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ABSTRACT
The absence of a physically motivated model for large-scale profiles of cosmic voids limits
our ability to extract valuable cosmological information from their study. In this paper, we
address this problem by introducing the spherically compensated cosmic regions, named
CoSpheres. Such cosmic regions are identified around local extrema in the density field
and admit a unique compensation radius R1 where the internal spherical mass is exactly
compensated. Their origin is studied by extending the standard peak model and implementing
the compensation condition. Since the compensation radius evolves as the Universe itself,
R1(t) ∝ a(t), CoSpheres behave as bubble Universes with fixed comoving volume. Using
the spherical collapse model, we reconstruct their profiles with a very high accuracy until
z = 0 in N-body simulations. CoSpheres are symmetrically defined and reconstructed for both
central maximum (seeding haloes and galaxies) and minimum (identified with cosmic voids).
We show that the full non-linear dynamics can be solved analytically around this particular
compensation radius, providing useful predictions for cosmology. This formalism highlights
original correlations between local extremum and their large-scale cosmic environment. The
statistical properties of these spherically compensated cosmic regions and the possibilities to
constrain efficiently both cosmology and gravity will be investigated in companion papers.

Key words: dark energy – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

One of the main purpose of modern cosmology is to understand the
nature of Dark Energy (DE), driving the cosmic acceleration (Riess
et al. 1998; Perlmutter et al. 1999; Caldwell & Kamionkowski 2009;
Silvestri & Trodden 2009). It is not only difficult to build consistent
models to understand this acceleration but rather to find binding
limits to discriminates between them.

Large-scale structures (LSS) offer a large panel of probes for
cosmology and the nature of gravity itself. They carry informa-
tions on both primordial Universe and gravity through the cos-
mological evolution. These last years, cosmic structure formation
have been specially studied in the frame of cosmic voids forma-
tion and statistics (Park & Lee 2007; Lavaux & Wandelt 2012; Pan
et al. 2012; Cai, Padilla & Li 2015; Hamaus et al. 2015, 2016;
Achitouv 2017; Achitouv et al. 2017). Although cosmic void dy-
namics is far from being linear, these regions are safe from the
highly non-linear physics occurring during haloes or galaxy forma-
tion. Moreover, cosmic voids are expected to be more sensitive to
the nature of DE since their local �DE is higher than in the average
Universe (Sheth & van de Weygaert 2004; Colberg et al. 2005; van
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de Weygaert & Platen 2011). Voids have been studied through the
Alcock–Paczynski test (Sutter et al. 2014; Mao et al. 2017), their
ellipticity (Park & Lee 2007; Lavaux & Wandelt 2010) and their
abundance or shape (Cai et al. 2015; Achitouv et al. 2016). How-
ever, all these studies suffer from the lack of a fully consistent –
and physically motivated – model describing both the origin and
the dynamical generation of such cosmic regions. Hamaus, Sutter
& Wandelt (2014b) introduced an effective parametrization of den-
sity profiles using numerical simulation. Despite not being deduced
from first principles, it can provide physical insights. For example,
Hamaus et al. (2016) used it to model the isotropic shape of the
void-density profile and have been able to isolate the sensibility
to cosmological parameters through anisotropic redshift-space and
Alcock–Paczynski distortions.

In this paper and through the following ones (Alimi & de
Fromont 2017a,b; de Fromont & Alimi 2017), we present a
physically motivated model studying both the primordial origin
and the dynamical evolution of such cosmic regions. More pre-
cisely, we generalize cosmic void study by introducing the spher-
ically compensated cosmic regions, named thereafter CoSpheres.1

These structures are defined as the large-scale cosmic environment

1 For Compensated Spherical regions.
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surrounding local extrema of the density field. When defined around
central under-densities (local minimum), these regions can be iden-
tified to cosmic voids. Interestingly, these regions can also be de-
fined around central overdense maxima, defining the symmetric of
standard voids.

In average,2 the large-scale environment around maxima
(respectively minima) in the density field can be separated in two
distinct domains: an internal over (respectively under) dense core
surrounded by a large under (respectively over) dense compensation
belt. Note that even if the density field around local extrema is far
from being spherical, one can always define a spherical profile by
averaging over angles. However, despite being intuitive, the den-
sity contrast δ(x) = ρ(x)/ρ̄m − 1 has no dynamical interpretation.
Indeed, in the spherical frame, the local gravitational dynamics is
driven by the integrated density contrast, or equivalently the mass
contrast

�(r) = 3

r3

∫ r

0
u2δ(u)du = m(r)

4π/3ρ̄mr3
− 1. (1)

Like for density, the large-scale environment of local extrema can
be splitted in an overmassive (respectively undermassive for cen-
tral minima) core surrounded by an undermassive (respectively
overmassive) area. The transition radius between these under-
/overmassive regions defines the compensation radius, noted R1.
This radius can be uniquely define for each central extrema.3 In
a naive spherical description, this radius separates the collapsing
over-massive region from the expanding undermassive one. The
existence of such scale is fundamentally ensured by the Bianchi
identities (Hehl & Mccrea 1986) which impose the mass conserva-
tion. Moreover, the compensation radius R1 follows a remarkable
evolution. Indeed, since R1 encloses a sphere whose averaged den-
sity equals the background density, it evolves as the scale factor
itself, i.e. R1(t) ∝ a(t). CoSpheres thus behave as bubble universes
with a fixed comoving size. Hamaus et al. (2014a) introduced a
similar concept of a compensation radius for voids and its use as
a static cosmological ruler that follows the background expansion.
However, our definition of the compensation radius differs since it
is defined uniquely for each maximum (see equation 5). We also
stress that, on the Hubble size, there should not ‘overcompensated’
or ‘undercompensated’ voids as a consequence of the mass conser-
vation.

The LSS are originally generated by the stochastic fluctuations
of the density field in the primordial Universe. Their statistical
properties, including average shape and probability distribution can
be computed within the Gaussian random field (GRF) formalism.
However, it is necessary to implement the compensation constraint
(the existence of a finite compensation radius R1) and thus to extend
the results of Bardeen et al. (1986). As we show in this paper, the
non-linear evolution of such regions is very well described by using
the spherical collapse (SC) model while neither Zel’dovich nor
Eulerian linear dynamics is accurate enough.

We discuss the linear scaling of the density profiles of such re-
gions in both primordial and evolved Universe. It turns out that
these large-scale profiles do not scale linearly on R1, neither on
shape nor amplitude. This property emerges from the fact that on
scales considered here (from r ∼ 5 to r ≥ 100 h−1 Mpc), the linear
matter power spectrum is far from being scale invariant. Moreover,

2 We discuss this term more precisely in this paper.
3 More generally, for any random position in the density field.

the non-linear gravitational evolution of these profiles would have
broken any primordial linear scaling.

The paper is organized as follow. In Section 2, we introduce
the N-body simulations on which is based our study; the ‘Dark En-
ergy Universe Simulations (DEUS) (see Section 2.1). After defining
precisely CoSpheres, we study these regions in the numerical sim-
ulations for various redshift and sizes and for both central over- and
underdensities. This leads us to discuss the stacking method used
to reconstruct the corresponding average profiles.

In Section 3, we study the shape of these regions in a Gaussian
primordial field. We present an extension of the usual peak for-
malism of BBKS (Bardeen et al. 1986). While BBKS formalism
focuses on the local properties of the field around the peak (note
that for us, a peak is an extremum and can be a minimum or a
maximum), we extend this model to take into account its cosmic
environment on large scale. We show that this environment can be
fully qualified by the compensation scale R1 and the compensation
density δ1 = δ(R1).

In Section 4, we study the dynamical evolution of CoSpheres.
We show that the Lagrangian SC model (Padmanabhan 1993; Pea-
cock 1998) is able to reproduce precisely the evolution of such
regions from small scales (typically r ∼ 5 h−1 Mpc) to much
larger scales where the dynamics becomes almost linear. However,
we explicitly show that neither the Eulerian linear theory nor the
Zel’dovich approximation is able to describe their evolution with a
sufficient precision. Finally, we show that we are able to reproduce
the full matter field surrounding both maxima (build around haloes)
and minima (identified to cosmic voids) at z = 0 in numerical sim-
ulations.

2 C O S P H E R E S I N T H E N U M E R I C A L
SI MULATI ONS

2.1 N-body DEUS simulations

In this work, we use the numerical simulations from the DEUS
project. These simulations are publicly available through the ‘Dark
Energy Universe Virtual Observatory’ DEUVO Database.4 They
consist of N-body simulations of Dark Matter (DM) for realistic
dark energy models. For more details we refer the interested reader
to dedicated sections in Alimi et al. (2010), Rasera et al. (2010),
Courtin et al. (2011), Alimi et al. (2012) and Reverdy et al. (2015).
These simulations have been realized with an optimized version
(Alimi et al. 2012; Reverdy et al. 2015) of the adaptive mesh
refinement code RAMSES based on a multigrid Poisson solver
(Teyssier 2002; Guillet & Teyssier 2011) for Gaussian initial condi-
tions generated using the Zel’dovich approximation with MPGRAFIC

code (Prunet et al. 2008) and input linear power spectrum from
CAMB (Lewis, Challinor & Lasenby 2000).

In this paper, we focus only on the flat � Cold Dark Matter
(�CDM) model with cosmological parameters calibrated against
measurements of WMAP 5-yr data (Komatsu et al. 2009) and lu-
minosity distances to supernova Type Ia from the UNION data
set (Kowalski et al. 2008). The reduced Hubble constant is set
to h = 0.72 and the cosmological parameters are �DE = 0.74,
�b = 0.044, ns = 0.963 and σ 8 = 0.79. In this paper, we used
mainly two different simulations whose properties are summarized
in Table 1.

4 http://www.deus-consortium.org/deus-data/
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Table 1. Simulations used in this paper. mp is the mass of each particle while Mh corresponds to the average mass
of the DM haloes selected for stacking. Each simulation is defined by its box size L in h−1 Mpc and the number
of DM particles n. The simulation in bold is the reference simulation.

