this);
4 return 0
5 }
6 Fut«Int» f2() {
7 return field
8 }
9 Int f1(Act x){

10 Fut«Int» i;
11 i = x.f2();
12 return i
13 }
14 //MAIN
15 { Act x,y; Fut«Int» i;
16 x = new Act();
17 y = new Act();
18 i = x.start(y)
19 }

2 Proof of Theorem 1

Lemma 1 (R1 Symmetry). Consider v a term appearing in activities αpa, q : t`1|su, qq and
αpad, qd : t`1d|sdu, qdq, suppose ` “ a` `1 and `d “ ad ` `

1
d. We have: cn, cnd, `, `d $ vR1 v.

The proof is a simple case study on the potential values of v and the applicable rules.

Lemma 2 (Equivalent runtime values). Consider w and wd two runtime values of activities
αpa, q : t`1|su, q1q and αpad, qd : t`1d|sdu, q1dq, suppose ` “ a` `1 and `d “ ad ` `

1
d. We have

cn, cnd, `, `d $ wR1wd ðñ

w “ wd
_Dw1. wpw1q P cn^ cn, cnd, `, `d $ w1R1wd (w is a future)
_Dw1d. wdpw

1
dq P cnd ^ cn, cnd, `, `d $ wR1w

1
d (wd is a future)

The lemma also holds if w and wd are the values of future f in both configurations and
` “ `d “ ∅.

In practice, we have that pfpwq P cnd ^ Ef
1. w “ f 1q ùñ fpwq P cn because future

updates happen at any time in IF while they are delayed to the synchronisation point in DeF.
Consequently at the point of return a future reference might be updated in IF but not in DeF,
but if a future is updated in DeF it means that a synchronisation occurred and the update
must also have been done in IF.

Proof. The proof is a simple case analysis on the applicable rule in the definition of R1 : except
for structural equivalence, the only applicable rule is the unfolding of future values.

Corollary 1 (Equivalent runtime values can be identified by following chains of futures). Con-
sider w and wd two runtime values of activities αpa, q : t`1|su, q1q and αpad, qd : t`1d|sdu, q1dq,
let ` “ a` `1 and `d “ ad ` `

1
d. We have (for some n ě 0, k ě 0)

cn, cnd, `, `d $ wR1 wd ðñ Dw1.

$

&

%

w“w1 _ Df0..fn. f0 “ w ^ @iăn. fipfi`1q P cn^ fnpw1q P cn
^

wd“w
1 _ Df 10..f

1
k. f

1
0 “ wd ^ @iăk. f

1
ipf

1
i`1q P cnd ^ f

1
kpw

1q P cnd

The equivalence also holds if w and wd are the values of future f in both configurations and
` “ `d “ ∅.

Proof. The proof is done by structural induction on the derivation stating that cn, cnd, `, `d $
wR1wd. If the length is 1, then w “ wd, else one of the cases of Lemma 2 is applicable,
additionally to the recurrence hypothesis, thus if cn, cnd, `, `d $ wR1wd, then (the case
w “ wd has been eliminated):

Dw1. wpw1q P cn^ cn, cnd, `, `d $ w1R1wd _ Dw
1
d. wdpw

1
dq P cnd ^ cn, cnd, `, `d $ wR1w

1
d

Consider the first case, by recurrence hypothesis we have:

cn, cnd, `, `d $ w1R1wd

ùñ Dw2.

$

&

%

w1 “ w2 _ Df0..fn. f0 “ w1 ^ @i ă n. fipfi`1q P cn^ fnpw2q P cn
^

wd “ w2 _ Df 10..f
1
k. f

1
0 “ wd ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

2q P cnd

Which ensures the desired property with a longer chain on the first line (the equality case is
not possible here):

Dw2.

$

&

%

Df20 “ w, f21 “ w1 “ f0, .., f
2
n`1 “ fn. f

2
0 “ w ^ @i ă n` 1. f2i pf

2
i`1q P cn^ f

2
n`1pw

2q P cn
^

wd “ w2 _ Df 10..f
1
k. f

1
0 “ wd ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

2q P cnd

The other cases and the converse implication are similar.

