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Understanding the force between charged surfaces immersed in an electrolyte so-

lution is a classic problem in soft matter and liquid-state theory. Recent experiments

showed that the force decays exponentially but the characteristic decay length in a

concentrated electrolyte is significantly larger than what liquid-state theories pre-

dict based on analysing correlation functions in the bulk electrolyte. Inspired by

the classical Casimir effect, we consider an alternative mechanism for force genera-

tion, namely the confinement of density fluctuations in the electrolyte by the walls.

We show analytically within the random phase approximation, which assumes the

ions to be point charges, that this fluctuation-induced force is attractive and also

decays exponentially, albeit with a decay length that is half of the bulk correlation

length. These predictions change dramatically when excluded volume effects are

accounted for within the mean spherical approximation. At high ion concentrations

the Casimir force is found to be exponentially damped oscillatory as a function of

the distance between the confining surfaces. Our analysis does not resolve the riddle

of the anomalously long screening length observed in experiments, but suggests that

the Casimir force due to mode restriction in density fluctuations could be an hitherto

under-appreciated source of surface-surface interaction.

∗ benjamin.rotenberg@sorbonne-universite.fr
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I. INTRODUCTION

Understanding the structure, phase behaviour and dynamics of ionic liquids and concen-

trated electrolytes, both in the bulk and near interfaces, is a longstanding challenge. Since

the pioneering work of Helmholtz [1], Debye and Hückel [2], Onsager [3] and many others,

much recent progress has been made using the statistical mechanics tools of the theory of

classical liquids [4]. A large body of “exact” results and sum-rules was established [5], while

the Ornstein-Zernike (OZ) formalism [6] and classical density functional theory [7] became

the basis of numerous approximate theories of the structure, including non-linear integral

equations for the pair correlation functions [4]; amongst these theories the mean spherical

approximation (MSA) plays an important role, since it allows for analytic solutions of sim-

ple, semi-realistic models of ionic liquids [8, 9], which will be used in the present paper. The

OZ formalism was also put to good use to examine the asymptotic decay of pair correlation

functions and density profiles at interfaces [10–12]. Although different analytical or numer-

ical theories predict different dependences of the correlation (or screening) length on ion

concentration, the theoretical predictions converge on two qualitative features: (1) the de-

cay of the correlation is exponential; and (2) the longest correlation length in a concentrated

electrolyte is of the same order of magnitude as the (mean) ion diameter.

However, recent experiments suggest an “underscreening” phenomenon, namely the exis-

tence of an anomalously large decay length which is incongruent with the above mentioned

theoretical predictions [13–15]. Surface force balance experiments reveal hat the force acting

between negatively charged mica surfaces immersed in an electrolyte decays exponentially

with surface separation L, but the decay (or screening) length λS scales as [16]:

λS
λD
∼

1, a/λD � 1

(a/λD)3, a/λD � 1,
(1)

with

λD =
1√

4πlB(ρ+z2+ + ρ−z2−)
(2)

the Debye length, ρ± (z±) the number density (valence) of the cations/anions, a the ionic

radius, while lB = e2/(4πεε0kBT ) is the Bjerrum length with ε the dielectric constant of

the electrolyte, which depends on ion concentration This scaling relation has been verified

for various electrolyte chemistries, ranging from pure ionic liquids (e.g. room temperature
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molten salts) and ionic liquid-organic solvent mixtures to aqueous alkali halide solutions.

A scaling theory has been proposed, based on identifying solvent molecules as effective

charge carriers, with an effective charge determined by thermal fluctuations [16, 17]. More

recently, a first-principles analysis based on Landau fluctuation theory and the MSA has

been put forward, which confirms that λS/λD has a power law dependence on a/λD, albeit

with a considerably smaller exponent compared to the experimental findings summarised in

Equation (1) [18].