L = 648, n = 10243 L = 2592, n = 20483 L = 5184, n = 20483

mp in h−1 M� ∼1.8 × 1010 ∼1.5 × 1011 ∼1.2 × 1012

Mh in h−1 M� ∼4.0 × 1012 ∼3.0 × 1013 ∼2.5 × 1014

If not specified, the numerical simulation used is the reference
one defined with Lbox = 2592 h−1Mpc and npart = 20483 to get both
a large volume and a good mass resolution (see Table 1).

2.2 Defining CoSpheres

2.2.1 Method and definition

We construct CoSpheres in numerical simulation from the position
of local extrema in the density field. For central maxima and for
z = 0, we decide to identify these positions with the centre of mass
of DM haloes.5 Such procedure is motivated by the possibility to
extend it for observational data where DM haloes could be identified
with galaxy, galaxy group or galaxy cluster.

In the symmetric case of a central minima, the position is com-
puted as local minima in the density field smoothed with a Gaussian
kernel. In the reference simulation, the physical size of the original
coarse grid cell is Lgrid = 1.26 h−1 Mpc before any refinement and
we choose a smoothing scale of 5 h−1 Mpc. The comparison with
analytical predictions requires to smooth the matter power spectrum
on the same scale.

Around each extremum of the density field, we compute the
concentric mass by counting the number of particles in the sphere
of radius r, thus imposing the spherical symmetry

m(r) =
∑

i

mp
 [r − |x0 − xi |] , (2)

where mp is the mass of each individual particle, x0 the position
of the extremum and xi the position of the ith particle. 
(x) is
the standard Heaviside function such as 
(x) = 1 for x > 0 and
0 elsewhere. From this mass profile we define the mass contrast
profile �(r) defined in equation (1). Note that the density contrast
is linked to the mass contrast by

δ(r) = 1

3

∂�

∂ log r
+ �(r). (3)

We now focus on the compensation property. A volume V is said to
be compensated if it satisfies the condition∫

V

ρm(x)d3x = ρ̄mV . (4)

The spherical symmetry imposes that the field is compensated in a
sphere of radius R1 if it satisfies

m(R1) = 4π

3
ρ̄mR3

1 ⇔ �(R1) = 0, (5)

this last equation defines the compensation scale R1 as the first ra-
dius satisfying �(R1) = 0. We stress that this scale is much larger
than the typical scale associated with haloes such as the virialization
radius Rvir or r200 such as ρ(r200) = 200 × ρ̄m (Ricotti, Pontzen &

5 Detected by using a Friend-Of-Friend algorithm with a linking length
b = 0.2.

Figure 1. Mass contrast profile built around various haloes of mass
Mh ∼ 3 × 1013 h−1 M� from the reference simulation at z = 0 (see
Table 1). For each profile we show the compensation radius R1 defined by
equation (5) and marked with a coloured dot. The majority of profiles are
compensated on scale between 10 and 30 h−1 Mpc. We also show a profile
with a very large compensation radius R1 ∼ 100. For central minima, i.e.
cosmic voids we obtain similar profiles with finite compensation radii, but
in this case, both δ(r) and �(r) are bounded to −1.

Viel 2007). It is important to note that the compensation radius is
defined uniquely for each structure despite the fact that the mass
contrast may vanish at other radii Ri > R1. For each central ex-
tremum, there is a – possibly infinite – number of radii satisfying
�(Ri) = 0; the compensation radius is defined as the smallest one.
Moreover, since these regions must be compensated on the size of
the Universe (no mass excess), we have also limr → ∞r3�(r) → 0.
In Fig. 1, we show various mass contrast profiles 1 + �(r) centred
on DM haloes at z = 0. For each profile we identify R1 where the
mass is exactly balanced.

We note that compensation radii are always much smaller than the
size of the computing box. In the reference simulation, 70 per cent
of profiles are compensated on R1 ≤ 50 h−1 Mpc whereas less than
7 per cent of the profiles have R1 ≥ 100 h−1 Mpc. It means that the
compensation radius could be also measurable on observational data
with a sufficiently large volume survey. Moreover, R1 is roughly of
the same order of the effective size Reff used in the study of cosmic
voids (Platen, Weygaert & Jones 2007; Neyrinck 2008).

2.2.2 Average profile at z = 0 and stacking procedure

Every compensated region detected in numerical simulation is char-
acterized by two distinct properties. One concerning the central ex-
tremum fully described by its height (i.e. the mass of the halo for a
maxima and the central δ(x0) for minima). The second concerning
its cosmic environment, characterized by R1. Numerical simulation
provides an ensemble of profiles with various heights and radii.

MNRAS 473, 5177–5194 (2018)
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Figure 2. Distribution of the central density contrast δ(x0) of 50 000 voids
at z = 0 in the reference simulation.

Due to the stochastic nature of the density field, the only phys-
ically relevant elements are obtained by computing average quan-
tities and their dispersion. This leads to defined average spherical
profiles. All along this paper, average profiles and their correspond-
ing dispersion are built from at least 3000 single profiles. This
number ensures a fair statistical estimation. These profiles are built
by stacking together CoSpheres with the same height6 and the same
compensation radius R1 ± dR1 where the radial width is dR1 = 1.25
h−1 Mpc. This radial bin is kept constant for the whole paper. For
central minima detected in the smoothed density field (see Sec-
tion 2.2.1), we stack together profiles with the same R1 ± dR1

without density criteria except δ(x0) < 0. In Fig. 2, we plot the
distribution of their central density contrasts (whatever R1). We
observe that more than 99 per cent of central contrasts are lower
−0.1, beyond Poissonian fluctuations. The resulting profiles are
thus averaged over all possible realization of the field with a fixed
compensation radius.

In Fig. 3, we show average profiles in the reference simulation
at z = 0 from both halo and void with a given compensation radius
R1 = 40 h−1 Mpc. In both cases, we show the various radii:

(i) The density radius r1 such that δ(r1) = 0 (in this figure we
have r1 � 30 h−1 Mpc). It separates the over- and underdense areas.

(ii) The compensation radius R1. Note that by construction it
satisfies R1 ≥ r1 since it encloses an over- and a underdense shell
(such that they compensated each other).

Error bars are computed as the standard error on the mean, i.e.
σ/

√
n where σ is the dispersion and n the number of profiles con-

sidered.
In Fig. 4, we plot the stacked average profiles for various com-

pensation radii R1 with the same central extrema. Varying R1 probes
the same peak in various cosmic environments. Using these profiles
we can study the simple linear scaling assumption. For the mass
contrast for example, there could exist �univ(r) such that for any
R1 we would have �(r, R1) = α�univ(βr). In Fig. 5, we plot the
rescaled profiles �(r/R1)/�max where �max is the maximum of
the mass contrast. This figure does not indicates any simple linear
scaling. Despite being normalized to the same maximal amplitude,
the profiles are clearly separated on small scales (for r ≤ R1) but

6 The same halo mass for maxima.

also on larger scales. Furthermore, the position of the maximum
changes while varying R1, indicating that Rmax ∝ R1. This show
that it is necessary to study the shape of these regions for various
compensation radii.

We must also ensure that modifying the simulation parameters do
not affect the profiles. A numerical simulation is characterized by a
mass and a spatial resolution (see Table 1). Since CoSpheres trace
the matter distribution on large or intermediate scales (compared
to the coarse grid size), average stacked matter profile result from
the dynamics computed on the coarse grid without any refinement.
As long as we consider scales larger than a few cells we should not
observe any significant deviations for large-scale field when chang-
ing the simulation parameters. In other words, the properties of
CoSpheres are robust with respect to the resolution parameters of
the simulation used to trace the matter field. We illustrate this point
on Fig. 6 where we plot the stacked average profile for different nu-
merical simulations but the same halo mass Mh = 3.0 ± 0.075 × 1013

h−1 M� (200 ± 5 particles per halo) and three different compen-
sation radii R1. For each R1, matter profiles are indeed merged
together.

2.2.3 The spherically compensated cosmic regions at higher
redshift

CoSpheres are detected in numerical simulation at z = 0. We then
follow backward in time the evolution of the matter field of such
regions using our numerical simulations. For each halo, the position
of its progenitor is estimated from the centre of mass of its particles
at z = 0. This estimation is correct since scales probed here are much
larger than the halo size (in Appendix A we show how it is possible
to model a shift in the theoretical profile). For voids, i.e. central
minimum, we assume that its comoving position is conserved during
evolution and equals to the position measured at z = 0. For every
redshift and profile, this primordial position is used to compute the
spherical mass by counting the number of particles in concentric
shells as discussed in Section 2.2.1.

Fig. 7 shows the evolution of profiles with redshift from z � 56 to
z = 0 and for both maxima (see Fig. 7a) and minima (see Fig. 7b).
This figure illustrates two main points. First, at any redshift, the
profile shows the same shape on all scales; an internal over (resp.
under) massive core surrounded by its under (resp. over) massive
belt. Secondly, the compensation radius (marked with a red dot at
z = 0) seems to be also conserved in comoving coordinates (x-axis
in comoving h−1 Mpc). This last property will be discussed later in
this paper.

This indicates that CoSpheres are generated within the primor-
dial density field at high redshift and are not generated through
gravitational dynamics only. In Fig. 8, we thus show – average –
CoSphere profiles for different R1 at a very high redshift z ∼ 57 in
the simulation. This figure shows that these structures are originated
by large-scale primordial density fluctuations with the same com-
pensation properties. In the two following sections, we will study
these structures within the primordial field in the framework of GRF
(see Section 3). The gravitational evolution of these initial profiles
will be studied in Section 4.

3 O R I G I N O F C O S P H E R E S I N G AU S S I A N
R A N D O M FI E L D

In this section, we derive the average density profile around extrema
in a GRF constrained by the compensation property equation (5).

