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a b s t r a c t

The objective of this paper is to characterize and model the vibration behaviour of

entangled carbon fibres cross-linked with epoxy resin. The material is tested in shear, in a

double lap configuration. Experimental testing is carried out for frequencies varying from

1 Hz to 80 Hz and for shear strain amplitudes ranging from 5 ! 10"4 to 1 ! 10"2 . Measured

shear stress–strain hysteresis loops show a nonlinear behaviour with a low frequency

dependency.

The hysteresis loops are decomposed in a linear part and three nonlinear parts: a dry

friction hysteresis, a stiffening term and a stiction-like overshoot term. The Generalized

Dahl Model is used in conjunction with other hysteresis models to develop an appropriate

description of the measured hysteresis loops, based on the three nonlinear parts. In

particular, a new one-state formulation of the Bliman–Sorine model is developed. A new

identification procedure is also introduced for the Dahl model, based on the so-called

backbone curve. The model is shown to capture well the complex shapes of the measured

hysteresis loops at all amplitudes.

1. Introduction

Entangled materials are composed of flexible fibres with random or chosen orientations. Their properties are linked to

the fibre orientation, the fibre density as well as the type of contacts between the fibres [1]. One of the interesting properties

of fibrous materials is their ability to dissipate energy through friction between fibres, as shown by Poquillon [2] in static

compression for example.

Recently, Mezeix [3,4] introduced a new material in which glass, aramid or carbon fibres are first entangled and then

cross-linked with epoxy resin. Creating permanent links between some of the fibres increases the stiffeness of the material

compared to entangled fibres. This makes the entangled cross-linked material a suitable core for sandwich structures.

Sandwich structures are three-layered structures in which two facesheets are separated by a core, which needs to be both

lightweight and stiff enough to reach good stiffness-to-weight ratios.

So far, studies on this entangled cross-linked material have focused mainly on its process and static properties in

compression, tension and bending [3–6]. A first study on the vibration properties of sandwich structures with entangled

core material has shown increased damping as compared to classical core materials such as honeycomb or foams [7].
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However, the intrinsic behaviour of the material has not been investigated. Moreover, the vibration response was presented

for one amplitude of excitation only, while fibrous materials are known to exhibit nonlinear behaviours [8]. A material study

taking nonlinearity into account is thus necessary.

In order to describe a dissipative nonlinear behaviour, hysteresis models can be used. Recently, Al Majid and Dufour

[9,10] introduced the Generalized Dahl Model, which allows the representation of hysteresis loops with complex shapes,

relying on the description of their asymptotes. However, the expressions of the asymptotes have to be assumed, which is not

straightforward for complex shapes.

This paper presents the first study of the vibration behaviour of entangled cross-linked carbon fibres to the authors'

knowledge. Moreover, an original combination of existing hysteresis models is introduced, and the proposed method can be

applied to a large set of physical phenomena.

The paper is organized as follows. Section 2 describes the entangled cross-linked material and the experimental set-up

for shear testing. In Section 3, the measured shear stress–strain hysteresis loops are analysed and are interpreted in terms of

the activated deformation mechanisms. Section 4 details the development of an adapted hysteresis model to describe the

measured hysteresis loops. Section 5 presents identification procedures for the model. Finally, in Section 6 the parameters of

the model are obtained and discussed.

2. Material and set-up

2.1. Material fabrication

In the present study, the entangled cross-linked material is made with carbon fibres, as they provide higher perfor-

mances compared to glass or aramid fibres, albeit for a higher cost. They are widely used in aerospace applications along

with epoxy resin, in particular in carbon-epoxy sandwich facesheets. The carbon fibres have a diameter of 7 μm, a Young's

modulus of 240 GPa and a bulk density of 1770 kg/m3.

Epoxy resin is used for cross-linking because of its wide use in aeronautical applications. An injection resin with a

hardener is used.

The entangled cross-linked material is made following the process introduced by Mezeix [3,4]:

# The fibres are first cut to a length of 31 mm. They are then separated and entangled in a 64 L blower roomwith an air flux

at a 5 bar pressure applied manually. The density of the entangled material before cross-linking is 150 kg/m3, which

represents a fibre volume fraction of 8.5 percent.
# The entangled fibres are then cross-linked by projecting epoxy resin with a paint spray gun at a 2 bar pressure. The resin

droplets bond part of the contacts between the fibres. The density of epoxy resin in the final material is 30 kg/m3, a low

density as compared to the fibre density.
# The samples are then polymerized in a mold at 70 °C during 8 h.

Fig. 1 shows a scanning electron microscope observation of the material after polymerization. As can be observed, the fibres

are surrounded by air rather than a matrix: epoxy resin creates links at the contact between some fibres, while at other

contacts fibres remain free to move with respect to one another.

2.2. Experimental set-up

As the entangled cross-linked material is intended to be used as a sandwich core material, its shear behaviour is of prime

interest [11]. The shear set-up is presented in Fig. 2. Two samples are tested together in a double lap configuration to ensure

shearing only. The set-up includes a linear vertical motor above the samples, and a load cell under the samples. The

Fig. 1. Scanning electron microscope observation of entangled cross-linked carbon fibres: (a) general view showing cross-linked and free contacts and

(b) zoom on a typical cross-linked contact between two carbon fibres.



dimensions of each sample are h$ l$ L¼ 20 mm$ 40 mm$ 60 mm. The samples are glued to 3 mm thick aluminium

plates on each side. Two of the plates are bolted together at the centre of the set up and linked to the vertical motor. The

external plates are clamped to the load cell through two steel brackets on a thick aluminium support.

