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Abstract

We analyse open strings with background electric fields in the internal space, T-dual to branes moving 
with constant velocities in the internal space. We find that the direction of the electric fields inside a two 
torus, dual to the D-brane velocities, has to be quantised such that the corresponding direction is compact. 
This implies that D-brane motion in the internal torus is periodic, with a periodicity that can be paramet-
rically large in terms of the internal radii. By S-duality, this is mapped into an internal magnetic field in a 
three torus, a quantum mechanical analysis of which yields a similar result, i.e. the parallel direction to the 
magnetic field has to be compact. Furthermore, for the magnetic case, we find the Landau level degeneracy 
as being given by the greatest common divisor of the flux numbers. We carry on the string quantisation and 
derive the relevant partition functions for these models. Our analysis includes also the case of oblique elec-
tric fields which can arise when several stacks of branes are present. Compact dimensions and/or oblique 
sectors influence the energy loss of the system through pair-creation and thus can be relevant for inflationary 
scenarios with branes. Finally, we show that the compact energy loss is always larger than the non-compact 
one.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Open strings [1] can be quantised exactly in a constant electromagnetic field background 
[2–4]. The case of magnetic fields and their T-dual version of branes at angles have been widely 
studied in the literature starting from [5] due to their promising phenomenological features of 
realising Standard Model like gauge groups on magnetised/intersecting D-branes, while also pre-
serving N = 1 supersymmetry [1,6]. On the other hand, open string models with electric fields, 
that were pioneered in [7], have received far less attention due to the fact that supersymmetry is 
always broken in the charged sectors, resulting in systems that are in principle unstable. How-
ever, they can offer exact CFT models for studying D-brane dynamics, as for example in [8–13]. 
An important application would be to inflationary cosmology [14] where, in the T-dual version 
of moving branes, one or more positions of branes are identified with the inflaton(s).

Our work focuses on open strings with background constant electric fields in toroidal com-
pactifications. It is well known that magnetic fields in compact spaces have to satisfy Dirac 
quantisation conditions. This is no longer true for electric fields at a perturbative level, due to the 
fact that one of the legs of the field strength lies always in the non-compact time direction. As we 
will show, there are non-perturbative quantisation conditions for the components of the electric 
field along the torus axes, arising from the gauge invariance of U(1) Wilson loops that force 
the corresponding components of the gauge potential to be compact variables. These conditions 
have a simple interpretation in the T-dual version as quantisation of momenta of D0 particles 
along the compact directions. Moreover, from the non-perturbative consistency one can extract a 
quantisation condition for the orientation of the electric field inside the torus that is independent 
on the string coupling constant and hence could in principle arise at a perturbative level. We con-
sider the simplest possible case, that of an electric field pointing into a generic direction inside a 
rectangular two torus. The main results of the paper is that the direction of the electric field has to 
be compact. We show this in various ways. Aside from the non-perturbative argument mentioned 
above, one can derive the same result by making use of the S-duality between electric and mag-
netic fields. Furthermore we consider, at the quantum mechanical level, a magnetic field pointing 
into a generic direction inside a two torus (contained in a three torus) such that the electric field 
case will be an analytic continuation of the magnetic one. We derive here the degeneracy of the 
Landau levels, relevant for model building, which turns out to be given by the greatest common 
divisor of the two non-zero flux numbers. Dirac quantisation conditions immediately imply that 
the direction parallel to magnetic field is periodic and since the allowed string momentum is 
always parallel one has a quantised momentum as well. However, in one particular gauge we 
are able to construct wave functions respecting the periodicities of the three torus only in the 
case when also the coordinate orthogonal to the magnetic field is compact. In turn this further 
implies that the squared modulus of the complex structure of the torus is fixed to be a rational 
number. It would be interesting to determine whether this condition is indeed also necessary as 
it would have important implications for moduli stabilisation. The same analysis for the case of 
the electric field implies in one gauge that quantum mechanically there is no visible quantisation 
condition, whereas in a different gauge the direction parallel to the electric field comes out to 
be compact. In principle, the allowed string momentum modes (always orthogonal to the elec-
tric field) may or may not belong to a lattice, depending on whether the direction orthogonal to 
electric field is compact.

We also present the quantisation of string models with electric fields in internal spaces and 
construct explicitly their annulus amplitudes taking into account the quantisation conditions for 
the orientation of the electric field. Strictly speaking, in order to build a consistent string vac-
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uum, one should also consider the contributions of the Möbius Strip amplitude for open strings. 
This can be done in the usual way by applying the orientifold projection [1]. Our work extends 
previous results also in another direction, that of oblique electric fields (for the case of oblique 
magnetic fields see [15–18]). We point out that in models with several stacks of branes the possi-
bility arises of having open strings stretched between (necessarily) different branes with electric 
fields at an angle. In such a situation, the field strengths at the two boundaries of the string do not 
commute, leading to a more complicated algebra of zero modes and to a non-linear dependence 
of the induced electric shift in terms of the ‘rapidities’. Models with oblique electric fields realise 
a Thomas precession effect for open strings. In the limit of small electric fields (small velocities 
in the T-dual version) they reproduce the results of the parallel case and thus are expected to be 
relevant (only) in the ultra-relativistic limit.

Finally, we analyse also the energy loss of D-branes in constant electric fields by pair cre-
ation. There are two cases that one can compare, depending on the compactness of the direction 
orthogonal to the electric field. We show that the compact energy loss is always larger than the 
non-compact one for any finite values of the radius and electric field shift, the two becoming 
equal asymptotically. Increasing the radius, the compact energy loss decreases implying also that 
larger radii would yield a greater number of e-folds in inflationary scenarios with moving branes.

The paper is organised as follows. In Section 2 and 3 we discuss the quantisation conditions 
for electric fields in internal spaces from a non-perturbative and S-dual point of view. Section 4
contains the quantum mechanical analysis of charged particle in electric and magnetic fields 
at a generic angle with respect to the torus axes. The boundary conditions for open strings in 
constant electric fields and the various possible sectors (charged/neutral and parallel/oblique) are 
considered in Section 5. Furthermore, the quantisation of these models and the corresponding 
annulus amplitudes can be found in Section 6 for the case of parallel electric fields1 and in 
Section 7 for the case of oblique electric fields. Finally, we discuss the energy loss by pair creation 
in Section 8 and our conclusions are contained in Section 9.

2. Brane motions and electric fields in internal spaces

Let us consider a D2 brane in an internal torus (x4, x5), taking for simplicity to be a square, 
of radii R4, R5 respectively, and add an electric field making an angle β with x4, i.e. F04 ≡ E4 =
E cosβ , F05 ≡ E5 = E sinβ . After T-dualities in x4, x5, one gets a point-like D0 brane moving 
with a constant velocity v = E with v = (v cosβ, v sinβ). The momenta of the D0 particle along 
the two internal directions have to be quantised.2 The corresponding conditions are

p4 = T0v cosβ√
1 − v2

= q

R′
4

,

p5 = T0v sinβ√
1 − v2

= p

R′
5

, (1)

where R′
4, R

′
5 are the two T-dual radii, T0 is the D0 brane tension and p, q are integers. Notice 

that since T0 ∼ 1/gs , the quantisation conditions are non-perturbative in nature. The direction of 
the electric field, on the other hand, is also quantised and determined by

1 We call parallel the situation where the two electric fields at the boundaries of the open string are parallel with one 
another (or one of them is zero). They can still make an (rational) angle with respect to the torus axes!

2 The following argument is similar to the one in [10].
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tanβ = p

q

R′
4

R′
5

= p

q

R5

R4
. (2)

Notice that the string coupling does not appear in the quantisation condition for the direction of 
the electric field.

The quantisation condition can also be found in a neat way by starting from the Dirac–Born–
Infeld (DBI) action

LD2 = −T2
√−det (gmn + Fmn + Bmn) = −T2(2π)2R4R5

√
1 − E2

4 − E2
5 . (3)

The zero mode (Wilson line) of A4 is a compact variable

TF

∮
A4dx4 = 2πR4TF δA4 = 2π , (4)

where TF is the fundamental string tension. Therefore A4 ∼ A4 + 1
TF R4

. A similar periodicity is 
found for A5. Consequently, the variables conjugated to A4, A5

�4 = δL
δȦ4

= T2(2π)2R4R5E4√
1 − E2

4 − E2
5

= TF qR4 ,

�5 = δL
δȦ5

= T2(2π)2R4R5E5√
1 − E2

4 − E2
5

= TF pR5 , (5)

are quantised exactly in a way consistent with condition (2). Notice that the system carries fun-
damental F1 charges along x4 and x5, �4 = QF1,4, �5 = QF1,5.

3. S-duality and magnetic fields

It is illuminating to perform an S-duality of the previous configuration.3 For that purpose 
one adds one extra internal coordinate and considers a D3 brane wrapping x0, x4, x5, x6, with 
the same internal electric field. After S-duality, one gets a D3 brane with the same worldvol-
ume, with D3 charge T3 and internal magnetic field B = (B4, B5, B6) = (B cosβ, B sinβ, 0) or, 
equivalently, with D1 charges. Indeed, there are two induced D1 charges:

D1 , worldvolume x0, x4 of charge Q
(4)
1 = F56 = T1

E cosβ√
1 − E2

∼ B4 ,

D1′ , worldvolume x0, x5 of charge Q
(5)
1 = F46 = −T1

E sinβ√
1 − E2

∼ B5 . (6)

On the other hand, the magnetic fields should satisfy the following (Dirac) quantisation condi-
tions

B5 = B sinβ = −F46 = np

2πR4R6
, B4 = B cosβ = F56 = nq

2πR5R6
, (7)

where n is an arbitrary integer and p, q are coprime integers. From above one obtains the quan-
tisation condition for the angle β defining the orientation of the magnetic field (the same by 
S-duality as the orientation of the original electric field)

3 The following arguments were suggested to us by I. Bena.
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tanβ = −F46

F56
= p

q

R5

R4
, (8)

which is again consistent with (2) and independent of R6.
It is also useful to perform a T-duality along x6, turning the D3 brane into a D2 brane which 

defines a plane in x4, x5, x6. The initial electric field is traded for an angle E = sin θ . The brane 
charges are traded into the orientation of the D2 brane plane, defined by the vector n = Q =
(Q4, Q5, Q6) perpendicular to it, where

Q045 = Q2 = Q cos θ ≡ Q6 ,

Q046 = Q2
E cosβ√
1 − E2

= Q sin θ cosβ ≡ Q5 ,

Q056 = −Q2
E sinβ√
1 − E2

= −Q sin θ sinβ ≡ Q4 , (9)

where Q2 is the standard D2 brane charge and Q = Q2/ cos θ is the tension of a rotated brane. 
From the rotated brane tension one can also identify the T-dual magnetic field B = tan θ . The 
plane defining the worldvolume of the D2 brane is given by the equation

− sin θ sinβ x4 + sin θ cosβ x5 + cos θ x6 = 0 . (10)

The projection of the brane on the x4, x5 torus (for θ �= 0) is − sinβ x4 + cosβ x5 = 0, which is 
a rotated brane. The length of the brane is finite if tanβ = (pR5)/(qR4). Notice that the S-dual 
magnetic field is parallel to the original electric field.