MNRAS 473, 5177–5194 (2018)
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Figure 3. Average mass and density contrasts. The blue line represents the mass contrast �(r) while the red line represents the density contrast δ(r). The
density radius (red dot at r1 ∼ 27 h−1 Mpc) and the mass radius (blue square at r = 40 h−1 Mpc) can be clearly identified. On both panels, we plot a zoom
of profiles around the compensation radius. (a) Stacked average profile measured around haloes of mass Mh ∼ 3.0 × 1013 h−1 Mpc at z = 0 in the reference
simulation. We clearly identify the central overdense core until r1 (red dot) surrounded by the compensation belt from r = r1. The same occurs for the mass
contrast profile (in blue), i.e. an overmassive core for r ≤ R1 (blue square) enclosed in a large undermassive region. (b) Same as panel (a) for central minima.
Now the interior region r < R1 is undermassive while the exterior region is overmassive. The compensation radius has been chosen with the same value than
in panel (a).

Figure 4. Radial average mass contrast profiles at z = 0. Each curve corresponds to a fixed compensation scale from 15 to 80 h−1 Mpc. We do not show the
error bars on this figure since they are almost indistinguishable from the curve itself. In both cases we note that small R1 are associated with strongly contrasted
regions. (a) Stacked average profiles around haloes with a mass Mh ∼ 3.0 × 1013 h−1 Mpc at z = 0 in the reference simulation. (b) Same as in panel (a) for
central underdense regions, i.e. cosmic voids.

Density and mass profiles of CoSpheres are characterized by two
family of parameters: the peaks parameters as defined by Bardeen
et al. (1986) qualifying the central extrema and the environment
parameters.

As was studied in Bardeen et al. (1986), a local extrema at some
position x0 in GRF can be parametrized by 10 independent – but
correlated – parameters. A scalar ν quantifying the central height
of the extrema

δ(x0) = νσ0, (6)

expressed in units of the fluctuation level σ 0

σ0 =
[

1

2π2

∫ ∞

0
k2P (k)dk

]1/2

, (7)

where P(k) it the linear matter power spectrum evaluated at some
fixed time ti where the field can be assumed to be Gaussian (deep
inside the matter-dominated era). The extremum condition imposes
that the local gradient of the field η vanishes identically, i.e.

ηi = ∂δ(x0)

∂xi

= 0. (8)

MNRAS 473, 5177–5194 (2018)
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Figure 5. Normalized mass contrast profile �(r/R1)/�max (where �max

is the maximum of each profile) for cosmic voids at z = 0. We plot the
same regions than in Fig. 4(b), with R1 from 15 to 80 h−1 Mpc (red curve).
The clear separation between various profiles shows the explicit non-linear
dependence of both shape and amplitude in term of R1 and rules out a simple
linear scaling of such radial profiles.

Figure 6. Mass contrast profiles �(r) + 1 for three different R1 and
for two different �CDM simulations using haloes with the same mass
Mh ∼ 1.5 × 1013 h−1 M� at z = 0. The shaded regions show the very low
dispersion due to the respective stacking in each simulation. Whatever the
simulation, mass contrast profile are superposed for the same compensation
radius R1 and the same halo mass.

The local curvature around the extremum is described by its Hessian
matrix ζ

ζij = ∂2δ(x0)

∂xi∂xj

. (9)

Each eigenvalue of the Hessian matrix must be negative in the
case of a central maximum and positive in the opposite case of a
minimum (underdense).

Let us now consider the environment parameters. The neighbour-
hood of the peak is here described by the compensation radius (see
equation 5). However, providing this radius only is not sufficient
to reconstruct the large variety of profiles and it is necessary to
add the compensation density contrast defined on the sphere of ra-
dius R1. By construction it must be of opposite sign of the central

density contrast. The compensation density δ1 is thus defined once
averaging over angles the density on the sphere of radius r = R1

δ(R1) := δ1 = ν1σ0, (10)

with ν1/ν < 0. Without any assumption on the symmetry, we thus
need 12 independent parameters : the scalar ν, three components of
the η vector, six independent coefficients of the ζ matrix (which is
real and symmetric) together with R1 and the reduced compensation
density ν1. In the following, we are going to compute the expected
averaged profile in the primordial Gaussian field satisfying both the
peak constraints equations (6), (8) and (9) and the environmental
constraints equations (5) and (10).

3.1 Peaks in GRF

Let us recall the basic elements necessary for the derivation of aver-
age quantities in the context of GRF. Our Gaussian field is assumed
to be an homogeneous and isotropic random field with zeros mean.
We also restrict ourselves to GRF whose statistical properties are
fully determined by its power-spectrum (or spectral density) P(k)
i.e. the Fourier transform of the autocorrelation function of the field,
ξ (r) = ξ (|x1 − x2|) = 〈δ(x1)δ(x2)〉 :

ξ (r) = 1

2π2

∫ ∞

0
k2P (k)

sin(kr)

kr
dk. (11)

The Gaussianity of the field δ(x) appears in the computation of the
joint probability

dPN = P [δ(x1), . . . , δ(xN )] dδ(x1) . . . dδ(xN ) (12)

that the field has values in the range [δ(xi), δ(xi) + dδ(xi)] for each
position xi . In this particular case of homogeneous and isotropic
GRF, this probability reaches

dPN = 1√
(2π )N det M

exp

[
−1

2
δt · M−1 · δ

] N∏
i=1

dδi, (13)

where δ is the N dimensional vector δi = δ(xi) and M is the N × N
covariance matrix, here fully determined by the field autocorrelation

Mij := 〈
δiδj

〉 = ξ (|xi − xj |), (14)

where the average operator 〈. . . 〉 denotes hereafter an ensemble
average. The ergodic assumption identifies the ensemble average
〈. . . 〉 computed on all possible statistical realization of the observ-
able to its spatial averaging, i.e. its mean over a sufficiently large
volume. The average of any operator X can be written as a mean
over its Fourier component X̃

〈X〉 := 1

2π2σ 2
0

∫ ∞

0
k2P (k)X̃(k)dk =

∫ ∞
0 k2P (k)X̃(k)dk∫ ∞

0 k2P (k)dk
. (15)

Furthermore, we are interested in deriving the properties of the field
subject to n linear constraints C1, . . . , Cn. Following Bertschinger
(1987), we write each constraint Ci as a convolution of the field

Ci[δ] :=
∫

Wi(xi − x)δ(x)dx = ci, (16)

where Wi is the corresponding window function and ci is the value
of the constraint. For example, constraining the value of the field to
a certain δ0 at some point x0 leads to Wi = δD(x − x0) and ci = δ0.
Since the constraints are linear, their statistics is also Gaussian and
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Reconstructing matter profiles of CoSpheres 5183

Figure 7. Evolution of the mass contrast profile for both maxima and minima in the density field. The radial scale is in comoving h−1 Mpc and each curve
corresponds to a single redshift. (a) Mass contrast profile for R1 = 20 h−1 Mpc for various redshift from an halo with a mass Mh = 3 × 1013 h−1 M�. It is
computed by stacking together single profiles computed from the progenitor of each halo registered at z = 0. As discussed in Section 2.2.3, the position of the
progenitor at any z is estimated from the centre of mass of the particles composing the halo at z = 0. (b) Same as in panel (a) but centred on local minima and
for R1 = 30 h−1 Mpc. For tracing backward in time the evolution of such regions, we simply assumed that the comoving positions of central minima detected
at z = 0, is conserved during the whole evolution. Such estimation provides satisfying results.

Figure 8. Mass contrast profiles at high redshift z � 57 for different R1

between 15 and 80 h−1 Mpc detected originally from haloes with the same
mass Mh = 3.0 × 1013 h−1 M�.

the joint probability dP[C] that the field satisfies these conditions
is (van de Weygaert & Bertschinger 1996; Bertschinger 1987)

dP[C] = 1√
(2π )n det Q

exp

[
−1

2
C t · Q−1 · C

] n∏
i=1

dci, (17)

where Q is the covariance matrix of the constraints
C = {C1, . . . , Cn} defined as Q = 〈

C t · C
〉
. The average density

profile 〈δ〉 subject to C is computed as the most probable profile
given C and reaches

〈δ〉 (x) := 〈δ|C〉 (x) = ξi(x)Q−1
ij cj , (18)

where ξi(x) is the correlation function between the field and the ith
constraint

ξi(x) = 〈δ(x)Ci〉 , (19)

and Qij is the (ij) element of the correlation matrix Q. Bardeen et al.
(1986) derived the average spherical7 density profile of peaks in
GRF in term of the reduced height ν (see equation 6), its autocorre-
lation function ξ (r) (see equation 11) and the curvature parameter
x defined by

x = − 3

σ0

√〈
k4

〉 ∂2δ(x0)

∂r2
. (20)

It yields

〈δ〉peaks (r) = ν − γ x

1 − γ 2

ξ (r)

σ0
+ ν − x/γ

1 − γ 2

R2
�

3

�ξ (r)

σ0
, (21)

with R� =
√

3
〈
k2

〉
/
〈
k4

〉
and γ = 〈

k2
〉
/
√〈

k4
〉
. The various mo-

ments of k are given by

〈kn〉 := 1

2π2σ 2
0

∫ ∞

0
k2+nP (k)dk. (22)

In the next section, we extend this result by implementing the com-
pensation conditions equations (5) and (10).

3.2 CoSpheres in Gaussian random fields

In the following, we use several functions involving r and R1. In
order to simplify the notations, we note the Fourier components as

Wr := 3
sin(kr) − kr cos(kr)

(kr)3
, (23)

Jr := sin(kr)

kr
, (24)

which are respectively the Fourier transform of the top-hat and the
delta functions. Note that they are linked to the spherical Bessel

7 Their calculation goes beyond the spherical approximation but we restrict
here to the simplest spherical case obtained by averaging over angles.
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5184 P. de Fromont and J.-M. Alimi

functions as Wr = 3/(kr)j1(kr) and Jr = j0(kr). We also denote with
the ‘1’ subscript these quantities evaluated at the particular radius
r = R1, i.e.

W1 := Wr |r=R1
, (25)

J1 := Jr |r=R1
. (26)

3.2.1 The average density profile of CoSphere

We now derive the average matter profile being both

(i) centred on an extremum, i.e. satisfying the conditions equa-
tions (6), (8) and (9), and

(ii) compensated on a finite scale R1. This is implemented by the
compensation constraints equations (5) and (10).