A controlled vertical displacement of amplitude u0 and frequency f is applied to the two central plates by the electric

motor:

uðtÞ ¼ u0 sin ð2πftÞ (1)

which leads to a shear strain γ in the samples, as described in Fig. 3. Assuming that shear is constant through the thickness

of the samples, the engineering shear strain in small deformations is:

γ tð Þ ¼
uðtÞ
h

¼ γ0 sin 2πftð Þ (2)

where h is the thickness of each sample.

The resulting force F at the base of the set up is measured by a load cell under the samples. The shear stress is obtained by

dividing the force applied on each sample, F=2, by the surface through which it is applied, S¼ l$ L, resulting in the following

expression:

τ tð Þ ¼
FðtÞ
2S

(3)

After fabrication and before making further measurements, the samples are excited at an amplitude of γ0 ¼ 1 ! 10"2 and

a frequency of 20 Hz. During the first cycles, the measured shear stress–strain response evolves with the number of cycles

applied. The stiffness of the samples decreases, and damping increases. After around 40,000 cycles, the behaviour stabilizes.

Further cycling at amplitudes under γ0 ¼ 1 ! 10"2 will not modify the shear behaviour any more. Moreover, this pre-cycled

behaviour is stable in time, and new series of testing after several days show the same properties for the pre-cycled samples.

All measurements presented in this article are made after this pre-cycling.

Fig. 2. Double lap shear set-up: (a) schematic principle and (b) experimental set-up.

Fig. 3. Shear strain γ in each sample resulting from the applied displacement u. F is the load measured at the load cell under the samples: as the assembly is

symmetrical and two identical samples tested together, it is assumed that the force applied to each sample is F=2.



3. Measurements and first analysis

Measurements are made for an amplitude range of γ0 ¼ 5 ! 10"4 to γ0 ¼ 1 ! 10"2 (u0 ¼ 5 μm to u0 ¼ 100 μm) and a

frequency range of 1 Hz to 80 Hz. These ranges are limited by the set-up. The amplitude range corresponds to small

deformations (γ0⪡1) with a large range of variations, the minimum being 20 times smaller than the maximum. The fre-

quency range is low compared to the frequency range of interest in structural vibrations (up to 1000 Hz or above). However

it allows transitioning from the previous static studies [4,5] to vibrations studies. Testing at 1 Hz is close to static testing,

while testing from 20 Hz to 80 Hz should permit highlighting vibration specific phenomena.

3.1. Linear part

Fig. 4 shows a shear stress–strain hysteresis loop measured at an amplitude of γ0 ¼ 1 ! 10"2 and a frequency of 20 Hz for

a set of two samples. The loop is composed of a linear part, represented by the dashed line on the figure, and a hysteresis

part that carries the dissipative and nonlinear behaviour of the material. Previous studies on the behaviour of entangled

fibres with and without cross-links [6] have shown that cross-links increase significantly the stiffness of the material. Thus,

the linear part of the measured hysteresis can be assumed to come mainly from the carbon fibre network created by the

epoxy resin bondings achieved at a large number of cross-links.

Keeping in mind this linear part, the study and following figures will focus on the hysteresis part of the stress defined as

follows:

τH ¼ τ"G1γ (4)

where G1 is a constant parameter that will be identified in Section 6.

3.2. Hysteresis loops

Fig. 5 shows τH plotted against γ for amplitudes ranging from γ0 ¼ 5 ! 10"4 to γ0 ¼ 1 ! 10"2 for the same set of two

samples. As can be observed, the shapes of the hysteresis loops vary strongly with amplitude, which indicates material

nonlinearity.

Fig. 6 shows the loops along with a curve linking the extrema of the loops. This curve is called the backbone curve in the

fields of material study and control: in some cases, it represents the response of the tested system to an initial loading and it

can be used to generate the full hysteresis curves [12–14]. This should not be confused with the backbone curve used in the

description of the frequency response of nonlinear systems, even though the expression is the same.

Here, linking the extrema of the loops allows seeing the evolution of the general slope of the loops. Two lines of constant

stress are also represented in Fig. 6. Both the backbone curve and the constant stress lines allow identifying two regions in

the material behaviour:

# From γ0 ¼ 5 ! 10"4 to γ0 ¼ 5 ! 10"3, the hysteresis shape is typical of a stick-slip dry friction behaviour, as the hysteresis

loops evolve between two horizontal lines of constant stress. The instantaneous slope of the backbone curve decreases at

very low amplitude before becoming almost constant and equal to zero. Both the instantaneous slopes of the loops and

backbone curve indicate that the material stiffness decreases with the amplitude, which is called a softening behaviour.

This behaviour can be interpreted as follows. When the direction of the strain is reversed, all free contacts between the

Fig. 4. Measured hysteresis loop for an amplitude γ0 ¼ 1 ! 10"2 at a frequency f ¼ 20 Hz. The dashed line corresponds to τ¼G1γ with G1 ¼ 6:16 ! 106 Pa as

identified in Section 6.



fibres are stuck, which gives extra stiffness to the fibre network. Then, as the amplitude increases, the contacts start to slip

one after the other, until all non-cross-linked contacts are slipping, leading to a very low network stiffness.
# From γ0 ¼ 5 ! 10"3 to γ0 ¼ 1 ! 10"2, the slope of the backbone curve increases: the material exhibits a stiffening beha-

viour. Moreover, a clear overshoot can be observed after strain direction reversal, as the hysteresis loops exceed the

horizontal asymptotes of lower amplitude behaviour. It can be assumed that when all the contacts are slipping, and all the

fibres are moving, new contacts are created eventually, which leads to a stiffening of the material. An increase in the

number of contacts can also lead to an increase in the material dissipation, which would explain the observed overshoot.