3.1. Geometrical interpretation

Let us consider a D3 brane on a square 3-torus of coordinates x, y, z and correspond-
ing radii 2πRi , i = 1, 2, 3, with a constant worldvolume magnetic field B = (Bx, By, Bz) =
(0, B cosβ, B sinβ). The Dirac quantisation condition implies

Bz = B sinβ = Fxy = np3

2πR1R2
, By = B cosβ = −Fxz = np2

2πR1R3
, (11)

where n is an arbitrary integer and p2, p3 are coprime integers. The quantisation conditions 
imply that the direction of the magnetic field and its values are quantised

tanβ = p3R3

p2R2
, qB = nR‖

2πR1R2R3
, (12)

where R‖ =
√

p2
2R

2
2 + p2

3R
2
3 is the length of the coordinate parallel to the magnetic field. Since 

(p2, p3) are (coprime) integers by the Dirac quantisation conditions, the coordinate x‖ is there-
fore compact. Let us denote by (e1, e2, e3) ∈ H1(T

3, Z) the 1-cycles generating the integral torus 
homology. It is convenient in what follows to introduce also the basis of one-forms in the coho-
mology (γ1, γ2, γ3) ∈ H 1(T3, Z), which by (de Rham) duality satisfy∫

ei

γj = δij , i, j = 1,2,3 . (13)

Since the periodicities of the coordinates x, y, z are 2πRi then in terms of the coordinate differ-
entials one has
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γ1 = dx

2πR1
, γ2 = dy

2πR2
, γ3 = dz

2πR3
. (14)

Furthermore, we define also the (Poincaré) dual two-forms {βi}i=1,2,3 ∈ H 2(T3, Z) satisfying∫
T3

γi ∧ βj = δij , (15)

and thus, expressed in terms of γi , are given by

β1 = γ2 ∧ γ3 , β2 = −γ1 ∧ γ3 , β3 = γ1 ∧ γ2 . (16)

In terms of these, one can identify the cycle parallel to the magnetic field B and the two-form 
field strength as

e‖ = p2e2 + p3e3 ,
F

2π
= np2β2 + np3β3 , (17)

such that the magnetic field F/(2π) is in the integral cohomology H 2(T3, Z) of the torus as 
expected from the Dirac quantisation conditions.

It is well-known (and easy to check from boundary conditions on the open strings) that a 
T-duality maps a D3 with a magnetic field into a D2 brane with no worldvolume flux, but rotated. 
In our case, the T-duality is performed on x, whereas the rotated D2 brane is defined by the 
normal vector

n = (cos θ,− sin θ sinβ, sin θ cosβ) , (18)

where the angles θ, β are determined by

tan θ = nR‖R′
1

mR2R3
, tanβ = p3R3

p2R2
. (19)

In (19) R′
1 is the T-dual radius 1/2R1, and we added a second ‘wrapping number’ m, similar to 

the one in the first reference in [6], corresponding to multi-wrapped D-branes with m units of 
elementary magnetic flux. The integers (n, m) have to be coprime, otherwise one interprets their 
greatest common divisor as the number of distinct branes. From above one can infer that the D2 
brane wraps now the following integral 2-cycle

C2 = me2 ⊗ e3 + np3 e′
1 ⊗ e3 + np2 e′

1 ⊗ e2 , (20)

where we have introduced the T-dual cycle e′
1 of length 2πR′

1. Notice that the product 2-cycles 
{e′

1 ⊗ e2, e′
1 ⊗ e3, e2 ⊗ e3} generate indeed the integral homology H2(T

3, Z) (of the dual torus). 
The tension of the brane is now proportional to its surface

TD2 ∼ SC2 = (2π)2T2

√
m2R2

2R2
3 + n2p2

3R
′ 2
1 R2

3 + n2p2
2R

′ 2
1 R3

2 . (21)

A test of this results is that it is indeed proportional to the Born–Infeld action of the original D3 
brane with worldvolume magnetic field

TD3 ∼ T3

∫ √
1 + B2 . (22)
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4. Quantum mechanics with magnetic and electric fields in internal spaces

4.1. Internal magnetic fields

Let us consider a magnetic field in a three torus T3 with coordinates x, y, z such that the 
corresponding vector B = (0, B cosβ, B sinβ) points in an arbitrary direction in the plane (y, z)
defined by the angle β . Then, the non-zero field strength components are the following

Fxy = B sinβ , Fxz = −B cosβ . (23)

Various gauge choices are possible, but some are more convenient than others for writing down 
wave functions with appropriate periodicity conditions in the internal space. We will first make 
use of the gauge choice

Ax = 0 , Ay = B sinβ x , Az = −B cosβ x , (24)

which has the property of being invariant under rotations and translations in the plane (y, z). The 
gauge above leads to the quantum mechanical charged particle hamiltonian

H = 1

2
p2

x + 1

2
(py − qB sinβ x)2 + 1

2
(pz + qB cosβ x)2 . (25)

The non-zero components Ay and Az of the potential transform non-trivially only under the torus 
shifts in the x direction in such a way that the boundary conditions

Ay(x + 2πR1, y, z) = Ay(x, y, z) + 2πR1B sinβ ,

Az(x + 2πR1, y, z) = Az(x, y, z) − 2πR1B cosβ (26)

correspond to a gauge transformation of parameter θ = 2πR1B(sinβ y − cosβ z). The gauge 
group element

U = eiqθ = e2πiR1qB(sin β y−cos β z) (27)

is uni-valued on the torus if and only if the components of the magnetic field Fxy, Fxz are quan-
tised as

2πR1R2qB sinβ = np3 , −2πR1R3qB cosβ = −np2 , (28)

where the integers p2, p3 are coprime and are identified with the wrapping numbers of the 1-cycle 
(the lattice vector of minimal length) parallel to B in the sub-torus T2

yz ∈ T3. The conditions 
above are nothing else than the generalised Dirac quantisation conditions (see Section 3.1)

1

2π

∫
e1⊗e2

F = np3 ,
1

2π

∫
e1⊗e3

F = −np2 . (29)

From eq. (28) one can infer that the direction of the magnetic field B has to be rational and that 
its norm, B , is quantised. Indeed, we have again the identities

tanβ = p3R3

p2R2
, qB = nR‖

2πR1R2R3
, (30)

where R‖ is the periodicity in the direction parallel to B, given by the length of the corresponding 
torus cycle, that we denote by �e‖, having the wrapping numbers (p2, p3)
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�e‖ = p2�e2 + p3�e3 , R‖ =
√

p2
2R

2
2 + p2

3R
2
3 . (31)

Above, we denote by �e2 and �e3 the vectors generating the torus lattice T2
yz. It is useful to introduce 

also the distance between two windings (see Fig. 1) of the 1-cycle �e‖ ∈ H1(T
2
yz) as follows

D‖ = R2R3

R‖
. (32)

The hamiltonian assumes its simplest form in terms of coordinates parallel and perpendicular to 
the magnetic field vector B, defined as

x‖ = cosβ y + sinβ z ,

x⊥ = − sinβ y + cosβ z , (33)

with similar expressions for the parallel and perpendicular momenta. Notice that the change of 
coordinates above is not a torus reparametrisation. A priori the direction defined by x⊥ may not 
be compact/periodic (though x‖ is always compact due to the Dirac quantisation conditions). 
The new coordinates simplify the interpretation, since the hamiltonian (25) can be rewritten in 
the form

H = 1

2
p2

x + 1

2
p2‖ + 1

2
(p⊥ + qBx)2 , (34)

where it is easy to identify the conserved momenta p‖ and p⊥ (or equivalently py, pz), the 
centre of mass of the harmonic oscillator xcm = p⊥/qB and the Larmor frequency ωL = qB . 
Thus, each energy eigenvalue is determined by the harmonic oscillator level λ and by the parallel 
momentum p‖. The resulting wave function in the non-compact space (R3) has the form


(x,y, z) = eipyyeipzzψλ

(
x − sinβ py − cosβ pz

qB

)
, (35)

where ψλ is the harmonic oscillator eigenfunction of level λ. In the chosen gauge (24), the 
translation operators in the three directions of the torus result

Ux = e2πiR1(Px−qBy sin β+qBz cos β) ,

Uy = e2πiR2Py , Uz = e2πiR3Pz , (36)

leading to the following periodicity conditions


(x + 2πR1, y, z) = e2πiR1qB(y sin β−z cos β) 
(x, y, z) ,


(x, y + 2πR2, z) = 
(x,y, z) , 
(x, y, z + 2πR3) = 
(x,y, z) , (37)

necessary for the wave function to be well defined on the torus T3. Equivalently, the periodicities 
above follow also from the bundle transition function in eq. (27), combined with the fact that 
the gauge potential (24) is invariant under translations in y and z. The periodicity of the wave 
function in the coordinates y, z imply that we have the standard Kaluza–Klein (KK) quantisations 
for the momenta

py = q2

R2
, pz = q3

R3
. (38)

In order to build a wave function which respects also the quasi-periodicity in x one can superpose 
(py, pz), or equivalently the momentum numbers (q2, q3), such that the energy level remains 
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fixed (and thus also p‖). Indeed, a generic torus shift in the x direction generates an image (of 
the harmonic oscillator wave function) with momenta of the form

x → x + 2πmR1 =⇒
{

py → py − 2πmqBR1 sinβ

pz → pz + 2πmqBR1 cosβ
(39)

where m indexes the images. Taking into account the quantisation of the angle β and of the 
magnetic field B one can then see that, on the torus, there is the following equivalence relation

(q2, q3) ∼ (q2 − mnp3, q3 + mnp2) (40)

which leaves p‖ invariant. The solution for the wave functions with correct periodicities can be 
found by summing over all the images


(x,y, z) =
∑
m∈Z

ei(py−mqBR1 sin β)y+i(pz+mqBR1 cos β)z

× 
λ

(
x + 2πmR1 + − sinβ py + cosβ pz

qB

)
. (41)

Notice that the term with m = 0 corresponds to the wave function in non-compact space. In 
order to understand the quantisation of p‖ and the Landau level degeneracy it is convenient to 
introduce a torus reparametrisation, i.e. an SL(2, Z) matrix M , such that one of the basis vectors 
of the lattice is given by �e‖. We can then write( �e‖

�e∗

)
=
(

p2 p3
l2 l3

)( �e2
�e3

)
. (42)

It should be observed that the vector �e∗ is in general not orthogonal to �e‖. Only in the limits 
β = 0, π/2 we can choose �e∗ to be either �e3 or −�e2 (and thus orthogonal to �e‖ that, in this case, 
becomes either �e2 or �e3). We have also the identities

M−1 =
(

l3 −p3
−l2 p2

)
, detM = detM−1 = p2l3 − p3l2 = 1 . (43)

Taking into account our conventions for the periodicity of the coordinates, namely y ∼ y +2πR2
and z ∼ z + 2πR3, the momentum quantum numbers transform, under the above reparametrisa-
tion, as(

q2
q3

)
=
(

l3 −p3
−l2 p2

)(
k

j

)
, (44)

where k is associated to the parallel direction and j is associated to the ∗ direction. Making 
use of (44) and of the quantisation of the angle β , one can easily show that the parallel and 
perpendicular momenta are quantised as

p‖ = k

R‖
(p2l3 − p3l2) = k

R‖
, (45)

p⊥ = 1

R2R3

[
jR‖ − k

R‖

(
p2l2R

2
2 + p3l3R

2
3

)]
. (46)

Taking into account the quantisation of B one obtains that the centre of mass of the oscillator 
(for the wave function on the torus) has the expression
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xcm = p⊥
qB

+ 2πmR1 =
[

j + mn

n
− k

nR2‖
(p2l2R

2
2 + p3l3R

2
3)

]
2πR1 . (47)

For a given energy level, that is for fixed λ and k, the centre of mass takes a finite number n
of discrete values j = 0, 1, . . . , n − 1, corresponding exactly to the Landau level degeneracy. It 
should be stressed that in the zero angle limit one takes (p2, p3) = (1, 0) and (l2, l3) = (0, 1), so 
that the second term in the equation above depending on k disappears, thus recovering the known 
result of xcm = 2πR1(j + mn)/n. The degeneracy can be checked also from the point of view 
of the annulus amplitude of open strings in the presence of the considered magnetic field. After 
taking into account the quantisation of the parallel momentum one has4

A= V7V3

2
qB

1

R‖

∞∫
0

dτ2

τ
9/2
2

∑
α,β

cαβ

ϑ
[

α
β

](
ε iτ2

2

∣∣∣ iτ2
2

)
ϑ
[

α
β

](
0
∣∣∣ iτ2

2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η12

(
iτ2
2

) iη3
(

iτ2
2

)
ϑ1

(
ε iτ2

2 | iτ2
2

)

×
∑

k

e
−πτ2

k2

2R2‖ (48)

Since the identity V3qB/R‖ = n holds, the amplitude above correctly counts the particle propa-
gation with degeneracy n. The tree-level closed (transverse) string amplitude is then given by