Corollary 2 (Equivalent runtime values can be identified by chains of futures pointing to
equivalent values). Consider w and wd two runtime values of activities αpa, q : t`1|su, q1q and
αpad, qd : t`1d|sdu, q1dq, let ` “ a` `1 and `d “ ad ` `

1
d. We have

cn, cnd, `, `d $ wR1 wd ðñ Dw1, w1d.

$

’

’

’

’

&

’

’

’

’

%

cn, cnd, `, `d $ w1R1 w
1
d

^

w “ w1 _ Df0..fn. f0 “ w ^ @i ă n. fipfi`1q P cn^ fnpw1q P cnd
^

w1d “ w1 _ Df 10..f
1
k. f

1
0 “ wd ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

1
dq P cnd

The equivalence also holds if w and wd are the values of future f in both configurations and
` “ ` “ ∅.

This is proven by two applications of the previous corollary.
The following lemma relates expression evaluation with the equivalence.

Lemma 3 (R1 and evaluation). Suppose αpa, q : t`|su, qq cn R1 αpad, qd : t`d|sdu, qdq cnd.
Then for any expression e of IF:

αpa, q : t`|su, qq cn, αpad, qd : t`d|sdu, qdq cnd, `, `d $ rressa`` R1 rressad``d

This lemma is proven by a case analysis on the rules for the evaluation of expressions. All
cases are solved trivially, or by application of Lemma 1.

Proof of Theorem 1. The proof is a classical case analysis on the rule applied on each side.
We focus ion the proof below on the most significant cases, i.e. all the non-observable rules,
and the simulation of invocation in both directions. Proofs of other cases are similar.
update (non-observable) rule of IF. Suppose cn update

ÑI cn1 and cnR1 cnd suppose the
update occurs in αpa, q : t`|su, q1q P cn and that αpad, qd : t`d|sdu, q1dq P cnd (the activity α
exists in cnd and has this form by definition of R1). Let `1 “ a ` ` and `1d “ ad ` `d. We
have on the IF side:

Update
rrxssa`` “ f pa` `qrx ÞÑ ws “ a1 ` `1

αpa, q : t` | su, q1qq fpwq
update
ÑI αpa1, q : t`1 | su, q1q fpwq

By Lemma 3 we have rrxssad``d “ wd and cn, cnd, `
1, `1d $ f R1wd for some wd. By corollary 1,

we obtain:

Dw1.

$

&

%

f “ w1 _ Df0..fn. f0 “ f ^ @i ă n. fipfi`1q P cn^ fnpw1qcn
^

wd “ w1 _ Df 10..f
1
k. f

1
0 “ wd ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

1q P cnd

(1)

Note that f1 “ w. By definition of R1 , fpwq P cn implies fpw1dq P cn with cn, cnd,∅,∅ $
wR1w

1
d.

To prove that cn1R1 cnd, it is sufficient to consider only the activity α and more precisely
the value associated to x in the field or the local store. Suppose the update occurs in the fields
(the store case is similar): a1 “ arx ÞÑ ws. Overall we have to prove that: cn, cnd, `

1, `1d $
wR1wd. We consider the 4 different cases in equation (1). (1) if w1 “ f and wd “ f ,
then the fifth rule of Figure 9 (following futures in DeF) allows us to conclude. (2) and (3) if
fpwq..fnpw

1q P cn and wd “ f or wdpf
1
1q..f

1
kpw

1q P cnd, then Corollary 1 allows us to conclude
with the same w1 and a chain of length n ´ 1 (or w1 “ w if n “ 1). (4) if w1 “ f and
wdpf

1
1q..f

1
kpw

1q P cnd, we have wdpf
1
1q..f

1
kpw

1qw1pw1dq P cnd with cn, cnd,∅,∅ $ wR1w
1
d and

conclude by Corollary 2.
Invk rule of IF. Suppose cn Invk

ÑI cn1 and cnR1 cnd suppose the invocation occurs from
αpa, q : t`|su, q1q P cn, we have αpad, qd : t`d|sdu, q1dq P cnd. Let `1 “ a` ` and `1d “ ad ` `d.
We have the following reduction from cn:
Invk

rrvssa`` “ β rrvssa`` “ w β ‰ α f fresh
αpa, q : t` | x “ v.mpvq ; su, q1q βpa1, p, qβq Ñ αpa, q : t` | x“f;su, q1q βpa1, p, qβ#pf,m,wqq fpKq