This physical interpretation would have to be confirmed by future fibre-level observations and modelling. Physically, the

observed limit of γ0 ¼ 5 ! 10"3 corresponds to u0 ¼ 100 μm, which is close to the average distance between the fibre cross-

links of 120 μm
þ140 μm
"70 μm observed by Mezeix [4].

Fig. 7 shows the measured hysteresis loops for frequencies ranging from 1 Hz to 80 Hz at different amplitudes. The

material exhibits a very low frequency dependency: almost no frequency dependency for low amplitudes, and a little

stiffening at the highest amplitude γ0 ¼ 1 ! 10"2. The observed frequency-independent behaviour confirms the hypothesis

of a dry friction phenomenon.

4. Hysteresis modelling

In order to capture the material behaviour for future structural modelling, the hysteresis shapes will be described with

restoring force models.

A now classical hysteresis model called the Solid Friction Model (SFM) was introduced almost fifty years ago by Dahl [15] to

describe ball bearings, and was later extended to describe general friction damping phenomena [16]. With shear stress–strain

Fig. 6. Analysis of the hysteresis loops γ; τHð Þ of Fig. 5: measured loops (grey full line γ0r5 ! 10"3 , grey dashed line γ045 ! 10"3), backbone curve (black

full line), constant stress τH ¼ 7τC ¼ 71:07 ! 103 Pa as identified in Section 6 (black dotted line).

Fig. 5. Amplitude dependency of τH ¼ τ"G1γ up to an amplitude γ0 ¼ 1 ! 10"2 at a frequency f ¼ 20 Hz. G1 ¼ 6:16 ! 106 Pa as identified in Section 6.



notations, the model can be written as follows:

dτ

dγ
¼
σ

τC
τC"τ sgnð _γ Þ
! "i

(5)

where σ is a constant homogeneous to a modulus, τC represents the asymptotic stress, sgn is the signum function, and i is a
constant that controls the shape of the loop between a ductile and a brittle behaviour. The principle is that stress evolves

between "τC and τC , as shown in Fig. 8(a), with the slope at τ¼ 0 given by σ. “C” in τC stands for Coulomb, as the SFM yields a

regularized representation of Coulomb friction.

Recently, Al Majid and Dufour [9] introduced a Generalized Dahl Model (GDM) that allows the description of complex

hysteresis shapes by including general envelope curves instead of constant asymptotes, as shown in Fig. 8(b). Keeping the

notations of Eq. (5), a simplified expression of the GDM can be written as follows:

dτ

dγ
¼
σ

τC
h"τ sgnð _γ Þ
! "i

(6)

where h is an envelope function given by:

h¼
huþhlð Þsgnð _γ Þþ hu"hlð Þ

2
(7)

so that h describes the upper asymptote hu when the strain rate _γ is positive and the lower asymptote hl when _γ is negative.

When h¼ τC , the SFM is obtained. The constant i is taken equal to 1 by most authors [10,17].

This formulation is very general and has been used to describe various damping phenomena occurring in all-metal

isolators [10], elastomers [18], belt tensioners [17,19] or rubber mounts [20] for example. However, its generality also leads

to challenges in its application to complex hysteresis modelling. In particular, identification relies on the assumption of h
expression, which can be polynomial [17,20], but can also include exponential terms or dependency with respect to the

harmonic amplitude [10] or other parameters such as temperature.

Fig. 8. Hysteresis loops as can be described by (a) Dahl's Solid Friction Model (SFM) [16] with constant asymptotes τC and "τC and (b) the Generalized Dahl

Model (GDM) [9] with asymptotes hu and hl .

Fig. 7. Frequency dependency of τH ¼ τ"G1γ for γ0 ¼ 1 ! 10"3 , γ0 ¼ 4 ! 10"3 and γ0 ¼ 1 ! 10"2 . G1 ¼ 6:16 ! 106 Pa as identified in Section 6.



4.1. A three-part hysteresis model

In the present work, the expression for h will be obtained from other hysteresis models. Based on the

preliminary analysis of the measured loops in Section 3.2, the proposed model will be based on three parts, as illustrated in

Fig. 9:

# Dahl's Dynamic Hysteresis Model [21] will be used to represent the classical dry-friction behaviour.
# A polynomial term will account for the linear part and the stiffening behaviour.
# A new formulation of the Bliman–Sorine model [22] will be used to include overshoot.

4.1.1. Part (a): Dahl's dynamic hysteresis model
Dahl's SFM (Eq. (5)) could be used to describe the dry friction hysteresis observed at low amplitudes (for γ0r5 ! 10"3).

However, this model lacks nonlocal memory: its expression does not include information on the stress or strain at last

change in the direction of the strain. The error arising from the lack of nonlocal memory when modelling non-harmonic

response is illustrated in Fig. 10(a): F denotes the point that should be reached and F’ the point that is actually reached.

Moreover, evenwhen modelling harmonic behaviour, this model leads to hysteresis loops with an initial slope depending on

amplitude, which is undesirable. These limitations were addressed by Dahl in subsequent work, leading to a lesser known

model, the Dynamic Hysteresis Model (DHM) [21], which principle is shown in Fig. 10(b).