Ã= 2−5 V7V3

2
qB

∞∫
0

dl
∑
α,β

cαβ

ϑ
[

α
β

]
(ε|il)

ϑ
[

α
β

]
(0|il)

ϑ4
[

α
β

]
(0|il)

η12 (il)

iη3(il)

ϑ1 (ε|il) P̃
k̃

, (49)

where the dual lattice sum has the form

P̃
k̃
=
∑

k̃

e
−πlk̃2R2‖ . (50)

It correctly describes the coupling of the branes to the (closed-string) winding states and the 
Born–Infeld structure of the magnetised brane tension. Indeed, by using the identity sinπε =
qB/

√
1 + q2B2 (this factor is contained in ϑ1(ε|il)) one finds

Ãc ∼
√

1 + q2B2 . (51)

Another natural choice to study the magnetic field (23) is the Landau gauge given by the follow-
ing expression

Ax = −B(sinβ y − cosβ z) ,

Ay = Az = 0 . (52)

It is interesting to notice that the gauge transformation passing from the gauge (52) to the previous 
one (24), defined by the gauge parameter θ = −Bx(sinβy − cosβz), cannot be well-defined on 
the whole torus. The charged particle hamiltonian in the gauge of eq. (52) is

H = 1

2
[px + qB(sinβ y − cosβ z)]2 + 1

2

(
p2

y + p2
z

)
. (53)

4 Our partition functions in magnetic fields should be multiplied by 1/(2π)D , where D is the number of non-compact 
dimensions. According to our standard conventions [1], we will not write explicitly this factor.
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The potential transforms non-trivially under the torus periodicities in the directions y and z, 
yielding the boundary conditions

Ax(x, y + 2πR2, z) = Ax(x, y, z) − 2πR2B sinβ ,

Ax(x, y, z + 2πR3) = Ax(x, y, z) + 2πR3B cosβ . (54)

The torus shifts in the directions y and z generate two gauge transformations with parameters 
θ1 = −2πR2B sinβ x and θ2 = 2πR3B cosβ x. In order for the potential to be well defined on 
the torus one needs the following transition functions

U1 = eiqθ1 = e−2πiR2qB sin β x , U2 = eiqθ2 = e2πiR3qB cos β x (55)

to be single valued on the torus. It is easy to see that this holds true if and only if the quantisation 
conditions of the projections of the magnetic field in eqs. (28) are satisfied. In terms of parallel 
and perpendicular positions (and momenta) defined in eq. (33) one can write the hamiltonian as 
follows

H = 1

2
p2⊥ + 1

2
q2B2

(
x⊥ − px

qB

)2

+ 1

2
p2‖ , (56)

where again one can identify the centre of mass position of the harmonic oscillator xcm = px/qB . 
Since p‖ and px commute with the hamiltonian the wave function in a non-compact space is now 
of the form


(x,y, z) = eipxxeip‖x‖
λ

(
x⊥ − px

qB

)
. (57)

Making use of eq. (55) one finds that the wave function on the three torus has to satisfy the 
following periodicity conditions


(x + 2πR1, y, z) = 
(x,y, z) ,


(x, y + 2πR2, z) = e−2πiR2qB sin β x
(x, y, z) ,


(x, y, z + 2πR3) = e2πiR3qB cos β x
(x, y, z) . (58)

Since in the direction x the solution is a plane wave, it follows that the momentum px is quantised 
as px = m/R1. In order to build a wave function with the correct (quasi)-periodicities one can 
use


j(x, y, z) =
∑
m∈Z

e
i(j+mn) x

R1 ei(cos β py+sin β pz)(cos β y+sin β z)

× 
λ

(
− sinβ y + cosβ z − j + mn

n
2πD‖

)
(59)

where D‖ was defined in eq. (32). It is easy to see that one has the correct quasi-periodicities, 
after a redefinition of the summation index m of the form

y → y + 2πR2 , m → m′ = m + 2πR1R2qB sinβ ,

z → z + 2πR3 , m → m′ = m − 2πR1R3qB cosβ . (60)

The shift of the summation index has to be an integer! Indeed this is assured by the quantisation 
conditions of the magnetic field components in eq. (28). In addition, it seems that we must also 
satisfy the following quantisation conditions for the momenta
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2πR2(cosβ py + sinβ pz) cosβ = 2πk k3 ,

2πR3(cosβ py + sinβpz) sinβ = −2πk k2 , (61)

where k2, k3 are coprime integers that can be identified with the wrapping numbers on the torus 
1-cycle �e⊥ orthogonal to the magnetic field. From the ratio of eqs. (61) we can readily extract a 
quantisation condition for the β angle of the form

tanβ = −k2R2

k3R3
= − cot

(
β + π

2

)
. (62)

Moreover, since we obtain that the angle β + π/2 is rational, then also the coordinate x⊥ appear 
to be compact with an effective radius given by

R⊥ =
√

k2
2R2

2 + k2
3R2

3 . (63)

If both the parallel and orthogonal directions are required to be compact, we can then write the 
following GL(2, Z) transformation( �e‖

�e⊥

)
=
(

p2 p3
k2 k3

)( �e2
�e3

)
, (64)

that we denote by M̃ . Notice that we have the identities

det M̃ = p2k3 − p3k2 = R‖R⊥
R2R3

. (65)

Geometrically, the ratio of the volumes is thus given by the intersection number of the parallel 
cycle with the orthogonal one (this can be easily shown by using �e‖ ∧ �e⊥ = (det M̃)�e2 ∧ �e3). 
From eq. (61) one can extract a quantisation condition for the momentum p‖ of the form

p‖ = kR⊥
R2R3

= k

R‖
det M̃ . (66)

The correct normalization requires a ratio with the determinant of M̃ ∈ GL(2, Z). Thus, one 
finally gets

p‖ = k

R‖
, (67)

as in eq. (45). Combining the eq. (62) with the condition for the angle in (30), we obtain that the 
ratio of the squares of the radii R2 and R3 is fixed to be a rational number

R2
3

R2
2

= −k2p2

k3p3
∈Q . (68)

Notice that the identity (68) can be obtained by imposing that �e‖ and �e⊥ are orthogonal to one 
another. In conclusion, in this gauge we obtain that both the parallel coordinate x‖ and the perpen-
dicular coordinate x⊥ have to be compact and, consequently, the squared modulus of the complex 
structure of the sub-torus T2

yz is fixed to be a rational number determined by the wrappings of 
the parallel and orthogonal (with respect to the vector magnetic field B) 1-cycles. It should be 
possible and interesting to construct a more general wave function which does not require the 
condition (68). Indeed, from the point of view of the string cylinder amplitude in eq. (48) one 
does not need the orthogonal coordinate to be compact in order to correctly interpret the ampli-
tude. If, in addition to the generalised Dirac quantisation conditions, one needs to impose also the 
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Fig. 1. We depict the lattice vectors �e‖ with wrapping numbers (2, 3) and �e⊥ with wrapping numbers (−3, 2). The 
distance between two winding of the parallel cycle D‖ is also illustrated. From eq. (68) the complex structure of the torus 
has to be in such a way as to have R2 = R3.

constraint (68), then this result could be very important for the stabilisation of complex structure 
moduli fields in string theory.

4.2. Internal electric fields

The action of S-duality is in such a way that the electric and magnetic fields are parallel. As we 
have seen, Dirac quantisation conditions imply that the coordinates parallel to the magnetic field 
is compact. In turn, making use of S-duality, one obtains that the direction of the electric field is 
also quantised (rational from the point of view of the torus). Let us consider an electric field in an 
arbitrary direction in the plane yz, E = (Ey, Ez) = (E cosβ, E sinβ). Our conventions for the 
electric field are such that E is parallel to the magnetic field considered in the previous section. 
This is convenient, as many formulas from the magnetic field side translate to the electric field 
case simply by analytic continuation (x → ix0, px → ip0, B → −iE).

In what follows we use in a slightly abusive way the language of hamiltonian and wave func-
tion. Strictly speaking, there are no stationary states and all the hamiltonians below are not 
hamiltonians in the usual sense: either they are time-dependent with inverted harmonic oscil-
lators or they involve oscillators with a centre of mass determined by the energy. In fact, particles 
in an electric field are accelerated and radiate. The results below are better understood actually 
in terms of analytic continuation from the magnetic field case, and what we call hamiltonians 
will correspond actually to the zero-mode part of the string hamiltonians in later sections. The 
analytic continuation leads to a (complex) partition function which does not have the standard in-
terpretation from quantum mechanics or string theory. It contains, however, physical information 
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in the sense of encoding the energy loss by charged D-branes in the presence of an electric field, 
that is the natural generalization of the Schwinger pair production in quantum field theory [20].

We start again with the gauge where the wave function is manifestly periodic in y and z, 
namely

A0 = 0 , Ay = E cosβ x0 , Az = E sinβ x0 , (69)

which leads to the quantum mechanical hamiltonian

H = −1

2
p2

0 + 1

2
(py − qE cosβ x0)

2 + 1

2
(pz − qE sinβ x0)

2 . (70)

In terms of the parallel and the orthogonal coordinates, the (time-dependent) hamiltonian is given 
by

H = −1

2
p2

0 + 1

2
(sinβ py − cosβ pz)

2 + 1

2
(cosβ py + sinβ pz − qEx0)

2 , (71)

which identifies the conserved momentum p⊥ = − sinβ py +cosβ pz and the ‘centre of mass’ of 
the oscillator xcm = p‖/qE. However, it should be noticed that the above hamiltonian describes 
an inverted harmonic oscillator. We will treat the system as an analytic continuation of the har-
monic oscillator and thus the wave functions that we find are not really physical. Nevertheless, 
one can use this formal procedure to extract physically relevant results.

In this gauge, the translation operators in the directions of the torus are the usual ones

Uy = e2πiR2Py , Uz = e2πiR3Pz . (72)

As a consequence, since the potential is invariant under translations in the y and z directions, the 
wave functions have to be periodic


(x0, y + 2πR2, z) = 
(x0, y, z) , 
(x0, y, z + 2πR3) = 
(x0, y, z) . (73)

From eq. (69), we obtain that time translations x0 → x0 + t generate a gauge transformation of 
the potential given by

θt (y, z) = E(cosβ y + sinβ z) t . (74)

Hence, in this gauge, time translations are implemented by gauge transformations. We find that, 
in addition to the periodicity conditions in eq. (73), one has to also impose


(x0 + t, y, z) = eiqE(cos β y+sin β z) t 
(x0, y, z) , for all t ∈ R . (75)

The solution for the wave functions periodic on the two torus with the correct implementation of 
time translations is then


(x0, y, z) =
+∞∫

−∞
dα ei(p‖+αqE)x‖ eip⊥x⊥ 
λ

(
x0 − α − p‖

qE

)
, (76)

with standard KK momenta py = q2/R2, pz = q3/R3, and qi integers. Notice that one can set 
the parallel momentum p‖ to any value by a shift of the integration variable α. Formally, it plays 
the same role as the Landau level degeneracy in the magnetic field case. If one sets p‖ = 0 as it 
is required by the open string boundary conditions, then a quantisation condition for the angle β
arises as
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Fig. 2. We depict a particle moving with velocity �V = �E corresponding to the T-dual picture of an electric field. Due to 
the quantisation condition of the angle, the trajectory of the particle inside the two torus is periodic.

tanβ = −q2R3

q3R2
. (77)

The identity above implies that the coordinate x‖ is compact (see Fig. 2). However, from a quan-
tum mechanical point of view, neither this choice nor (77) seem to be necessary. We know, 
however, from the arguments in Section 2 that (77) is true. Let us use the following ansatz for 
the momentum numbers q2 and q3

q2 = −j p3 , q3 = j p2 , (78)

where the coprime integers (p2, p3) determine the wrapping numbers of the 1-cycle parallel to 
the electric field. Then the angle quantisation becomes

tanβ = p3R3

p2R2
. (79)

Using the Ansatz (78), the perpendicular and parallel momenta become

p⊥ = jR‖
R2R3

, p‖ = 0 . (80)

Generically, one expects a quantisation of the perpendicular momentum of the form

p⊥ = j

R⊥
, (81)

with the orthogonal radius being possibly infinite. As in the magnetic field case, we run again 
into the rescaling by the factor R‖R⊥/R2R3.

