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We consider higher-order, scalar-tensor theories which appear degenerate when restricted to the unitary
gauge but are not degenerate in an arbitrary gauge. We dub them U-degenerate theories. We provide a full
classification of theories that are either DHOSTor U-degenerate and that are quadratic in second derivatives
of the scalar field and discuss its extension to cubic and higher-order theories.Workingwith a simple example
of U-degenerate theory, we find that, for configurations in which the scalar field gradient is time-like, the
apparent extra mode in such a theory can be understood as a generalized instantaneous, or “shadowy”mode,
which does not propagate. Appropriate boundary conditions, required by the elliptic nature of part of the
equations of motion, lead to the elimination of the apparent instability associated with this extra mode.

DOI: 10.1103/PhysRevD.98.084024

I. INTRODUCTION

Scalar-tensor theories have always played a prominent
role in providing alternative theories of gravity. During the
last few years, special attention has been devoted to scalar-
tensor theories whose Lagrangian contains second-order
derivatives of a scalar field. An important requirement for
such theories is the absence of any Ostrogradski ghost, i.e.,
an extra degree of freedom (d.o.f.) generically associated
with higher time derivatives.
The absence of such a problematic extra mode is

automatically guaranteed in degenerate higher-order,
scalar-tensor (DHOST) theories introduced in [1,2], for
which the degeneracy of the Lagrangian leads to constraints
that eliminate this potential extra scalar d.o.f., even if
the associated Euler-Lagrange equations are higher order.
DHOST theories were explicitly constructed up to quad-
ratic order in [1] (see also [3–5] for further details) and their
full classification up to cubic order (in second derivatives)
was completed in [6]. DHOST theories extend the class of

Horndeski theories [7] and the (larger) class of beyond
Horndeski theories [8,9] (another special subclass of
DHOST theories was found in [10] via disformal trans-
formations of the Einstein-Hilbert action).
In order to study higher-order, scalar-tensor (HOST)

theories, it is often convenient to resort to the so-called
unitary gauge, where the coordinates are chosen such that
the scalar field is spatially uniform, i.e., with only a time
dependence. In other words, the constant time hyper-
surfaces coincide with the constant scalar field hyper-
surfaces. This gauge choice is, of course, restricted to
configurations where the gradient of the scalar field is
timelike but this is a natural assumption in the cosmological
context. In particular, the unitary gauge is a key ingredient
of the effective description of modification of gravity, dark
energy and inflation (see e.g., [11–17] and especially [18]
devoted to DHOST theories).
For Beyond Horndeski theories, the counting of the

number of d.o.f. was initially carried out via a Hamiltonian
formulation in the unitary gauge [8,9,19]. Potential limi-
tations of the unitary gauge were later pointed out in [20],
where a Hamiltonian analysis valid in an arbitrary gauge
was also presented for a particular Beyond Horndeski
theory (which in fact is related to a Horndeski theory by
a disformal transformation, according to the correspon-
dence shown earlier in [9]). A Hamiltonian analysis in an
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arbitrary gauge, using explicitly the degeneracy of the
Lagrangian, for all quadratic HOST (including DHOST)
theories was subsequently given in [2].
A manifest pitfall of the unitary gauge is that there exist

HOST theories which seem to be degenerate when written
in the unitary gauge but are not degenerate in their fully
covariant version and therefore are not DHOST theories.
We will denote these theories U-degenerate. The purpose of
the present work is to study this very special class of
theories and better understand the number and role of the
scalar d.o.f., from the point of view of the unitary gauge or
from that of an arbitrary gauge.
In this work, we first present a systematic and simple

way to classify all HOST theories that are either DHOSTor
U-degenerate. For quadratic theories (in second derivatives
of the scalar field), we find that their Lagrangian L can be
written as the sum of a totally U-degenerate Lagrangian, by
which we mean a Lagrangian whose kinetic terms (for the
scalar and tensor modes) vanish in the unitary gauge, and
another term that does not involve the metric curvature and
can be written in a simple way that makes the degeneracy in
the unitary gauge manifest. Both terms of the Lagrangian
correspond to DHOST Lagrangians separately, but their
sum is not a DHOST Lagrangian. We then generalize this
result to Lagrangians that involve arbitrary powers of
second derivatives ϕμν ≡∇ν∇μϕ, starting with cubic the-
ories. This provides a simple and systematic parametriza-
tion of theories that are either DHOST or U-degenerate.
Interestingly, U-degenerate HOST theories include as

particular examples the khronometric theories discussed in
[21,22]. For these theories, the extra mode that appears in
the covariant formulation has been called “instantaneous
mode.” In the more general context that we consider here,
the structure of the extra mode that appears is often more
intricate than in the case of “instantaneous”modes. We will
call this mode a “generalized instantaneous mode”, or also
“shadowy” mode for a shorter denomination.
The notion of generalized instantaneous or shadowy

mode can easily be understood by considering the follow-
ing example of a nondynamical Lagrangian in Minkowski
spacetime,

L½ψ � ¼ 1

2
ψΔψ ; ð1:1Þ

where Δ is the Euclidean Laplacian operator. This
Lagrangian leads to the Laplace equation Δψ ¼ 0. In a
different set of coordinates ðt0; x0; y0; z0Þ, with t0 ¼ tþ vx
(v ≠ 0) and the same spatial coordinates, the Lagrangian
for ψ becomes

L½ψ � ¼ −
1

2
½ðv∂t0ψ þ ∂x0ψÞ2 þ ð∂y0ψÞ2 þ ð∂z0ψÞ2�

∋ −
v2

2
ð∂t0ψÞ2; ð1:2Þ

which contains a kinetic term for ψ (with a negative sign).
In this new frame, the action seems to contain a dynamical
d.o.f., which corresponds to a shadowy mode.
In order to better understand the “shadowy” mode that

arises in U-degenerate HOST theories, we study in detail a
simple toy-model. It is a higher-derivative scalar theory,
inspired from U-degenerate HOST theories, which we
study in a flat two-dimensional spacetime for simplicity.
We consider some background solution and then make a
linear perturbation analysis around this background sol-
ution in two different coordinate systems. In the first one,
the background solution is only time-dependent, corre-
sponding to the choice of the unitary gauge for the
background. In the second one, the background solution
is both time and space dependent, but the gradient of the
background scalar field is still assumed to be timelike.
We then identify, in both approaches, the d.o.f. of the
system and study the correspondence between these two
calculations.
We find that the extra mode (which appears when the