The DHM is based on the Prandtl rules [21]:

# The slope of any hysteresis branch immediately after a velocity reversal is the same for all branches.
# The shape of a branch depends only on the last point of velocity reversal.
# When a branch goes through the last but one point of velocity reversal, the current loop is closed, and the branch

continues as if this loop had never been formed. This is true both when closing a minor loop to return on the major loop,

and when exceeding the maximum of the current major loop.

Fig. 9. Parts of the hysteresis loops used in the model decomposition: (a) dry friction hysteresis, (b) linear part and stiffening, and (c) overshoot.

Fig. 10. Non-harmonic response to the same excitation for both Dahl models: (a) Dahl's Solid Friction Model (SFM) and (b) Dahl's Dynamic Hysteresis

Model (DHM), with branch index k in grey.



The last point corresponds to a fundamental property of hysteresis models with nonlocal memory called the wiping-out

property [12,23]. This rule states that cycles with larger amplitudes wipe out the history of cycles with smaller amplitudes.

Experimentally, it is indeed observed that the shape of major hysteresis loops does not depend on whether minor loops are

formed or not, in a large range of fields including material plasticity [24], piezoelectric controllers [21] and friction [12]. It is

also the case of the present hysteresis loops.

For stress–strain loops, the DHM links the restoring stress τDHM with the strain γ and strain rate _γ by the following

relationship:

dτDHM

dγ
¼ σ 2"

τDHM"τmðkÞ
τC

# $

sgn _γ
! "

# $i

(8)

The difference between the DHM and the SFM lies in the introduction of the term τmðkÞ, which accounts for the stress at

last velocity reversal point, k being the index of the current branch. This allows any branch of the hysteresis to start with

the same initial slope 2σ after a velocity reversal. Vector τm and index k are updated in the following way, as illustrated in

Fig. 10(b):

# at first loading, k¼1 and τmð1Þ ¼ "τC sgn _uð Þ (example: branch A - B in Fig. 10(b));
# at any strain direction reversal point, a new branch is created, k is increased by 1 and τmðkÞ takes the value of τ at the

reversal point (branches B - C, C - D and D - C);
# if a previous branch is crossed with k42, an internal loop is closed, the last two reversal points are “forgotten”, k is

decreased by 2 (branch C - E);
# if the current branch exceeds maximal load encountered previously, then all history is forgotten and the branch becomes

a first loading branch with k¼1 and τmð1Þ ¼ "τC sgn _γ
! "

(branch E - F).

The two last points implement the memory wipe-out described above.

In the following, parameter k is omitted for clarity.

The DHM can be seen as a particular case of the GDM presented in Eq. (6), with the following asymptote function:

hDHM τm; _γ
! "

¼ 2τCþτm sgn _γ
! "

(9)

It must be pointed out that the actual expressions of the asymptotes do not change from the SFM to the DHM, which

means that hDHM is related but not equal to the expressions of the asymptotes:

hDHM τm; _γ
! "

¼ τC
|{z}

asymptotes
ðSFMÞ

þτCþτmsgn _γ
! "

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

nonlocal memory

(10)

4.1.2. Part (b): including a polynomial term
In order to account for the linear part and the stiffening observed in the measurements, a polynomial term is included in

the model:

τ¼ τDHMþPðγÞ (11)

with τDHM as defined in Eq. (8), and P a polynomial.

Again, function h of the GDM can be written for the model including a polynomial. By differentiating Eq. (11) with

respect to γ:

dτ

dγ
¼
σ

τC
2τC" τDHM"τDHMm

! "
sgnð _γ Þ

! "
þP0 γ

! "
(12)

and writing τDHM ¼ τ"PðγÞ leads to:

dτ

dγ
¼
σ

τC
2τCþ

P0ðγÞ

σ=τC
" τ"PðγÞ" τm"PðγmÞ

! "! "
sgn _γ

! "
# $

(13)

which corresponds to the GDM of Eq. (6) with

hpoly _γ ; γ; γm; τm
! "

¼ τCþPðγÞsgnð _γ Þ
* +

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

asymptotes
ðSFM þpolynomialÞ

þ
P0ðγÞ

σ=τC

, -

|fflfflfflffl{zfflfflfflffl}

polynomial
derivative

þ τCþ τm"PðγmÞ
! "

sgnð _γ Þ
* +

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nonlocal memory

(14)

The three groups of terms in Eq. (14) show that the expressions of the asymptotes must be corrected with two terms to

get the expression for h: first, a term proportional to the derivative of the polynomial, and secondly, a nonlocal memory



term. This is an important point to note if the identification of h is made from the asymptote curves, as prescribed by Al

Majid [9].

4.2. Part (c): a new formulation of the Bliman–Sorine model

Hysteresis models that take into account an overshoot after the inversion in the strain direction include the LuGre (Lund–

Grenoble) friction model [25] and the Bliman–Sorine model [22]. The Bliman–Sorine model being rate independent, it is

chosen here as the observed behaviour does not depend on frequency.