By definition of R1 we have sR1 sd and thus three cases are possible, corresponding to the
three last cases of Figure 9 (the first rule relating statements is also applicable but it is a
particular case of the first case below):

(1) sd “ puT “ get wd;x “ uT .mpvq;JsKIFÑDeFq with cn, cnd, `
1, `1d $ rrvss`R1 rrwdss`1

d
.

Because rrvssa`` “ β, by Lemma 1 two cases are possible (β is not a future): (a) wd “ β,
or (b) there exist f 10..f 1k s.t. w “ f 10, @i ă k. f 1ipf

1
i`1q P cnd, and f 1kpβq P cnd

We then have cnd
τ
Ñ
˚
cn1d applying 0 times in case (a), or k ` 1 times in case (b), the

Get-Update rule. We finally have cn1d identical to cnd except the current statement in
α is uT “ get β; x “ uT .mpvq;JsKIFÑDeF. Then we have cn1d

τ
Ñ cn2d applying once the

Get-Resolved rule. The current statement in α is uT “ β; x “ uT .mpvq;JsKIFÑDeF.
Then cn2d

τ
Ñ cn3d by applying once the Assign rule on the local intermediate variable

uT . The current statement in α is now x “ uT .mpvq;JsKIFÑDeF and the local store has
changed in α, we call it `3d such that rruT ssad``3d “ β. Finally we can apply the invocation
rule in DeF (note that f is necessarily fresh in cn3d):

Invk
rruT ssad``3d “ β rrvssad``3d “ wd β ‰ α f fresh

αpad, qd : t`3d | x “ uT .mpvq ; JsKIFÑDeFu, q1dq βpa
1
d, pd, q

2
dq

Ñ αpad, qd : t`3d | x“f;JsKIFÑDeFu, q1dq βpa
1
d, pd, q

2
d#pf,m,wdqq fpKq “ cn4d

The equivalence R1 of the obtained configuration is easy to assert: futures are equivalent
because the new one is undefined in both cases, activity α is equivalent by structural
equivalence (plus the hypothesis that original configurations are equivalent). Finally,
we only have to prove cn1, cn4d,∅,∅ $ pf,m,wqR1 pf,m,wdq inside β. This is done
by lemma 3 that states that: cn, cnd, `

1, `1d $ rrvss`1 R1 rrvss`1d and thus: cn, cn3d, `1, `1d $
rrvss`1 R1 rrvssad``3dd

because v does not use uT and is not affected by the modification of
the local environment. Finally, cn1, cn4d,∅,∅ $ wR1wd: the stores can be discarded
because the result of an evaluation function rrss contains no variable, and the changes
in the configuration implied by the invocation have no influence on this equivalence
(variables, futures, and active object references inside v are by nature not affected by
the invocation).
This allows us to conclude that cn1R1 cn4d.

(2) sd “ puT “ wd;x “ uT .mpvqq;JsKIFÑDeFq with cn, cnd, `
1, `1d $ rrvss`R1 rrwdss`1

d
. Because

of typing, as $ uT : T where T is a base type (not future), we know that $ wd : T (in
the right context), and thus wd is not a future. Additionally, we have cn, cnd, `

1, `1d $
βR1 rrwdss`1

d
, and thus rrwdss`1

d
“ β, and wd “ β. We conclude by following the last steps

(Assign and Invk) similarly to case (1).
(3) sd “ px “ uT .mpvqq;JsKIFÑDeFq with cn, cnd, `

1, `1d $ rrvss`R1 rruT ss`1
d
. Again, by typing

we have rruT ss`1
d
is not a future, and by the properties of R1 : rruT ss`1

d
“ β. We conclude

by applying the Invk rule similarly to (1).
Get-Update (non-observable) rule of DeF. Suppose cnd

