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In this article we derive an inequality of Lojasiewicz-Siciak type for certain sets arising in the context of the complex dynamics in dimension 1. More precisely, if we denote by dist the euclidian distance in C, we show that the Green function G K of the filled Julia set K of a polynomial such that K = ∅ satisfies the so-called LS condition

Relatively few examples of compact sets satisfying the LS condition are known. Our result highlights an interesting class of compact sets fulfilling this condition. For instance, this is the case for the filled Julia sets of quadratic polynomials of the form z → z 2 + a, provided that the parameter a is hyperbolic, Siegel or parabolic. In particular, this latter case provides an example of a non semi-algebraic compact set in C which has a cusp and satisfies however the LS condition. In order to prove our main result, we define and study the set of obstruction points to the LS condition. We also prove, in dimension n ≥ 1, that for a polynomially convex and L-regular compact set of non empty interior, these obstruction points are rare, in a sense which will be specified.

Introduction

We call pluricomplex Green function G A of a compact set A ⊂ C n , n ≥ 1, the plurisubharmonic function defined as

G A := sup * v ∈ P SH(C n ) : v| A ≤ 0, v(z) ≤ 1 2 log(1 + z 2 ) + O(1) ,
INSA de Toulouse, Institut Mathématique de Toulouse 135 avenue de Rangueil, 31400 Toulouse, France Tel.: +33-684729787 E-mail: fredprotin@yahoo.fr where sup * denotes the upper semi-continuous regularization of the upper envelope, and P SH(C n ) denotes the set of plurisubharmonic functions in C n . The set A is called L-regular if G A is continuous. In this case, the set {G A = 0} is the polynomially convex envelope  of A. We also consider, for an open bounded set U ⊂ C n , the Green function of A ⊂ U relative to U defined by

G A,U := sup * v ∈ P SH(U ) : v ≤ 1, v| A ≤ 0 .
The reader should pay attention to the fact that in [START_REF] Klimek | Pluripotential theory[END_REF] the Green function of A relative to U is defined as G A,U -1.

Let U a := {G A < a} for a ∈ R + \ {0}. If A is not pluripolar and  ⊂ U a , then a relation between G A and G A,U a holding in U a is given by Proposition 5.3.3 in [START_REF] Klimek | Pluripotential theory[END_REF]:

G A = G A,U a . (1) 
A compact A ⊂ C n is said to satisfy the LS condition if there exists an open set U containing it and two constants c, c > 0 such that its pluricomplex Green function G A verifies the following regularity condition :

∀z ∈ U, G A (z) ≥ c • dist(z, A) c ,
where dist denotes the euclidean distance (see for instance [START_REF] Gendre | Inégalités de Markov singulières et approximation des fonctions holomorphes de la classe M[END_REF] or [START_REF] Belghiti | Éléments pour une théorie constructive des fonctions lisses[END_REF]).

On a compact set A ⊂ C n verifying the LS condition, as well as the HCP condition (i.e. the Hölderian continuity of G A , for example a semi-algebraic compact set), we have the rapid approximation property of continuous functions by polynomials. Relatively few examples of compacts satisfying the LS condition are known. Some examples are given in [START_REF] Pierzcha La | An estimate for the Siciak extremal function : subanalytic geometry approach[END_REF]. Let us also note that Pierzcha la showed in [START_REF] Pierzcha La | Markov's inequality in the o-minimal structure of convergent power series[END_REF] that a compact verifying the LS condition is polynomially convex. Bia las and Kosek [START_REF] Bia Las-Cież | Iterated function systems and Lojasiewicz-Siciak condition of Green's function[END_REF] construct such sets using holomorphic dynamics.

Along the same vein, we show that the so-called filled Julia sets in C satisfy the LS condition. More precisely, our main goal is to show the following result concerning the filled Julia set of a polynomial f : C → C, i.e. the set of points z ∈ C whose orbit (f n (z)) n is bounded :

Theorem. The filled Julia set of a polynomial f : C → C of degree ≥ 2, if its interior is non empty, satisfies the LS condition.