Analogously to the case of the magnetic field, we can also consider the gauge corresponding 
to the Landau one
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A0 = −E(cosβ y + sinβ z) ,

Ay = Az = 0 . (82)

Again, the transformation to pass from the gauge (82) to the previous (69) is given by the function 
θ = −Ex0(cosβy + sinβz) that, as before, it is not well-defined on the torus. The hamiltonian 
can be written as

H = −1

2
[p0 + qE(cosβ y + sinβ z)]2 + 1

2

(
p2

y + p2
z

)

= 1

2
p2‖ − q2E2

2

(
x‖ + p0

qE

)2

+ 1

2
p2⊥ , (83)

where we make use again of parallel and perpendicular coordinates/momenta. Since the momenta 
p0 and p⊥ commute with the hamiltonian, the wave function in non-compact space has the form


(x0, y, z) = eip0x0eip⊥x⊥
λ

(
x‖ + p0

qE

)
. (84)

On the two torus T2 with periodicities in the y, z coordinates, the wave function has to transform 
in the following way


(x0, y + 2πR2, z) = e−2πiR2qEx0 cos β
(x0, y, z) ,


(x0, y, z + 2πR3) = e−2πiR3qEx0 sin β
(x0, y, z) , (85)

as indicated by the transformation of the gauge potential (82) under the same shifts. A wave 
function with the correct quasi-periodicities can be written as


(x0, y, z) =
+∞∫

−∞
dα ei(p0−αqE)x0ei(− sin β py+cos β pz)(− sin β y+cos β z)ψλ

(
cosβ y + sinβ z + α + p0

qE

)
.

(86)

Indeed, torus lattice shifts correspond to changes of variable in the integral

y → y + 2πR2 , α → α′ = α + 2πqER2 cosβ ,

z → y + 2πR3 , α → α′ = α + 2πqER3 sinβ . (87)

Notice that p0 can be set to any value by a shift of the integration variable α. In addition, for 
the wave function to be well defined on the torus, the following quantisation conditions for the 
momenta seem to be needed

−2πR2(− sinβ py + cosβ pz) sinβ = −2πj p3 , (88)

2πR3(− sinβ py + cosβ pz) cosβ = 2πj p2 . (89)

Thus, we see that also in the case of the electric field one would obtain a quantisation condition 
for the angle β

tanβ = p3R3
, (90)
p2R2
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which would imply that the coordinate x‖ is compact with radius R‖ =
√

p2
2R

2
2 + p2

3R
2
3 . Since 

in the first gauge (69) this quantisation is not really manifest, we consider the condition (90) to 
be inconclusive from the viewpoint of quantum mechanics, in a similar way to the compactness 
of the coordinate perpendicular to the magnetic field in the Landau gauge (52) considered in 
the previous section. However, unlike the latter, the quantisation (90) is predicted by the non-
perturbative arguments of Sections 2 and 3. Notice that, due to the fact that the coordinate x0 is 
not compact, we do not have quantisation conditions for the components of the electric field. As 
a consequence, from a quantum mechanical point of view, we find that the coordinate x⊥ does 
not have to be compact. Relevant for constructing the CFTs of strings with background electric 
fields is the fact that the perpendicular momentum is quantised from eqs. (88)–(89) as

p⊥ = jR‖
R2R3

(91)

However, when the coordinate x⊥ is compact, one expects a quantisation of the form p⊥ = j/R⊥, 
which can be obtained after rescaling with the ratio of the volumes.

To summarise, the quantisation of the direction parallel to the electric field predicted non-
perturbatively from the arguments of Sections 2 and 3 is not completely manifest from quantum 
mechanical arguments. String quantisation and one-loop amplitudes in later sections seem also 
to be consistent with any value of the angle. This implies that the quantisation of x‖, whereas 
unambiguously predicted, is probably a genuine non-perturbative effect, invisible in perturbation 
theory.

5. Open strings with boundary electric fields

Open strings with (generically different) boundary electromagnetic fields can be described by 
the following σ -model action

S = − 1

2π

+∞∫
−∞

dτ

π∫
0

dσ ∂αXμ∂αXμ − q1

+∞∫
−∞

dτ A1μ ∂τX
μ − q2

+∞∫
−∞

dτ A2μ ∂τX
μ , (92)

where the string worldsheet has been taken to be the infinite strip and units are chosen such that

2α′ = 1 . (93)

The gauge potentials A1 and A2 are different when considering strings stretched between differ-
ent stacks of branes. A convenient gauge choice for constant electromagnetic fields is

A
μ
i = −1

2
F

μ
i νX

ν , i = 1,2 . (94)

Our convention for the boundary charges q1 and q2 is such that the case of neutral (dipole) strings 
corresponds to the condition

q1 + q2 = 0 . (95)

In the following, for convenience we shall absorb the charges qi into redefined field strengths Fi

πqiFi → Fi . (96)

With our choice of gauge in eq. (94) the classical system amounts to the wave equation for 
the bosonic coordinates Xμ(τ, σ) together with general (i.e. a combination of Neumann and 
Dirichlet) boundary conditions
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∂σ Xμ = F
μ
1 ν ∂τX

ν , σ = 0 , (97)

∂σ Xμ = −F
μ
2 ν ∂τX

ν , σ = π . (98)

We shall restrict our discussion to electric fields E and Ẽ in the plane (X8, X9) and thus the field 
strengths are of the following form

F1 := F
μ
1 ν =

⎛
⎝ 0 E8 E9

E8 0 0
E9 0 0

⎞
⎠ , F2 := F

μ
2 ν =

⎛
⎝ 0 Ẽ8 Ẽ9

Ẽ8 0 0
Ẽ9 0 0

⎞
⎠ . (99)

In general, there are two different cases to consider depending on whether the above field 
strengths F1 and F2 commute or not.5

[F1,F2] = 0 : corresponds to parallel electric fields, (100)

[F1,F2] �= 0 : corresponds to oblique electric fields . (101)

From a kinematic relativistic point of view there is a difference between the two cases. Indeed, 
suppose that one makes a boost of the system in a direction parallel to the electric field E; then in 
the first case the system is invariant! However, in the second case, one sees effectively a magnetic 
field proportional to the cross product of the original electric fields E∧Ẽ. The second case would 
thus correspond to the analogue of Thomas precession for strings. We shall focus first on the case 
of parallel electric fields in compact spaces. Then we discuss the non-parallel case.

Let us turn back to the boundary conditions (97)–(98). A general solution to the wave equation 
is of the form

Xμ(τ,σ ) = X
μ
L(σ+) + X

μ
R(σ−) , (102)

where σ± = τ ± σ . Then one can rewrite the boundary conditions in the convenient form

(1 − F1)
μ

ν ∂+Xν
L = (1 + F1)

μ
ν ∂−Xν

R , σ = 0 , (103)

(1 + F2)
μ

ν ∂+Xν
L = (1 − F2)

μ
ν ∂−Xν

R , σ = π . (104)

It is now natural to define the boost matrices �1 and �2 as the Cayley transforms of the field 
strengths

�i = (1 + Fi)
−1(1 − Fi) , i = 1,2 . (105)

Notice that the matrices above are well defined as long as det (1 ± Fi) �= 0. Already at this point 
one can see that there exists a critical electric field

||Ecr || = 1 =⇒ det (1 ± Fcr) = 1 − ||Ecr ||2 = 0 . (106)

In toroidal compactification, models with electric fields correspond by T-duality to branes (of 
lower dimensionality) moving with velocities equal to the original electric fields. In the moving 
brane interpretation the critical value of the velocity corresponds to a motion at the speed of light 
c = 1. Hence, the following condition will be satisfied by the electric fields

||E|| < 1 and ||Ẽ|| < 1 . (107)

5 In eq. (100) we include also the case when one of the electric fields is zero.
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Making use of the matrices above one can infer a mathematically equivalent form of the boundary 
conditions involving a periodicity condition for the left-moving coordinates Xμ

L together with a 
‘twisted’ identification of the left-moving with the right-moving

∂X
μ
L(τ̃ + 2π) = (�2�1)

μ
ν ∂Xν

L(τ̃ ) , (108)

∂X
μ
R(τ̃ ) = �

μ
1 ν ∂Xν

L(τ̃ ) , (109)

where τ̃ ∈ R is an arbitrary real variable. The periodicity property (108) is important as it 
determines the shifts of the frequencies in the mode expansions. They are determined by the 
eigenvalues of the matrix �2�1. If λa is an eigenvalue of �2�1, the corresponding (imaginary) 
electric shift iεa is related to it by

λa = e2πεa . (110)

Furthermore, from the left-right identification in eq. (109) we see that the phase shifts in the 
mode expansions are determined by the matrix �1. When solving the boundary conditions there 
are two sub-cases to consider:

F1 + F2 = 0 : corresponds to dipole strings , (111)

F1 + F2 �= 0 : corresponds to charged strings . (112)

The charged strings and dipole strings have different mode expansions, and we also sketch their 
canonical quantisation.

We analyse in the next Section the case in which the electric fields E and Ẽ are parallel. The 
case of oblique electric field is treated in Section 7.

6. Toroidal compactification with parallel electric fields

6.1. Dipole strings

Dipole strings correspond to a ‘degenerate’ case where the total charge of the open strings 
is equal to zero (95) and the boundary gauge potentials are identical. The first consequence of 
imposing (111) is that the frequency shifts in the mode expansions are vanishing. Indeed, it is 
easy to see that we have the identity

�2 = (1 + F2)
−1(1 − F2) = (1 − F1)

−1(1 + F1) = �−1
1 , (113)

hence the matrix whose eigenvalues determine the frequency shifts is the identity matrix

�2�1 = �−1
1 �1 = 1 . (114)

Thus, for dipole strings, the oscillator part of the mode expansion is identical to the standard 
one up to a phase determined by the eigenvalues of �1, the matrix determining the left-right 
identification for open string in electric fields. Indeed, making use of eq. (114) into the boundary 
conditions in eqs. (108)–(109), one can easily see that we must have

∂X
μ
L(σ+) = 1

2

∑
n∈Z

αμ
n e−inσ+ , ∂X

μ
R(σ−) = 1

2

∑
n∈Z

�
μ
1 ν αν

ne−inσ− . (115)

Hence, after integration, we find the following general solution for the mode expansion of dipole 
strings:
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Xμ(τ,σ ) = xμ + 1

2
α

μ
0 (τ + σ) + 1

2
�

μ
1 ν αν

0 (τ − σ)

+ i

2

∑
n�=0

[
α

μ
n

n
e−in(τ+σ) + �

μ
1 ν

αν
n

n
e−in(τ−σ)

]
. (116)

Quantisation of dipole (and charged) strings in magnetic fields has been first carried out in [3]. 
Our expression is similar to the ones found in [3] after analytic continuation. In order to see this, 
one needs to define coordinates Ya which diagonalise the boost matrix �1. Due to the fact that 
we have chosen the electric field E in an arbitrary direction in the plane (X8, X9) the matrix that 
connects Ya to Xμ is factorised as a rotation Rβ , which aligns the electric field E with one of 
the axes, times a light cone change of variables B := Bμ

a . Hence we can define

Xμ = Cμ
a Y a , Cμ

a = (R−1
β )μν Bν

a . (117)

Let us parametrise the (non-zero) components of the electric field as E8 = ||E|| cosβ and E9 =
||E|| sinβ such that β is the angle between E and the axis X8. The matrices Rβ and B are then 
given by

Rβ =
⎛
⎝ 1 0 0

0 cosβ sinβ

0 − sinβ cosβ

⎞
⎠ , B = 1√

2

⎛
⎝ 0 −1 1

0 1 1√
2 0 0

⎞
⎠ . (118)

With this choice, the initial Minkowski metric ημν = diag(−1, 1, 1) becomes a light cone one 
that we normalise as follows

ηab = ημνC
μ

aC
ν
b =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ . (119)

