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Linda J. C. van Waalwijk van Doorn1,2, Luka Kulic3, Marleen J. A. Koel-Simmelink4,  
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Background: Before implementation in clinical practice, biomarker assays need to be 
thoroughly analytically validated. There is currently a strong interest in implementation of the 
ratio of amyloid-β peptide 1-42 and 1-40 (Aβ42/Aβ40) in clinical routine. Therefore, in this 
study, we compared the analytical performance of six assays detecting Aβ40 in cerebrospinal 
fluid (CSF) in six laboratories according to a recently standard operating procedure (SOP) 
developed for implementation of ELISA assays for clinical routine.

Methods: Aβ40 assays of six vendors were validated in up to three centers per assay 
according to recently proposed international consensus validation protocols. The perfor-
mance parameters included sensitivity, precision, dilutional linearity, recovery, and parallelism. 
Inter-laboratory variation was determined using a set of 20 CSF samples. In addition, test 
results were used to critically evaluate the SOPs that were used to validate the assays.

results: Most performance parameters of the different Aβ40 assays were similar between labs 
and within the predefined acceptance criteria. The only exceptions were the out-of-range results 
of recovery for the majority of experiments and of parallelism by three laboratories. Additionally, 
experiments to define the dilutional linearity and hook-effect were not executed correctly in 
part of the centers. The inter-laboratory variation showed acceptable low levels for all assays. 
Absolute concentrations measured by the assays varied by a factor up to 4.7 for the extremes.

conclusion: All validated Aβ40 assays appeared to be of good technical quality and 
performed generally well according to predefined criteria. A novel version of the validation 
SOP is developed based on these findings, to further facilitate implementation of novel 
immunoassays in clinical practice.

Keywords: method validation, alzheimer’s disease, cerebrospinal fluid, amyloid, immunoassays

Abbreviations: Aβ, amyloid-β peptide; CSF, cerebrospinal fluid; SOP, standard operating procedure; AD, Alzheimer’s disease; 
t-tau, total tau protein; p-tau, tau phosphorylated at threonine 181; MCI, mild cognitive impairment; PET, positron emission 
tomography; LLOQs, lower limits of quantification; 4PL, four parameter logistic; %CV, coefficient of variation; QC, quality 
control; ELISA, enzyme-linked immunosorbent assay; CE, European Conformity.
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inTrODUcTiOn

Cerebrospinal fluid (CSF) biomarkers have proven to be help-
ful in early diagnosis of Alzheimer’s disease (AD). They reflect 
preclinical early events in AD by as many as 10–15 years before 
clinical symptoms occur (1). Therefore, CSF biomarkers have 
been incorporated in the diagnostic criteria of AD (2–4).

The CSF biomarkers most prominently used in Alzheimer’s 
diagnostics are amyloid-β peptide 1-42 (Aβ42), total tau protein 
(t-tau), and tau phosphorylated at threonine 181 (p-tau), because 
they reflect the pathological hallmarks of AD (5, 6). A decrease 
in CSF Aβ42 levels probably reflects the extent of amyloid-β 
accumulation in the formation of plaques in the brain, while 
an increase in CSF t-tau and p-tau levels likely reflects neuronal 
degeneration and intracellular tangle formation. The ratio of 
Aβ42/Aβ40 is helpful to correct levels of Aβ42 for the total amy-
loid production (7) and provide better assessment of the presence 
of amyloid pathology in case of for instance cerebral amyloid 
angiopathy (8). For example, recent studies demonstrated that 
the CSF Aβ42/Aβ40 ratio significantly improved the diagnostic 
performance compared to CSF Aβ42 alone in distinguishing 
controls or non-AD patients from mild cognitive impairment 
or AD patients (9–13). The concordance with amyloid positron 
emission tomography increased when the CSF Aβ42/Aβ40 ratio 
was used as compared to CSF Aβ42 alone (14). Therefore, there is 
currently a strong interest to implement the Aβ42/Aβ40 ratio into 
clinical practice. However, before implementation, it is important 
to assess the quality of the Aβ40 assays and validation is an essen-
tial step in implementation of novel assays in clinical routine. In 
this study, we evaluated the performance parameters of six Aβ40 
assays currently commercially available and one in-house assay 
according to an international consensus protocol following the 
ISO 15189 guidelines (15, 16). The results will provide insight 
into the real-life use of this standard operating procedure (SOP) 
for implementation of novel immunoassays in clinical routine. 
Moreover, we determined the inter-laboratory variation and 
compared the quality and outcomes of the ELISA assays.