As illustrated in Fig. 11, the Bliman–Sorine model is defined as the sum of two Dahl models with different slope constants

and asymptotic stresses of opposed signs:

dτ1
dγ

¼
σ1

τC1
τC1"τ1 sgnð _γ Þ
! "

τ1ð0Þ ¼ 0 ðaÞ

dτ2
dγ

¼
σ2

τC2
"τC2"τ2 sgnð _γ Þ

! "
τ2ð0Þ ¼ 0 ðbÞ

τ¼ τ1þτ2 ðcÞ

8

>>>>><

>>>>>:

(15)

where τ1 and τ2 represent two Dahl restoring stresses, with asymptotic stresses τC1 and "τC2 and initial slope σ1=τC1 and

σ2=τC2, respectively. The initial slopes are related by a factor ξ such that σ2=τC2 ¼ ξ σ1=τC1
! "

with 0rξr1. The same model

was introduced independently by Dahl some years later [26].

As discussed in Section 4.1.1, nonlocal memory is an important feature for hysteresis models to be applied to all types of

excitations. The original Bliman–Sorine model is based on Dahl's original SFM [15], so it does not include nonlocal memory.

The model is thus re-written here as a combination of two DHM rather than two SFM:

dτ1
dγ

¼
σ1

τC1
2τC1" τ1"τm1ð Þ ! sgn _γ

! "! "
ðaÞ

dτ2
dγ

¼
ξσ1

τC1
"2τC2" τ2"τm2ð Þ ! sgn _γ

! "! "
ðbÞ

τ¼ τ1þτ2 ðcÞ

8

>>>>><

>>>>>:

(16)

where τm1 and τm2 are the stresses at last inversion point for τ1 and τ2 respectively.

Apart from the original lack of nonlocal memory, one of the criticisms against the Bliman–Sorine model is the fact that it

has two states, which can lead to numerical instabilities [27]. Here, a new one-state expression is derived for dτ
dγ instead of

the two state formulation. A one state formulation will be intrinsically more stable numerically than the original

formulation.

Explicit expressions for τ2 and dτ2
dγ are obtained by first integrating and then re-deriving implicit Eq. (16b) with respect

to γ:

τ2 ¼ τm2"2τC2sgn _γ
! "

1"exp "
ξσ1 γ"γm

2
2

2
2

τC1

# $# $

(17)

dτ2
dγ

¼ "2ξσ1
τC2
τC1

exp "
ξσ1

τC1
γ"γm
2
2

2
2

# $

(18)

where γm is the shear strain at last inversion point.

Fig. 11. The Bliman–Sorine model as the difference between two stresses τ1 and τ2 following the Dahl model, after [30].



By deriving Eq. (16c) with respect to γ, inserting the implicit expression of dτ1
dγ Eq. (16a) and the explicit expression

of dτ2
dγ Eq. (18), the following expression is obtained:

dτ

dγ
¼
σ1

τC1
2τC1" τ1"τm1ð Þ ! sgn _γ

! "! "
"2ξσ1

τC2
τC1

exp "
ξσ1

τC1
γ"γm
2
2

2
2

# $

(19)

Then, τ1 is replaced by τ"τ2, τm1 is replaced by τm"τm2, and τ2 is replaced by its explicit expression from Eq. (17).

After simplification, the final expression is:

dτ

dγ
¼
σ1

τC1
2τC1"2τC2 1" 1"ξ

! "
exp "

ξσ1

τC1
γ"γm
2
2

2
2

# $# $#

" τ"τmð Þ ! sgn _γ
! ""

(20)

This expression follows the GDM expression of Eq. (6) with an asymptotic function hBS defined by:

hBS _γ ; γ; γm; τm
! "

¼ 2τC1"2τC2 1" 1"ξ
! "

exp "
ξσ1

τC1
γ"γm
2
2

2
2

# $# $

þτm ! sgn _γ
! "

(21)

This expression can be interpreted as follows. As γ tends to infinity, the asymptotic function tends towards

2 τC1"τC2ð Þþτm ! sgn _γ
! "

, which is the asymptotic function of a DHM with a constant asymptote τC1"τC2, as shown in Eq.

(9). But immediately after a velocity reversal, the asymptotic function is equal to 2 τC1"ξτC2
! "

þτm ! sgn _γ
! "

, which is larger,

as 0rξr1 and τC2oτC1. This higher asymptotic function allows the overshoot to occur. The asymptotic function then

decreases exponentially from its value at velocity reversal to its value at infinity, which is consistent with the exponential

decay observed in the Bliman–Sorine model due to the exponential behaviour of τ2 (see Fig. 11).

4.3. Full hysteresis model

When taking into account dry friction hysteresis with nonlocal memory (part (a)), a polynomial term (part (b)) and an

overshoot term (part (c)), the full expression for the model is:

dτ

dγ
¼
σ1

τC1
h"τ sgnð _γ Þ
! "

(22)

with

h _γ ; γ; γm; τm
! "

¼ 2τC1"2τC2 1" 1"ξ
! "

exp "
ξσ1

τC1
γ"γm
2
2

2
2

# $# $

þP γ
! "

sgn _γ
! "

þ
P0ðγÞ

σ1=τC1
þ τm"P γm

! "! "
! sgn _γ

! "
(23)

As can be observed, a complex expression is obtained for h, which could not have been guessed directly from the

hysteresis shape.

4.4. Model parameters and physical considerations

The general model is now adapted to the measured hysteresis loops in order to clarify the constant parameters that need

to be identified for future simulations.

Polynomial: A simple polynomial expression is chosen to include the linear part of the loops as well as the observed

stiffening behaviour:

P γ
! "

¼ G1γþG3γ
3 (24)

where G1 and G3 are constant coefficients.