background is time and space dependent) can be under-
stood as a shadowy mode, which does not really propagate.
Appropriate boundary conditions,1 required by the elliptic
nature of part of the equations of motion, lead to the
elimination of the apparent instability associated with this
extra mode. Hence, our analysis in this simple toy-model
reconciles the two seemingly contradictory points of view
based on the unitary gauge and a nonunitary gauge. This
toy model also illustrates that the unitary gauge (which can
be used for configurations where the gradient of the scalar
field is timelike) constitutes a convenient gauge choice,
where the partially elliptic character of the equations of
motion is more transparent and where it is thus easier to fix
appropriate boundary conditions.
The paper is organized as follows. In Sec. II, we present

the classification of HOST theories that are U-degenerate,
first focussing on quadratic theories then extending our
classification to higher order. In Sec. III, we study in detail
a simple but illustrative example of U-degenerate theory in
a two-dimensional Minkowski spacetime and analyse the
number and nature of d.o.f., depending on the gauge chosen
to describe the background solution. We conclude with a
brief summary and a discussion. Some technical details are
also given in the Appendices.

II. U-DEGENERATE HOST THEORIES

The goal of this section is to present a classification of
U-degenerate HOST theories, i.e., higher-order, scalar-
tensor (HOST) theories that are degenerate only in the

1As it will be clear in the paper, the boundary conditions are
fixed at spatial infinity. Hence, we are implicitly assuming that
the space-time can locally be decomposed as Σ × R where the
space slices Σ are noncompact at any time. Nonetheless, one
could generalize the analysis to compact hypersurfaces Σ con-
sidering instead periodic boundary conditions for instance.
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unitary gauge. For this purpose, we actually provide
a classification of theories that are either DHOST or
U-degenerate, i.e., those that are degenerate at least in
the unitary gauge. After a short review of DHOST theories,
which enables us to introduce some useful notations,
we classify HOST Lagrangians that are either DHOST
or U-degenerate and that are quadratic in second derivatives
ϕμν. We then extend our classification to cubic theories and
beyond in the last two subsections.

A. DHOST theories

We start with HOST theories whose Lagrangian is (at
most) quadratic in the second derivatives of the scalar field.
The action of these theories takes the form

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½f2ðϕ; XÞRþ Lð2Þ
ϕ

þ f0ðϕ; XÞ þ f1ðϕ; XÞ□ϕ�; ð2:1Þ

where R is the Ricci scalar, fAðϕ; XÞ are arbitrary functions
of ϕ and X ≡ ϕμϕ

μ with ϕμ ≡∇μϕ. The term Lð2Þ
ϕ denotes

the most general minimal coupling Lagrangian quadratic in
ϕμν ≡∇μϕν and is given by

Lð2Þ
ϕ ≡X

A

αAðϕ; XÞLð2Þ
A ; ð2:2Þ

where αAðϕ; XÞ are functions of ϕ and X, and the

elementary quadratic Lagrangians Lð2Þ
A are

Lð2Þ
1 ¼ ϕμνϕ

μν; Lð2Þ
2 ¼ ð□ϕÞ2; Lð2Þ

3 ¼ ðϕμϕνϕμνÞ□ϕ;

Lð2Þ
4 ¼ ðϕμνϕ

νϕμσϕσÞ; Lð2Þ
5 ¼ ðϕμϕνϕμνÞ2: ð2:3Þ

These theories can be extended to include cubic terms,
by adding to the action (2.1) the terms

Z
d4x

ffiffiffiffiffiffi
−g

p �
f3ðϕ; XÞϕμνGμν þ

X10
A¼1

bAðϕ; XÞLð3Þ
A

�
; ð2:4Þ

where the ten elementary cubic Lagrangians Lð3Þ
A are [6]

Lð3Þ
1 ¼ ð□ϕÞ3; Lð3Þ

2 ¼ ð□ϕÞϕμνϕ
μν; Lð3Þ

3 ¼ ϕμνϕ
νρϕμ

ρ;

Lð3Þ
4 ¼ ð□ϕÞ2ϕμϕ

μνϕν; Lð3Þ
5 ¼ □ϕϕμϕ

μνϕνρϕ
ρ; Lð3Þ

6 ¼ ϕμνϕ
μνϕρϕ

ρσϕσ;

Lð3Þ
7 ¼ ϕμϕ

μνϕνρϕ
ρσϕσ; Lð3Þ

8 ¼ ϕμϕ
μνϕνρϕ

ρϕσϕ
σλϕλ;

Lð3Þ
9 ¼ □ϕðϕμϕ

μνϕνÞ2; Lð3Þ
10 ¼ ðϕμϕ

μνϕνÞ3: ð2:5Þ

In general, these theories propagate two scalar modes in
addition to the usual two tensorial modes, one of the two
scalar modes being an Ostrogradsky mode. However, when
the Lagrangian is degenerate (i.e., it admits at least one
primary constraint in addition to the usual constraints
associated with the diff-invariance), the theory propagates
at most three d.o.f.: the extra constraints enable us to
eliminate some d.o.f. The classification of degenerate
theories up to cubic order has been completed in [6].

B. Classification of U-degenerate
quadratic Lagrangians

In order to classify all Lagrangians that are either
DHOST or U-degenerate, it is useful to start from the
ADM decomposition of (2.1) in the unitary gauge, ignoring
the f0 and f1 terms which do not play any role in the
degeneracy. We thus write the four-dimensional metric in
the form

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð2:6Þ
where N and Ni are the lapse and shift, respectively, and
γij is the three-dimensional metric on constant t spatial

hypersurfaces. In the following, a dot will denote a partial
derivative with respect to the time coordinate t.
As shown in [2], the kinetic part of the (3þ 1) decom-

position of the action (2.1) can be written in the form

Skin ¼
Z

dtd3xN
ffiffiffi
γ

p ðA _A�
2 þ 2Bij _A�Kij þKijklKijKklÞ;

ð2:7Þ

where Kij is the extrinsic curvature tensor and

A� ≡ 1

N
ð _ϕ − Ni∂iϕÞ: ð2:8Þ

In the unitary gauge (where ∂iϕ ¼ 0), the coefficients that
appear in (2.7) reduce to