Get-Update
Ñ cn1d, cnR1 cnd, the

update occurs in αpad, qd : t`d|sdu, q1dq P cnd, and (by definition of R1) αpa, q : t`|su, q1q P cn.
Let `1 “ a` ` and `1d “ ad ` `d. We have the following reduction inside cnd:
Get-Update

rrwdssad``d “ f

αpad, qd : t`d | uT “ get wd ; s1du, q1dq fpw
1
dq Ñ αpad, qd : t`d | uT “ get w1d ; s1du, q1dq fpw

1
dq

By definition of R1 (cases on statements) we have two equivalence rules applicable (the 6th

and the 7th), both entail that:
`

JsKIFÑDeF “
uT “ get v;
s1d

_ JsKIFÑDeF “

yT 1 “ get v1;
uT “ get v;
s1d

˘

where cn, cnd, `
1, `1d $ rrvss`1 R1 rrwdss`1

d
.

Consequently we have: cn, cnd, `
1, `1d $ rrvss`1 R1 f and by Corollary 1

Dw1.

$

&

%

rrvss`1 “ w1 _ Df0..fn. f0 “ rrvss`1 ^ @i ă n. fipfi`1q P cn^ fnpw1q P cn
^

f “ w1 _ Df 10..f
1
k. f

1
0 “ f ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

1q P cnd

(2)

We need to prove cnR1 cn1d. By definition of the equivalence on statements, it is sufficient to
prove: cn, cnd, `

1, `1d $ rrvss`1 R1 rrw
1
dss`1

d
.

We reason on the two cases for the second line of (2):
• Either f “ w1. As fpwdq P cnd and cnR1 cnd, there is a w s.t. fpwq P cn and
cn, cnd,∅,∅ $ wR1w

1
d. For each of the two cases of the first line of (2) we find a

longer chain of futures that allows us to apply Corollary 2: if rrvss`1 “ w1 “ f then there
exists f such that rrvss`1 “ f and fpwq P cn. Else Df0..fn. f0 “ rrvss`1 ^ @i ă n. fipfi`1q P
cn^fnpw1q P cn, and then Df0..fn, fn`1. f0 “ rrvss`1^@i ă n. fipfi`1q P cn^fn`1pwq P cn
(the futures are the same except we add w “ f to the chain). Finally we have:

Dw,wd.

$

’

’

’

’

&

’

’

’

’

%

cn, cnd,∅,∅ $ wR1wd
^

Df0..fn. f0 “ rrvss`1 ^ @i ă n. fipfi`1q P cn^ fnpwq P cn
^

wd “ wd

By Corollary 2 cn, cnd, `
1, `1d $ rrvss`1 R1 rrw

1
dss`1

d
.

• Or Df 10..f 1k. f
1
0 “ f ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f 1kpw

1q P cnd. In this case, by removing
the first future we have: Df 11..f 1k. f

1
1 “ w ^ @i ă k. f 1ipf

1
i`1q P cnd ^ f

1
kpw

1q P cnd, and by
Corollary 1 with the same w1 as in (2) we obtain: cn, cnd, `

1, `1d $ rrvss`1 R1 rrw
1
dss`1

d
.

This concludes about the equivalence cnR1 cn1d.
Get-Resolved (non-observable) rule of DeF. Suppose cnd

Get-Resolved
Ñ cn1d and cnR1 cnd.

We have the reduction:
Get-Resolved

rrwdssad``d “ w1d Ef.w1d “ f

αpad, qd : t`d | y “ get wd ; su, q1dqq Ñ αpad, qd : t`d | y “ w1d ; su, q1dq

The statement is of the form sd “ puT “ get wd;s1q, thus only the 6th or 7th rule of the
definition of R1 (Figure 9) can be used to assert equivalence on the original configuration.
Thus the 8th rule, for statements of the form sd “ puT “ wd;s1q, can be used to conclude that
the destination configuration verifies the same equivalence as the original one: cnR1 cn1d.
Assign of local intermediate variable (non-observable) rule of DeF. cnd

Assign
Ñ cn1d.