MaTerials anD MeThODs

csF samples
The inter-laboratory variation was tested by using 20 CSF sam-
ples centrally distributed in aliquots by one center. The samples 
were shipped on dry ice and upon receipt stored at −80°C in 
all laboratories. These samples were patient samples from an 
outpatient clinic, mostly patients who came for dementia diag-
nostic screening. Participants or their legal representatives gave 
informed consent. The study conforms with The Code of Ethics 
of the World Medical Association (Declaration of Helsinki) (17). 
Furthermore, for all the other parameters, samples were used 
that were available in each of the laboratories participating in this 
study. The samples were diluted according to protocols provided 
by the manufacturers (Table 1).

Participants and assay Kits
Six laboratories participated in this study and validated seven 
Aβ40 assays (Table 1). Every commercial assay was validated 

by two or three experienced laboratories, which collaborated 
within the EU Joint Programme Neurodegenerative disease 
(JPND) BIOMARKAPD consortium. Additionally, the in-
house Aβ40 assay was only tested by the developers. The fol-
lowing assays for quantification of Aβ40 concentrations were 
included: Aβ Peptide Panel I (4G8) kit [Cat#: K15199E, Meso 
Scale Discovery (MSD), Rockville, MD, USA1], amyloid-β 
(1-40) CSF ELISA [Cat#: RE59651, IBL-international (IBL), 
Hamburg, Germany2], ELISA Kit Human Aβ40 (Cat#: LNB0001, 
Invitrogen, Carlsbad, CA, USA3), Human Aβ40 Singleplex 
Bead Kit (Cat#: LHB3481, Novex, Invitrogen, Carlsbad, CA, 
USA, see text footnote 3), INNOTEST β-Amyloid (1-40) (Cat#: 
81585, Fujirebio, Gent, Belgium4), β-amyloid (1-40) ELISA 
(Cat#: EQ 6511-9601-L, Euroimmun, Luebeck, Germany5), 
and an in-house Aβ40 ELISA [Ref. (18), VUmc, Amsterdam, 
The Netherlands]. Aβ40 assays of the same production batches 
from each vendor were directly distributed to the participating 
laboratories. The assays were performed manually according 
to the manufacturers’ protocols, some laboratories used plate 
washers for the washing steps. The laboratories tested all per-
formance parameters according to the BIOMARKAPD SOPs 
(15, 16). Calculations of the analytical performance parameters 
were done using the corresponding Data Sheets S2 and S3 in 
Supplementary Material (15).

sensitivity
For the determination of the LLOQs, 16 blank samples were 
measured in one plate for each assay. The calibration curves were 
calculated using a four parameter logistic curve fit for all assays, 
which gave the optimal fit.

Precision
Intra-assay variation (repeatability) was determined by analysis 
of samples (n  =  15) in four replicates within one plate. Some 
deviations were made from the original protocol: in Lab #6, n = 3 
samples instead of n = 15 samples were analyzed due to technical 
reasons. In Lab #2, n =  14 samples for the MSD assay and, in 
Lab #5, n = 16 samples for the Invitrogen assay were tested. The 
mean coefficient of variation (%CV) was calculated by averag-
ing the CVs of all tested samples. A %CV <20% was defined as 
acceptable.

Inter-assay variation (intermediate precision) was measured 
to determine the variation of analyses between different days. To 
quantify inter-assay variation, samples with low, medium, and 
high concentrations were selected from the samples used for the 
intra-assay variation [quality control (QC) low, QC medium and 
QC high]. These samples were measured in duplicate in four dif-
ferent plates at identical positions in the assay plates on four dif-
ferent days. In Lab #2, three different plates were tested on three 
different days for the Invitrogen enzyme-linked immunosorbent 

1 www.mesoscale.com.
2 www.ibl-international.com.
3 www.thermofisher.com.
4 www.fujirebio-europe.com.
5 www.euroimmun.com.
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assay (ELISA). The mean %CV was calculated for all samples. A 
%CV <20% was defined as acceptable.

Intra-plate variation was determined to explore the influence 
of different positions within a plate on the measured concentra-
tions (stability of the plate). QC low, QC medium, and QC high 
samples were measured in four replicates at different positions 
of the plate (columns 3/4 vs. columns 11/12). The mean %CV 
was calculated for all samples. A %CV <20% was defined as 
acceptable.