The spherical peak constraints are (see equation 16)

Cν[δ] :=
∫

δD [x − x0] δ(x)dx = cν ≡ σ0ν, (27)

Cηi
[δ] :=

∫
∂i δD [x − x0] δ(x)dx = cηi

≡ 0, (28)

Cx[δ] :=
∫

∂2

∂x2
δD [x − x0] δ(x)dx = cx ≡ −σ0

x
√〈

k4
〉

3
, (29)

where δD is the usual Dirac function. On the other hand, the envi-
ronmental constraints (see equations 5 and 10) can be written

CR1 [δ] :=
∫


 [R1 − |x − x0|] δ(x)dx = cR1 ≡ 0, (30)

Cν1 [δ] :=
∫

δD [R1 − |x − x0|] δ(x)dx = cν1 ≡ σ0ν1, (31)

where 
 is the Heaviside step function. ν1 must also satisfy equa-
tion (10) and thus satisfy ν1/ν < 0. Note that in equation (30),
the constraint value is cR1 = 0 and only three eigenvalues for the
constraints are non-zero: ν, x and ν1. The original peak constraints
involve the correlations

ξν(r) := 〈δ(x)Cν〉 = σ 2
0 〈Jr 〉 , (32)

ξx(r) := 〈δ(x)Cx〉 = −σ 2
0

〈
k2Jr

〉
. (33)

The compensation constraints introduce new correlations in the
computation of the average profile

ξR1 (r) := 〈
δ(x)CR1

〉 = σ 2
0 〈W1Jr〉 , (34)

ξν1 (r) := 〈
δ(x)Cν1

〉 = σ 2
0 〈J1Jr 〉 . (35)

Using equation (18), the average profiles are linear in ν, x and ν1

while R1 implicitly appears in the various radial functions, such that
we can write

〈δ〉 (r) = σ0

(
νδν(r) + xδx(r) + ν1δν1 (r)

)
(36)

where δα with α = {ν, x, ν1} are functions of r and R1 only. By
construction, each δα(r) must satisfy the compensation property, i.e.
its integral must vanish at r = R1∫ R1

0
u2δα(u)du = 0. (37)

From equation (18), we know that each δα(r) is a linear combination
of the four functions ξα(r) (see equations 32–35). To simplify the
notations, we define three intermediate functions build from the ξα

functions and satisfying the condition equation (37)

f0(r) =
〈
k2W1

〉 〈Jr 〉 − 〈W1〉
〈
k2Jr

〉〈
k2W1

〉 − 〈
k2

〉 〈W1〉
, (38)

f1(r) = 〈W1Jr 〉
〈
k2W1

〉 − 〈
W 2

1

〉 〈
k2Jr

〉
〈W1〉

〈
k2W1

〉 − 〈
k2

〉 〈
W 2

1

〉 , (39)

f2(r) = 〈J1Jr〉
〈
k2W1

〉 − 〈J1W1〉
〈
k2Jr

〉
〈J1〉

〈
k2W1

〉 − 〈
k2

〉 〈J1W1〉
, (40)

these functions have also been normalized such that fi(0) = 1. Each
δα(r) is then a linear combination of these three functions. Note that
fi(R1) = 0. We also introduce three parameters λi defined locally
around the extremum

λi := −3
∂2fi

∂r2
for r → 0. (41)

They explicitly reach

λ0 =
〈
k2W1

〉 〈
k2

〉 − 〈W1〉
〈
k4

〉〈
k2W1

〉 − 〈
k2

〉 〈W1〉
, (42)

λ1 =
〈
k2W1

〉2 − 〈
W 2

1

〉 〈
k4

〉
〈W1〉

〈
k2W1

〉 − 〈
k2

〉 〈
W 2

1

〉 , (43)

λ2 =
〈
k2J1

〉 〈
k2W1

〉 − 〈J1W1〉
〈
k4

〉
〈J1〉

〈
k2W1

〉 − 〈
k2

〉 〈J1W1〉
. (44)

With these notations and a bit of algebra, we obtain the δα functions

δν(r) = f0(r)
λ1f

1
2 − λ2f

1
1

ω
+ f1(r)

λ2f
1
0 − λ0f

1
2

ω

+ f2(r)
λ0f

1
1 − λ1f

1
0

ω
(45)

together with

δx(r)√〈
k4

〉 =f0(r)
f 1

1 − f 1
2

ω
+f1(r)

f 1
2 − f 1

0

ω
+f2(r)

f 1
0 − f 1

1

ω
(46)

and

δν1 (r) = f0(r)
λ2 − λ1

ω
+ f1(r)

λ0 − λ2

ω
+ f2(r)

λ1 − λ0

ω
, (47)

where

ω = λ0

(
f 1

1 − f 1
2

) + λ1

(
f 1

2 − f 1
0

) + λ2

(
f 1

0 − f 1
1

)
, (48)

and we used the notation f 1
i := fi(R1). Note that λi and f

j
i are not

constant but non-linear functions of R1.
The δα functions satisfy the following properties around r = 0⎧⎪⎪⎨

⎪⎪⎩
δν(r) � 1 + O (

r4
)
,

δx(r) � −
√〈

k4
〉

r2

6 + O (
r4

)
,

δν1 (r) � O (
r4

)
,

(49)

while in r = R1 we have⎧⎪⎨
⎪⎩

δν(R1) = 0,

δx(R1) = 0,

δν1 (R1) = 1,

(50)
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Reconstructing matter profiles of CoSpheres 5185

Figure 9. Rescaled mass contrast profile (�(r)/σ 0) derived in equation (51) for R1 = 20 h−1 Mpc (black dot). On each panel we vary one of the shape
parameters ν, x or ν1. This figure illustrates that the peak parameters ν and x affect the profile on small scales (around the peak) while ν1 acts on the large-scale
shape of the matter profile. Note that ν1 changes the slope of the mass contrast profile around R1 since by definition �′(R1) = 3/R1σ 0ν1. This analysis is
absolutely symmetric for the case of a central underdensity. Note that the elbow around r = 10 h−1 Mpc is an artificial feature induced by forcing one shape
parameter to vary while fixing the other ones. In practice, these shape parameters are correlated together and this scale does not appears in realistic profiles
(see other figures for example). We discuss these correlations in more detail in Alimi & de Fromont (2017a).

ensuring that 〈δ〉(R1) = σ 0ν1.

3.2.2 The averaged mass contrast profile of CoSphere

The average mass contrast profile 〈�〉(r) is obtained by integrating
〈δ〉(r) with equation (1). By linearity of the mapping δ⇔�, 〈�〉
takes the same shape than equation (36) where each δα(r) transforms
to �α(r), i.e. we have

〈�〉 (r) = σ0

(
ν�ν(r) + x�x(r) + ν1�ν1 (r)

)
(51)

Since each function δα is a linear combination of the fi, the �α

functions will be linear combinations of the Fi functions defined as

Fi(r) := 3

r3

∫ r

0
u2fi(u)du. (52)

Moreover, the fi functions only involve linear combinations of
Jr = sin (kr)/(kr). The Fi are thus obtained from fi by the simple
replacement Jr → Wr, leading to

F0(r) =
〈
k2W1

〉 〈Wr 〉 − 〈W1〉
〈
k2Wr

〉〈
k2W1

〉 − 〈
k2

〉 〈W1〉
, (53)

F1(r) = 〈W1Wr 〉
〈
k2W1

〉 − 〈
W 2

1

〉 〈
k2Wr

〉
〈W1〉

〈
k2W1

〉 − 〈
k2

〉 〈
W 2

1

〉 , (54)

F2(r) = 〈J1Wr〉
〈
k2W1

〉 − 〈J1W1〉
〈
k2Wr

〉
〈J1〉

〈
k2W1

〉 − 〈
k2

〉 〈J1W1〉
. (55)

We can check that for i = {0, 1, 2} we have Fi(R1) = 0 ensuring that
〈�〉(R1) = 0 whatever the shape parameters. The mapping between
the �α functions and the Fi is given by

�ν(r) = F0(r)
λ1f

1
2 − λ2f

1
1

ω
+ F1(r)

λ2f
1
0 − λ0f

1
2

ω

+ F2(r)
λ0f

1
1 − λ1f

1
0

ω
, (56)

while for x we have

�x(r)√〈
k4

〉 =F0(r)
f 1

1 − f 1
2

ω
+F1(r)

f 1
2 − f 1

0

ω
+F2(r)

f 1
0 − f 1

1

ω
(57)

and

�ν1 (r) = F0(r)
λ2 − λ1

ω
+ F1(r)

λ0 − λ2

ω
+ F2(r)

λ1 − λ0

ω
. (58)

The resulting mass contrast profile satisfies, for r → 0⎧⎪⎪⎨
⎪⎪⎩

�ν(r) � 1 + O (
r4

)
,

�x(r) � −
√〈

k4
〉

r2

10 + O (
r4

)
,

�ν1 (r) � O (
r4

)
,

(59)

while in r = R1 we have, by construction⎧⎪⎨
⎪⎩

�ν(R1) = 0,

�x(R1) = 0,

�ν1 (R1) = 0,

(60)

together with

�′
ν1

(R1) = 3

R1
ν1σ0, (61)

where a prime denotes the derivative with respect to r. In Fig. 9, we
plot the averaged mass contrast equation (51) for R1 = 20 h−1 Mpc.
In each panel, we change one of the shape parameters ν, x and ν1

to illustrate their effect. Since both ν and x are associated with the
central peak, changing their value only affects the profile on small
scales, typically r � R1/2. The compensation density ν1 defines the
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5186 P. de Fromont and J.-M. Alimi

Figure 10. Averaged mass contrast profile in the primordial field. Each
blue curve corresponds to a CoSphere profile with fixed peak parameters
(x and ν) but various R1 (ν1 is also fixed to an arbitrary value of −0.5).
The red curve is the corresponding BBKS profile equation (21) with the
same peak parameters ν and x. Local matter profile around the extremum
are similar while on larger scales our model allow to probe different cosmic
environments through R1 and ν1. Even if it does not appears on the plot, this
BBKS profile is also compensated on a larger scale, here R1 � 60 h−1 Mpc.

structure of the profile on larger scales from r ∼ R1. This behaviour
clearly illustrates that x and ν are defined on the peak while R1 and
ν1 qualify the large-scale surrounding environment of the peak.