The argument on statements is similar to the case above. Local intermediate variables are only
introduced when the translation inserts a get, and the value of these variables is assigned only
if the 8th rule of Figure 9 is applicable. After reduction we can apply the last rule of Figure 9
where the value of intermediate variable is checked. The premise cn, cn1, `, `1 $ rrvss`R1 rruT ss`1

(last rule of R1) to be ensured inside cn1d is obtained from the premise: cn, cn1, `, `1 $
rrvss`R1 rrwdss`1 of the 8th rule, that is verified on cnd.
Invk rule of DeF. Suppose cnd

Invk
Ñ cn1d and cnR1 cnd suppose the invocation originates

from αpad, qd : t`d|sdu, q1dq P cnd. Note that the invocation is necessarily performed on an

intermediate variable due to the translation rules. Let `1 “ a` ` and `1d “ ad ` `d.

Invk
rruT ssad``d “ β rrvssad``d “ wd β ‰ α f fresh

αpad, qd : t`d | x “ uT .mpvq ; s1du, q1dq βpa
1
d, pd, q

2
dq

Ñ αpad, qd : t`d | x“f;s1du, q1dq βpa
1
d, pd, q

2
d#pf,m,wdqq fpKq

The key argument is to notice that the only way to have the equivalence of statements is
to apply the last rule of Figure 9. Indeed, get statements are introduced for all method invo-
cations of the original program and thus other equivalence cases are non-applicable. This way,
we have in cn two equivalent activities α and β: αpa, q : t` | x “ v.mpvq ; su, q1q βpa1, p, q2q with
s1d “ JsKIFÑDeF and cn, cnd, `

1, `1d $ rrvss`1 R1 rruT ss`1 and rruT ss`1 “ β. According to Corollary 1,
either rrvss` “ β or there is a chain of futures such that rrvss` “ f0, and f0pf1q .. fnpβq P cn.
Consequently, cn can be reduced, after n application of the update non-observable rule into
cn1, identical to cn except that rrvss`2 “ β with a new `2 “ a2 ` `2 where some local variables
and fields have been updated. Finally cn1 Invk

ÑI cn2:

Invk
rrvssa`` “ β rrvssa2``2 “ w β ‰ α f fresh

αpa2, q : t`2 | x “ v.mpvq ; su, q1q βpa1, p, q2q ÑI αpa, q : t` | x“f;su, q1q βpa1, p, q2#pf,m,wqq fpKq

Only the equivalence of the enqueued requests still needs to be asserted; this is proven sim-
ilarly to the reverse case: the proof that the invocation in IF can be simulated by the in-
vocation in DeF. Indeed Lemma 3 states that: cn, cnd, `

1, `1d $ rrvss`1 R1 rrvss`1d and thus:
cn1, cnd, `

1, `1d $ rrvss`1 R1 rrvssad``3dd
because cn1 only differs from cn by the update of fu-

tures and the equivalence relation is not sensitive to the update of futures (e.g. because of
Lemma 2)). Finally, cn2, cn1d,∅,∅ $ wR1wd: the stores can be discarded because the result
of an evaluation function rrss contains no variable, and the changes in the configuration implied
by the invocation have no influence on this equivalence.

The other reduction cases involve similar or simpler arguments. We thus show that there
is a branching bisimulation between an IF program and its translation in DeF.

This proof also shows that futures are updated earlier in IF than in the DeF translation
because future updates occur automatically in IF. The only exception is between the get
instruction introduced by the translation and the real use of the value (one or two statements
later). If we were interested in weak bisimulation, there would be no need to follow futures
in the definition of equivalence in IF because the equivalent IF configuration could always
catch up by updating futures to assert equivalence (future update can occur at any time in
IF). However to obtain branching bisimulation we need to follow futures on both sides. On
the other side, following futures in DeF is not avoidable since future values are only retrieved
upon a get statement in DeF and thus it is not possible for a DeF execution to catch up on
future updates at any time.

3 Proof of Theorem 2

First note that all the Lemmas and corollary that were introduced for R1 are also valid when
replacing R1 by R2 , this is due to the fact they only rely on the rules defining equivalence
on activities and futures, and the unfolding of future references, not ; these rules are similar
for R2 and for R1 contrarily to the equivalence on statements.