Dilutional linearity
Three different CSF samples were used to perform the dilution 
linearity experiments. In Table S1 in Supplementary Material, 
the spiked Aβ40 calibrator concentration and the dilution 
factors used to serially dilute the samples per laboratory and 
assay are summarized. These samples were analyzed in dupli-
cate. The dilutional linearity was calculated and expressed as  
follows:

  
%Linearity

=
observed C * dilution factor

previous observed C *pr
( )

( eevious dilution factor *100
)  

C = concentration(pg/mL) 

A linearity between 80 and 120% was defined as acceptable.
To compare dilutional linearity for the kits from the various 

vendors and analyses by the different labs, we determined the 
length of dilution range in which dilutional linearity was within 
the acceptable range of 80–120%. This dilution range length was 
calculated using the following formula:

  
Dilution range length

=
highest dilution factor in which the curve is llinear

lowest dilution factor in which the curve is still linear  

Despite that protocols were distributed among the partici-
pating laboratories, some of them deviated from this protocol 
in the execution of the experiments to assess the dilutional 
linearity, since these laboratories did not spike the calibrator 
into the CSF samples. In addition, different interpretations 
of the distributed protocols may have resulted in the large 
differences in spiked Aβ40 calibrator concentrations by the 
various laboratories to assess dilutional linearity (Table S1 in 
Supplementary Material).

recovery
Five different CSF samples, measured in duplicate, were diluted 
according to manufacturers’ protocols and spiked with recom-
binant Aβ40 calibrator at three different levels. An overview of 
the spike low, medium, and high concentrations for each labora-
tory in every assay can be found in Table S2 in Supplementary 
Material. For neat samples, buffer without calibrator was added 

http://www.frontiersin.org/Neurology/
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to the diluted CSF. Spike recoveries were calculated according to 
the formula:

 
% Recovery =

C spike sample-C neat sample
theoretical C spike

*100
( )

 

 C = concentration pg/mL( )  

A recovery between 80 and 120% was defined as acceptable.

Parallelism
Five different CSF samples, with high endogenous protein 
concentrations, were serially diluted. Both reciprocal relative 
dilution factor and OD450 absorbance signals of the samples and 
calibrator were log-transformed to be able to use linear regression 
to calculate the slopes of the sample and calibrator curves. The 
slope of the linear parts of the log–log transformed calibrator and 
sample dilution series were compared to determine the degree of 
parallelism by calculating the “in range%” using the following 
formula:

  

in range% =
slope of sample dilution series

slope of calibration curvee
*100

 

A calculated in range% between 80 and 120% was defined as 
acceptable.

statistical analysis
Bland–Altman plots were drawn to define if differences in 
results between assays were dependent on the concentration and 
to define the % deviation of each assay from the overall mean 
results for all clinical CSF samples. Correlation coefficients for 
comparison of results between vendors and between labs were 
performed by Spearman’s ρ. A p-value of 0.05 was considered  
significant.

resUlTs

sensitivity
An overview of the mean LLOQs per assay kit and for each 
laboratory per assay are presented in Table  2 and Table S3 in 
Supplementary Material, respectively. The mean LLOQs of the 
MSD and Fujirebio assays showed the largest variation between 
laboratories (CV = 99%), while the Euroimmun assay showed the 
smallest variation between laboratories (CV = 8%).

Precision
The mean intra-assay CVs in all laboratories were below the pre-
defined value of 20% for all assays (Table 2). However, it should 
be noted that the CVs of some individual samples were above this 
threshold for specific tests in single laboratories (Figure S1A in 
Supplementary Material).

The mean inter-assay CVs for all assays, but not for all 
individual laboratories, were below the predefined value of 20% 
(Table 2; Figure S1B in Supplementary Material).

The mean intra-plate CVs for all assays in all laboratories 
were below the predefined value of 20% (Table  2; Figure S1C 
in Supplementary Material). Only one individual sample in one 
laboratory showed an intra-plate CV above 20% (Figure S1C in 
Supplementary Material).