It is natural to label the directions Ya by the eigenvalues of the matrix �1. Let us introduce the 
‘rapidity’ θ as being the norm of the electric field

tanh θ := ||E|| . (120)

In terms of θ , we can write the eigenvalues of �1 in the following way

�a
1b := (C−1)aμ �

μ
1 ν Cν

b =
⎛
⎜⎝

1 0 0
0 1+||E||

1−||E|| 0

0 0 1−||E||
1+||E||

⎞
⎟⎠=

⎛
⎝ 1 0 0

0 e2θ 0
0 0 e−2θ

⎞
⎠ , (121)

where the order of the eigenvalues is such that a = (0, +, −). The coordinate Y 0 has a stan-
dard mode expansion corresponding to the direction orthogonal to the electric field in the plane 
(X8, X9). On the other hand, the coordinates Y± have the form of the light cone coordinates 
found in [3]. Indeed, it results

Y 0 = y0 + α0
0 τ + i

∑
n�=0

α0
n

n
e−inτ cosnσ , (122)

Y± = y± + τ ∓ ||E||σ
1 ∓ ||E|| α±

0 + ie±θ
∑
n�=0

α±
n

n
e−inτ cos(nσ ∓ iθ) . (123)
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It is convenient to normalise the zero modes such that they have canonical Poisson brackets and 
commutators. From imposing the usual algebra for Xμ and its canonical conjugate momentum 
P μ derived from eq. (92) (and containing the boundary terms)

{Xμ(τ,σ ),P ν(τ, σ ′)} = πημνδ(σ − σ ′) , (124)

{Xμ(τ,σ ),Xν(τ, σ ′)} = {P μ(τ, σ ),P ν(τ, σ ′)} = 0 , (125)

one can infer that, in order to bring the zero mode algebra into its canonical form, the following 
rescaling/redefinition of the momenta α±

0 is necessary

α±
0

1 ∓ ||E|| �→ p±

1 − ||E||2 . (126)

After introducing the notation p0 := α0
0 , we can thus write the usual commutation relations for 

the zero modes ya and pa ,

{ya,pb} = ηab or [ya,pb] = iηab . (127)

Notice that the oscillators αa
n satisfy the standard algebra for open strings. Since the quantisation 

is carried out in a covariant way, one needs to consider also the ghost fields associated to the 
gauge fixing of the local symmetries of the action in eq. (92). Some comments are in order about 
the choice of not aligning the electric field E with any of the axes. In the case of non-compact 
directions (X8, X9) this has no physical consequence. Indeed, one can always define a rotation 
which leaves the physical system invariant in such a way that (in the new coordinates) the electric 
field is aligned with one of the axes. However, when compactifying on a two torus T2, only rota-
tions of quantised angle are allowed! Let us first derive the annulus in the case of a non-compact 
space. We can make use of the rotated coordinates

X̃μ = (Rβ)μν Xν , (128)

which have the property that the electric field E is parallel to the axis X̃8. Their mode expansions 
are then found to be

X̃0 = X0 = x̃0 + 1

1 − ||E||2
(
q̃0τ + ||E|| q̃8σ

)
+ oscillators , (129)

X̃8 = x̃8 + 1

1 − ||E||2
(
q̃8τ + ||E|| q̃0σ

)
+ oscillators , (130)

X̃9 = x̃9 + q̃9τ + oscillators , (131)

with the zero modes x̃μ, q̃μ satisfying the canonical commutation algebra

[x̃μ, q̃ν] = iημν . (132)

In order to write the contribution of the zero modes to the annulus we choose a normalisation such 
that L0 depends explicitly on the electric field. Indeed, the relevant part of L0 is the following

Lzero
0 = 1

2

[
− 1

1 − ||E||2 (q̃0)2 + 1

1 − ||E||2 (q̃8)2 + (q̃9)2
]

(133)

that gives rise to a contribution of the form∫
d3x̃ d3q̃ e−πτ2 Lzero

0 = V3 (1 − ||E||2) 1

τ
3/2
2

, (134)
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where the factor 1 −||E||2 arises from the integration over the momentum zero modes q̃0 and q̃8. 
Hence, in the non-compact case, the annulus amplitude for the dipole strings is the standard one 
multiplied by the aforementioned factor. We recover in this way6 the result in [3],

Ad = V10

2
(1 − ||E||2)

∞∫
0

dτ2

τ 6
2

∑
α,β

cαβ

ϑ4
[

α
β

]
η12 . (135)

In the following, we assume for simplicity a rectangular torus T2 such that the periodicities of 
the coordinates X8,9 imply the usual quantisation of the (canonical) momentum modes q8,9

q8 = m8

R8
, q9 = m9

R9
. (136)

Since, in general, one cannot make use of the coordinates X̃μ globally we pass back to the 
original Xμ which are not aligned with the electric field. Their mode expansions can be inferred 
from eqs. (129)–(131) to be

X0 = x0 + 1

1 − ||E||2
[
q0τ + (E8 q8 + E9 q9)σ

]
+ . . . , (137)

X8 = x8 + E8(E8 q8 + E9 q9)

||E||2(1 − ||E|2|) τ + E9(E8 q9 − E9 q8)

||E||2 τ + E8

1 − ||E||2 q0σ + . . . ,

(138)

X9 = x9 − E9(E8 q8 + E9 q9)

||E||2(1 − ||E|2|) τ + E9(E8 q9 − E9 q8)

||E||2 τ − E9

1 − ||E||2 q0σ + . . . ,

(139)

where we have now defined the zero modes xμ = (R−1
β )μν x̃ν and qμ = (R−1

β )μν q̃ν such that 
their algebra remains canonical

[xμ, qν] = iημν . (140)

We can also write the relevant part of L0 from eq. (133) in terms of the zero modes xμ and qμ

as follows

Lzero
0 = 1

2(1 − ||E||2)
[
−(q0)2 + (1 − E2

9) (q8)2 + (1 − E2
8) (q9)2 + 2E8 E9 q8 q9

]
.

(141)

Notice that the result above is consistent with the open string metric Gμν defined in [19] since 
we have

Gμν := ημν − (F1η
−1F1)μν =

⎛
⎝−1 + ||E||2 0 0

0 1 − E2
8 −E8 E9

0 −E8 E9 1 − E2
9

⎞
⎠ . (142)

Indeed, the inverse of the metric above can be easily found

6 Our partition functions in electric fields should be multiplied by 1/(2π2)D/2, where D is the number of non-compact 
dimensions. We don’t write explicitly this factor.
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G−1
μν = 1

1 − ||E||2

⎛
⎝−1 0 0

0 1 − E2
9 E8 E9

0 E8 E9 1 − E2
8

⎞
⎠ , (143)

such that Lzero
0 can be written the following form

Lzero
0 = 1

2
G−1

μν qμ qν . (144)

Turning back to the annulus, the momentum integration over q8 and q9 is replaced in the compact 
case by a sum over m8 and m9 in the usual way

∫
dq8dq9 → 1

R8R9

∑
m8,m9∈Z

. (145)

Thus, from the zero modes one has the following contribution to the amplitude

∫
d3x dq0 1

R8R9

∑
m8,m9

qLzero
0

= V1

√
1 − ||E||2

∑
m8,m9

e
− πτ2

2(1−||E||2)

[
(1−E2

9 )
m2

8
R2

8
+(1−E2

8 )
m2

9
R2

9
+2E8E9

m8
R8

m9
R9

]
. (146)

Finally, the annulus for dipole strings in the case of an electric field E pointing into a compact 
two torus T2 is given by

Ad = V10

2

√
1 − ||E||2

∞∫
0

dτ2

τ 5
2

∑
α,β

cαβ

ϑ4
[

α
β

]
η12 Pm8,m9 , (147)

where Pm8,m9 denotes the sum over the momenta appearing in eq. (146), with the convention to 
include the normalisation with the torus volume as in eq. (145). Let us now calculate the trans-
verse channel amplitude with modular parameter l = 2/τ2. Making use of the modular properties 
of the Jacobi ϑ -functions and of the Dedekind η-function we can write the following amplitude 
for dipole strings in the tree-level (transverse) channel

Ãd = 2−5 V10

2
(1 − ||E||2)

∫
dl
∑
αβ

cαβ

ϑ4
[

α
β

]
(il)

η12(il)
P̃n8,n9 , (148)

where

P̃n8,n9 =
∑
n8,n9

e−πl
[
(1−E2

8 )n2
8R

2
8+(1−E2

9 )n2
9R

2
9−2E8E9 n8n9 R8R9

]
(149)

results from applying the Poisson summation formula to Pm8,m9 and contains the (8, 9)-bloc of 
the open string metric Gμν of eq. (143). One can see from eq. (148) that the factor (1 − ||E||2)
is indeed consistent with the DBI effective action.
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6.2. Charged strings

Let us now derive the mode expansions for charged open strings with parallel boundary elec-
tric fields. In this case the coordinates Ya defined in eq. (117) are again a natural choice since 
they diagonalise, besides �1, also the matrix �2�1 appearing in the boundary condition (108). 
This is due to the fact that �1 and �2 commute. Notice that this is no longer true in the case of 
oblique electric fields. Let us also define the ‘rapidity’ θ̃ related to the norm of Ẽ by

tanh θ̃ := ||Ẽ|| . (150)

The matrix product �2�1 in the basis defined by coordinates Ya has the following diagonal form

(�2�1)
a
b = (C−1)aμ (�2�1)

μ
ν Cν

b =
⎛
⎜⎝

1 0 0

0 e2(θ+θ̃ ) 0

0 0 e−2(θ+θ̃ )

⎞
⎟⎠ . (151)

Thus, the electric field frequency shift ε is the sum of the ‘rapidities’ θ and θ̃ divided by a factor 
of π

ε := 1

π
(θ + θ̃ ) , (152)

such that, from eq. (108), the periodicities of ∂Y a
L result

∂Y 0
L(τ̃ + 2π) = ∂Y 0

L(τ̃ ) , (153)

∂Y±
L (τ̃ + 2π) = e±2πε∂Y±

L (τ̃ ) . (154)

Making use of the equations above together with eq. (109), we can expand the derivatives of the 
left- and right-moving coordinates into modes

∂Y±
L (σ+) = 1

2

∑
n∈Z

α±
n±iε e−i(n±iε)σ+, ∂Y±

R (σ−) = 1

2
e±2θ

∑
n∈Z

α±
n±iε e−i(n±iε)σ− .

(155)

Finally, after integration, we obtain the known mode expansion [7] for charged strings in parallel 
boundary electric fields

Y±(τ, σ ) = y± + i e±θ
∑
n∈Z

α±
n±iε

n ± iε
e−inτ cos[(n ± iε)σ ∓ iθ ] , (156)

with Y 0 having the standard mode expansion already given in eq. (122). Canonical quantisation 
leads to the following commutation algebra for the modes

[y+, y−] = iπ

||E + Ẽ|| ,
[
α+

n+iε, α
−
m−iε

]= (n + iε) δn+m,0 , (157)

together with the standard commutation for the direction Y 0 defined to be orthogonal to the 
electric field E

[y0,p0] = i . (158)

In terms of the rotated coordinates X̃μ defined in eq. (128), the mode expansions take the fol-
lowing simple form
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X̃0 = x̃0 + oscillators , (159)

X̃8 = x̃8 + oscillators , (160)

X̃9 = x̃9 + p̃9 τ + oscillators , (161)

where the zero mode p0 ≡ p̃9 is now identified with the momentum along the direction X̃9, thus 
orthogonal to the parallel electric fields. The contribution to the annulus from the x̃μ and p̃9 can 
now be found to be∫

d3x̃ dp̃9√
det �̃

qLzero
0 = V3

π
||E + Ẽ|| 1

τ
1/2
2

, (162)

with the relevant part of L0 given by Lzero
0 = (p̃9)2 and the matrix �̃ with determinant equal to 

π2/||E + Ẽ||2 defined to encode the algebra of zero modes in the following way

x̃A := ( x̃0 x̃8 x̃9 p̃9
)T

, [x̃A, x̃B ] = �̃AB . (163)

The inclusion of the factor with the square root of the determinant is necessary for a correct 
definition of the quantum volume. Finally, combining the contribution from the zero modes with 
the oscillators and the fermions, we can write the annulus in the non-compact case as

Ac = V10

2
||E + Ẽ||

∞∫
0

dτ2

τ 5
2

∑
α,β

cαβ

ϑ
[

α
β

](
iε iτ2

2

∣∣∣ iτ2
2

)
ϑ
[

α
β

](
0
∣∣∣ iτ2

2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η12

(
iτ2
2

) iη3
(

iτ2
2

)
ϑ1

(
iε iτ2

2 | iτ2
2

) .