Theorem. The proof is a case analysis on the rule applied to reduce either the IF or the
equivalent DeF configuration. We focus below on all the non-observable transitions, the method
invocation, and one assignment rule. The other cases are similar and less informative.
Update rule of IF. This case is proven identically as for Theorem 1.
Invk rule of IF. Suppose cn Invk

ÑI cn1 and cnR2 cnd suppose the invocation occurs from
αpa, q : t`|su, q1q P cn, we have αpad, qd : t`d|sdu, q1dq P cnd. Let `1 “ a` ` and `1d “ ad ` `d.
We have the following reduction from cn:
Invk

rrvssa`` “ β rrvssa`` “ w β ‰ α f fresh
αpa, q : t` | x “ v.mpvq ; su, q1q βpa1, p, qβq Ñ αpa, q : t` | x“f;su, q1q βpa1, p, qβ#pf,m,wqq fpKq

By definition of R2 we have sR2 sd and thus necessarily sd “ px “ v.mpvqq; s1d where
Js1dKDeFÑIF “ s. We can thus apply the rule Invk of DeF:

Invk
rrvssad``d “ β rrvssad``d “ wd β ‰ α f fresh

αpad, qd : t`d | x “ v.mpvq ; s1du, q1dq βpa
1
d, pd, q

2
dq

Ñ αpad, qd : t`d | x“f;s1du, q1dq βpa
1
d, pd, q

2
d#pf,m,wdqq fpKq

Note that typing ensures that rrvssad``d is not a future and thus rrvssad``d “ β. Finally,
the equivalence of the enqueued request is proven similarly to the same case in the proof of
Theorem 1.
Assign rule of IF.6 Suppose cn Assign

ÑI cn1 and cnR2 cnd. Additionally, suppose the assign-
ment occurs in αpa, q : t`|su, q1q P cn, we have αpad, qd : t`d|sdu, q1dq P cnd. Let `1 “ a` ` and
`1d “ ad ` `d. We have the following reduction from cn:

Assign
rressa`` “ w pa` `qrx ÞÑ ws “ a1 ` `2

αpa, q : t` | x “ e ; s1u, q1q Ñ αpa1, q : t`2 | s1u, q1q

Two cases are possible: the assign is the translation of the identical statement in DeF, in
this two first cases the proof is trivial; or the assignment contains a get statement in DeF; we
focus on this case. One of the two last rules of the definition of R2 (Figure 11) ensures the
equivalence of statements.
(1) The get has already been resolved (last rule), we have:

ppe “ w1 ` 0q _ pe “ w1 ^ Trueq _ pps “ px “ wqq ^ Ef.rrwss` “ fqq
^sd “ px “ wdq ; s1d ^ cn, cnd, `

1, `1d $ rrw
1ss`1 R2 rrwdss`1

d
^ Ef.wd “ f

with Js1dKDeFÑIF “ s1. We detail the case where w is an integer: e “ w1 ` 0, the boolean
case and the object case (last case of first line) are similar. Because wd is not a future, we
know that rrwdss`1

d
is an integer n. Also rrw1ss` “ n because Assign is applicable and thus

rrw1 ` 0ss` can be computed and rrwss1` is not a future. Consequently rrw1 ` 0ss1` “ n “ w
and the rule Assign can be applied in DeF:

Assign
rrwdssa`` “ n pad ` `dqrx ÞÑ ns “ a1d ` `

2
d

αpad, qd : t`d | x “ wd ; s1du, q1dq Ñ αpa1d, qd : t`2d | s
1
du, q

1
dq

6This is probably the most important case of the proof as it ensures that the same futures are resolved in
any two equivalent configurations, and that the synchronisation points are the same in a program and in its
translation.

We obtain a configuration cn1d and the term-by-term equivalence can be checked in a
straightforward manner to prove that cn1R2 cn1d.