In this paper, we explore an additional mechanism of force generation in confined systems,

namely the classical counterpart of the celebrated quantum Casimir effect of an electromag-

netic field fluctuation-induced force acting between the confining surfaces [19]. The classical

Casimir effect is observed in high temperature confined systems, where the thermal fluctu-

ations now play the role of quantum field fluctuations. Restrictions on the possible Fourier

components (or modes) of thermal fluctuations imposed by spatial confinement generate the

classical Casimir force. Large amplitude critical fluctuations in a fluid close to a thermo-

dynamic critical point strongly enhance the classical Casimir effect, where the universality

of critical scaling laws entails a corresponding universality of the Casimir force [20] (for a

recent review of the classical Casimir force, see [21]).

We examine the possibility of an observable Casimir force in confined ionic fluids under

conditions inspired by the aforementioned experimental setups [13–15]. No critical fluc-

tuations are involved, but the infinite range of the Coulombic interactions is expected to

significantly affect the resulting Casimir force. This question has already been explored in

the high temperature limit within Debye-Hückel theory of point ions, for a variety of bound-

ary conditions, and using a microscopic description of the confining metallic or dielectric

media [22–25].

This paper describes an attempt to go beyond the point ion description by considering

finite size ions to account for excluded volume effects which are crucial for concentrated

electrolytes. In Section II, we first consider the point ion limit using a systematic approach

inspired by a paper dealing with Casimir force in confined non-equilibrium systems [26],

while excluded volume effects are included within the MSA in Section III. Some concluding

remarks are made in Section IV.
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II. THE FREE ENERGY OF FLUCTUATION MODES

We begin our analysis by expressing the free energy in terms of fluctuation modes. Let

F = F (ρ+, ρ−) be the free energy of a bulk electrolyte with cation density ρ+ and anion

density ρ−. We expand around the mean density, i.e. ρα = ρ0α + δρα, and write

F = F (ρ0+, ρ
0
−) +

∑
α=±

δρα
∂F

∂ρα

∣∣∣∣∣
ρ0+,ρ

0
−

+
1

2

∑
α,β=±

δραδρβ
∂2F

∂ρα∂ρβ

∣∣∣∣∣
ρ0+,ρ

0
−

(3)

Defining ∆F = F−F (ρ0+, ρ
0
−), and noting that 〈δρα〉 = 0, where 〈·〉 denotes thermal average,

we obtain

∆F =
1

2

∑
α,β=±

〈δραδρβ〉
∂2F

∂ρα∂ρβ

∣∣∣∣∣
c0+,c

0
−

=
1

2

∑
α,β=±

〈δραδρβ〉χ−1αβ (4)

where we have defined the partial response functions [18]

∂2F

∂ρα∂ρβ

∣∣∣∣∣
ρ0+,ρ

0
−

= χ−1αβ . (5)

We can express the fluctuations in terms of Fourier modes δρα(r) = 1
V

∑
k e
−ik·rδρα,k, and the

correlations of the fluctuations are related to the structure factors Sαβ(k) = 〈δρα,kδρβ,−k〉 /V ,

which are in principle experimentally measurable using techniques such as neutron scatter-

ing.

We now consider an electrolyte solution confined between two infinite charged walls sep-

arated by a distance L. For a strongly charged surface, one might imagine that the con-

centration fields of the cations and anions are pinned on the surface, or at the very least

the surface anchors the fields and significantly reduces the magnitude of fluctuations. As-

suming that the fields are pinned at the walls (i.e. δρα = 0 at the walls), the wavenumber

of the fluctuation modes normal to the surfaces can only take discrete values kn = nπ/L.

Therefore, the fluctuation energy inside the slit is given by

∆Fin =

∫
d2k

(2π)2

[
π

L

∞∑
n=1

∑
α,β=±

χ−1αβSαβ

(√
k2 +

(nπ
L

)2)
−
∫ ∞
0

dp
∑
α,β=±

χ−1αβSαβ

(√
k2 + p2

)]
(6)

where we have subtracted the energy in the limit when L→∞, and exploited the symmetry

of the summand and integrand with respect to negative n and p. We note that the n = 0

term is irrelevant since it is independent of L. The resulting Casimir force is simply the
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derivative of the fluctuation energy with respect to the surface separation

fCasimir = −∂∆Fin

∂L
. (7)

Note that we have implicitly assumed that charged surfaces do not affect the structure

factors Sαβ(k) – this assumption restricts the validity of our analysis to the far field limit

when the walls are far apart.