AU ¼ α1 þ α2 þ ðα3 þ α4ÞXU þ α5X2
U; ð2:9Þ

Bij
U ¼ 4f2X þ 2α2 þ α3XU; ð2:10Þ

Kij;kl
U ¼ ðf2 − α1XUÞγiðkγlÞj − ðf2 − α2XUÞγijγkl; ð2:11Þ
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with XU ≡ −A2� ¼ − _ϕ2=N2, corresponding to the expres-
sion of X in the unitary gauge. The full expressions of these
coefficients in an arbitrary gauge can also be found in [2],
but we will not need them here.
Let us first identify the Lagrangians that are nondynam-

ical when restricted to the unitary gauge, i.e., for which all
of the above coefficients vanish. As one can immediately
see, this imposes four conditions on the six functions f2
and αA. Thus, the family of Lagrangians which are non-
dynamical, i.e., totally U-degenerate, in the unitary gauge
can be expressed in terms of only two free functions (four
conditions for six initial free functions), for instance f2 and
α5, while the other four are determined by the relations

α1 ¼ −α2 ¼
f2
X
; α3 ¼

2

X

�
f2
X

− 2f2X

�
;

α4 ¼
2

X

�
2f2X −

f2
X

�
− Xα5: ð2:12Þ

This means that the quadratic Lagrangians that are totally
U-degenerate in the unitary gauge can explicitly be written
in the form

LtUd½f2; α5�≡ f2Rþ f2
X
ðLð2Þ

1 − Lð2Þ
2 Þ

þ 2

X2
ðf2 − 2Xf2XÞðLð2Þ

3 − Lð2Þ
4 Þ

− α5ðXLð2Þ
4 − Lð2Þ

5 Þ; ð2:13Þ

where f2 and α5 are free functions.
In order to classify all quadratic HOST theories that are

U-degenerate, it is convenient to decompose any
Lagrangian into a totally U-degenerate part (2.13), which
includes the Ricci scalar term, and another part which
depends only on the five elementary Lagrangians of (2.3).
The total Lagrangian thus reads

L ¼ LtUd½f2; 0� þ L̃ϕ; ð2:14Þ

where L̃ϕ is of the form (2.2). As already mentioned, the f0
and f1 terms are not taken into account here because they
do not modify the degeneracy properties of the total
Lagrangian.
Since the kinetic part of LtUd½f2; 0� vanishes in the

unitary gauge, it is easy to see that any Lagrangian L is
U-degenerate if and only if the Lagrangian L̃ϕ is also
U-degenerate. Moreover, degeneracy of L̃ϕ means that the
kinetic part of the Lagrangian, in the unitary gauge, can be
written in the form

L̃ϕ;kin ¼ K̂ij;kl
U ðKij þ σγij _A�ÞðKkl þ σγkl _A�Þ; ð2:15Þ

where

K̂ij;kl
U ¼ −XUðα1γiðkγlÞj − α2γ

ijγklÞ; ð2:16Þ

which corresponds to (2.11) with f2 ¼ 0, since L̃ϕ does not
contain any curvature term by construction. By expanding
(2.15) and comparing with (2.7), one finds (by eliminating
σ) that the U-degenerate form (2.15) is possible if and only
if the functions αA satisfy the relation

4ðα1 þ 3α2Þðα1 þ α2 þ Xðα3 þ α4Þ þ X2α5Þ
¼ 3ð2α2 þ Xα3Þ2: ð2:17Þ

Not surprisingly, it coincides with the degeneracy condition
in the unitary gauge, already derived in [1]. Note that,
by definition, U-degenerate theories satisfy the condition
(2.17) but not all three degenerate conditions obtained
in [1].
The expression of the Lagrangian written in the

unitary gauge can easily be “covariantized” by using the
Stueckelberg trick (see the Appendix for the correspon-
dence). One thus obtains, instead of the parametrization
in terms of the functions αA, a parametrization of all
U-degenerate theories in terms of the five functions f2,
κ1, κ2, σ and α, which depend on X and ϕ, with a
Lagrangian of the form

L ¼ LtUd½f2; α� þ K̂μν;ρσðϕμν þ σYgμνÞðϕρσ þ σYgρσÞ;
ð2:18Þ

where

K̂μν;ρσ ≡ κ1hμðρhνÞσ þ κ2hμνhρσ; hμν ≡ gμν −
1

X
ϕμϕν;

Y ≡ ϕαϕαβϕ
β: ð2:19Þ

This is, of course, compatible with the parametrization
(2.14) in terms of six functions constrained by the single
relation (2.17). To make the relationship between these two
parametrizations explicit, let us expand (2.18) in terms of
the elementary Lagrangians. One obtains

L ¼ f2Rþ
�
κ1 þ

f2
X

�
Lð2Þ
1 þ

�
κ2 −

f2
X

�
Lð2Þ
2

þ
�
2
f2
X2

− 4
f2X
X

þ 2σκ1 þ 2

�
3σ −

1

X

�
κ2

�
Lð2Þ
3

þ
�
αþ 2

f2X
X

−
2f2
X2

−
2

X
κ1

�
Lð2Þ
4

þ
�
−
α

X
þ 2f2X

X2
þ κ1

�
1

X2
þ 3σ2 −

2σ

X

�

þ κ2

�
3σ −

1

X

�
2
�
Lð2Þ
5 ; ð2:20Þ

and it is straightforward to check that this Lagrangian
indeed satisfies the condition (2.17). The above Lagrangian
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includes both U-degenerate theories and DHOST theories,
since the latter also satisfy the condition (2.17).