(2) The get has not been resolved yet (penultimate rule):

pe “ w1`0_ e “ w1^True_ pps “ px “ wqq ^ Ef.rrwss` “ fqq
^sd “ px “ get wd ; s1dq ^ cn, cnd, `, `d $ rrw

1ss`1 R2 rrwdss`1
d

with Js1dKDeFÑIF “ s1. We also only detail the case where w is an integer: e “ w1 ` 0
(other two cases are similar). Because rrw1 ` 0ss` can be computed we know that w1 is
not a future and rrw1 ` 0ss` “ rrw

1ss` “ n “ w. By Corollary 1, rrw1ss`1 R2 rrwdss`1
d
implies

that we have either (a) rrwdss`1
d
“ n or (b) rrwdss`1

d
“ f0 and Df1..fk. f0pf1q..fkpnq P cnd.

– In the case (b), we first apply k times the rule Get-Update and obtain a configura-
tion cn1d such that αpad, qd : t`d|x “ get w1d ; sdu, q1dq P cn1d where rrw1dssad``d “ n.
From the configuration cn1d, we apply the DeF reduction rule Get-Resolved and
obtain the configuration cn2d:

Get-Resolved
rrw1dssad``d “ n Ef.n “ f

αpad, qd : t`d|x “ get w1d ; s1du, q1dq Ñ αpa1d, qd : t`d|x “ n ; s1du, q1dq

We can the prove that cnR2 cn2d. Indeed, the only difference is in the current
statement, and the statement equivalence can be established with the last rule of
Figure 11. Note that the premise of Get-Resolved ensuing that n is not a future
is directly used to show the equivalence. We can then apply the same proof as in
case (1).

– In the case (a) the configuration cnd already verifies the same property as cn1d
above, we can directly apply the reduction rule Get-Resolved of DeF. The last
steps are identical.

If-True/If-False rule of IF where the condition contain one nullAct variable (non-
observable).. Suppose cn If-True

Ñ cn1 and cnR2 cnd. In this case one of the two last rules
of Figure 11 is applicable for proving equivalence and the part s “ pif pw ““ nullActq tx “
w u else tx “ w uq of the premise is true. In both cases, after the reduction, we know
that Ef.rrwss` “ f which verifies another part of the same disjunction, where ps1 “ px “
wqq ^ pEf.rrwss` “ fq. Consequently the configuration cn1 reached after the reduction is also
equivalent to cnd: cn1R2 cnd.
Get-Update (non-observable) rule of DeF. Suppose cnd

Get-Update
Ñ cn1d and cnR2 cnd

suppose the update occurs in αpad, qd : t`d|sdu, q1dq P cnd and that (by definition of R2)
αpa, q : t`|su, q1q P cn. Let `1 “ a ` ` and `1d “ ad ` `d. We have the following reduction
inside cnd:
Get-Update

rrwdssad``d “ f

αpad, qd : t`d | uT “ get wd ; s1du, q1dq fpw
1
dq Ñ αpad, qd : t`d | uT “ get w1d ; s1du, q1dq fpw

1
dq

By definition of R2 (cases on statements) we have two equivalence rules applicable, but both
entail that s “ ss ; Js1dKDeFÑIF with:

ˆ

s “ px “ w`0q _ s “ px “ w^Trueq _ ps “ px “ wqq ^ pEf.rrwss` “ fq
_s “ pif pv ““ nullActq tx “ w u else tx “ w uq

˙

^ cn, cnd, `, `d $ rrwss`1 R2 rrwdss`1
d

Consequently we have: cn, cnd, `
1, `1d $ rrwss`1 R2 f . We need to prove cnR2 cn1d. By defini-

tion of the equivalence on statements, it is sufficient to prove: cn, cnd, `
1, `1d $ rrwss`1 R2 rrw

1
dss`1

d

which is done similarly to the same case in the proof of Theorem 1.
Get-Resolved rule of DeF. Like in Theorem 1, it is sufficient to check that, the statement
necessarily verifies the penultimate rule defining R2 , and thus the resulting statement verifies
the last rule of the definition of R2 .
Invk rule of DeF. Suppose cnd

Invk
Ñ cn1d and cnR2 cnd suppose the invocation originates from

αpad, qd : t`d|sdu, q1dq P cnd. Let `1 “ a` ` and `1d “ ad ` `d.
Invk

rrvssad``d “ β rrvssad``d “ wd β ‰ α f fresh
αpad, qd : t`d | x “ v.mpvq ; s1du, q1dq βpa