Equations (6)-(7) relate the bulk response functions and the structure factors to the

Casimir force. We next turn to estimating those quantities for a two-component electrolyte.

Following ref. [18], we introduce the wavenumber-dependent partial response functions χ̂αβ,

defined by

χ̂−1αβ(k) =
δαβ
ρα
− ĉαβ(k), (8)

where ĉαβ(k) is the Fourier transform of the OZ direct correlation function. Using the

definition of the structure factor in terms of the total correlation function ĥαβ(k)

Sαβ(k) = ραδαβ + ραρβĥαβ(k) (9)

it can be shown [4, 18] thatS++ S+−

S−+ S−−

 =
1

χ̂−1++χ̂
−1
−− − χ̂−1+−χ̂

−1
−+

 χ̂−1++ −χ̂−1+−

−χ̂−1−+ χ̂−1−−

 . (10)

To make further progress, we can split the direct correlation functions into the Coulomb

part and the short-range part:

ĉαβ(k) = −4πzαzβlB
k2

+ ĉsαβ(k). (11)

The Random Phase Approximation (RPA) assumes that ĉsαβ(k) = 0, and in this limit

Equation (8) can be substituted into Equation (10) to yield analytical expressions for the

structure factors.

The partial response functions, Equation (5), can be evaluated by noting that the free

energy density of an electrolyte in the random phase approximation reads

F

kBTV
= ρ+

[
log(a3ρ+)− 1

]
+ ρ−

[
log(a3ρ−)− 1

]
− 1

12πλ3D
. (12)

Taking derivatives with respect to ρ+ and ρ−, we thus arrive at

χ−1αβ = V kBT

(
δαβ
ρα
− πλDl2Bz2αz2β

)
. (13)
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For a 1 : 1 electrolyte, z+ = −z− = 1, ρ+ = ρ− = ρ/2, and the sum of structure factors can

be written as∑
α,β=±

χ−1αβSαβ (k) =
V kBT

2

[(
2− lB

4λD

)
2λ2Dk

2 + 1

λ2Dk
2 + 1

− lB
4λD

1

1 + λ2Dk
2

]
= V kBT

(
2− lB

4λD
− 1

1 + λ2Dk
2

)
(14)

we first note that the constant term drops out of the Casimir force as the sum and the

integral cancel out,

∞∑
n=1

π

L
−
∫ ∞
0

dp =
∞∑
n=1

(
π

L
−
∫ nπ

L

(n−1)π
L

dp

)
= 0. (15)

The crucial step of our analysis is to note that

π

L

∞∑
n=1

1

1 + λ2Dk
2 + λ2D

(
nπ
L

)2 =
π

L

1

2(1 + λ2Dk
2)

[
L

λD

√
1 + λ2Dk

2 coth

(
L

λD

√
1 + λ2Dk

2

)
− 1

]
(16)

and ∫ ∞
0

dp
1

1 + λ2Dk
2 + λ2Dp

2
=

π

2λD
√

1 + λ2Dk
2
, (17)

Substituting the difference between Equations (16) and (17) into Equation (6), and multi-

plying by L, we obtain the free energy per unit area (instead of volume):

∆Fin

AkBT
=

1

4

∫ ∞
0

k

1 + λ2Dk
2
dk − L

∫ ∞
0

k
coth

(
L
λD

√
1 + k2λ2D

)
− 1

λD
√

1 + λ2Dk
2

dk

 , (18)

with A the plate area. While the first term of Equation (18) diverges logarithmically, it is

L-independent and therefore does not contribute to the disjoining force. The second term

can be integrated analytically to give

∆Fin

AkBT
= −1

4

[
L

λ3D
− 1

λ2D
log

(
2 sinh

L

λD

)]
. (19)