3.2.3 Comparison with the BBKS peak profile

The peak profiles derived by BBKS (see equation 21) describe
the large-scale environment surrounding extrema in Gaussian field
where we only provide the properties of the density field on the
peak. Our calculation is thus an extension of this result including
the physical properties of the large-scale environment around the
peak.

Our formalism allows to probe different cosmic environment for
the same central extremum. This environment is defined through R1

and the compensation density δ1 = ν1σ 0. For the same central peak,
we can describe a large variety of cosmic configurations while this
region is completely fixed in the standard BBKS approach.

In Fig. 10, we show how it is possible to describe various en-
vironments by varying R1 while keeping constant ν and x, i.e. the
central peak. We also plot the BBKS profile, fully determined by
x and ν. Small values of R1 correspond to isolated peaks in large
underdense regions while increasing the compensation scale allows
to probe denser regions. The exact same symmetric case occurs for
cosmic voids with the reimplement ν → −ν, x → −x and ν1 →
−ν1.

The standard BBKS profile can be written as in equation (36)
with the corresponding δp

α(r) (where p stands for ‘peak’)

δp
ν (r) =

〈
k4

〉 〈Jr 〉 − 〈
k2

〉 〈
k2Jr

〉
〈
k4

〉 − 〈
k2

〉2 , (62)

δp
x(r) = −

√〈
k4

〉 [〈
k2

〉 〈Jr 〉 − 〈
k2Jr

〉
〈
k4

〉 − 〈
k2

〉2

]
, (63)

δp
ν1

(r) = 0. (64)

In the peak profile of BBKS, it is possible to map the peak parame-
ters ν and x to their effective R1 and ν1. These effective R1 and ν1

satisfy{
λ0(R1) =

√〈
k4

〉
x/ν,

ν1 = νf 1
0 (R1),

(65)

where we recall

λ0 =
〈
k2W1

〉 〈
k2

〉 − 〈W1〉
〈
k4

〉〈
k2W1

〉 − 〈
k2

〉 〈W1〉
, (66)

f 1
0 =

〈
k2W1

〉 〈J1〉 − 〈W1〉
〈
k2J1

〉〈
k2W1

〉 − 〈
k2

〉 〈W1〉
. (67)

Note that this effective compensation radius R1 depends only on
the fraction x/ν. For each value of x/ν it is possible to find a finite
compensation radius R1.

3.3 Numerical reconstruction of CoSpheres in GRF

At very high redshift, the density field follows a Gaussian statistics.
This property is inherited from the inflation phase of the young
Universe. In the previous sections, we derived the average profiles
of spherically compensated inhomogeneities in the framework of
GRF. As presented in Section 2.2.3, the simulations can be used
to follow backward in time the evolution of CoSpheres detected at
z = 0. Using this numerical procedure we can compare our expected
Gaussian profiles (see equation 36) with the numerical matter field
of compensated peaks at higher redshift.

Each theoretical profile is parametrized by four scalars. The com-
pensation radius R1 can be read directly from the profile (build at
fixed R1). The shape parameters ν, x and ν1 are computed using a
standard χ2 method defined from the measured profile �j and its
error σ j for r = rj.

We stress that this reconstruction is done on the mass contrast
profile and not directly from the density profile. Indeed, computing
the number of particles in concentric spheres leads naturally to the
mass contrast while the density must be computed by taking its
radial derivative (see equation 3). Moreover, since mass contrast is
integrated over r, its statistical noise is smaller than for δ(r).

At high redshift, we allow a possible shift R = |xc − x0| between
the true position of the central extrema x0 and its estimation xc by
adding this degree of freedom in the previous χ2 analysis. The
effect of such shift of the central position on theoretical profiles
is discussed in Appendix A. We show that the analytical profile
around a shifted position is modified by an effective smoothing of
the linear power spectrum P (k) → P (k)sinc(kR).

In Fig. 11, we show a measured mass contrast profile at high
redshift (blue curve). We show in red the corresponding expected
profile (see Section 3.2.2) whose shape parameters are estimated
from the previous χ2. We also show in purple the expected shape
from the BBKS profile with best-fitting values for x and ν

We observe a high accuracy agreement between our prediction
equation (51) and the measured averaged profile on all scales (this
fit can be reproduce for any R1). The standard BBKS profile suffers
from a lack of degrees of freedom and is not able to reproduce the
shape on large scales. The standard peak profile cannot be used
to describe the large-scale compensated cosmic regions, hence the
CoSphere model.
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Reconstructing matter profiles of CoSpheres 5187

Figure 11. Averaged mass contrast profile at high redshift z = 56 in the
reference simulation (blue curve). The purple curve is the standard BBKS
profile (Bardeen et al. 1986) with ν and x obtained by a standard χ2 mini-
mization. The red curve is the CoSphere profile equation (51) whose shape
parameters (ν, x and ν1) are obtained by the same χ2 optimization. We note
the excellent agreement between our profile and the measured one while the
standard peak formalism fails to reproduce the shape on the matter field.

4 DY NA M I C A L E VO L U T I O N O F C O S P H E R E S

In this section, we study the gravitational collapse of CoSpheres
resulting from the primordial fluctuations of the matter field as
studied in Section 3.

4.1 The Lagrangian spherical collapse

Due to the spherical symmetry of our problem, the evolution of
the matter profile reduces to the dynamics of concentric shells with
fixed mass. This leads to the Lagrangian SC model, first introduced
in Gunn & Gott (1972) and largely discussed in Padmanabhan
(1993) and Peacock (1998). While it was first developed in the
context of Einstein-de-Sitter cosmology, it has been extended to
�CDM (Lahav et al. 1991) and more general models of DE (Wang
& Steinhardt 1998). In this section, we derive a simple formalism
for the SC suited to our problem.

As we focus in this paper on the standard �CDM model describ-
ing a flat Universe (K = 0) with collisionless CDM and a cosmo-
logical constant �, the homogeneous background is described by
the Friedman and the Raychaudhuri equations(

ȧ

a

)2

= H 2
0

[
�0

m

a3
+ 1 − �0

m

]
, (68)

ä

a
= −H 2

0

2

[
�0

m

a3
+ 2�0

m − 2

]
, (69)

where a dot (e.g. Ẋ) denotes the derivative with respect to the proper
time t, H0 is the Hubble constant today and �0

m = 8πGρ̄m,0/(3H 2
0 ).

Moreover, in the quasi static limit (QSL) where the time variation of
the gravitational potential are smooth, i.e. �̇ � �ȧ/a and for scales
deep inside the Hubble radius r � 1/(aH), the first-order perturbed
equations reduce to the well-known Poisson equation linking the
local density contrast δ to the Newtonian potential �

∇2� = 4πGρ̄mδ. (70)

Using the spherical symmetry, the Poisson equation can be inte-
grated once to give the Newtonian acceleration

∂�

∂r
= r

4πGρ̄m

3
�(r), (71)

with �(r) is the mass contrast. It thus drives the local gravitational
acceleration. Note that for r = R1 we have ∇� = 0. In the QSL,
the equation of motion of each shell with a physical radius r = aχ

is (Peebles 1980)

r̈ = ä

a
r − ∇�. (72)

For each shell we define the dimensionless comoving displacement

R(χi, t) = χ (t)

χi

, (73)

where χ (t) is the comoving radius of the shell at some time t and χ

its initial radius χi = χ (ti). The equation of motion for each con-
centric shell can be simplified assuming there is no shell-crossing
(we discuss this hypothesis below) ensuring the mass conservation

1 + �

1 + �i

= R−3, (74)

where �i is the initial mass contrast profile of the Lagrangian

shell �i = �
(
χ (ti), ti

)
while � is the evolved mass contrast

� = �(χ, t). We also introduce the logarithmic scale factor τ de-
fined through

dτ

d log(a)
:=

√
�m

2
. (75)

For �CDM, assuming τ (ai) = 0 we have

τ (a) =
√

2

3

[
arctanh

(
�

−1/2
m,i

)
− arctanh

(
�−1/2

m

)]
. (76)

With this new parametrization, the equation of motion for each
concentric shell (see equation 72) reaches

∂2R
∂τ 2

+ 1√
2�m

∂R
∂τ

= R − 1 + �i

R2
(77)

Equation (77) describes the non-linear gravitational evolution of
each shell until shell-crossing. Even if it does not appears now, the
formulation equation (77) can be simply extended to any cosmolo-
gies including extensions of gravity as we will show it in forthcom-
ing papers (Alimi & de Fromont 2017b; de Fromont & Alimi in
preparation). The initial conditions for this differential problem are
given by

R(ti) = 1 (78)

together with the first derivative ∂τR(ti). It can be estimated from
the high-redshift solution where the field follows the Zel’dovich
dynamic (see Appendix B)

∂R
∂τ

(ti) = −
√

2

�m,i

�i

3

d log(D)

d log(a)

∣∣∣∣∣
ti

:= −
√

2

�m,i

�i

3
f (ti), (79)

where f(ti) is the linear growth rate evaluated at the initial time ti. The
non-linearly evolved profile � is obtained by solving numerically
equation (77) and using equation (74) for any initial profile �i.
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5188 P. de Fromont and J.-M. Alimi

Figure 12. Comparison between average numerical profiles and the spher-
ical evolution of the corresponding average primordial numerical matter
profile for z � 8 to z = 0 (see text). Points and their associated error bars are
the numerical measures for the corresponding redshift while full lines are the
spherical evolution of the primordial profile at z � 8. The computation has
been performed using the 20483 particles simulation with a box size of 5184
h−1 Mpc in �CDM cosmology and for R1 = 25 h−1 Mpc. All single profiles
have been detected from central haloes of mass Mh � 2.50 ± 0.13 × 1014

h−1 M� at z = 0.