Recall that a compact set in C is polynomially convex if and only if its complement is connected, so the filled Julia set of a polynomial is polynomially convex. The differentials operators operators ∂ and ∂ will be understood in the sense of currents. Recall that a continuous function u from an open set of C n into R is pluriharmonic (harmonic if n = 1) if and only if ∂∂u = 0 (see for example Theorem 2.28 in [START_REF] Lelong | Entire functions of several complex variables[END_REF]).

In Section 2, we recall some definitions and elementary facts about holomorphic dynamics in one dimension, and we give a useful lemma concerning the regularity of filled Julia sets. More precisely, this lemma shows that the filled Julia set K of a polynomial of degree d ≥ 2 with non-empty interior satisfies K = K. In Section 3, we define in C n , n ≥ 1, the set of obstruction points to the LS condition, and we prove that the complement of this set is big, in a sense which will be specified. We also study explicitly the LS condition on several examples of compact sets in C. Section 4 is devoted to the proof of the main theorem previously stated.

Dynamics in C

We start by recalling some definitions related to one-dimensional holomorphic dynamics. Let us consider a polynomial f :

C → C of degree d ≥ 2.
We call Fatou set of f , denoted F, the largest open subset in which the family of iterations f n is equicontinuous.

The Julia set of f , denoted J, is the complement of F in C. Let us note for what follows that J is not a polar set.

We call filled Julia set of f the set K of points z ∈ C whose orbit (f n (z)) n is bounded. Note that K is compact, as ∞ is a superattractive fixed point of f , hence belonging to F. The complement of K is the basin of attraction of infinity. We have ∂K = J and G K = G J .

There are many situations where the set K is of non-empty interior. Consider, for instance, the case where f (z) = z 2 + a with a ∈ C. By Sullivan's classification theorem (see e.g. Theorem 2.1 in [START_REF] Carleson | Complex dynamics[END_REF] or Theorem 3.2 of [START_REF] Mcmullen | Complex dynamics and renormalization[END_REF]), we can distinguish three cases where K = ∅. The first case is when a is chosen in the interior of the Mandelbrot set in such a way that f is hyperbolic in the sense of [START_REF] Carleson | Complex dynamics[END_REF] p. 89. By Theorem 4.7 in [START_REF] Mcmullen | Complex dynamics and renormalization[END_REF], f is hyperbolic if and only if some iterate

f k of f has a fixed point z 0 ∈ C for which |(f k ) (z 0 )| < 1.
The second case is when a is chosen on the boundary of the Mandelbrot set such that some iterate f k of f has a fixed point z 0 ∈ C for which (f k ) (z 0 ) is a root of the unity. By Theorem 6.5.10 of [START_REF] Beardon | Iteration of rational functions[END_REF] and Theorem 4.8 of [START_REF] Mcmullen | Complex dynamics and renormalization[END_REF], this corresponds to the parabolic case in the Sullivan's classification. By Theorem 4.8 of [START_REF] Mcmullen | Complex dynamics and renormalization[END_REF], the last case is when a is chosen on the boundary of the Mandelbrot set such that K contains a Siegel disk and all its preimages in the sense of Definition 7.1.1 of [START_REF] Beardon | Iteration of rational functions[END_REF].

We construct the subharmonic function G : C → R + , limit in L 1 loc of the sequence (log(1 + |f n |)/d n ) n (see [START_REF] Guedj | Dynamics of polynomial automorphisms of C[END_REF] for a general construction). It is known that G is continuous (and even Hölderian [START_REF] Kosek | Hölder continuity property of fillin-in Julia sets in C n[END_REF], see also Theorem 3.2 of [START_REF] Carleson | Complex dynamics[END_REF]), harmonic in F, that it verifies G(z) = 0 if and only if z ∈ K, and also that G(z)-log |z| = O(1) at infinity. By uniqueness, G is therefore the pluricomplex Green function of K (and of J). It satisfies by construction the invariance property

G • f = d • G. (2) 
The measure i π ∂∂G is a probability measure of support exactly J (see e.g. [START_REF] Guedj | Propriétés ergodiques des applications rationnelles[END_REF]). We will use the following preliminary lemma about filled Julia sets.