C. Beyond quadratic order

In order to classify all theories that are either DHOST
or U-degenerate up to third order in second derivatives of
ϕ, one can follow the same strategy as in the previous

section and first identify the theories that are totally
U-degenerate, i.e., nondynamical in the unitary gauge. By
using the ADM decomposition of HOST theories, up to
cubic order, given in [18], one finds that all the kinetic
terms vanish in the unitary gauge when the following
eleven relations are satisfied by the functions αA, bA
and fA:

b1 ¼ b2 ¼ b3 ¼ 0; b4 ¼ −b6 ¼ −
f3X
X

; b5 þ Xb9 ¼ −
2f3X
X

;

b7 þ Xb8 þ X2b10 ¼
2f3X
X

; α1 ¼
f2
X

þ f3ϕ
2

; α2 ¼ −
f2
X

þ f3ϕ
2

;

α3 ¼
2

X

�
f2
X

−
f3ϕ
X

− 2f2X

�
; α4 þ Xα5 ¼

2

X

�
2f2X −

f2
X

�
: ð2:21Þ

Since the initial Lagrangian depends on 17 functions, this
implies that totally U-degenerate theories depend on 6
arbitrary functions that can be chosen to be f3, b8, b9, b10
for the cubic part, and f2, α5, as before for the quadratic
part, so that

LtUd½f2; f3; α5; b8; b9; b10�
¼ Lð2Þ

tUd½f2; f3; α5� þ Lð3Þ
tUd½f3; b8; b9; b10�; ð2:22Þ

where, on the right-hand side, we have separated the terms
that can be expressed in terms of the scalar curvature and of
the quadratic Lagrangians (2.3), and those written in terms
ofGμνϕμν and (2.5). Note that the quadratic part depends on
f3 too, if f3ϕ is nonzero.
Similarly to the quadratic case discussed previously, all

U-degenerate Lagrangians up to cubic order can be written
in the form

L ¼ LtUd½f2; f3; α5; b8; b9; b10�
þ K̂μν;ρσðϕμν þ σYgμνÞðϕρσ þ σYgρσÞ
þ K̂μν;ρσ;αβ

3 ðϕμν þ σYgμνÞðϕρσ þ σYgρσÞðϕαβ þ σYgαβÞ;
ð2:23Þ

where

Kμν;ρσ;αβ
3 ≡ω1hμνhρσhαβþω3ðhνðρhσÞðαhβÞμþhμðρhσÞðαhβÞνÞ

þω2ðhμðρhσÞνhαβþhαðρhσÞβhμνþhαðμhνÞβhρσÞ;
ð2:24Þ

with σ andωA arbitrary functions of ϕ and X. One can show
that the three parts of the Lagrangian (2.23) correspond
separately to DHOST theories. In fact, the last two terms
of (2.23), which do not depend on f2 and f3, correspond
to any DHOST Lagrangian satisfying f2 ¼ f3 ¼ 0. They
have been classified in [6], but can also be written in this

very simple form, parametrized by 10 arbitrary functions of
X and ϕ, namely α5, b8, b9, b10, κ1, κ2, ω1, ω2, ω3 and σ.
One can verify that these Lagrangians indeed satisfy the
degeneracy conditions presented in [6].
One can then generalize these results to parametrize

U-degenerate theories with a Lagrangian L that contains
arbitrary powers of ϕμν. Following (2.23), one writes L
as L ¼ LtUd þ Lϕ where LtUd is given by (2.22) and
contains all the curvature terms, while Lϕ is a degenerate
Lagrangian obtained by combining Xμν ≡ ϕμν þ σYgμν
with the projector hμν,

Lϕ ¼ K½ϕμν þ σYgμν; hρσ�: ð2:25Þ

Formally, one can expand K as

KðXμνÞ ¼
X
A

Kμ1ν1;μ2ν2;…;μAνA
A Xμ1ν1 � � �XμAνA ; ð2:26Þ

where KA are tensors constructed from hμν only. Once
again, let us stress that the general Lagrangians given above
include both U-degenerate theories and DHOST theories.

III. AN ILLUSTRATIVE EXAMPLE

After having classified all U-degenerate theories in the
previous section, we would like to better understand the
number of d.o.f. present in these theories, as well as
their nature. In particular, since U-degenerate theories
are degenerate in the unitary gauge but nondegenerate in
another gauge, one would naively expect the presence of a
single scalar d.o.f. in the unitary gauge but the appearance
of an extra scalar d.o.f. when working in another gauge.
We would like to understand how these two seemingly
contradictory points of view can be reconciled.
For simplicity, we are going to restrict our analysis to a

very simple model, directly inspired from the classification

GENERALIZED INSTANTANEOUS MODES IN HIGHER- … PHYS. REV. D 98, 084024 (2018)

084024-5



of the previous section but for which we ignore the tensor
d.o.f. to concentrate only on the scalar modes. Such a
simple model is provided, for instance, by the totally U-
degenerate Lagrangian LtUd½0; μ� defined in (2.13), where
we choose μ to be constant, restricted to a Minkowski
spacetime. This Lagrangian is however too simple in the
sense that it does not contain any propagating d.o.f. in the
unitary gauge, where it is totally degenerate. For this
reason, we add to this Lagrangian a standard kinetic term,
which guarantees the presence of a propagating d.o.f. in the
unitary gauge.
We thus consider the following Lagrangian

L ¼ −
1

2
X − μðXLð2Þ

4 − Lð2Þ
5 Þ: ð3:1Þ

Since we do not consider the metric fluctuations, the kinetic
part of the Lagrangian written in the ADM form (2.7)
reduces, ignoring f0 (in the present case, −X=2), to

Lkin ¼ A _A�
2; ð3:2Þ

where

A ¼ α1 þ α2 − ðα3 þ α4ÞA2� þ α5A4� ¼ μðXA2� þ A4�Þ:
ð3:3Þ

In the unitary gauge, X ¼ −A2� and A vanishes. However,
in an arbitrary gauge, we find

A ¼ μA2�ð∂iϕÞ2; ð3:4Þ

which does not vanish in general. We would thus expect to
find an extra mode in this case.

A. Analysis in a unitary gauge background

Assuming that the scalar field has a timelike spacetime
gradient, we can work in the unitary gauge and consider the
background field

ϕ̄ ¼ t: ð3:5Þ

Considering the perturbed solution

ϕ ¼ tþ χðt; xÞ; ð3:6Þ

the Lagrangian quadratic in perturbations is given by

L0 ¼
1

2
ð _χ2 − χ02Þ þ μ _χ02; ð3:7Þ

and no second time derivative appears. This is to be
expected since the background is in the unitary gauge.

The dispersion relation is

ð1þ 2μk2Þω2 − k2 ¼ 0; ð3:8Þ

which gives the two solutions

ω ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μk2 þ 1

p ; ð3:9Þ

corresponding to a single d.o.f. Here, as a boundary
condition, we have implicitly assumed that the field does
not diverge at spatial infinity so that k is real.