Overshoot: The effect of part (c) of the model should only be to add an overshoot to the dry friction loops of part (a). In

particular, both the asymptotic stress and initial slope should remain unchanged when adding the overshoot. To this end,

τC1, τC2 and σ1 should be expressed with respect to the DHM parameters:

# By definition of the Bliman–Sorine model, the final asymptote of the model is obtained by the difference between the two

asymptotes (see Eqs. (16a)–(16c) and Fig. 11). As τC is the asymptotic stress for the DHM, the relationship is the following:

τC1"τC2 ¼ τC (25)

# Writing the initial slopes for both models from Eqs. (8) and (20) allows expressing σ1 as a function of σ:

dτ

dγ

2
2
2
2
γ ¼ γm

¼
2σ1

τC1
τC1"ξτC2
! "

¼ 2σ (26)

which leads to:

σ1 ¼ σ
τC1

τC1"ξτC2
(27)



Another element to take into account is the fact that the overshoot only appears at higher amplitudes in the experi-

mental loops. In order to capture this behaviour, τC2 should depend on the amplitude. The type of amplitude dependency

has to be decided based on experimental observations. Both overshoot and stiffening were interpreted as a consequence of

an increase in the number of contacts, as discussed in Section 3.2. In particular, the higher the amplitude, the more visible

the stiffening, and the higher the overshoot. Thus, an hypothesis is made that the overshoot and the stiffening phenomenon

are related. This is implemented by making τC2 proportional to the stiffening term at reversal point:

τC2ðγmÞ ¼ αG3γ
3
m (28)

where α is a constant to be determined.

From Eqs. (25), (27) and (28), it can be observed that τC1 and σ1 will also depend on the amplitude:

τC1 γm
! "

¼ τCþτC2 γm
! "

(29)

σ1 γm
! "

¼ σ
τCþτC2ðγmÞ

τCþτC2ðγmÞ 1"ξ
! " (30)

Finally, the constant parameters to identify for the full model are the following:

# the two DHM parameters τC and σ;
# two polynomial parameters: the “linear shear modulus” G1 and the coefficient for the cubic term G3;
# the two parameters for the overshoot model ξ and α¼ τC2ðγmÞ=G3γ

3
m.

All the other parameters for the overshoot model, τC2ðγmÞ, τC1 γm
! "

and σ1 γm
! "

can then be expressed from the previous

parameters.

5. Identification methods

In order to use the GDM, parameters are generally identified from the asymptotes of the hysteresis loops and their inner

area [9,17]. However, this leads to two main issues:

# First, as was shown in Sections 4.1.1 and 4.1.2, the function h is related but not equal to the equation of the asymptotes,

and identification must be carried out carefully by including correction terms.
# Second, for complex shapes as encountered here, it is not trivial to obtain the asymptotes, as by definition the loops are

not superposed or even close to the asymptotes except for high levels of deformation.

Here, the identification method relies on the decomposition of the model in three parts. In particular, a new identifi-

cation method is developed for the DHM and extended to the addition of any polynomial term.

5.1. Identification of the DHM parameters

Instead of relying on the asymptote, the proposed identification method for the DHM relies on the backbone curve of the

hysteresis loops (see Section 3.2 and Fig. 12).

Eq. (8) is integrated to obtain the explicit expression of the stress for the DHM:

τDHM ¼ τmþ2τC 1"e" σ
τC

γ"γmj j
3 4

sgn _γ
! "

(31)

Under a harmonic motion of amplitude γ0, the loops are comprised between a minimum point γmin; τmin

! "
and a

maximum point γmax; τmax

! "
, with γmax ¼ γ0 and γmin ¼ "γ0. The minimum and maximum points are the only reversal

Fig. 12. Schematic representation of hysteresis loops (full line) with corresponding backbone curve (dashed line).



points, and thus:

τm; γm
! "

¼ τmin; γmin

! "
if sgn _γ

! "
40

τm; γm
! "

¼ τmax; γmax

! "
if sgn _γ

! "
o0

(

(32)

As the DHM is symmetrical and the motion is harmonic, the maximum and minimum are related as follows:

γmin; τmin

! "
¼ "γmax; "τmax

! "
(33)

Moreover, τmax is reached from τmin when sgnð _γ Þ40, and τmin is reached from τmax when sgnð _γ Þo0.

Inserting Eqs. (33) and (32) in Eq. (31), the following expression for the backbone curve is obtained:

τm ¼ f bbðγmÞ (34)

f bbðγÞ ¼ τC 1"e"2 σ
τC
jγj

3 4

sgn γ
! "

(35)

with γm; τm
! "

¼ γmin; τmin

! "
or γmax; τmax

! "
. This expression contains all the parameters of the DHM, and allows a simple

identification from the minimum and maximum points of experimental loops measured at different amplitudes.

It can be noted that Eq. (31) can be obtained from Eq. (35) by replacing τm by τ"τmð Þ=2 and γm by γ"γm
! "

=2. The DHM is

actually a specific case of the Masing rules [12], with an exponential backbone curve.