Lemma 1 The filled Julia set K of a polynomial of degree d ≥ 2 with non-empty interior satisfies K = K.

Proof Suppose, by contradiction, that there exists x ∈ ∂K having a neighborhood U which does not intersect K. Then there exists n 0 ∈ N such that K ⊂ f n 0 (U ) (see for example Theorem 4.2.5. of [START_REF] Beardon | Iteration of rational functions[END_REF]). But this contradicts the fact that f n 0 (U ∩K) ⊂ ∂K. Thus every open subset of C intersecting J = ∂K also intersects K. In other words, K = K.

Study of the obstruction to the LS condition

For n ≥ 1, let

O c := {z ∈ C n : dist(z, A) < 1, G A (z) < c • dist(z, A) 1/c }. (3) 
Note that the sequence of open sets O c is increasing with c for c < 1. The LS condition is satisfied by a compact non-pluripolar set A ⊂ C n , L-regular and polynomially convex, if and only if the set

I := c>0 O c ⊂ ∂A (4) 
is empty. We call I the set of obstruction points to the LS condition.

Example 1 ([3])

If A is the union of two disks of radius 1, tangent to each other at the origin, then it does not satisfy the LS condition; the set of obstruction points to the LS condition is

I = {0} = ∅.

Example 2

The previous set A is mapped by the function g : z → z 2 onto a filled cardioid C, and we have g -1 (C) = A. We deduce from Theorem 5.3.1 of [START_REF] Klimek | Pluripotential theory[END_REF] that the set of obstruction points to the LS condition for C is

I = {0} = ∅.
Example 3 (see also [START_REF] Gendre | Inégalités de Markov singulières et approximation des fonctions holomorphes de la classe M[END_REF]). For ε ∈ ]0, 1[ fixed, consider the sets

L ε := {(1+i)t, t ∈ [-ε, ε]}, L ε := {(1 -i)t, t ∈ [-ε, ε]}, and X ε := L ε ∪ L ε ⊂ B(0, 2ε).
We show that X ε satisfies the LS condition, i.e. I = ∅. Indeed, the function g

: C → C defined by g(z) = i 2 z 2 maps X ε onto [-ε 2 , ε 2 ]. On the other hand, g -1 ([-ε 2 , ε 2 ]) = X ε . Theorem 5.3.1 of [9] implies G X ε = G [-ε 2 ,ε 2 ] • g. Since the segment [-ε 2 , ε 2 ]
is convex, it satisfies the LS condition (see [START_REF] Gendre | Inégalités de Markov singulières et approximation des fonctions holomorphes de la classe M[END_REF]). Moreover, it follows from Theorem 1 in [START_REF] Dubinin | On the finite-increment theorem for complex polynomials[END_REF] 

that ∀z ∈ C, dist g(z), [-ε 2 , ε 2 ] ≥ 1 4 |z|dist (z, X ε ) ≥ 1 4 dist (z, X ε ) 2 .
We deduce that X ε also satisfies the LS condition.