(164)

Let us now turn to the case of a two torus T2 spanned by the coordinates X8 and X9. The use 
of the rotated X̃μ is natural since the electric field E is aligned with the axis X̃8 and also since 
the charged string admits a momentum zero modes in the direction X̃9. In principle one has to 
consider two cases depending on whether the direction X̃9 is compact or not. In the first case 
one obtains a quantisation for the zero mode p̃9 and subsequently a lattice sum in the annulus. 
In the second case one only has a standard momentum integration and the result is identical to 
the non-compact case in eq. (164). Let us investigate the condition for the coordinate X̃9 to be 
compact. As before, we consider a rectangular two torus T2 with periodicities

X8 → X8 + 2πR8 , X9 → X9 + 2πR9 , (165)

such that the corresponding lattice is generated by the following orthogonal vectors

�e1 =
(

2πR8
0

)
, �e2 =

(
0

2πR9

)
. (166)

If the direction defined by the coordinate X̃9 is compact, there exists a lattice vector �e⊥ that is 
parallel to it. This implies the existence of (coprime) integers p, q such that

�e⊥ = p �e1 + q �e2 . (167)

The condition for the integers to be coprime ensures that we choose a vector e⊥ of minimal 
length. As a consequence of the above, the periodicity in the direction X̃9 is determined by the 
length of the vector |�e⊥| := 2πR⊥. If one defines the angle between �e⊥ and �e1 to be equal to 
β + π/2, then the quantisation condition for the angle β is
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tanβ = −pR8

qR9
= − cot

(
β + π

2

)
, R2⊥ = p2R2

8 + q2R2
9 . (168)

Notice that an additional condition is necessary in order for X̃8 to be compact as well. Indeed, in 
this case there exists a lattice vector �e‖ parallel to X̃8 defined by coprime integers l, k

�e‖ = k �e1 + l �e2 . (169)

As before, the length of the vector |�e‖| := 2πR‖ determines the periodicity in the direction X̃8

whereas the (same) angle β satisfies a different quantisation condition

R2‖ = k2R2
8 + l2R2

9 , tanβ = lR9

kR8
. (170)

If one combines the two quantisation conditions for the angle β in eqs. (168), (170), a constraint 
on the radii

R2
8

R2
9

= − q l

p k
∈ Q (171)

comes out. It ensures that the two vectors �e‖ and �e⊥ are indeed orthogonal �e‖ · �e⊥ = 0.
If we assume that X̃9 is compact, then the usual quantisation condition7 for the momentum 

mode p̃9 holds

X̃9 → X̃9 + 2πR⊥ , p̃9 = m̃9

R⊥
. (172)

Hence, the momentum integration is replaced by the standard lattice sum

Pm̃9 = 1

R⊥

∑
m̃9

e−πτ2m̃
2
9/2R2⊥

for electric fields such that X̃9 is compact. Finally, in the compact X̃9 case the annulus can be 
written as

Ac = V10

2
||E + Ẽ||

×
∞∫

0

dτ2

τ
9/2
2

∑
α,β

cαβ

ϑ
[

α
β

](
iε iτ2

2

∣∣∣ iτ2
2

)
ϑ
[

α
β

](
0
∣∣∣ iτ2

2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η12

(
iτ2
2

) iη3
(

iτ2
2

)
ϑ1

(
iε iτ2

2 | iτ2
2

) Pm̃9 . (173)

In the original coordinates Xμ the momentum p̃9 has non-zero projections on both the X8 and 
X9 axes that we denote by p8 and p9. However, the electric field has lifted the zero mode in the 
direction X̃8, hence we can write the following relation(

0
m̃9

R̃9

)
= 1

||E + Ẽ||
(

E8 + Ẽ8 E9 + Ẽ9

−(E9 + Ẽ9) E8 + Ẽ8

)( m8
R8
m9
R9

)
, (174)

where the matrix above is equal to Rβ in the case of parallel electric fields. The presence of 
the electric field imposes the constraint p̃8 = 0. Then one can see the angle quantisation as a 

7 This is due to the fact that one has a plane wave solution in the X̃9 direction.
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selection rule reducing the lattice sum to be only over m̃9

E9

E8
= Ẽ9

Ẽ8
= tanβ = −m8R9

m9R8
. (175)

6.3. Open/closed string duality

A consistency check of the charged string annulus amplitudes derived in the case of parallel 
electric fields can be done by looking at the transverse channel interpretation as closed strings 
exchanged between branes. Indeed, making the change of variables

l = 2

τ2
,

∞∫
0

dl = 2

∞∫
0

dτ2

τ 2
2

, (176)

one finds the following form of the transverse channel annulus for charged strings with com-
pact X̃9

Ãc = 2−5 V10

2
||E + Ẽ||

∞∫
0

dl
∑
α,β

cαβ

ϑ
[

α
β

]
(iε|il)

ϑ
[

α
β

]
(0|il)

ϑ4
[

α
β

]
(0|il)

η12 (il)

iη3(il)

ϑ1 (iε|il) P̃ñ9 , (177)

with the dual lattice sum P̃ñ9 being

P̃ñ9 =
∑
ñ9

e−πl ñ2
9R

2⊥ =
∑
ñ9

e−πl ñ2
9(q

2R2
8+p2R2

9) . (178)

Notice that whereas this expression depends explicitly on the comprime integers p, q defining the 
direction of the electric field, small changes in the angle are possible only if the integers are very 
large. In this case, the sum collapses to the first term (ñ9 = 0), which turns out to be the result 
obtained in the non-compact case, where the torus volume is infinite. In this sense, the lattice 
sum and therefore the whole partition function is continuous under infinitesimal changes in the 
direction of the electric field.8 Taking the limit p, q → ∞ with fixed ratio can also be understood 
as taking the limit of non-compact direction X̃9: in this case the lattice sum is reduced to the 
standard result of continuous momentum integration. Notice, however, that open-closed string 
duality is consistent irrespective of the quantisation condition (170) related to the compactness 
of the parallel coordinate, which is valid non-perturbatively by the arguments of Sections 2 and 3. 
Moreover, the partition function depends only on the compactness of the transverse coordinate, 
which is undetermined both perturbatively and non-perturbatively.

In order to show that we have the correct DBI interpretation, one needs to take into account 
the factor of sinhπε arising from the ϑ1(iε|il). Indeed, it is easy to obtain the identity

sinhπε = ||E + Ẽ||√
(1 − ||E||2)(1 − ||Ẽ||2)

, (179)

valid (only) for parallel electric fields. Using (179) we now have the following behaviour of the 
annulus in the transverse channel

8 We thank Costas Bachas for pointing out to us the continuous behaviour of the partition function under small changes 
of the angle as a consistency check of the result.
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Ãc ∼
√

(1 − ||E||2)(1 − ||Ẽ||2) , (180)

consistent with the closed string interpretation.

7. Oblique electric fields

7.1. Mode expansions

Models with several stacks of branes will contain, in general, open strings with non-parallel 
boundary electric fields. The form of the boundary condition in eqs. (108)–(109) is particularly 
useful in this case. It is natural to work with coordinates that diagonalise the composition of 
boosts �2�1 appearing in the boundary conditions. For this purpose we define Y a related to Xμ

as follows

Xμ = Cμ
a Y a . (181)

Notice that the coordinates Ya are different than the ones used in the parallel case, but reduce 
to them in this limit. The matrix (of eigenvectors of �2�1) C := Cμ

a is chosen to satisfy the 
identities

(�2�1)
μ

ν Cν
a = λa Cμ

a , ηab = ημνC
μ

aC
ν
b =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ . (182)

Our procedure of solving the boundary conditions works only for diagonalisable matrices �2�1. 
However, this is always the case for sub-critical electric fields. We restrict as before, for simplic-
ity, the electric fields E and Ẽ to lie on the plane (X8, X9). It turns out that the eigenvalues of 
�2�1 are given by

(�2�1)
a
b = (C−1)aμ (�2�1)

μ
ν Cν

b =
⎛
⎝ λ0 0 0

0 λ+ 0
0 0 λ−

⎞
⎠=

⎛
⎝ 1 0 0

0 e2πε 0
0 0 e−2πε

⎞
⎠ ,

(183)

where we have defined the electric shift ε := 1
2π

logλ+. The eigenvalue λ+ has the following 
expression9

λ+ = 1

(1 − ||E||2)(1 − ||Ẽ||2)
[
(1 + ET Ẽ) +

√
||E + Ẽ||2 − ||E ∧ Ẽ||2

]2

. (184)

Notice that the eigenvalues λa are always real for sub-critical electric fields. Indeed, one can 
show that we have the implication10

||E||, ||Ẽ|| < 1 =⇒ ||E + Ẽ||2 − ||E ∧ Ẽ||2 ≥ 0 . (186)

9 The other eigenvalue different from 1 is given by λ− = 1/λ+ .
10 It is useful to make use of the following identity

||E + Ẽ||2 − ||E ∧ Ẽ||2 = (1 + ET Ẽ)2 − (1 − ||E||2)(1 − ||Ẽ||2) , (185)

valid for arbitrary vectors E and Ẽ.
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Making use of the ‘rapidities’ θ and θ̃ defined in eqs. (120) and (150) and of the angle α =
�(E, Ẽ) between the electric fields, we can write the following expression for the electric shift

πε = cosh−1
(

cosh θ cosh θ̃ + cosα sinh θ sinh θ̃
)

. (187)

The parallel case in eq. (152) is easily recoverable after setting cosα = 1. It is interesting to find 
the Cayley generator, that we denote by P , of the product of boosts �2�1. One can show that 
we have11

�2�1 = (1 + P)−1(1 − P) , P = 1

1 + ET Ẽ
(F1 + F2 + [F1,F2]) . (188)

From the form of P one can infer, as expected, the presence of the Thomas precession when 
the commutator [F1, F2] is different from zero. The periodicity conditions for the coordinates 
Ya have the same form as the ones for parallel electric fields in eqs. (153)–(154). However, in 
the oblique case, due to the fact that �1 and �2 do not commute, the matrix identifying the 
left-moving with the right-moving is no longer diagonal! We again split the index a relative to 
the eigenvalues of �2�1 such that we have

a = (0,+,−) . (189)

Using eqs. (153)–(154), it is easy to show that the mode expansions for the derivatives ∂Y a
L are

∂Y 0
L(σ+) = 1

2

∑
n∈Z

α0
n e−inσ+ , ∂Y±

L (σ+) = 1

2

∑
n∈Z

α±
n±iε e−i(n±iε)σ+ (190)

and, using also eq. (109), the right-moving part comes out to be

∂Y a
R = 1

2

∑
n∈Z

[
�a

10 α0
n e−inσ− + �a

1+ α+
n+iε e−i(n+iε)σ− + �a

1− α−
n−iε e−i(n−iε)σ−

]
. (191)

Finally, after integration, the mode expansions for open strings with boundary oblique electric 
fields result

Ya(τ, σ ) = ya + 1

2
δa

0 p0(τ + σ) + 1

2
�a

10 p0(τ − σ)

+ i

2

∑
n�=0

α0
n

n

(
δa

0 e−in(τ+σ) + �a
10 e−in(τ−σ)

)

+ i

2

∑
n∈Z

α+
n+iε

n + iε

[
δa+ e−i(n+iε)(τ+σ) + �a

1+ e−i(n+iε)(τ−σ)
]

+ i

2

∑
n∈Z

α−
n−iε

n − iε

[
δa− e−i(n−iε)(τ+σ) + �a

1− e−i(n−iε)(τ−σ)
]

. (192)