5.2. Extension to the DHM with a polynomial term

The backbone curve identification method presented in the previous section allows the inclusion of any polynomial term

in the identification process without extra effort. Indeed, at a given loop extremum, adding the polynomial only shifts the

stress by the polynomial value at this extremum: τ0m ¼ τmþPðγmÞ. The expression of the backbone curve becomes:

f bb γ
! "

¼ τC 1"e
"2 σ

τC
γj j

3 4

sgn γ
! "

þP γ
! "

(36)

5.3. Identification method for the overshoot

The overshoot model parameters ξ and α can be identified in two different ways. As both Bliman and Sorine [22] and

Dahl [26] proposed the same overshoot model separately, they also proposed their own identification procedures. Fig. 11

shows the five measurable values that are used by one or the other identification method:

# τ1 is the stress when strain approaches infinity: τ1 ¼ lim1τ¼ τC1"τC2;
# τOS is the maximal stress reached at overshoot;
# γOS is the shear strain for which τOS is reached;

# S is the initial slope: S¼ dτ
dγ

2
2
2
γ ¼ 0

;

# γp is the strain for which the stress is within 5 percent of τ1.

Dahl [26] bases his identification method on S, τOS, γOS and τ1, while Bliman and Sorine [22] base theirs on τOS, γOS, τ1
and γp. In the present case, as the initial slope is an important characteristic of the hysteresis loops related to the network

architecture, Dahl's identification procedure will be preferred. Moreover, parameter γp can be hard to identify from

experimental loops where the decrease to the asymptote may not be a clean exponential decrease. The corresponding

equations for Dahl's identification are presented in Appendix A.

6. Parameter identification and interpretation

6.1. Backbone curve identification of parts (a) and (b)

Parts (a) (Dahl's DHM) and (b) (polynomial term) of the model are first identified using the backbone curve method. The

experimental backbone curve is defined from the extrema of the measured loops for all ten amplitudes from γ0 ¼ 5 ! 10"4 to

γ0 ¼ 1 ! 10"2, for the hysteresis loops measured at 20 Hz, as shown in Fig. 13. The extrema are centred, with the hypothesis

that in this shear test the loops should be symmetrical. From Eqs. (24) and (36), the backbone curve expression is:

f bb γ
! "

¼ τC 1"e
"2 σ

τC
γj j

3 4

sgn γ
! "

þG1γþG3γ
3 (37)

The nonlinear least-square method is used to identify the parameters of this function from the ten experimental points,

using MATLAB Curve Fitting Toolbox. Fig. 13 shows a comparison between measured and simulated loops for parts (a) and

(b) of the model, representing only the hysteresis without linear part τ"G1γ for legibility. Up to γ0 ¼ 5 ! 10"4, the hysteresis



loops are well represented. For higher amplitudes, the overshoot phenomenon is clearly visible, which confirms the need for

the third part of the model.

The parameters found for this set of samples at 20 Hz are:

τC ¼ 1:07 ! 103 Pa σ ¼ 1:49 ! 106 Pa

G1 ¼ 6:16 ! 106 Pa G3 ¼ 2:38 ! 109 Pa (38)

Fig. 13. Measured hysteresis loops for the first set of samples at 20 Hz (light grey full line), and corresponding backbone curve (black dashed line) and

simulated hysteresis loops with parts (a) and (b) of the model α¼ 0 and ξ¼ 0 (dark grey full line). The removed linear modulus value is G1 ¼ 6:16 ! 106 Pa.

Fig. 14. Measured hysteresis loops for the first set of samples at 20 Hz (light grey line) and simulated hysteresis loops with the full model including

overshoot (dark grey line). The removed linear modulus value is G1 ¼ 6:16 ! 106 Pa.

Fig. 15. Measured hysteresis loops for the second set of samples at 20 Hz (light grey line), and simulated hysteresis loops with the full model including

overshoot (dark grey full line). The removed linear modulus value is G1 ¼ 5:91 ! 106 Pa.



A new parameter is introduced: Gi ¼ G1þ2σ. This parameter corresponds to the initial slope of the hysteresis loops, and

thus to the modulus at very low amplitudes. From the values identified, Gi ¼ 9:14 ! 106 Pa. On the other hand, G1 corre-

sponds to the asymptotic modulus, which is the modulus that would be reached at high amplitudes if there were no cubic

term. Thus, the slope of the loop varies from Gi to G1 as the amplitude increases from a reversal point.

6.2. Identification of part (c) model parameters

The overshoot parameters ξ and α are now identified to be able to use the full model of Eqs. (22) and (23). Identification

is carried out on the hysteresis loop of highest amplitude, γ0 ¼ 1 ! 10"2. Parameters S, τOS, γOS and τ1 (Fig. 11) are identified

successively on the superior ( _γ40) and inferior ( _γo0) branches of the hysteresis loop. The obtained parameters are then
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Fig. 16. Parameters for the two sets of samples: (a) asymptotic modulus, G1, (b) initial modulus Gi , (c) asymptotic stress τC , (d) cubic coefficient G3,
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γ0 ¼ 1 ! 10"2 for parameters G1, Gi , τC and G3 and on the full loop at one amplitude γ0 ¼ 1 ! 10"2 for overshoot parameters α and ξ.



averaged to compensate for the asymmetry that could appear during measurement. Dahl's method (Appendix A) gives ξ and

τC2ðγmÞ, from which α¼ τC2ðγmÞ=G3γ
3
m is deduced.

The parameters found are:

α¼ 0:92 ξ¼ 0:37 (39)

Fig. 14 shows the same experimental loops as Fig. 13, compared with the full model. While there are still discrepancies

between the model and experimental loops, the general behaviour is very well represented by the full model.