Dilutional linearity and hook-effect
No correct dilutional linearity data were obtained for the Fujirebio 
assay, Lab #2 and Lab #5. The remaining results are shown in Table 2 
(overview) and Table S4 in Supplementary Material. The MSD assay 
showed an acceptable dilutional linearity between the predefined 
ranges of 80–120% over the longest dilution range, whereas this 
dilution range with acceptable linearity was the shortest for the 
Euroimmun and VUmc assays. Of note, the dilution range lengths 
with acceptable dilutional linearity may, in some cases, be longer 
than reported in Table S4 in Supplementary Material (as indicated 
by footnotes), since in these cases the highest or lowest dilution 
factor in which the curve was linear, corresponded to the highest 
or lowest dilution factor tested by the laboratory.

A hook effect, i.e., suppression of signal at concentrations 
above the upper limit of quantification, was observed for one 
sample tested in the Invitrogen ELISA by Lab #2 (between dilu-
tion factor 50 and 250; data not shown). Other samples tested by 
this and other laboratories neither showed a hook effect for the 
Invitrogen ELISA nor for any other assay (data not shown).

recovery
The results of the recovery (%R) experiments for all assays of dif-
ferent vendors are detailed in Table S5 in Supplementary Material. 
A large variation in recovery results between laboratories was 
observed for several assays. As a result, acceptable recovery within 
the predefined range of 80–120% for all three laboratories was only 
obtained for the IBL assay. In addition, acceptable recovery was 
obtained by individual laboratories for the MSD (1/3 laboratories), 
Invitrogen (1/3 laboratories), Novex (1/2 laboratories), Euroimmun 
(1/3 laboratories), and Fujirebio (1/3 laboratories) assays. Due to 
this large inter-laboratory variation, an overview of recovery results 
per vendor is not included in Table 2.

Parallelism
Parallelism results are displayed in Table 2 (overview) and Table 
S6 in Supplementary Material. The mean percentage parallelism 
(%P) results for the assays of MSD, IBL, Novex, Euroimmun, 
and VUmc were within the predefined ranges of 80–120% (Table 
S6 in Supplementary Material), respectively: MSD (92%), IBL 
(100%), Novex (95%), Euroimmun (98%), and VUmc (93%). 
A large inter-laboratory variation for %P was observed using 
the Invitrogen and Fujirebio assays. For both these assays, 
the %P was within the predefined range for two out of three 
laboratories, while one laboratory per assay showed a strongly 
deviating result.

Variation in clinical sample 
concentrations between laboratories
The intra-assay variation in Aβ40 concentrations was below 10% 
for all CSF samples (n = 20) in all laboratories for all different 

http://www.frontiersin.org/Neurology/
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TaBle 2 | Overview of analytical performance parameters.

sensitivity Precision Dilutional linearity 
range (pg/ml)

Parallelism 
(%P)

intra-assay 
variation 
in clinical 
samples 
n = 20/

laboratory 
(%cV)

correlation 
coefficient 
(ρ) between 
laboratories

llOQ (pg/ml) intra-
assay 
(%cV)

inter-
assay 
(%cV)

intra-plate 
(%cV)

Vendor Kit Mean (sD) %cV Mean 
(sD)

Mean 
(sD)

Mean (sD) range (length) Mean (sD) Mean (sD) Mean (sD)

MSD Aβ peptide panel I (4G8) 65 (64) 99 7.1 (5.1) 13 (2.7) 6.1 (0.8) 7–2,825 (348) 92 (18) 5.8 (3.6) 0.86 (0.09)

IBL Amyloid-β (1-40) CSF 
ELISA

41 (32) 79 3.0 (0.5) 10 (3.8) 3.2 (1.9) 15–480 (32) 100 (5.5) 2.4 (1.3) 0.93 (0.03)

Invitrogen ELISA kit human Aβ40 28 (12) 40 7.3 (5.3) 18 (14) 7.0 (1.7) 2,500–97,656 (39) 189 (134) 3.7 (1.1) 0.91 (0.04)

Novex Human Aβ40 singleplex 
bead kit

64 (36) 56 14 (1.9) 17 (8.0) 12 (5.4) 2,500–97,656 (39) 95 (12) 8.4 (1.1) 0.82 (–)

Fujirebio INNOTEST β-amyloid 
(1-40)

1.8 (1.7) 99 5.1 (3.5) 13 (2.8) 4.0 (1.9) 73 (42) 3.6 (1.3) 0.80 (0.11)

Euroimmun β-amyloid (1-40) ELISA 23 (1.9) 8 4.1 (2.5) 14 (6.0) 5.2 (3.6) 2,500–15,625 (6) 98 (6.7) 2.9 (1.8) 0.89 (0.03)