B. Analysis in a nonunitary gauge background

We now consider a background solution of the form

ϕ̄ ¼ tþ αx; ð3:10Þ

which is also a solution of the equations of motion. If
α ≠ 0, this background solution is not described in the
unitary gauge since the scalar field has now an explicit
spatial dependence.
We then consider the perturbed solution

ϕ ¼ tþ αxþ χðt; xÞ: ð3:11Þ

Substituting into (3.1), one can derive the Lagrangian
quadratic in χ, which reads

Lα ¼
1

2
ð _χ2 − χ02Þ þ μ½α2ðχ̈2 þ χ002Þ

− 2αð1þ α2Þðχ̈ _χ0 þ χ00 _χ0Þ þ ð1þ 4α2 þ α4Þ _χ02�:
ð3:12Þ

One can immediately check that, when α ¼ 0, one recovers
the previous case (3.7).
By considering plane wave solutions of the equations of

motion, of the form χ ∝ expð−iωtþ ikxÞ, one obtains the
dispersion relation

2α2μω4 þ 4αðα2 þ 1Þkμω3 þ ð2ðα4 þ 4α2 þ 1Þk2μþ 1Þω2

þ 4αðα2 þ 1Þk3μωþ 2α2k4μ − k2 ¼ 0: ð3:13Þ

In contrast with (3.8), this dispersion relation is polynomial
in ω up to fourth order, when α ≠ 0 (if α ¼ 0, one recovers
(3.8) obviously). This leads to four solutions for ω: two of
them are real and we will denote them ω1 and ω2. The other
two are complex conjugate, i.e., of the form

ω3;4 ¼ ω� ¼ ωr � iωi: ð3:14Þ

The four solutions of the dispersion relation (3.13), for a
particular choice of α and μ, are plotted in Fig. 1.
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A priori, the fact that the equation of motion is fourth
order indicates that four initial conditions need to be
specified to evolve the system. At some initial time, say
t ¼ 0, one needs as initial data the four functions χð0; xÞ,

_χð0; xÞ, χ̈ð0; xÞ, ⃛χð0; xÞ, which can be assumed to be regular
and to decay at spatial infinity (or even be nonzero only in a
compact region of space).
In Fourier space, the equation for χ yields an ordinary

differential equation for each Fourier mode χðt; kÞ, which is
fourth order in time derivatives. This equation admits four
independent particular solutions of the form χðt; kÞ ∝ eiωt,
corresponding to the four solutions ω of the dispersion
relation (3.13). As a consequence, the general solution can
be written in the form

χðt; kÞ ¼
X4
A¼1

uAðkÞeiωAðkÞt; ð3:15Þ

where the coefficients uAðkÞ are determined from the initial
conditions χð0; xÞ, _χð0; xÞ, χ̈ð0; xÞ, ⃛χð0; xÞ, or equivalently
χðnÞð0; kÞ for n ¼ 0, 1, 2, 3, by inverting the four relations

χðnÞð0; kÞ ¼
X4
A¼1

ðiωÞnuAðkÞ: ð3:16Þ

This yields

u1 ¼
ω2ω3ω4χð0Þ þ iðω2ω3 þ ω3ω4 þ ω4ω2Þ _χð0Þ − ðω2 þ ω3 þ ω4Þχ̈ð0Þ − i⃛χð0Þ

ðω2 − ω1Þðω3 − ω1Þðω4 − ω1Þ
; ð3:17Þ

and similar expressions for the other coefficients uA, up to a
permutation of the indices A.
Substituting these coefficients into (3.15), one obtains

the full time evolution of χðt; kÞ, or equivalently χðt; xÞ via
inverse Fourier transform. In the generic case where u3 and
u4 are nonzero, the imaginary part of ω3 and ω4 implies an
exponential time evolution, thus signalling an apparent
instability. As we shall see below, this instability can be
avoided by taking into account appropriate boundary
conditions, e.g., the regularity at spatial infinity.

C. Comparison between the two approaches

In this subsection, we discuss how the two previous
analyses can be reconciled. In the following, we assume
that −1 < α < 1 so that the gradient of the background
scalar field (3.10) is timelike.
First of all, let us note that the background solution

(3.10), given in a nonunitary gauge, can also be described
in a unitary gauge by using a new coordinate system,
obtained via the boost transformation

t̃ ¼ T̃ðt; xÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðtþ αxÞ;

x̃ ¼ X̃ðt; xÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðxþ αtÞ: ð3:18Þ

In the coordinates ðt̃; x̃Þ, the scalar field (3.10) is given
by ϕ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
t̃.

Accordingly, on substituting

ω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðω̃ − αk̃Þ; k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðk̃ − αω̃Þ;

ð3:19Þ

which correspond to the (inverse) boost of the wave vector
ðω̃; k̃Þ, into the dispersion relation (3.13) gives

ð1þ 2μ̃k̃2Þω̃2 − k̃2 ¼ 0; μ̃≡ μð1 − α2Þ2; ð3:20Þ

which is of the form (3.8), with a rescaling of μ due to the
fact that ϕ̄ is not strictly equal to t̃, but simply proportional
to it.
Similarly, the equation of motion can be rewritten as

½1 − 2μð1 − α2Þ2∂2
x̃�∂2

t̃ χ − ∂2
x̃χ ¼ 0; ð3:21Þ

where

∂ t̃ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ð∂t − α∂xÞ; ∂ x̃ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ð∂x − α∂tÞ;

ð3:22Þ

FIG. 1. Frequency ω as a function of k for the four modes that
appear in the nonunitary gauge: ω1ðkÞ, ω2ðkÞ correspond
respectively to the dashed and continuous black curves. The real
and imaginary parts of ω3ðkÞ and ω4ðkÞ are plotted respectively
as continuous and dotted grey curves.
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and the perturbation χ ¼ χðTðt̃; x̃Þ; Xðt̃; x̃ÞÞ is now viewed
as a function of ðt̃; x̃Þ with

Xðt̃; x̃Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðx̃ − αt̃Þ; Tðt̃; x̃Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p ðt̃ − αx̃Þ:

ð3:23Þ

In contrast with the equation of motion written in the
original coordinate system, the equation (3.21) is only
second order in time derivatives. One can easily decompose
this fourth-order equation of motion into two second-order
equations, one hyperbolic and the other elliptic,