4.2 Testing the spherical approximation for the evolution of
CoSpheres

The validity of the spherical evolution can be tested using the nu-
merical simulations.

At z = 0, we select haloes with the same R1. For each halo detected
we apply the ‘backward’ procedure discussed in Section 2.2.3 to
build the profile of its progenitor. Stacking these primordial profiles
leads to the ‘initial average profile’. This numerical profile is then
taken as an input for the spherical dynamics as studied in Section 4.1.

We thus obtain a spherically evolved profile which can be compared
to the numerical one at z = 0.

In Fig. 12, we plot both this spherically evolved profile (from z
� 8 to z = 0) and the numerical profile for R1 = 25 h−1 Mpc. For
all redshift, the agreement between the simulation and the spher-
ical evolution is excellent. On small scales however, typically r
≤ 5 h−1 Mpc, the spherical dynamics fails to almost 5 per cent to
10 per cent. It is not surprising that the central overdense core is
not well reproduced by a spherical dynamics but this work focuses
on much larger scales where SC provides an excellent dynamical
model.

On larger scales, such accuracy is neither reachable with the
Eulerian linear nor Zel’dovich dynamics. In Fig. 13, we plot the
differences at z = 0 resulting from various dynamical models in the
same �CDM cosmology. Here, we used a theoretical mass profile
computed from our formalism (see Section 3.2) with realistic shape
parameters ν, x and ν1 (close to unity) and we evolved this profile
until z = 0 for each model. We choose to show these differences
on a void profile, i.e. central underdense minima. The argument
is exactly symmetric for central overdensities. The Eulerian linear
theory (blue lines) is clearly ruled out on non-linear scales, i.e.
for scales typically smaller than 20 h−1 Mpc. As expected, linear
theory, SC and Zel’dovich approximations agree on linear scales.
The Zel’dovich approximation reproduces the spherical dynamics
with a precision of ∼5 per cent on the mass contrast profile on large
scales but only ∼10 per cent on the velocity profile. On smaller
scales (inside the internal zone, r < R1), the Zel’dovich approxi-
mation fails to almost 30 per cent. The inaccuracy of the Zel’dovich
dynamics cannot be neglected in a precision cosmology era since
it could be misinterpreted as a cosmological imprint (Alimi & de
Fromont 2017b; de Fromont & Alimi in preparation).

Spherical dynamics is no longer valid in regions where collapse
occurred (the shell reaches the singularity r = 0) and if any shell
crosses an other one (i.e. when ∂χ/∂χi = 0). But these two limi-
tations are not really relevant for our purpose due to the size of the
considered scales. As a matter of fact, the initial radii of shells that
collapse in a finite time are very small, typically of the order of the
halo size (fraction or order of h−1 Mpc). In the symmetric case of a

Figure 13. Comparison of the various dynamical approximations at z = 0 for a central minimum at z = 0. Each curve corresponds to the same initial profile
evolved with a different dynamical approximation. The Eulerian linear dynamics is in blue, the Zel’dovich approximation is in purple and the full SC is in
red. The deviation appears strongly on velocity profiles than on matter profiles. (a) Mass and density contrast at z = 0 for R1 = 10 h−1 Mpc. The full lines
correspond to the mass contrast �(r) while the dashed curves correspond to δ(r). (b) Velocity contrast profile �vel(r) = v/(rH) (see equation 86).
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Reconstructing matter profiles of CoSpheres 5189

Figure 14. Redshift evolution of the ratio R1(z)/R1(0) in comoving co-
ordinates. This figure is obtained using 5000 profiles around haloes with
Mh ∼ 1.5 × 1013 h−1 M� and the same number of voids without density
criteria. For each redshift we compute the distribution for R1(z)/R1(0) from
which we estimate its mean (points) and the standard error on the mean
(error bars). The ratio R1(z)/R1(0) is thus conserved with a precision better
than 2 per cent.

central underdensity, the matter field expands such that there is no
possible collapse on to r = 0. Moreover for compensated cosmic re-
gions with realistic values for the shape parameter ν, x and ν1 (close
to unity), radial shell-crossing always occurs deep in our future
(z � 0). Note that the shell-crossing time tsc of each shell can be eas-
ily computed given the initial profile. For example, in the Zel’dovich
approximation it satisfies D(tsc)/D(ti) = 1 + 1/(δi − 2/3�i), where
both δi and �i are evaluated at the same initial radius ri.

4.3 Dynamical evolution of the matter field around the
compensation radius

4.3.1 Evolution of the compensation radius

As was already mentioned in Fig. 7, the compensation radius is a
conserved comoving quantity. This fundamental property is clear
from the theoretical point of view. For r = R1 we have �i(R1) = 0
and the only solution of equation (77) compatible with the initial
conditions equations (78) and (79) is R(t) = 1, leading to R1 ∝ a.

Physically, since the average density in the closed sphere of radius
R1 equals the background density, this sphere evolves exactly as a
closed bubble in the Universe and is consequently comoving.

This property stands in a spherical dynamic but initial inhomo-
geneities are very unlikely to be spherically symmetric (Bardeen
et al. 1986). Using numerical simulations, we can follow the red-
shift evolution of R1 for every CoSphere. In Fig. 14, we plot the
mean and the dispersion of the distribution R1(z)/R1(0) as a function
of redshift for both haloes and void. For the whole range of redshift,
comoving R1 is constant with a precision better than 2 per cent for
voids and 1 per cent for haloes. There is however a clear tendency
of increasing R1 for voids and decreasing R1 for haloes. These small
evolutions result probably from primordial anisotropies. They re-
main sufficiently small so that the spherical approximation holds. A
deeper understanding of this small evolution goes beyond the scope
of this paper.

4.3.2 The evolution of the compensation density δ1

The compensation density contrast δ1 defined as δ1 := ν1σ 0 is
an Eulerian quantity, being defined at a fixed comoving position
χ1 = R1/a. To derive its Eulerian dynamics, we consider two points
initially located at an infinitesimal distance from the compensation
radius χ±

i := χ1 ± ε where ε � 1. Since we consider two points in
the infinitesimal range ±ε we have (see equation B2)

R±(t) = 1 − (±ε)
δ1

χ1

(
D(t)

D(ti)
− 1

)
+ O (

ε2
)
, (80)

where δ1 is assumed to be the value of the local density contrast
in the initial conditions. The same quantity at any time t = ti is
explicitly noted with its time dependence δ1(t). At first order in ε,
the position of each shell χ±(t) at any time t reduces to

χ±(t) = χ1 ± ε

[
1 − δ1

(
D(t)

D(ti)
− 1

)]
+ O (

ε2
)
. (81)

Using the mass conservation equation (74), the mass contrast for
each shell is

�±(t) = ±ε
3δ1

χ1

D(t)

D(ti)
+ O (

ε2
)
. (82)

Using δ1(t) = R1/3�′(R1) together with �′(R1) = limε→0(�+ −
�−)/(χ+ − χ−), we get

δ1(t) = δ1
D̃(t)

1 − δ1

(
D̃(t) − 1

) , (83)

with the normalized linear growth factor D̃(t) = D(t)/D(ti). This
solution corresponds to a one-dimensional Zel’dovich dynamics
(Zel’dovich 1970). However, this solution is exact within the SC.
Note that for an initial negative compensation density (δ1 < 0 which
corresponds to a central overdensity, i.e. a maximum), the asymp-
totic value is −1 and δ1(t) does not diverges to −∞ as expected in the
linear regime. The linear regime is recovered for δ1[1 − D̃(t)] � 1
where equation (83) reduces to the usual linear relation

δ1(t) � δ1D̃(t). (84)

We stress that equation (83) applies only for the very particular
radius r = R1 and cannot be extended to every point of the den-
sity profile where it would be, at best, a dynamical approximation.
Equation (83) contains its own information about shell-crossing.
Indeed, for the particular time tsc satisfying

D(tsc)

D(ti)
= 1 + δ1

δ1
. (85)

The denominator of equation (83) vanishes, leading to δ1(tsc) →
∞. This divergence is only possible for positive values of δ1, i.e. for
central underdensity.8 The divergence of the local density illustrates
the apparition of caustics in the density field, due to the possible
crossing of different shells at this particular radius where matter
accumulates.

High values of ν1 can lead to a collapse of the surrounding
overdense belt on to the central minimum. This is known as the
void-in-cloud problem (Sheth & van de Weygaert 2004). For such
voids, the compensation belt is deeply affected by shell-crossing
and the compensation radius is no longer conserved (it decreases
with time). The smallest ν1 leading to radial shell-crossing today
depends on Rg, the Gaussian smoothing scale of the power spectrum.

8 Remember that the sign of δ1 is the opposite of the sign of the central
extremum.
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5190 P. de Fromont and J.-M. Alimi

In �CDM cosmology, this critic ν1 (computed from equation 85)
evolves from ν1 � 0.2 for Rg → 0 and crosses ν1 = 1 for Rg � 4
h−1 Mpc. This illustrates that the shell-crossing mechanism behaves
differently according to the smoothing scale. In our case, the power
spectrum is smoothed on the scale equivalent to the size of the
coarse grid cell of the simulation to cut the power on smaller scales
(in the reference simulation we have Rcell = 1.26 h−1 Mpc). For this
smoothing size, the shell-crossing threshold is ν1 � 0.65. As will
be shown in Alimi & de Fromont (2017a), this value is much larger
than the typical values of ν1, which are expected to be less than
ν1 ∼ 0.03. This ensures that spherical shell-crossing is very rarely
reached in voids and the void-in-cloud effect can thus be neglected,
excepted for some very rare events.

Note that this is not in contradiction with the most common
definition criterion for voids, namely that they are enclosed by
shell-crossed boundaries (Bertschinger 1985; Sheth & van de Wey-
gaert 2004). Indeed, as was already pointed out in Sheth & van de
Weygaert (2004), this shell-crossing does not appears in sufficiently
smoothed profiles, which is the case for realistic CoSphere profiles.
The clumpy structuration on small scales where shell-crossing lo-
cally happened to form virialized structures is not relevant for spher-
ical averaged profiles due to the large volume of radial shells. For
central maximum, the shell at r = R1 acts as a gravitational repeller,
avoiding caustic formation.