VUmc In-house Aβ40 1,089 (−) – 1.9 (−) 12 (−) 1.7 (−) 25– 125 (5) 93 (−) 1.1 (−) –

Aβ, amyloid-β; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; IBL, IBL-international; LLOQ, lower limit of quantification; MSD, Meso Scale Discovery; VUmc, 
VU university medical center; %CV, percentage coefficient of variation; %P, percentage parallelism.
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vendors, well below the predefined CV of 20% (Table  2). Per 
vendor, a strong correlation (ρ > 0.8) between sample Aβ40 con-
centrations assayed by the different laboratories was observed, 
except for the results by Lab #1 and Lab #2 that showed a lower 
correlation coefficient for the MSD (ρ  =  0.77) and Fujirebio 
(ρ = 0.67) assays (Figure 1). The best mean correlation coefficient 
between laboratories was measured for Aβ40 concentrations 
using the IBL kit (ρ = 0.93) (Table 2). In terms of absolute con-
centrations, results for the Novex assay had the lowest similarity 
in mean values of the clinical samples between laboratories 
(Figure 1).

The mean Aβ40 concentrations of all CSF samples varied up 
from ~2,000  pg/mL for the Novex assay at the one extreme to 
~9,500 pg/mL for the IBL assay at the other end. The %difference in 
Aβ40 concentrations per assay compared to the mean concentra-
tion of all assays per sample showed that the highest deviation was 
obtained by the IBL and Novex assays (mean deviation of 65 and 
−64%, respectively) (Bland–Altman plots in Figure 2). The lowest 
variation (within 20% deviation from the mean Aβ40 concentra-
tion of all assays per sample) was observed for the MSD assay.

DiscUssiOn

The CSF Aβ42 levels reflect the extent of amyloid-β accumulation 
in the form of plaques in the brain. However, it has been shown in 
previous studies that the concentration of Aβ42 not only depends 
on the presence or absence of plaques but also may on the total 
turnover of Aβ peptides in the brain, resulting in different total 
Aβ concentrations in the CSF (11, 19–21). Besides, recent studies 
indicated that absorption of Aβ42 to collection and storage tubes 

can be overcome by calculation of the ratio of Aβ42/Aβ40, since 
both peptides will be absorbed to a similar degree (22, 23). The 
ratio of Aβ42/Aβ40 is helpful to correct levels of Aβ42 for the total 
amyloid production. In this study, we validated Aβ40 assays from 
six different vendors and one in-house developed assay for future 
use in clinical practice.

The assignment of the different assays to the laboratories was 
performed first based on the availability of the MSD and Luminex 
systems in the laboratories and second as random as possible, to 
overcome that two laboratories measured the same set of assays 
as a source of center bias. We have chosen to have the validation 
performed by up to three centers per assays, which we expect to 
provide sufficient insight into real-life performance of the assays 
and deemed to be cost-effective. We reasoned that testing all assays 
in a larger number of laboratories would not lead to dramatically 
different results for the assays than presented in this study.

The performance parameters of all assays were within the 
predefined ranges, except for the recovery results, for which no 
definite conclusions could be drawn due to large inter-laboratory 
variation, and the parallelism results of Invitrogen and Fujirebio 
assays, for each of which one out of three laboratories obtained 
results out of the predefined range. The variation between 
laboratories in the Aβ40 concentrations in the clinical samples 
was small in the duplicate measurements for each assay in every 
laboratory (%CV <10%). Furthermore, high mean correlation 
coefficients (ρ > 0.8) per vendor between sample concentrations 
were found for all assays. In terms of variation in absolute values 
between vendors, the least deviation was found for the MSD 
assay compared to the mean Aβ40 concentration of all assays per 
sample.

http://www.frontiersin.org/Neurology/
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FigUre 1 | Correlation of concentrations in clinical cerebrospinal fluid (CSF) samples between laboratories. The mean concentrations of n = 20 samples tested in 
each laboratory for Meso Scale Discovery (MSD) Aβ peptide panel I (4G8) (a), IBL amyloid-β (1-40) CSF ELISA (B), Invitrogen ELISA kit human Aβ (c), Novex 
Human Aβ40 Singleplex Bead Kit (D), Fujirebio INNOTEST β-Amyloid (1-40) (e), Euroimmun β-Amyloid (1-40) ELISA (F), Vumc in-house Aβ40 (g) was plotted. The 
best correlation between laboratories was measured for concentrations using the IBL kit (mean ρ = 0.93). On the other hand, the lowest correlation was found in 
concentrations obtained by the Fujirebio assay (mean ρ = 0.80). ρ = Pearson’s correlation coefficient.
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The LLOQs were slightly higher compared to the kit speci-
fications provided by most vendors, but well below the ranges 
found in clinical samples. The IBL and Euroimmun assays are the 