The following result provides more insight into the structure of the complement of O c . We prove it for any n ≥ 1. Recall that, given an open set U ⊂ C n , a set E ⊂ U is called pluripolar if for each a ∈ E there exist a neigborhood V ⊂ U of a and a plurisubharmonic function v : V → R∪{-∞} such that E ∩V ⊂ {v = -∞}. Proposition 1 Let A ⊂ C n , n ≥ 1, be a non-pluripolar, L-regular and polynomially convex compact set. Suppose that the pluricomplex Green function G A is pluriharmonic outside of A (harmonic if n = 1). Then, there exists

c 0 > 0 such that ∀c ∈ ]0, c 0 ], ∂A is included in the boundary of the open set {z ∈ C n : G A (z) > c • dist(z, A) 1/c }. Proof Let µ denote the positive measure i π ∂∂G A ∧ ω n-1 on C n , where ω := i 2π ∂∂ log(1 + z 2 )
is the Fubini-Study form. Note that the support of the measure µ is exactly ∂A. Indeed, supp(µ) ⊂ ∂A since i π ∂∂G A = 0 in C n \ ∂A by hypothesis. On the other 4 Proof of the main theorem

We will need the following result of Poletsky (Corollary p. 170 in [START_REF] Poletsky | Plurisubharmonic functions as solutions of variational problems[END_REF], see also [START_REF] Poletsky | Holomorphic currents[END_REF], or Theorem 2.2.10 and Corollary 2.2.13 in [START_REF] Stout | Polynomial convexity[END_REF]), generalized by Rosay ([17]). Let U be a connected complex manifold of dimension n ≥ 1. We denote by H z,U the set of holomorphic functions h :

V h → U from a neighbourhood V h of ∆ = {|z| ≤ 1} ⊂ C
(possibly depending on h) into U such that h(0) = z. We also denote by P SH(U ) the set of plurisubharmonic functions defined on U . 

û ≤ v ≤ u.
Since û is maximal among the subharmonic functions which are ≤ u in B and equal to u on ∂B, we conclude that û = v, and hence ũ = û. Thanks to Theorem 3.1.4 in [START_REF] Klimek | Pluripotential theory[END_REF], the conclusion is the same if B is a ball in C n , when substituting the expression "harmonic function" by "maximal plurisubharmonic function", and the expression "antisubharmonic function" by "antiplurisubharmonic function".

Let U ⊂ C n , n ≥ 1, be a bounded open set. Denote by λ the normalized Lebesgue measure on the unit circle ∂U ⊂ C. Denote also by Λ z,U the set of measures of the form h * λ(•) := λ(h -1 (•)), where h : V h → U is an holomorphic function defined in a neigborhood V h (possibly depending on h) of the closed unit disk U, such that h(0) = z. Note that the Dirac measure δ z belongs to Λ z,U (this corresponds to the case where the function h is constant, equal to z). An immediate consequence of Proposition 2 is the following corollary, where 1 G denotes the characteristic function of G ⊂ C n :

Corollary 1 Let U ⊂ C n be a bounded open set, and A ⊂ U a L-regular non- pluripolar compact set satisfying Å = A. Then 1 2π inf f ∈H z,U 2π 0 -1 Å • f (e iθ )dθ = -sup µ z ∈Λ z,U µ z ( Å) = G A,U (z) -1.
Recall that we denote by K the filled Julia set of a polynomial application f : C → C of degree ≥ 2, and dist(•, •) the euclidean distance on C n . Let us prove the main result stated in the introduction : Theorem 1 Let K ⊂ C be the filled Julia set of a polynomial f : C → C of degree d ≥ 2, of non-empty interior. Then K satisfies the LS condition. [START_REF] Belghiti | Éléments pour une théorie constructive des fonctions lisses[END_REF]. Denote by C a the annulus U a \ f -1 (U a ). There exists δ ∈]0, 1[ such that

Proof For b ∈ R + \ {0}, denote U b := {G K < b} ⊂ C. For l ∈ R + \ {0}, denote also K l := {z ∈ C | dist(z, K) ≤ l}. Then choose a > 0 such that K 2 ⊂ f -1 (U a ). Note that f -1 (U a ) = U a d ⊂⊂ U a by
G K 2,Ua ≥ δG K,U a on C a . (6) 
There exists also e ∈]0, 1[ such that e • dist(•, K) < 1 on U a . We change slightly (3) and define O c by