L0 has a form similar to the case of parallel electric fields,

L0 = 1

2
(p0)2 + 1

2

∑
n�=0

α0−nα
0
n +

∑
n∈Z

α+
n+iεα

−
−n−iε + 1

2
iε(1 − iε) , (193)

11 Notice that the product in the reversed order is generated by the transposed of P , i.e.

�1�2 = (1 + PT )−1(1 − PT ).
.
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but with frequency shift ε given in eq. (187). Going back to the original coordinates Xμ is done 
with the matrix C := Cμ

a that can be again factorised as a product of a rotation Rγ , which aligns 
the vector E + Ẽ with one of the axes, times an electric field dependent matrix B := Bμ

a which 
transforms the usual Minkowski metric ημν into the light-cone metric ηab. Due to the fact that 
the Cayley transform of �2�1 is proportional to F1 + F2 + [F1, F2], one can use this latter to 
find the matrix of eigenvectors C. After some algebra one finds

Cμ
a = (R−1

γ )μν Bν
a , (194)

with the matrix B given by

Bμ
a = 1√

2(||E + Ẽ||2 − ||E ∧ Ẽ||2)
×

⎛
⎜⎝

−√
2 (E8Ẽ9 − Ẽ8E9) −||E + Ẽ|| ||E + Ẽ||

0
√

||E + Ẽ||2 − ||E ∧ Ẽ||2
√

||E + Ẽ||2 − ||E ∧ Ẽ||2√
2 ||E + Ẽ|| E8Ẽ9 − Ẽ8E9 −(E8Ẽ9 − Ẽ8E9)

⎞
⎟⎠

(195)

and Rγ having the same form as the rotation matrix in eq. (118) but with γ now being the angle 
between the vector E + Ẽ and the axis X8. The matrices Rγ and B (and hence also C) above 
reduce to eq. (118) when the limit of parallel electric fields is taken, i.e. after setting E ∧ Ẽ = 0.

7.2. Quantisation and the annulus

Standard canonical quantisation requires inverting the mode expansions (192) for the Fourier 
coefficients. Due to the fact that the matrix �1 is not diagonal in the coordinates Ya one needs 
to study the orthogonality properties of the following matrix valued functions

(fn)
a
b(τ, σ ) = 1

2

{
δa

b e−i(n+iεb)(τ+σ) + �a
1b e−i(n+iεb)(τ−σ) , n + iεb �= 0

δa
0(τ + σ) + �a

10(τ − σ) , n + iεb = 0
(196)

where, for convenience, we are using a covariant notation for the electric shifts {εa} =
{ε0, ε+, ε−} = {0, ε, −ε}. In our notation the zero mode part corresponds to the function (f0)

a
0. 

It is useful to introduce the following pairing between the functions fn

(fm|fn)ab :=
π∫

0

dσ ηcd (fm)ca

↔
∂ τ (fn)

d
b + F1cd (fm)ca (fn)

d
b

∣∣∣
σ=0

+ F2cd (fm)ca (fn)
d
b

∣∣∣
σ=π

, (197)

where we have defined the differential operator (fm)ca

↔
∂ τ (fn)

d
b := (fm)ca ∂τ (fn)

d
b −

∂τ (fm)ca(fn)
d
b . In order to invert the mode expansions, one can use the following identities

(fm|fn)ab = iπ(m + iεa) ηab δm+n,0 δεa+εb,0 , (fm|f0)a0 = 0 , (fm|δ)ab = 0 ,

(198)

(f0|δ)0b = −π (η − F2)0b , (f0|f0)00 = 0 , (f0|fn)0b = 0 , (199)

(δ|f0)a0 = π (η + F2)a0 , (δ|δ)ab = (F1 + F2)ab , (δ|fn)ab = 0 . (200)
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Indeed, the mode expansions in eq. (192) can be written now with the help of the functions fn as

Ya(τ, σ ) = ya + (f0)
a

0(τ, σ )p0 + i
∑
n∈Z

n+iεb �=0

(fn)
a
b(τ, σ )

αb
n+iεb

n + iεb

. (201)

It is now easy to see that the oscillators αa
n+iεa

admit an integral representation in terms of Ya

and its time derivative ∂τY
a of the form

αa
n+iεa

= 1

π
ηab(f−n|Y)b = 1

π
ηab

⎡
⎣ π∫

0

dσ ηcd (f−n)
c
b

↔
∂ τY

d + F1cd (f−n)
c
b Y d

∣∣∣
σ=0

+ F2cd (f−n)
c
b Y d

∣∣∣
σ=π

]
. (202)

The commutation algebra of the oscillators is similar to the one in the parallel case (157) but 
with the electric shift ε modified to the expression in (187). Indeed, one can write the result in a 
covariant manner as follows[

αa
m+iεa

, αb
n+iεb

]
= ηab(m + iεa)δm+n,0 δεa+εb,0 . (203)

The pairing that we defined in eq. (197) suggests the introduction of the following zero-mode 
redefinitions

xa := (δ|Y)a =
π∫

0

dσ ηcd δc
a

↔
∂ τY

d + F1cd δc
a Y d

∣∣∣
σ=0

+ F2cd δc
a Y d

∣∣∣
σ=π

, (204)

π0 := (f0|Y)0 =
π∫

0

dσ ηcd (f0)
c

0
↔
∂ τY

d + F1cd (f0)
c

0 Yd
∣∣∣
σ=0

+ F2cd (f0)
c

0 Yd
∣∣∣
σ=π

,

(205)
which, after the use of the identities in eqs. (198)–(199), can be shown to be related to the original 
modes ya and p0 by the relations

xa = (F1 + F2)ab yb + π(η + F2)a0 p0 , (206)

π0 = −π(η − F2)0a ya . (207)

Making use of the integral representations in eqs. (204)–(205) one can compute the commutators 
of the modes xa and π0. The result that one obtains has the simple form

[xa, xb] = iπ(F1 + F2)ab , [xa,π0] = iπ2(η + F2)a0 . (208)

With eqs. (206)–(208) at our disposal, we can now derive the commutation algebra for the modes 
ya and p0. The result is

[y+, y−] = iπ√
||E + Ẽ||2 − ||E ∧ Ẽ||2

, [y±, y0] = ± iπF 0±
2√

||E + Ẽ||2 − ||E ∧ Ẽ||2
,

(209)

[y±,p0] = ∓ i(F1 + F2)
0±√

||E + Ẽ||2 − ||E ∧ Ẽ||2
, [y0,p0] = − i(F1 + F2)

+−√
||E + Ẽ||2 − ||E ∧ Ẽ||2

.

(210)
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It is convenient to work with rotated coordinates X̃μ defined such that the vector E+ Ẽ is aligned 
with X̃8

X̃μ = (Rγ )μν Xν , X̃μ = Bμ
a Y a . (211)

The mode expansions of these coordinates have the following form

X̃0 = x̃0 − E8Ẽ9 − Ẽ8E9√
||E + Ẽ||2 − ||E ∧ Ẽ||2

p0σ + oscillators , (212)

X̃8 = x̃8 + oscillators , (213)

X̃9 = x̃9 + ||E + Ẽ||√
||E + Ẽ||2 − ||E ∧ Ẽ||2

p0τ + oscillators , (214)

where the constant modes x̃μ are related to the ya by the same matrix Bμ
a in eq. (195), hence

x̃μ = Bμ
a ya . (215)

Since the vector E + Ẽ is aligned with X̃8, the momentum zero mode p0 is associated to the 
direction orthogonal to E + Ẽ, namely X̃9. In order to define properly the momentum integration 
one needs to find the correct normalisation from the commutator algebra of the zero modes. 
It turns out that the momentum p0 has the following commutators

[x̃0,p0] = 0 , [x̃8,p0] = 0 , [x̃9,p0] = i||E + Ẽ||√
||E + Ẽ||2 − ||E ∧ Ẽ||2

, (216)

whereas the x̃μ satisfy a non-commutative spacetime algebra of the form

[x̃0, x̃8] = − iπ

||E + Ẽ|| , [x̃0, x̃9] = − iπẼT (E + Ẽ)(E8Ẽ9 − Ẽ8E9)

||E + Ẽ|| (||E + Ẽ||2 − ||E ∧ Ẽ||2) , (217)

[x̃8, x̃9] = 0 . (218)

We are thus led to the introduction of the canonically normalised momentum p̃9, related to p0

by the following expression:

p̃9 =
√

|E + Ẽ||2 − ||E ∧ Ẽ||2
||E + Ẽ|| p0 . (219)

We now have all the ingredients we need in order to define the annulus both in the compact and 
the non-compact case. The mode expansion for X̃9 can be written as

X̃9 = x̃9 + ||E + Ẽ||2
||E + Ẽ||2 − ||E ∧ Ẽ||2 p̃9τ + oscillators , (220)

with the following algebra

[x̃0, p̃9] = 0 , [x̃8, p̃9] = 0 , [x̃9, p̃9] = i , (221)

satisfied by p̃9. Since the zero modes x̃μ and p̃9 span a non-commutative algebra that is not in 
canonical form, one needs to divide the integration measure by the corresponding Pfaffian (which 
will correctly define the quantum volume!). Indeed, let us introduce the notation
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x̃A = ( x̃0 x̃8 x̃9 p̃9
)T

and [x̃A, x̃B ] =: �AB , (222)

where the antisymmetric matrix � can be read off from eqs. (217), (218) and (221). Its determi-
nant is given by det� = π2/||E + Ẽ||2. Thus, we can further write that the correct measure in 
the annulus is given by

Measure = d3x̃ dp̃9

√
det�

= V3

π
||E + Ẽ||dp̃9 . (223)

The integration over x̃μ can be performed since L0 only depends on p̃9. In the case of a non-
compact space–time L0 has the form

Lzero
0 = 1

2
(p0)2 = ||E + Ẽ||2

||E + Ẽ||2 − ||E ∧ Ẽ||2
1

2
(p̃9)2 . (224)

After putting together the other contributions from the oscillators and the orthogonal coordinates, 
one obtains the annulus amplitude for charged strings in the presence of oblique electric fields

A = V10

2

√
||E + Ẽ||2 − ||E ∧ Ẽ||2

×
∞∫

0

dτ2

τ 5
2

∑
α,β

cαβ

ϑ
[

α
β

](
iε iτ2

2

∣∣∣ iτ2
2

)
ϑ
[

α
β

](
0
∣∣∣ iτ2

2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η12

(
iτ2
2

) iη3

ϑ1

(
iε iτ2

2 | iτ2
2

) . (225)

Let us now compactify on a two torus T2 spanned by the coordinates X8, X9. Again, as in the 
parallel case, we have two cases to consider depending on whether the direction orthogonal to 
E + Ẽ is compact or not. In the latter case one obtains the same result as in the non-compact case 
of eq. (225). In the case of compact X̃9, the normalisation of the zero mode p̃9 has been chosen 
such that its quantisation is the standard one

X̃9 → X̃9 + 2πR⊥ =⇒ p̃9 = m̃9

R⊥
(226)

and the dependence on the electric field appears in L0. Thus, in the case of a compact X̃9, one 
obtains the following momentum sum contribution to the annulus amplitude

Pm̃9 = 1

R⊥

∑
m̃9

e
− πτ2 m̃2

9 ||E+Ẽ||2
2R2⊥ (||E+Ẽ||2−||E∧Ẽ||2) . (227)

Notice that in the limit of parallel electric fields (thus setting E ∧ Ẽ = 0) the lattice sum reduces 
to the standard one, as expected. Finally, the cylinder in the compact case, for oblique electric 
fields E and Ẽ can be written as

A = V10

2
||E + Ẽ||

∞∫
0

dτ2

τ
9/2
2

∑
α,β

cαβ

ϑ
[

α
β

](
iε iτ2

2

∣∣∣ iτ2
2

)
ϑ
[

α
β

](
0
∣∣∣ iτ2

2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η12

(
iτ2
2

) iη3

ϑ1

(
iε iτ2

2 | iτ2
2

) Pm̃9 .