exceptions, because the LLOQ was lower in our results compared 
to the kit specifications (data not shown). It should be noted, 
however, that the LLOQs are calculated differently by the vendors 

http://www.frontiersin.org/Neurology/
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FigUre 2 | Variation in Aβ40 concentrations in clinical cerebrospinal fluid (CSF) samples between assays. Bland–Altman plot: the %difference (y-axis) in mean Aβ40 
concentrations in each clinical CSF sample per assay (n = 20 samples, 7 assays) is compared to the mean Aβ40 concentration of all assays per sample. Each 
sample per assay is plotted on the x-axis at its mean Aβ40 concentration of all assays.
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(mean + 2 to 3*SD), while we did use a more strict method of 
calculation (mean + 10*SD).

Although the mean precision data per assay were well below 
the predefined CV of 20% for all assays, if we would consider a 
more strict maximum of a mean CV of all laboratories below 15%, 
the results of Invitrogen and Novex assays are out of range.

The dilutional linearity description in the SOP gave room 
for many different interpretation options and should be revised. 
Some laboratories pre-diluted the CSF samples and, therefore, 
did not test the lower dilutions in which a hook effect still could 
be present. In the Invitrogen assay, a high variation was found, 
probably because Lab #6 tested lower steps of dilution (a factor 
2.5) than the other two labs did (factor 4 and 5). Also, the amount 
of spiked antigen differed per laboratory; some laboratories did 
not spike antigen and, therefore, actually performed a parallelism 
experiment instead of the dilutional linearity experiment and had 
to be excluded from analysis for this parameter.

The recovery was out-of-range for the majority of the 
experiments. This could be due to the large variability between 
the laboratories in terms of preparation of the samples for the 
recovery experiments, e.g., the variation in concentrations 
chosen for spiking. In some laboratories, too high concentrations 
of Aβ40 were spiked, which resulted in an overflow or too low 
concentrations were spiked, resulting in very low precision of the 
result and thus low recovery. We have adapted the wording in the 
SOP to increase the compliance in execution (Supplemental Data 
for the improved version), e.g., by expanding on the choice of 

spikes and adding notes to standardize the spike concentrations 
in multicenter studies. Moreover, we added a proposal to include 
analysis of the actual spiked concentrations in reagent diluent for 
calculation instead of using a theoretical spiked value, in order to 
track possible dilution errors.

The parallelism results for the majority of the assays were 
within the predefined ranges, except the results of the Invitrogen 
and Fujirebio assays, because one laboratory was out of range. 
No explanation could be given for these two deviating results. 
However, with regard to this occurrence, to get more insight, it 
may be helpful to include more laboratories to test each validation 
parameter in future validation studies.

The IBL, Invitrogen, and Euroimmun Aβ40 assays seem to 
perform slightly better in terms of inter-laboratory comparisons, 
as shown by consistent high correlation coefficients for the clini-
cal samples between laboratories. The mean Aβ40 concentrations 
of all CSF samples varied between the vendors. This is a hurdle 
in implementation of the ratio of Aβ42/Aβ40 in clinical practice 
to improve diagnostic accuracy (9–13). As long as this variation 
between assays is not overcome by the use of certified reference 
methods and materials, which are being developed (24), cut-offs 
will depend on the combination of assays used at every site. Usage 
of automated platforms instead of manual performance of bio-
marker measurements could mitigate inter-laboratory variations.

In conclusion, all Aβ40 assays perform generally well and 
are promising for implementing in clinical practice. We showed 
some deviating results in specific parameters, but these are more 
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likely the result of inter-laboratory variation and the lack of refer-
ence materials. Furthermore, of note is that the absolute Aβ40 
concentrations in clinical CSF varied between assays. Therefore, 
the assays could be improved by the availability of certified refer-
ence materials to calibrate kits as well as usage of automated plat-
forms. The upcoming availability of Aβ40 assays in a European 
Conformity (CE)-certified format is an important first step for 
their routine implementation in Europe.
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