O c := {z ∈ C n : dist(z, K) < 1, G A (z) < c • e 1 c • dist(z, K) 1/c },
that do not change the set I defined in [START_REF] Gendre | Inégalités de Markov singulières et approximation des fonctions holomorphes de la classe M[END_REF]. Take c ∈ 0, δ 2a sufficiently small to have O c ⊂ f -1 (U a ) and 1 c 2 c < 2, as well as

G K ≥ c • e 1 c • dist(•, K) 1 c on C a . (7) 
We have ∀ε ∈]0, 2], ∀y ∈ U a , c • dist(y, K)

1 c ≥ inf µ y ∈Λ y,Ua U a c • dist(•, K) 1 c dµ y ≥ inf µ y ∈Λ y,Ua U a \ Kε c • dist(•, K) 1 c dµ y ≥ min U a \K ε c • dist(•, K) 1 c inf µ y ∈Λ y,Ua U a \ Kε dµ y = cε 1 c G K ε ,U a (y).
The first inequality comes from the fact that the Dirac measure δ y belongs to Λ y,U a . The last inequality comes from Corollary 1, whose application is allowed by Lemma 1, and from Corollary 4.5.9 in [START_REF] Klimek | Pluripotential theory[END_REF]. Then taking ε = 1

c 2 c < 2, we obtain in U a : c • dist(•, K) 1 c ≥ 1 c G K ε ,U a . (8) 
Now suppose, by contradiction, that O c = ∅ (see Equation (3) for definition). Recall that c < δ 2a . We can then choose

x ∈ O c \ {G K < 2ac 2 δ dist(•, K) 1 c }.
Let us control the growth of the iterates of f . Note that z ∈ O c implies a "slow growth" of (f n (z)) n , in the sense that ∀n ≥ 1 such that

f n (z) ∈ {dist(•, K) < 1} \ O c , we have 1 d n c • e 1 c • dist(f n (z), K) 1 c ≤ G K (z) < c • e 1 c • dist(z, K) 1 c , and hence dist(f n (z), K) < d nc dist(z, K). (9) 
Moreover, by a similar reasoning, Equation [START_REF] Guedj | Propriétés ergodiques des applications rationnelles[END_REF] implies that for all z ∈ O c and n ≥ 1 such that f n (z) ∈ U a \ {dist(•, K) < 1}, we have

dist(f n (z), K) < d nc dist(z, K). (10) 
Finally, by ( 11) and ( 10), for all z ∈ O c and n ≥ 1 such that

f n (z) ∈ U a \ O c , we have dist(f n (z), K) < (d n ) c dist(z, K). (11) 
Conclusion. Recall that we have choosed 2), there exists N > 0 such that f N (x) ∈ C a . Equations ( 11), ( 8), ( 6), (1), then (2), give c • dist(x, K)

x ∈ O c \ {G K < 2ac 2 δ dist(•, K) 1 c }. Since U a \ K = i≥0 f -i (C a ) by (
1 c ≥ c d N dist f N (x), K 1 c ≥ 1 cd N G K ε ,U a • f N (x) ≥ δ cd N G K,U a • f N (x) = δ ca G K (x).
But this contradicts our assumption x / ∈ {G K < 2ac 2 δ dist(x, K) 1 c }. We conclude that O c = ∅. In other words, K satisfies the LS condition.

Remark 2 We note that if f is assumed to be hyperbolic, that is to say if f do not have critical points in J, there exist a constant b > 0 and a neighborhood of K in which dist (f (•), K) ≥ b • dist(•, K).