(228)

Finally, let us consider the tree-level (transverse) channel properties of our cylinder amplitude. 
With the change of modular parameter in eq. (176) one finds
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Ã= 2−5 V10

2

√
||E + Ẽ||2 − ||E ∧ Ẽ||2 R̃9

×
∞∫

0

dl
∑
α,β

cαβ

ϑ
[

α
β

]
(iε|il)

ϑ
[

α
β

]
(0|il)

ϑ4
[

α
β

]
(0|il)

η12 (il)

iη3(il)

ϑ1 (iε|il) P̃ñ9 , (229)

where the dual lattice sum P̃ñ9 is obtained by Poisson summation

P̃ñ9 =
∑
ñ9

e
− πl ñ2

9R̃2⊥ (||E+Ẽ||2−||E∧Ẽ||2)

||E+Ẽ||2 . (230)

As in the case of parallel electric fields, one needs to take into account the sinhπε factor from 
ϑ1(iε|il) in order to show consistency with the DBI interpretation. For oblique electric fields one 
can show the more general identity

sinhπε =
√

||E + Ẽ||2 − ||E ∧ Ẽ||2√
(1 − ||E||2)(1 − ||Ẽ||2)

. (231)

Thus one finds the following behaviour of the annulus amplitude in the transverse channel

Ã∼
√

(1 − ||E||2)(1 − ||Ẽ||2) . (232)

This result is similar to the one obtained in the parallel case and it provides a non-trivial consis-
tency check of the derived amplitudes in the presence of oblique electric fields.

8. Energy loss of D-branes in electric fields

In what follows we denote the total energy loss by D-branes in an electric field by W , whereas 
the energy loss per (non-compact) spacetime volume will be w = W/VD , where D is the number 
of non-compact dimensions. Schematically, our (cylinder) partition functions are of the form

A≡ −iF ≡ −i

∞∫
0

dt F (t) , (233)

where F is the vacuum energy, with F(t) a real function. In the presence of the electric field, 
the function F has an infinity of poles tk = τ2,k = 2k/|ε| and the integral has an imaginary part 
calculated as the sum over all the residues, such that

Im F = Re A = Im

∞∫
0

dt F (t) = π

∞∑
k=1

Res F(tk) . (234)

The probability of pair production is then given by the formula

W = −2 Im F = −2 Re A . (235)

It was shown in [7] that there is a general way to express the D-brane power loss. Slightly 
adapting it to our notation, it is given by
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w =
∑

states,S

||E + Ẽ||
2(2π)D−1ε

∞∑
k=1

(−1)(2α+1)(k+1)

( |ε|
k

)D
2

e
− πk

|ε| M2
s , (236)

where S denote all the states in the spectrum, including KK states and string oscillators, and 
α = 0 (1/2) for the NS (R) sector.

In the case of parallel electric fields, taking without loosing generality the case where the 
perpendicular coordinate to the electric field is compact, one can write the more convenient 
expression

W = V10 ||E + Ẽ||
(2π)82R⊥ε

∞∑
k=1

( |ε|
k

) 9
2
(

(−1)k+1V8 + S8

η8

)
(
iτ2,k

2
= ik

|ε| )
∑
m9

e
− πk

|ε|
m2

9
R2⊥ , (237)

where V10 is spacetime volume and V8, S8 are SO(8) characters (for their definition and proper-
ties, see e.g. [1]). Since V8 = S8, only odd k contribute to the energy loss, which can be therefore 
rewritten as

W = V10||E + Ẽ||
(2π)8R⊥ε

∞∑
k=0

( |ε|
(2k + 1)

) 9
2
(

θ4
2

2η12

)
(
i(2k + 1)

|ε| )
∑
m9

e
− π(2k+1)

|ε|
m2

9
R2⊥ . (238)

Notice that in the case of oblique sectors the expression of W is of the same form with ε defined 
in eq. (187) and the (electric field dependent) lattice sum in eq. (227). In the following, we shall 
define W(ii) as the energy loss in the case of a non-compact orthogonal direction, i.e. we can 
write

W(ii) = lim
R⊥→∞W(i) , (239)

with the notation W(i) = W as the energy loss in the case of a compact orthogonal direction as 
given by eq. (238). We now proceed to determine which of the W(i) and W(ii) is larger. For this 
purpose, we need the following inequality

1

R⊥

∑
m∈Z

e
−πa m2

R2⊥ ≥ 1√
a

, for all a,R⊥ > 0 . (240)

Furthermore, the function on the left-hand side above decreases monotonically with the radius 
R⊥ from +∞ to 1/

√
a (one can see this by taking the derivative of the series after Poisson 

summation). Applying eq. (240) term by term in the k-series of eq. (238), with a = (2k + 1)/ε, 
one can write

W(i) ≥ V10||E + Ẽ||
(2π)8ε

∞∑
k=0

( |ε|
2k + 1

)9/2 ϑ4
2

η12

(
τ = i

2k + 1

|ε|
)( |ε|

2k + 1

)1/2

= W(ii) , (241)

since every term in the series is positive. Thus we have shown that the energy loss in the compact 
case W(i) is always larger than the one in the non-compact case W(ii) for any finite positive values 
of R⊥ and ε. Since W(i)/(ii) are both positive quantities we have

0 ≤ W(ii)

W(i)

≤ 1 . (242)

The value 0 for the ratio is obtained in the limit R⊥ → 0 or ε → 0 (it is not difficult to show 
that in this limit one has W(ii)/W(i) � |ε|1/2R⊥), whereas the value is 1, in the limit R⊥ → ∞
or ε → ∞. Indeed, we illustrate the dependence on R⊥ and ε in Figs. 3, 4.
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Fig. 3. We depict the dependence on ε of the ratio of the energy losses with W(i) given by eq. (238) with fixed R⊥ = 1, 1.5
and W(ii) := W(i)

∣∣
R⊥→∞ given in eq. (241). The compact energy loss dominates over the non-compact one for any value 

of ε. Asymptotically the ratio reaches the value 1 indicating the fact that both (compact and non-compact) cases diverge 
in the same way when the electric field reaches the limiting value.

Fig. 4. We depict the dependence on R⊥ of the ratio of the energy losses with W(i) given by eq. (238) with fixed 
ε = 1, 1.5 and W(ii) given by eq. (241). The compact energy loss dominates over the non-compact one for any value 
of R⊥ . Asymptotically the ratio reaches the value 1 as expected from the definition of the non-compact energy loss 
W(ii) := W(i)

∣∣
R⊥→∞.

Hence, the energy loss by D-branes in the presence of a constant electric field is larger in the 
compact case such that it decreases monotonically with the radius of the orthogonal direction R⊥
and reaches asymptotically the non-compact value. At the same time it increases with the electric 
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field ε, diverging when reaching the limiting value in such a way that the ratio non-compact/com-
pact goes to 1. From the point of view of inflationary scenarios with D-branes we conclude that 
a larger (or infinite) radius would lead in principle to a larger number of e-folds.

9. Conclusions

Our paper extends previously known results about open strings with background (constant) 
electric fields in two different ways:

• First, and most important, we considered electric fields in compact spaces (tori) such that 
the direction of the electric field is at a generic angle with respect to (one of the) axes defin-
ing the torus lattice. The main result is that the orientation of the electric field in the internal 
space has to be quantised. Since this configuration is T-dual to D-branes moving with constant 
velocity in the internal space, we hope our results will be of some relevance for early cosmology 
and in particular inflation. We have given several derivations for the quantisation of the electric 
field direction stemming from the gauge invariance of Wilson lines, S-duality between electric 
and magnetic fields and the construction of quantum mechanical wave functions respecting the 
periodicities of the torus. The corresponding condition implies that the direction parallel to the 
electric field has to be compact. After T-duality, this implies that D-brane motion with constant 

velocity is periodic in the internal torus, with a periodicity R‖ =
√

p2
2R

2
2 + p2

3R
2
3 , where R2,3 are 

the internal radii of a rectangular torus and p2,3 are integers, that can be parametrically large for 
large integers. This can have applications to inflation in string theory, particularly in string mod-
els with axion monodromy [21], where D-brane positions are natural inflaton candidates with 
large field excursions [22]. However, the open string momenta allowed by the boundary condi-
tions are always orthogonal to the electric field and may or may not be quantised depending on 
whether the orthogonal direction is compact or not.

• The quantum mechanical analysis of the similar situation (by analytic continuation) involv-
ing a magnetic field yields the fact that the parallel coordinate has to be compact as well, which 
can also be interpreted as the fact that the magnetic field is in the integral homology of the torus. 
For the case of the magnetic field and a different gauge, we could construct correct wavefunctions 
only if the perpendicular coordinate is also compact. If necessary, it is easy to see that this would 
further imply that the (absolute value squared of the) complex structure of the two torus where 
the magnetic field vector lies has to be fixed to a rational number. Such a condition, if necessary, 
can be of importance for the problem of moduli stabilisation. However, we find such condition 
not to be necessary for the consistency of the cylinder string propagation (partition functions) 
and as such, we believe that it is an artefact of a special gauge choice.

• For the case of a particle/string in the presence of a magnetic field with corresponding vector 
pointing in an arbitrary direction in the yz-plane of a three torus, we showed that the degeneracy 
of the Landau levels is given by the greatest common divisor of the flux numbers in the xy- and 
xz-planes, a result that is important for model building in this framework.

• Second, we have performed the (covariant) quantisation of open strings with oblique elec-
tric fields in both non-compact and compact spaces, providing also the relevant amplitudes. The 
oblique sectors, which are always charged, appear naturally (only) in models involving several 
stacks of branes. They correspond to strings stretched between different branes with a non-zero 
angle between the background electric fields. As a result, the formulas for the algebra of string 
modes and for the electric field shift are somewhat more involved though preserving certain sim-
ilarities with respect to the parallel case. In the non-relativistic limit (i.e. small electric fields) one 
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recovers the results of parallel electric fields. This is obvious in the T-dual version where one has 
two branes moving with constant velocities in non-parallel directions. Going to the rest frame of 
one of the branes produces a Thomas precession effect which goes to zero in the non-relativistic 
limit. In view of this, the contribution of the oblique sectors can be important in studying the 
ultra-relativistic limit of such models.

• Finally, we worked out the energy loss of D-branes in electric fields. It turns out that the 
result depends in a monotonically decreasing way on the length of the transverse coordinate to 
the electric field (which is by definition infinite if the corresponding direction is not periodic). 
There is therefore a significant difference between the case of small length R⊥ and the case of a 
large (or infinite) one.
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Appendix A. Fermions

Worldsheet supersymmetry implies that the fermionic coordinates 
μ
L,R satisfy the same 

boundary conditions as the derivatives of the bosonic ones ∂X
μ
L and ∂X

μ
R up to sign depend-

ing on the sector (NS or R)



μ
L(τ̃ + 2π) = (−1)k(�2�1)

μ
ν 
ν

L(τ̃ ) , (243)



μ
R(τ̃ ) = �

μ
1 ν 
ν

L(τ̃ ) , (244)

where k = 0, 1 for periodic or anti-periodic boundary conditions. The mode expansions can then 
be easily written for the coordinates 
a := (C−1)aμ 
μ as follows


a
L(σ+) =

∑
n∈Z+k/2

ba
n+iεa

e−i(n+iεa)σ+ , 
a
R(σ−) =

∑
n∈Z+k/2

�a
1b bb

n+iεb
e−i(n+iεb)σ−

(245)

which after canonical quantisation leads to the usual algebra for the oscillator modes[
ba
n+iεa

, bb
m+iεb

]
= i ηab δm+n,0 δεa+εb,0 . (246)

It then follows immediately that the contribution of the fermions to the annulus amplitude (in 
both the parallel and oblique case) is of the form

Af ∼
∑
α,β

cαβ

ϑ
[

α
β

](
iε iτ2

2

∣∣∣ iτ2
2

)
η
(

iτ2
2

) ϑ4
[

α
β

](
0
∣∣∣ iτ2

2

)
η4
(

iτ2
2

) (247)
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where ε is given by eq. (152) in the parallel case and by eq. (187) in the oblique case. The 
coefficients cαβ := (−1)2α+2β+4αβ , with α, β = 0, 1/2, take into account the usual summation 
over the spin structures.
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