6.3. Variability and frequency dependency

A second set of samples was tested under the same conditions as the first set. Then, the identification procedure was

applied to obtain the corresponding parameters for the model. Fig. 15 shows the measured loops at 20 Hz as well as the

simulated loops. Note that the linear modulus, removed from all figures, is slightly lower for the second set of samples, with

G1 ¼ 5:91 ! 106 Pa. Another difference that can be observed directly from the loops is that the samples of the second set

exhibit higher energy dissipation: the loops are more open than for the first set of samples.

Fig. 16 shows a comparison between the identified parameters for both sets and for frequencies ranging from 1 Hz to

80 Hz.

It can be seen that the obtained values for the asymptotic and initial moduli G1 and Gi are very close for both sets and

have a very low frequency dependency, with slightly lower values for set 2. As the modulus evolves between Gi and G1, it

evolves roughly between 9 MPa and 6 MPa. While there has been no previous study on the shear behaviour of the material,

a finite element analysis by Mezeix [28] indicated a shear modulus of 10 MPa. The order of magnitude is consistent with the

present work.

Asymptotic stress τC also has a low frequency dependency, but with a large difference between the two sets. This is

consistent with the fact that the loops measured for set 2 are more open that those measured for set 1. Parameter G3 exhibits

first a low difference between samples, which increases with frequency. This parameter is the only parameter of parts

(a) and (b) that exhibits some frequency dependency: the parameter increases, which is consistent with the preliminary

analysis in Section 3.2 and with observations made by Janghorban on entangled fibres [29].

Finally, regarding parameters of the overshoot model (part (c)), a larger variation is observed both between samples and

with frequency. This is due to the fact that the overshoot region in the loops is more subject to noise. The identification was

not as efficient as for the other parameters, which indicates the need for a more robust identification process for this part.

However, the obtained values still give the order of magnitude of those parameters.

This comparison between two sets of samples confirms the general behaviour observed for the first set of samples. The

samples exhibit a low variability in modulus, but a higher variability in energy dissipation and stiffening behaviour. It is

worth remembering that the samples are currently made manually. The good repeatability in modulus is a positive infor-

mation, while the variability in energy dissipation indicates that more work is needed to understand and control better this

fundamental property. The low frequency dependency of the material behaviour was also confirmed by parameter

identification.

7. Conclusions

The shear behaviour of entangled cross-linked carbon fibres was studied at frequencies from 1 Hz to 80 Hz. Experimental

testing of the material for amplitudes up to γ0 ¼ 1 ! 10"2 showed a nonlinear behaviour with very low frequency depen-

dency. The analysis of the measured shear stress–strain hysteresis loops lead to a decomposition of the behaviour between a

linear part and three nonlinear parts: a dry friction hysteresis (part (a)), a stiffening (part (b)) and an overshoot (part (c)), the

two last parts appearing only at amplitudes higher than γ0 ¼ 5 ! 10"3. The linear part was attributed to the stiffness of the

cross-linked contacts. Part (a) was attributed to fibres slipping against each other at free contacts. Parts (b) and (c) were

assumed to come from the creation of new contacts between fibres at higher deformation amplitudes.

The hysteresis loops were modelled using Al Majid and Dufour's Generalized Dahl Model. Instead of assuming the

expression of the asymptote function for this model, the three nonlinear parts of the behaviour were modelled separately

before combining them. Dry friction was modelled using Dahl's lesser known Dynamic Hysteresis Model, and stiffening was

included with a polynomial term. It was shown that the asymptote function in the Generalized Dahl Model is in fact related

to but not equal to the actual asymptotes’ equations. A new one-state formulation for the Bliman–Sorine overshoot model

was developed.

A new identification method was introduced for the Dynamic Hysteresis Model, relying on the backbone curve, and was

extended to the addition of a polynomial term. The identification of the model parameters lead to a good capture of the

hysteresis loops, showing the relevance of the developed model. Comparison between two sets of samples showed similar

behaviours, but with some variability in the energy dissipation that could be analysed in further studies on the fabrication

process of the material.

While the proposed combination of hysteresis models was applied to entangled cross-linked fibres in the present work, it

could be used to model a large set of phenomena including friction, elasto-plasticity, stiffening, softening or stiction among



others. Other shapes could be modelled with the same model principle: asymmetrical loops can be achieved by using

asymmetrical polynomials, or by defining different asymptotic functions for the upper and lower asymptotes.

Ongoing work will analyse the effect of the observed material behaviour on the vibratory response of a structure. The

material model will be used in the analysis of both harmonic and transient nonlinear responses.

Acknowledgements

This study was carried out during the first author's PhD work at Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

in Toulouse, France. Région Midi Pyrénée and Université de Toulouse are gratefully acknowledged for their financial support.

Appendix A. Dahl's identification method for the overshoot model

The following parameters are defined from the parameters of Fig. 11:

d¼
τC2
τ1

¼
τC2

τC1"τC2
(A.1)

c¼
1

ξ
(A.2)

OS¼
τOS
τ1

(A.3)

K ¼ S
γOS
τ1

(A.4)

In order to obtain c and d, the following system must be solved:

OS¼ dþ1ð Þ c"1ð Þexp "
c

c"1
ln cþ

c
d

3 43 4

K ¼
cþcd"d
c"1

ln cþ
c
d

3 4

8

>><

>>:

(A.5)

From c and d, the model parameters are obtained through the following relationships:

τC2 ¼ d$ τ1

τC1 ¼ τ1þτC2

ξ¼
1

c

σ ¼
cτC1

cτC1"τC2
S

8

>>>>>>><

>>>>>>>:

(A.6)
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