4.3.3 The local velocity field

Since the Lagrangian displacement R obeys a second-order differ-
ential equation (see equation 77), the field is fully characterized by
R and its first derivative. In other word, the radial peculiar veloc-
ity (linked to the time derivative of R) carries a complementary
information. We thus defined the velocity contrast �vel as

ṙ = rH (t) [1 + �vel(r, t)] (86)

measuring the radial peculiar velocity in units of the Hubble flow
rH. This dimensionless quantity is computed in the Lagrangian
formalism as

�vel(r, t) := ∂ logR
∂ log a

=
√

�m

2

∂ log(R)

∂τ
(87)

and satisfies �vel(R1) = 0 during the whole evolution. In the
Zel’dovich regime, mass and velocity contrast profiles are directly
proportional

�vel(r, t) = −�(r, t)

3
× f (t), (88)

where f(t) is the linear growth rate. We also define the velocity
divergence δvel(r) = ∇ · v/(3H ) linked to the velocity contrast by

�′
vel(r) = 3

r
[δvel(r) − �vel(r)] . (89)

Using a similar computation than in Section 4.3.2, we can compute
the exact non-linear evolution of δvel around R1

δvel(R1, t) = −f (t)

3

δ1D̃(t)

1 − δ1

(
D̃(t) − 1

) . (90)

With the explicit expression for δ1(t) (see equation 83), we get

δvel(R1, t)

δ1(t)
= −f (t)

3
, (91)

which is the standard relation linking the velocity divergence and
the density field in the linear regime. However, in the SC model,

it is an exact result at any redshift for r = R1. For other radii, the
previous relation equation (91) is only valid in linear regime.

Equation (91) provides an efficient way to evaluate exactly the
linear growth rate using CoSpheres. We emphasize that equation
(91) allows to measure the linear growth rate on non-linear scales,
it only necessitate to consider structures will small compensation
radii. The measure of the linear growth rate, for example from
redshift-space distortions, is beyond the scope of this paper and will
be investigated in a forthcoming paper (Alimi & de Fromont 2017b).

4.4 Reconstructing profiles at z = 0

In Section 3, we have shown that the large-scale matter profile of
CoSpheres can be precisely reconstructed using GRF (see equa-
tion 51). Theoretical profiles are parametrized by three independent
shape parameters ν, x, ν1 (see Section 3.2) in addition to the com-
pensation radius.

In Section 4.2, we have shown that the SC model provides a
good description of the gravitational evolution of these large-scale
profiles. Combining the initial conditions and the dynamics, we
show in this section that CoSpheres can be precisely reconstructed
until z = 0 with a high accuracy on a large radial domain.

At z = 0, we build the average mass contrast profiles of Co-
Sphere in numerical simulations (see Section 2.2.2). For each R1 it
provides an average profile together with its dispersion (computed
as the standard error on the mean). For each profile at z = 0, the
reconstruction procedure consists in finding the appropriate shape
parameters ν, x and ν1 in GRF (see equation 51). Practically, we
iterate over the shape parameters and minimize a standard χ2 at
z = 0 using the spherical evolution of the GRF expected profile.

In Fig. 15, we show the reconstructed mass contrast profiles at
z = 0 for R1 = 20 and R1 = 40 h−1 Mpc. The reconstructed Co-
Sphere reproduces the numerical profile with a very high accuracy
(a deviation smaller than 1 per cent) on a large spatial domain. Again
we emphasize that the peak parameters ν and x provide the descrip-
tion of the field around the central extremum whereas ν1 defined
at r = R1 drives the shape on larger scales (see Fig. 9). Fig. 15
shows that the reconstruction procedure works for various neigh-
bourhoods. Although we considered the same haloes (same mass),
we probe various neighbourhoods by varying the compensation
scale R1. A large compensation radius describes a local extremum
located in a huge over-/undermassive region. On the other hand, the
same peak with a smaller R1 corresponds to a local extrema in an
small overdense ‘island’ isolated in a larger underdense region.

In Fig. 16, we show the reconstruction of CoSphere profiles de-
fined around haloes with different masses, namely Mh ∼ 3.6 × 1012

h−1 M� (extracted from the simulation with 10243 particles and a
box size 648 h−1 Mpc) and Mh ∼ 2.5 × 1014 h−1 M� (extracted from
the simulation with 20483 particles and a box size 5184 h−1 Mpc)
for the same compensation radius R1 = 20 h−1 Mpc. Varying the
mass of the central halo changes the amplitude of matter fluctuation,
and thus the profile itself. Increasing the mass of the central halo
raises the primordial peak threshold, i.e. selects peaks with higher
ν. Since the central extrema is correlated to its surrounding environ-
ment, large ν induce higher δ1 and thus ν1. In other words, a massive
halo is more likely to sit in a deepest void than a lighter halo.

Finally, the exact same reconstruction can be done for central un-
derdense regions identified to cosmic voids. The measured profiles
of underdense CoSphere together with their theoretical reconstruc-
tion are shown in Fig. 17. We show the reconstruction for two dif-
ferent compensation radii. Here again, CoSphere profiles are well
reconstructed on all scales with a very high accuracy, even in the
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Reconstructing matter profiles of CoSpheres 5191

Figure 15. Reconstruction of the mass contrast profile 1 + �(r) measured in the simulation at z = 0 (blue points) for haloes of mass Mh ∼ 3.0 × 1013

h−1 M�. The red line is the CoSphere curve obtained by minimizing a standard χ2 at z = 0 (see text). (a) Mass contrast profile for R1 = 20 h−1 Mpc and (b)
same as panel (a) for R1 = 40 h−1 Mpc.

Figure 16. Reconstruction of CoSphere profile at z = 0 (blue points) from two different haloes with the same compensation radius R1 = 20 h−1 Mpc. The red
line is the theoretical curve obtained by computing the best shape parameters ν, x and ν1 and spherically evolved until z = 0 (see text). This figures illustrate
the mass dependence of the profiles. Matter profiles around heavier haloes are more amplified than the same profiles build from lighter ones. Increasing the
mass of the central haloes raises the primordial height ν = δ(x0)/σ0. Shape parameters are correlated to each other such that it is more likely to get higher ν1

when ν growths (Alimi & de Fromont 2017a). Heavier haloes will thus induce more amplified profiles on all scales, as it is illustrated in this figure. (a) Mass
contrast profile for haloes of mass Mh ∼ 3.6 × 1012 h−1 M�. We used here the simulation with 10243 particles and a box size L = 648 h−1 Mpc. (b) Same as
panel (a) for Mh ∼ 2.5 × 1014 h−1 M� with the same R1 in the simulation with 20483 particles and a box size L = 5184 h−1 Mpc.

central underdense core (r � R1/5). This is not surprising since
cosmic voids tends to sphericity during the tri-axial expansion, un-
like their overdense symmetric (Icke 1984; van de Weygaert 2014).
CoSpheres provide thus an efficient physically motivated model that
can be used to reproduce large-scale spherical inhomogeneities at
any redshift.

5 D I S C U S S I O N A N D O U T L O O K S

The absence of a physically motivated model for understanding the
large-scale matter profiles of compensated cosmic regions is a major
difficulty in the precision cosmology era. Extracting reliable cosmo-
logical information from such regions, and particularly from voids,

requires a deep understanding of their origin and their evolution.
In this paper, we address this issue by generalizing void profiles
and introducing CoSpheres. These regions are build explicitly from
their compensation property. The particular radius R1 where the
matter field compensate exactly appears to be a fundamental scale
for both their origin and their dynamics. This comoving radius iso-
lates closed bubble Universe with a conserved volume during the
whole cosmic evolution (see Section 4.3.1).

When defined around central underdense minimum, these re-
gions can be identified to cosmic void, providing a useful theoret-
ical framework for studying both their shape and their evolution.
Interestingly, these regions can be also defined around local max-
imum such as DM haloes. By definition, these regions must be
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5192 P. de Fromont and J.-M. Alimi

Figure 17. Reconstructed CoSphere profile at z = 0 around local underdense minimum. These minima are obtained by smoothing the density field with a
Gaussian kernel with Rg = 2 h−1 Mpc. The red line is the theoretical curve obtained from GRF with the best-fitting shape parameters and evolved with a
spherical dynamics (see text). It is noticeable that the reconstruction provides an excellent fit on all scales and whatever R1 although theoretical profiles are
determined by three parameters including two parameters defined around r = 0. (a) Mass contrast profile for R1 = 20 h−1 Mpc and (b) same as panel (a) for
R1 = 40 h−1 Mpc.

compensated on a finite scale, hence the existence of large under-
dense regions surrounding over densities.

Using numerical simulations introduced in Section 2.1, we build
the averaged profiles of CoSpheres by stacking together regions
with the same compensation radius R1. These numerical simula-
tions can be used to follow backward in time the evolution of such
cosmic structures (see Section 3.3). From these primordial numeri-
cal profiles we have shown that CoSpheres are generated from the
stochastic fluctuations of the primordial field (see Section 2.2.3 and
Fig. 7).

At high redshift the matter field follows a Gaussian statistics. In
order to derive the matter profile of CoSpheres in GRF formalism,
we have extended the results of Bardeen et al. (1986) by imple-
menting explicitly the compensation conditions equations (5) and
(10) (see Section 3). With this original compensation constraint, the
spherical density (and mass) contrast profile is now parametrized
by four independent – but correlated – shape parameters; ν and
x qualifying the central extrema (already introduced by BBKS)
while ν1 and R1 characterize the surrounding cosmic environment
on larger scales. While the standard BBKS profile was determined
on all scales by providing the peak parameters ν and x, our exten-
sion allows to probe the same central extremum in various cosmic
environments. These physical configurations can be described by
the additional shape parameters ν1 and R1 (see Fig. 10). We em-
phasize that ν and x affect the matter profile on small scales while
ν1 controls the shape and the amplitude on larger scale, typically
around and beyond the compensation radius.