ð∂2
t̃ − ∂2

x̃Þχ ¼ ψ ; ð3:24Þ

ð∂2
x̃ − κ2Þψ ¼ −∂4

x̃χ; ð3:25Þ

where

κ ¼ 1ffiffiffiffiffi
2μ

p 1

1 − α2
: ð3:26Þ

Hereafter we assume μ > 0 so that κ is real and positive.
The second equation (3.25) can be easily integrated on a
hypersurface where t̃ is constant (i.e., tþ αx is constant)
provided a boundary condition for ψ is properly specified at
infinity. Hence, there is clearly no instability in this frame.
To understand how the two approaches are related, let

us express one of the complex frequency modes found
above, i.e.,

χshðt; xÞ ¼ eiðωt−kxÞ; with ω ¼ ωr � iωi; ð3:27Þ

in terms of the coordinates ðt̃; x̃Þ gives

χshðt̃; x̃Þ ¼ exp

�
i

�ðωr þ αkÞt̃ − ðkþ αωrÞx̃ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
��

× e
∓ ωiffiffiffiffiffiffi

1−α2
p t̃

e
� αωiffiffiffiffiffiffi

1−α2
p x̃

: ð3:28Þ

This shows that these modes diverge at spatial infinity in
the new coordinate system. This explains why these modes
do not appear when one starts the analysis around a unitary
gauge background and demands the regularity of the initial
data at spatial infinity.
Imposing appropriate boundary conditions for the ellip-

tic equation (3.25), for instance that the acceptable sol-
utions should be well-behaved at spatial infinity, eliminates
the complex frequency modes (3.28). In the description
(3.15), such boundary conditions would impose that
u3 ¼ u4 ¼ 0. In terms of initial conditions, this implies
that the second and third order derivatives χð2Þð0; kÞ and
χð3Þð0; kÞ are not independent but are instead fixed in terms
of χð0; kÞ and _χð0; kÞ. Explicitly, one finds

χð2Þð0; kÞ ¼ ω1ω2χð0; kÞ þ iðω1 þ ω2Þ _χð0; kÞ; ð3:29Þ

χð3Þð0; kÞ ¼ iω1ω2ðω1 þ ω2Þχð0; kÞ
− ðω2

1 þ ω1ω2 þ ω2
2Þ _χð0; kÞ: ð3:30Þ

One can check that the single d.o.f. that appears with a
unitary gauge background automatically verifies the above
constraints. Such a mode is of the form

χuðt; xÞ ¼ eiðω̃ T̃ðt;xÞ−k̃ X̃ðt;xÞÞ

¼ exp

�
i

�ðω̃ − αk̃Þt − ðk̃ − αω̃Þxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
��

; ð3:31Þ

where ω̃ satisfies the unitary gauge dispersion relation
(3.8). By computing the time derivatives of χu, one can
verify that the conditions (3.29) and (3.30) are indeed
satisfied.
In summary, we have found that arbitrary initial con-

ditions, defined in some Lorentz frame where the back-
ground field is space dependent, generically lead to the
presence of an apparent exponential instability. However,
this instability is eliminated by imposing appropriate
boundary conditions required to solve the elliptic part of
the equations of motion.

D. Green’s function and emergence of a light
cone at long distance

In this section, we study further the dynamics of the
perturbation χ in both coordinate systems. Let us start
considering the equation of motion for χ in the ðt̃; x̃Þ
coordinate systems written in the form (3.24) and (3.25). To
integrate the first equation (3.24) explicitly, it is useful to
introduce the Green’s function Gðx̃; x̃0Þ, defined by

ð∂2
x̃ − κ2ÞGðx̃; x̃0Þ ¼ δðx̃ − x̃0Þ: ð3:32Þ

If we require the regularity condition at infinity

lim
x̃→�∞

jGðx̃; x̃0Þj < ∞; ð3:33Þ

the Green’s function (3.32) is given by

Gðx̃; x̃0Þ ¼ −
1

2κ
e−κjx̃−x̃0j: ð3:34Þ

As a consequence, the solution to (3.25) is

ψðt̃; x̃Þ ¼ 1

2κ

Z
dỹ

∂4

∂ỹ4 χðTðt̃; ỹÞ; Xðt̃; ỹÞÞe
−κjx̃−ỹj: ð3:35Þ

Substituting this solution back to (3.24), one obtains an
equation for χ that includes only second order time
derivatives. Obviously, ψ represents the “shadowy” mode
and the typical length scale of the “shadow” is 1=κ. In the
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limit κ → ∞, the length of the “shadow” vanishes and there
is no shadowy mode, as one can see directly from the
Lagrangian (3.12).
From the previous analysis, we show that (with appro-

priate boundary conditions) the equation for χ in the ðt̃; x̃Þ
coordinate system reduces to

ð∂2
t̃ − ∂2

x̃Þχ ¼ 1

2κ

Z
dỹ

∂4

∂ỹ4 χðTðt̃; ỹÞ; Xðt̃; ỹÞÞe
−κjx̃−ỹj:

ð3:36Þ

Thus, the perturbation χ is uniquely determined by the
datas of χ and ∂ t̃χ on a constant t̃ hypersurface, say t̃ ¼ 0.
Now, when one considers the equation of motion in the

ðt; xÞ coordinate system, one might wonder whether the
values of χ and ∂tχ on a constant t hypersurface can
uniquely determine the evolution of the system or not. To
answer this question, we first reformulate (3.36) in the ðt; xÞ
coordinate system as follows,

ð∂2
t − ∂2

xÞχ ¼ ψðt; xÞ with ð3:37Þ

ψðt; xÞ ¼ 1

2κ

Z
dỹ

∂4

∂ỹ4 χðTðT̃ðt; xÞ; ỹÞ; XðT̃ðt; xÞ; ỹÞÞ
× e−κjX̃ðt;xÞ−ỹj; ð3:38Þ

where the functions T, T̃, X and X̃ were given in (3.18) and
(3.23). We will argue that the answer is positive, at least for
κL ≫ 1, where L is the length scale of interest which
characterizes the variations of χ in space. For κL ≫ 1, we
also argue that the concept of the light cone emerges.
The absolute value of the Green’s function (3.34) has the

maximum ð2κÞ−1 at x̃ ¼ x̃0 and decays exponentially away
from it. Hence, if the length scale L is sufficiently longer
than 1=κ then, as one can easily confirm for each Fourier
mode, (3.38) implies that ψ scales as

jψ j ∼OðϵÞ × j∂2
Xχj ≪ j∂2

Xχj; ð3:39Þ

where we have introduced the small bookkeeping param-
eter ϵ ¼ 1=ðκLÞ. Therefore, at the lowest order in ϵ, (3.24)
reduces to