Indeed, it is sufficient to establish this inequality outside K. Let then V be a neigborhood of K in which |f | ≥ a for some a > 0, let z ∈ V \ K, and z 0 ∈ J such that f (z 0 ) ∈ J achieves the distance dist(f (z), J). Then Theorem 1 of [START_REF] Dubinin | On the finite-increment theorem for complex polynomials[END_REF] shows the existence of a constant k > 0 (depending only on the degree of f ) and of a point z 1 ∈ J = ∂K, such that

dist(f (z), K) = dist (f (z), f (z 0 )) ≥ a • k • dist(z, z 1 ) ≥ a • k • dist(z, K).
In the particular case where b ≥ 1 in (12), we obtain a simpler proof of Theorem 1, and a more quantitative estimation for c in Equation 

Proposition 2 Remark 1

 21 Let u : U → R be an upper semi-continuous function. With the previous notations, the function defined by (e iθ ))dθ, if it is not everywhere equal to -∞, belongs to P SH(U ) and verifies ũ ≤ u. Moreover, this function ũ is maximal among all the functions in P SH(U ) verifying this inequality. We deduce from Proposition 2 the following property of antisubharmonic functions, i.e. functions with subharmonic opposite. Let B := B(a, r) ⊂ C be an open ball, u : B → R a continuous function, antisubharmonic in B. Then û : B → R is an harmonic function, with the same boundary values as u, in the sense that limz→z 0 û = u(z 0 ) for z 0 ∈ ∂B.Indeed, given a continuous function g : B → R, denote by g : B → R the solution of the Dirichlet problem in B with boundary condition g | ∂B , that is to say, the unique continuous function defined on B which is harmonic in B and equal to g on ∂B. Then v := max(ũ, û) is a subharmonic function with the same values as u on ∂B. Since u is antisubharmonic, we have ũ ≤ u. Thus

( 3 )

 3 . Indeed, suppose O c = ∅ with O c ⊂⊂ V . We can choose x ∈ O c such that f (x) / ∈ O c . Then, (11) together with (12) give c > log b log d .
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hand, if there existed x ∈ ∂A \ supp(µ), then G A would be (pluri)harmonic in a neighborhood of x, hence null in this neighborhood, which can not happen because A is polynomially convex.

Let us suppose by contradiction that

Thus we can take c ∈ 0, 1 4n , x ∈ ∂A, and r > 0, such that

Denote r 0 := r 2 . Let us establish the following Chern-Levine-Nirenberg-type inequality :

for some constant k > 0 independent of r, r 0 , x and c . Let indeed ξ : C n → R + be a positive test function ≡ 1 in B(0, 1) and having its support in B(0, 2). There exists a decreasing sequence (G n ) n of C ∞ plurisubharmonic functions converging towards G A (Theorem 2.9.2 in [START_REF] Klimek | Pluripotential theory[END_REF]). Theorem 3.4.3 in [START_REF] Klimek | Pluripotential theory[END_REF] and Stokes' theorem imply that ∀r < r 0 , ∀x ∈ B(x , r 0 ) ∩ ∂A,

Then the monotone convergence theorem implies that ∀r < r 0 , ∀x ∈ B(x , r 0 )∩∂A,

where k depends only on the sum of the supremum norms of the coefficients of the differential form ∂∂ξ. Therefore, (5) holds.

With the notation ν := µ µ B(x , r 0 ) 1 B(x ,r 0 ) , where 1 B(x ,r 0 ) is the characteristic function of B(x , r 0 ), the measure ν is a probability measure, and we can rewrite [START_REF] Carleson | Complex dynamics[END_REF] :

Then, by Frostman Lemma (see for example Lemma 10.2.1 in [START_REF] Beardon | Iteration of rational functions[END_REF]), the Hausdorff dimension of ∂A ∩ B(x 0 , r 0 ) is strictly greater than 2n for our choice c < 1 4n , which gives a contradiction. (Recall that Frostman Lemma ensures that, if m is a probability measure on a metric space E verifying m B(x, r) < q • r α for all x ∈ E, r > 0, with fixed q > 0, α > 0, then the Hausdorff dimension of E is greater than α).

We thus conclude that ∃c 0 > 0, ∀c ∈]0, c 0 ], ∀x ∈ ∂A, ∀r > 0:

which proves the statement.