In Section 4.2, we show that the SC model is well suited for the
dynamical evolution of CoSpheres whereas neither Zel’dovich nor
linear dynamics provide satisfying accuracy. We show that the full
non-linear gravitational collapse can be solved analytically around
R1 where it reduces to a one-dimensional Zel’dovich dynamics.
We stress that on this particular radius, the Zel’dovich dynamics
provides an exact solution for the SC and not only a dynamical
approximation. In particular, this implies that the linear growth
rate can be exactly estimated on this scale (see equation 91). This
emphasize the relevance of this particular radius. The possibilities to

Figure 18. Reconstruction of a void profile at z = 0 with a large compensa-
tion radius R1 = 70 h−1 Mpc. The red curve is the CoSphere reconstruction
obtained through the procedure discussed in Section 4.4. This figure illus-
trates the particular elbow around r ∼ 25 h−1 Mpc as in Fig. 3. This original
feature will be discussed in a following paper Alimi & de Fromont (2017a)
and appears as an imprint of the decoupling between the central extrema
and its surrounding environment.

use this property and to constrain the underlying cosmology will be
discussed in detail in Alimi & de Fromont (2017b) and de Fromont
& Alimi (in preparation).

For central minimum, CoSphere can be identified to cosmic voids.
Their radial profiles exhibit a characteristic elbow around r ∼ 20
h−1 Mpc (see Figs 4b and 18). This elbow is present on both density
and mass contrast profile, though it is more pronounced on density
profiles (red curve in Fig. 3b). This particular shape property is a
characteristic of the definition of our cosmic voids and does not
appear clearly in void profiles build from other algorithm (e.g.
Hamaus et al. 2014b).

This elbow is a specific feature of our stacking operation which
combine profiles with the same compensation radius R1. For other
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Reconstructing matter profiles of CoSpheres 5193

Figure 19. Mass contrast profile from central haloes of mass
Mh ∼ 3.0 × 1013 h−1 M� computed from the halo field at z = 0. This pro-
file is obtained by considering a biased field traced by DM haloes weighted
by their mass. The mean density ρ̄ is estimated from the ratio between the
total mass of haloes and the volume of the simulations. The red curve is
the theoretical reconstruction using CoSphere formalism as discussed in
Section 4.4.

void reconstructions based on their effective radius Reff, this elbow
may be smoothed by the stacking together profiles with various R1.
As will be discussed in Alimi & de Fromont (2017a), this elbow
is the imprint of the progressive decorrelation between the central
extrema and the surrounding cosmic environment.

We stress that our work allows a common description for the
formation of both cosmic void and large-scale profile surrounding
haloes. The efficiency of the reconstruction procedure (see Sec-
tion 4.4) emphasizes R1 as a fundamental scale carrying the memory
of the primordial Universe and qualifying cosmic structures.

Finally, all the results presented in this paper assume a non-biased
or distorted CDM field. In realistic surveys however, we do not
have access to the full CDM field but rather to its discrete tracers as
galaxies or galaxy cluster. In a N-body simulation, these tracers can
be modelled from DM haloes since galaxies are more likely to form
in potential wells generated by DM collapse. As a proof of concept
we show in Fig. 19 the reconstructed matter profile obtained from
the field traced only by DM haloes. The global shape of profiles is
not changed when using the biased field and CoSpheres can still
be clearly identified. The agreement between numerical profiles
(blue points) and reconstructed theoretical profile (in red) is again
excellent on all scales. The only modification with the previous
matter profiles reduces, in a first approximation, to the introduction
of a linear bias b such as δhaloes = b × δCDM without affecting the
shape of CoSpheres. For cosmic voids, the linearity of the bias has
been studied in Pollina et al. (2017) where it was shown to be a
very good approximation, whatever the tracer population (galaxies,
galaxy clusters and AGN).
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Alimi J.-M., Füzfa A., Boucher V., Rasera Y., Courtin J., Corasaniti P.-S.,

2010, MNRAS, 401, 775
Alimi J.-M. et al., 2012, DEUS Full Observable LCDM Universe Simula-

tion: the numerical challenge. IEEE Computer Society Press, CA, USA,
SC2012, Article No. 73,

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Bertschinger E., 1985, ApJS, 58, 39
Bertschinger E., 1987, ApJ, 323, L103
Cai Y.-C., Padilla N., Li B., 2015, MNRAS, 451, 1036
Caldwell R. R., Kamionkowski M., 2009, Annu. Rev. Nucl. Part. Sci., 59,

397
Colberg J. M., Sheth R. K., Diaferio A., Gao L., Yoshida N., 2005, MNRAS,

360, 216
Courtin J., Rasera Y., Alimi J.-M., Corasaniti P.-S., Boucher V., Füzfa A.,
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A P P E N D I X A : SH I F T I N G TH E C E N T R E O F
MASS

The primordial profiles computed in equations (51) and (36) have
been derived within the GRF formalism assuming that the position
x0 of the central extrema is perfectly known. However, the recon-
struction procedure of the averaged profiles at higher redshift as
introduced in Section 3.3 may induce a shift between the exact po-
sition of the local extrema x0 and its estimation xc. In this section,
we evaluate the consequence of missing this exact position.

We assume that the density profile centred on the real extrema
〈δ〉(ri) is given by equation (36) where ri denotes the comoving
distance from the real extrema x0, i.e. ri = |x0 − x|. We want to
evaluate the density contrast on the shell located at a radius r where
r is measured from the estimated (but wrong) centre xc shifted by
xc := x0 + R. In other words we note r = |r| = |xc − x|.

Let us define ϕ such as R · r = R · r · cos(ϕ). Following equation
(36), the spherical density contrast can be written as an Hankel
Transform

〈δ〉 (ri) =
∫

P (k) × δ̃(ν, x, ν1, R1, k)
sin(kri)

kri

dk, (A1)

where δ̃ is a linear function of ν, x and ν1 and depends non-linearly
in k and R1 (see equation 36) while P(k) is the linear power spectrum.
The ‘reconstructed’ density contrast 〈δ〉′(r) around the position xc

at a radius r is thus given by averaging 〈δ〉 on the shifted sphere of
radius r around xc

〈δ〉′ (r) = 1

2

∫ π

0
sin(ϕ) 〈δ〉

(√
r2 + R2 − 2rR cos(ϕ)

)
dϕ. (A2)

Using the explicit expression equation (A1) for 〈δ〉 we find

〈δ〉′ (r)=
∫

P (k)× δ̃(ν, x, ν1, R1, k)
sin(kr)

kr
× sin(kR)

kR
dk. (A3)

Thus, the shifted profile 〈δ〉′(r) takes exact same form than the
un-shifted profile 〈δ〉(r) given by equation (36) with an effective
power-spectrum Peff(k) given by

P (k) →
x0

x0 + R→Peff (k) := P (k) × sin(kR)

kR
. (A4)

Of course, for R → 0 we recover the usual profile but for R =
0, the profile implies an effective power spectrum smoothed on
the shifting scale R. Note also that missing the right centre of mass
leads to non-isotropic profiles but here we focus only the spherically
average profile. The mass contrast profile 〈�〉 (see equation 51) is
affected by the exact same factor, i.e. it is written exactly as equation
(51) but with the effective spectrum given by equation (A4).

APPENDIX B: H IGH-REDSHIFT SOLUTION
AND THE ZEL’DOV ICH A PPROX IMATION

The dynamical equation (77) can be solved exactly orders by orders
for R (and for each radius ri) with the series

R(t) = 1 +
∑
n≥1

ηn(t)�n
i , (B1)

where each function ηn(t) depends only on t and ηn(ti) = 0. The
solution equation (B1) is the exact solution for the Lagrangian
perturbation theory in spherical coordinates which is valid until
shell-crossing.

B1 High-redshift solution

In the very high-redshift regime (z � 1), the initial mass contrast
�i satisfies �i � 1 for all initial radius ri (since �i ∼ σ 0). The
0th order term of equation (B1) corresponds to the linear Eulerian
theory δ(x, t) ∝ D(t)δ(x, ti).

Let us now consider the first-order term

R(t) � 1 + η1(t)�i + O(�2
i ), (B2)

with η1(ti) = 0. In this regime, the right-hand term of equation (77)
reduce to

R − 1 + �i

R2
→

�i�1
�i (3η1(t) − 1) . (B3)

If we define J such as η1 = (J − 1)/3, using equation (B3), it is
easy to show that J(t) satisfies

d2J

dt2
+ 2H (t)

dJ

dt
= 3

2
H 2(t)�m(t)J (t), (B4)

with J(ti) = 1. Equation (B4) is exactly the equation solved by the
linear growth factor D(t), thus, using J(ti) = 1 we deduce that in
this weak field regime, η(t) is given by

η1(t) = −1

3

(
D(t)

D(ti)
− 1

)
. (B5)

In this regime, the displacement field R is given by

R(t) = 1 − �i

3

(
D(t)

D(ti)
− 1

)
, (B6)

where the �i and thus R depend on the initial position ri.

B2 Link with the Zel’dovich approximation

The Zel’dovich approximation (denoted as ZA; Zel’dovich 1970)
consists into approximating the field displacement by its initial
value. With our notation, it reaches

χ (q, t) = q + s(q, t), (B7)

where s(q, t) is the displacement field which verifies

∂2s
∂t2

+ 2H
∂s
∂t

= −∇φ, (B8)

and φ is the gravitational potential that satisfies �φ = 4πGδ(r).
The ZA approximates the displacement field by its initial value
s(χi, t) = s0(q)D(t) where D(t) is the linear growth factor which
verifies equation (B4) and s0 = −(2∇φ0)/(3H 2

i �m,i).
If we define χi such as χ (q, ti) = χi , then χ (χi, t) = χi +

s(q, t) − s0(q). Using equation (71), we can write explicitly s0(q)
in the spherical approximation. It then follows that

χ = χi

(
1 − �i

3

[
D(t)

D(ti)
− 1

])
, (B9)

which is exactly the solution obtained in equation (B6). This is not
surprising since the ZA is by construction the first-order Lagrangian
perturbation theory, we re-find it here in spherical geometry.
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