ð∂2
t − ∂2

xÞχ ≃ 0; ð3:40Þ

which gives an approximate solution χ ≃ χð0Þðt; xÞ from the
initial values of χ and ∂tχ on a hypersurface of constant t.
For this approximate solution, the concept of the light cone
makes sense (as we recover the usual d’Alembert equation).
Furthermore, one can systematically improve the

approximation by expanding χ and ψ in powers of ϵ as

χ ¼ χð0Þ þ χð1Þ þ χð2Þ þ � � � ; ψ ¼ ψ ð1Þ þ ψ ð2Þ þ � � � ;
ð3:41Þ

where χðnÞ ¼ OðϵnÞ and ψ ðnÞ ¼ OðϵnÞ. Substituting these
expansions in (3.37) and (3.38), at the lowest order in ϵ, one
recovers (3.40) for χð0Þ and

ψ ð1Þðt; xÞ ¼ 1

2κ

Z
dỹ

∂4

∂ỹ4 χ
ð0ÞðTðT̃ðt; xÞ; ỹÞ; XðT̃ðt; xÞ; ỹÞÞ

× e−κjX̃ðt;xÞ−ỹj: ð3:42Þ
Suppose that the initial condition for χ is specified on an
initial surface at t0 as ðχðt0; xÞ; ∂tχðt0; xÞÞ ¼ ðχ0ðxÞ; χ1ðxÞÞ.
One can easily solve (3.40) for χð0Þ with the initial con-
dition given by ðχð0Þðt0; xÞ; ∂tχ

ð0Þðt0; xÞÞ ¼ ðχ0ðxÞ; χ1ðxÞÞ,
and obtain a solution χð0Þðt; xÞ for all ðt; xÞ. One can then
calculate the right hand side of (3.42) to give ψ ð1Þðt; xÞ for
all ðt; xÞ. The leading correction to χð0Þ is given by solving
the OðϵÞ part of (3.37), namely

ð∂2
t − ∂2

xÞχð1Þ ¼ ψ ð1Þ; ð3:43Þ

with the initial condition χð1Þðt0; xÞ ¼ ∂tχ
ð1Þðt0; xÞ ¼ 0.

Higher-order corrections are also calculable in a similar
way. The derivative (or long-distance) expansion (3.41) is
expected to converge as far as ϵ ≪ 1.
We thus conclude that for μ > 0 and under the appro-

priate boundary condition, the values of χ and ∂tχ on a
surface of constant t (instead of T̃ðt; xÞ constant) uniquely
determines the evolution of the system as far as the length
scale of interest is sufficiently longer than 1=κ. Moreover,
in this limit, since χð0Þ gives a good approximation to the
full solution χ and the concept of lightcone makes sense
for χð0Þ, we also conclude that the concept of lightcone
emerges at long distances. In summary, if we are interested
in physics at length scales sufficiently longer than the
length of the “shadow” then the “shadowy” mode is
invisible and the evolution of the system appears to be
Lorentz-invariant.

IV. CONCLUSION

We have studied higher-order, scalar-tensor theories that
are not DHOST theories but are nevertheless degenerate
when restricted to the unitary gauge. These theories, which
we have dubbed U-degenerate, appear to contain one more
dynamical d.o.f. in their covariant formulation than when
restricted to the unitary gauge.
In the first part of the present work, we have shown how

the class of theories that are either DHOSTor U-degenerate
can be systematically classified. We have found that
quadratic theories of this class can be described by a
Lagrangian that depends on five arbitrary functions [see
Eq (2.20)], obtained by combining two DHOST
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Lagrangians: the first includes the curvature term (and is
totally U-degenerate), the second can be written in a simple
form where the degeneracy is manifest. We have then
extended this description to theories that are cubic and
higher order. Note that all our general Lagrangians that
describe this class of theories also include as particular
cases DHOST theories, since the latter automatically satisfy
the unitary-gauge degeneracy condition, as a consequence
of the full system of degeneracy conditions.
In the second part of this article, we have tried to

reconcile the apparently contradictory points of view
when the background scalar field (whose gradient is
assumed to be timelike) is described in the unitary gauge
or in a different gauge, by studying a simple toy model
where the tensor modes, i.e., gravity, are ignored. In this
model, we have found that the extra d.o.f. that appears in a
nonunitary gauge can be understood as a generalized
instantaneous mode, or “shadowy mode," which does not
propagate. Indeed, this extra mode is governed by an
elliptic equation, which is manifest in the unitary gauge
(although somewhat obscured by the mixing of time and
space in another gauge). Imposing appropriate boundary
conditions, namely regularity at spatial infinity, leads to
the elimination of the apparent instability in a nonunitary
gauge. In this sense, the fact that the system in the unitary
gauge seems to contain one less dynamical d.o.f. than in
another gauge is due to the fact that the boundary
conditions are already implemented implicitly in the
unitary gauge, whereas they need to be taken into account
explicitly in the other gauges.
Beyond the particular example we have studied, our

analysis strongly suggests that U-degenerate theories, when
the scalar field gradient is timelike and with appropriate
boundary conditions, propagate a single scalar d.o.f., while
the extra d.o.f., the shadowy mode, is nondynamical.
This would mean that, within these conditions,

U-degenerate theories are safe from Ostrogradski instabil-
ities and therefore worth exploring phenomenologically.
The behavior of U-degenerate theories might differ from
that of DHOST theories,2 and we plan to investigate their
potentially new features in the future. It would also be very
interesting to extend our analysis to the case where the
tensor d.o.f. are taken into account, studying for example
the linear perturbations about a nonisotropic cosmological
background.
Another important issue related to the presence of the

shadowy/instantaneous mode is the existence of black
holes. In khronometric theories, it was shown that black
holes still exist, but their boundaries are now universal
horizons [22]. Recently, such black holes have been studied
intensively [23,24], and it would be very interesting to

investigate the existence, formation and thermodynamics of
black holes in U-degenerate theories.
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APPENDIX A: INSTANTANEOUS MODES IN
KHRONOMETRIC THEORIES