Therefore, the Casimir force per unit area is

fCasimir

A
=
kBT

4λ3D

(
1− coth

L

λD

)
. (20)

Perhaps surprisingly, Equation (20) reveals that the Casimir force is attractive, and has an

asymptotic decay length of of λD/2.
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III. HARD CORE REPULSION AND THE MEAN-SPHERICAL

APPROXIMATION

The RPA ignores hard-core interactions and assumes point-like ions. This approximation

is unreasonable in dense ionic systems such as ionic liquids and concentrated electrolytes. To

include hard-core interactions, we consider the Mean Spherical Approximation (MSA). The

MSA direct correlation function for a two component hard sphere electrolyte with cations

and anions having equal diameters σ has been derived in pioneering papers [8, 9, 27, 28],

and reads

ĉsαβ(k) =
4πσ3

(kσ)6
[
24dαβ − 2bαβ(kσ)2 + eαβ(kσ)4

−
{

24dαβ − 2(bαβ + 6dαβ)(kσ)2 + (aαβ + bαβ + dαβ + eαβ)(kσ)4
}

cos(kσ)

+
{
−24dαβ(kσ) + (aαβ + 2bαβ + 4dαβ)(kσ)3

}
sin(kσ)

]
(21)

where

aαβ = −(1 + 2η)2

(1− η)4
− 2B

(
σ

λD

)
lB
σ
zαzβ,

bαβ = −
6η(1 + η

2
)2

(1− η)4
+

[
B

(
σ

λD

)]2
lB
σ
zαzβ,

dαβ = −η(1 + 2η)2

2(1− η)4
,

eαβ =
lB
σ
zαzβ,

B(x) =
x2 + x− x

√
1 + 2x

x2
,

with η = (π/6)
∑

α ρασ
3 the total packing fraction. Substituting Equation (21) into Equation

(11) yields the full direct correlation function. Unlike the RPA, the hard core repulsion causes

the MSA structure factor to be oscillatory and to decay to zero in the k →∞ limit.

To proceed further, we first evaluate numerically the difference between the sum and the

integral

Gαβ(k‖, L) =
π

L

(
∞∑
n=1

Sαβ

(√
k2‖ +

nπ

L

)
−
∫ ∞
0

Sαβ

(√
k2‖ +

nπ

L

)
dn

)
. (22)

and note that both the sum and the integral are convergent since the structure factors decay

asymptotically as:

σ3Sαβ(k) ∼ 3η

π
δαβ −

36η2

π
(aαβ + bαβ + dαβ + eαβ)

cos(kσ)

(kσ)2
, when k →∞. (23)
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and we showed in Equation (15) that a constant term has no bearing on the Casimir force

and can be ignored. Using the Euler-Maclaurin formula, we can expand Gαβ(k‖, L) asymp-

totically in 1/L:

Gαβ(k‖, L) = −1

2

π

L
Sαβ

(
k‖
)

+ o(L−1). (24)

Since the relevant quantity is the Casimir energy per unit area, we need to multiply Equation

(22) by L at the end of the calculation, such that the first term in (24) becomes actually a

(diverging) constant independent of L (c.f. the first term in Equation (18)). As such, we

must subtract it before numerically integrating over k‖. All in all, the Casimir energy (per

unit volume) reads

ECasimir(L) =
∑
αβ

χ−1αβFαβ(L) (25)

where

Fαβ(L) =
1

(2π)2

∫ ∞
0

2πk‖

[
Gαβ(k‖, L) +

1

2L
Sαβ

(
k‖
)]

dk‖ (26)

and

χ−1αβ = χ−1αβ,RPA + ĉsαβ(0)

= V kBT

[
δαβ
ρα
− πλDl2Bz2αz2β −

π

3
σ3(4aαβ + 3bαβ + 2dαβ + 6eαβ)

]
. (27)

We note that although the structure factor has a slow cos(kσ)/(kσ)2 decay, the integrand

Gαβ(k‖, L)+ 1
2L
Sαβ

(
k‖
)

decays rapidly with k‖, making the numerical integration in Equation

(26) particularly easy. We also note that the integral over k‖ must be performed last since

the divergent part needs to be subtracted off by exploiting the asymptotic expansion of

the difference between a Riemann sum and the integral provided by the Euler-Maclaurin

formula. Finally, the force per unit area is obtained by numerically differentiating Equation

(25) with respect to L.