1
d, pd, q

2
dq

Ñ αpad, qd : t`d | x“f;s1du, q1dq βpa
1
d, pd, q

2
d#pf,m,wdqq fpKq

By definition of R2 , we have in cn two equivalent activities αpa, q : t` | x “ v.mpvq ; Js1dKDeFÑIFu, q1q
and βpa1, p, q2q. Additionally, Lemma 3 ensures that cn, cnd, `

1, `1d $ rrvss`1 R1 rrvss`1
d
. Conse-

quently by (Corollary 1) we have either (a) rrvss`1 “ β, or (b) rrvss`1 “ f0 and Df1..fk. f0pf1q..fkpβq P
cn

In case (a), we can apply the rule Invk of IF, with cn Invk
ÑI cn1:

Invk
rrvssa`` “ β rrvssa2``2 “ w β ‰ α f fresh
αpa, q : t` | x “ v.mpvq ; Js1dKDeFÑIFu, q1q βpa

1, p, q2q

ÑI αpa, q : t` | x“f;Js1dKDeFÑIFu, q1q βpa
1, p, q2#pf,m,wqq fpKq

The equivalence cn1R2 cn1d can be asserted in the same way as in the preceding proof, the
only non-trivial part being the equivalence of the enqueued request.

Consider now case (b)7. According to the syntax and by typing, v is necessarily a variable
or null, but rrvss`1 “ f0 and thus v “ x with x the name of a field or a local variable. We can
thus apply the rule Update of IF, cn Update

ÑI cn1 with:
Update

rrxssa`` “ f0 pa` `qrx ÞÑ f1s “ a1 ` `1

αpa, q : t` | su, q1qq f0pf1q ÑI αpa
1, q : t`1 | su, q1q f0pf1q

We have cn1R2 cnd, this is indeed an application of the Update rule and it was proven above
that it preserves equivalence. The Update rule can be applied recursively until rrxssapkq``pkq “

β, with cnpkqR2 cnd. We are then in the same situation as in case (a) which is sufficient to
conclude.

The cases for other reduction rules are simpler or similar to the ones presented above. This
allows us to conclude about branching bisimulation as stated in Theorem 2.

4 DeF futures as a datatype inside EF

This appendix shows briefly how to provide a datatype (tagged union) encoding of FutÎÏ.
Note that the initial purpose of the paper is not to use datatypes to encode futures because

7The careful reader would notice that in the IF execution case (b) never occurs. Indeed, the translation
ensures that the IF program performs the synchronisations at the same place as the DeF program and thus the
futures contained in v have already been synchronised. However, according to the equivalence relation, case
(b) is possible, we thus detail it for the completeness of the proof.

they add additional structure and control. Consider a language with datatypes, and only
consider integers for simplicity (there is a similar but more verbose solution with objects):

datatype FutStarInt = Value Int | Future FutStarInt

It is easy to define get:

getStar(f) = { match f with Value x => x | Future f’ => x=get f’; getStar(x) }

Then one needs to systematically create a FutStar instead of Future when one does an
asynchronous invocation and also to create a FutStar when before doing a return. An
encoding of EF into DeF is possible this way. This solution was omitted in the paper because
it uses additional objects (both upon invocation and upon return), and pattern-matching to
replace futures (and not simply futures and simple future operations).

	Introduction
	A Brief Survey of Futures in Programming Languages
	DeF: A Language for Explicit Futures with Data-flow Synchronisation
	Syntax and Semantics
	A Type System for DeF
	DeFs: A variant of DeF without useless get operations

	Comparison with Implicit Futures
	Semantics of Implicit Futures (IF)
	Encoding IF into DeF
	Encoding DeF into IF
	Concluding Remarks

	Comparison with Classical Explicit Futures
	Semantics of Explicit Futures
	Comparison with DeF

	Concluding Remarks
	Comparing DeFs to the other languages
	Other synchronisation patterns
	Conclusion

	Creating a Cycle of Futures in DeF
	Proof of Theorem 1
	Proof of Theorem 2
	DeF futures as a datatype inside EF