As an illustration, we consider aqueous sodium chloride solutions, and use the ion diame-

ter and dielectric constant estimates from ref [15]. Figure 1 shows that the predicted Casimir

force as a function of surface separation is attractive for low concentration, confirming the

RPA result, but oscillates between attraction and repulsion as a function of surface separa-

tion for concentrated electrolytes. Figure 1b shows that the decay length close to saturation

concentration is still comparable to the ion diameter, and at 4.9 M the screening length is

≈ 0.32σ, well below experimentally measured values [15].
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FIG. 1. The electrolyte Casimir force for concentrated electrolytes oscillates between attraction

and repulsion as a function of surface separation due to hard core repulsion. (a) The predicted

electrolyte Casimir force for aqueous sodium chloride solutions. The ion diameter and dielectric

constant estimates are taken from ref [15]. (b) The main panel shows the electrolyte Casimir force

at 4.9M, a concentration close to saturation, plotted on a log scale. The blue (red) portions denote

repulsion (attraction), while the dashed line indicates the RPA result at the same concentration.

The inset shows the Casimir force at 0.1M.

IV. CONCLUSION

We have used a second order expansion of the free energy of a binary ionic liquid, confined

between two charged insulating surfaces, in powers of the fluctuating ion density modes, for

a given spacing L between the surfaces. The resulting Casimir force acting between the

surfaces is the derivative of this free energy with respect to L (cf. Equation (7)). The

required input is provided by the partial structure factors Sαβ(k). We have examined two

cases:

(a) When the ions are assumed to be point charges, which amounts to the RPA, valid

for very low ion concentrations only, the calculations can be carried out analytically,

leading to the result in Equation (20); the Casimir force is attractive, and decreases

with a decay length equal to one half the Debye length. This prediction agrees with

earlier calculations based on a different, fully microscopic Debye-Hückel approach [22–
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24].

(b) At higher concentrations, finite size (excluded volume) effects become predominant;

we have included them within the MSA, which includes a short-range contribution

to the partial direct correlation functions, as shown in Equation (21). The resulting

expressions for the free energy and Casimir force must now be evaluated numerically.

The results for concentrated aqueous NaCl solutions, within an implicit solvent model

of oppositely charged hard spheres, are summarized in Fig. 1. Instead of the expo-

nential decay of the Casimir force predicted by the RPA (point charges), the force

now exhibits a striking, exponentially damped oscillatory decay as a function of L at

the highest, physically relevant concentrations. The periodicity of the oscillations is

comparable to the mean ion diameter, reflecting the structural ordering of the ions.

To the best of our knowledge, no such oscillatory Casimir force in electrolyte solutions

has been reported before, although oscillatory Casimir forces have been theoretically

predicted for active matter systems with a non-monotonic energy fluctuation spectrum

[29].

It must be stressed, however, that the Casimir force reported here is not directly related

to the “underscreening” phenomenon discovered recently in experiments [13–17]. Note that

the “first principles” theory of this phenomenon [18] is based on the same microscopic model

and on the same theoretical tools employed in this paper. The present calculations of the

Casimir force can be readily extended to asymmetric electrolytes (ions of different valences

and diameters), as well as to models of ionic solutions with explicit solvent [18], within the

same theoretical framework presented in Sections II and III. Work along these lines is in

progress. As a final remark, we note that the electrolyte fluctuation induced force discussed

here has to be considered even in the absence of a mean-field interaction arising from surface

charges, and that other forces induced by surface-charge fluctuations may also have to be

taken into account under confinement by conducting walls in or out of equilibrium [30, 31].
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