Instantaneous modes have been introduced in the context
of massive gravity in [25], and later on considered in
[21,22] in the context of khronometric theories which are
simple examples of higher-order, scalar-tensor theories. In
the latter case, the notion of instantaneous modes has been
defined at the perturbative level about a homogeneous
background.
Indeed, if one considers the dynamics of a small

perturbation of the scalar field (the khronon), ϕ ¼ tþ χ
where χ is the perturbation about the solution ϕ ¼ t, on a
fixed Minkowski background gμν ¼ ημν, one easily sees
that the quadratic action for χ is higher order in space
derivatives only,

Sð2Þkhr½χ� ¼
Z

d4x½αð∂i _χÞ2 þ βðΔχÞ2�; ðA1Þ

where α and β can be reduced to nonzero constants (not
functions) for our discussion here. The corresponding
dispersion relation

αω2k2 þ βk4 ¼ αk2ðω2 − c2sk2Þ ¼ 0; ðA2Þ
shows that the action describes a single mode propagating
with a finite velocity c2s ¼ −β=α. However, one can
interpret the presence of higher spatial derivatives in the
equations of motion as the signature of a second mode

2For linear cosmological perturbations, one can find in [18] the
quadratic action for the physical scalar d.o.f. when taking into
account only the unitary degeneracy condition.
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propagating with an infinite speed: this is the reason why
such a mode has been said to be instantaneous in [21].
Obviously, these instantaneous modes are simple examples
of our shadowy modes.

APPENDIX B: A COVARIANT FORM FOR THE
TOTALLY DEGENERATE ACTION

This section aims at formulating the Lagrangian (2.13) in
a covariant form. For that purpose, we start using the
(scalar) Gauss-Codazzi relation,

R ¼ 3R½h� þ KμνKμν − K2 − 2∇μðaμ − KnμÞ; ðB1Þ

which links the four-dimensional Ricci scalar R (associated
to the metric gμν) with the three-dimensional Ricci scalar
3R½h� associated to the three-dimensional spatial metric

hμν ≡ gμν −
1

X
ϕμϕν: ðB2Þ

In (B1), the normal unit vector is given by

nμ ≡ ϕμffiffiffiffiffiffiffi
−X

p ; ðB3Þ

from which we easily deduce the components of the
acceleration vector aμ and of the fundamental two-formKμν

aμ ¼ nν∇νnμ ¼ −
1

X
hμαϕανϕν

¼ −
1

X

�
ϕνϕμν −

1

X
ðϕαϕαβϕ

βÞϕμ

�
; ðB4Þ

Kμν ¼ hαμh
β
ν∇αnβ ¼

1ffiffiffiffiffiffiffi
−X

p
�
ϕμν þ

1

X2
ðϕαϕαβϕ

βÞϕμϕν

−
1

X
ϕβðϕμϕνβ þ ϕνϕμβÞ

�
: ðB5Þ

Replacing these expressions in the (scalar) Gauss-Codazzi
relation (B1), one easily shows, after an immediate calcu-
lation, that LtUd½f2; α5� can be expressed as

LtUd½f2; α5� ¼ f23R½h� þ αa2 þ 2f2ϕhμνϕμν

þ∇μ

�
2f2
X

ðϕνϕ
μν − ϕμ

□ϕÞ
�
; ðB6Þ

where a2 ≡ aμaμ, and α≡ −X3α5 is a function indepen-
dent of f2.
The expression (B6) is interesting because it shows

explicitly (and in a covariant way) that LtUd does not
contain any second time derivatives of the scalar field.
Second derivatives are space-like only. First of all, the
original four-dimensional Ricci scalar combines with the

Lagrangians Lð2Þ
A in order to reduce to the three-

dimensional Ricci scalar of hμν, which is the first term
in (B6), plus a small number of additional terms at the
end of the calculation. Then, the second term in (B6),
constructed from the acceleration vector, can be easily
reformulated as follows:

αa2 ¼ α

4X2
ð∂αXÞhαβð∂βXÞ ¼ ð∂αFÞhαβð∂βFÞ; ðB7Þ

where Fðϕ; XÞ is a function of ϕ and X such that
F2

X ¼ α=ð4X2Þ. Even though F contains time derivatives
of ϕ via X, (B7) does not produce higher time derivatives,
because only space derivatives of F are present. Finally, the
third term in (B6) involves also first time derivatives of ϕ
only which appear via the Christoffel symbol Γρ

μν of the
metric gμν according to

hμνϕμν ∋ −hμνΓ0
μν
_ϕ: ðB8Þ

Of course, we disregard the last term in (B6) which is an
irrelevant total derivative.

APPENDIX C: COUNTING DEGREES
OF FREEDOM

In this section, we count the number of d.o.f. of the
totally degenerate theory (2.13) expressed in the unitary
gauge thanks to a Hamiltonian analysis. To do so, we first
rewrite the action (2.13) as follows

Z
d4x

ffiffiffi
γ

p ½fðNÞ3Rþ βðNÞγij _γij þ Ñi∂iN�; ðC1Þ

where

fðNÞ≡ Nf2ðNÞ; βðNÞ≡ −
f2ϕðNÞ

N
;

Ñi ≡ 2
∂β
∂N Ni þ α5

N7
γij∂jN: ðC2Þ

For simplicity we have omitted to mention explicitly the
time dependence of the functions in the Lagrangian. When
ð∂β=∂NÞ ≠ 0 (what we assume here), one can change the
variable Ni by Ñi. Integrating out this new variable, one
obtains that N is a function of time only, and then the action
(C1) is shown to be equivalent to

Z
d4x

ffiffiffi
γ

p ½fðtÞ3Rþ βðtÞγij _γij�; ðC3Þ

where we have used the notation fðtÞ for fðt; NðtÞÞ (same
thing for βðtÞ).
To start the Hamiltonian analysis, one introduces the 6

pairs of conjugate variables (γij, pkl) with the Poisson
bracket
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fγijðx⃗Þ; pklðy⃗Þg ¼ δkðiδ
l
jÞδ

3ðx⃗ − y⃗Þ; ðC4Þ

which satisfy the 6 primary constraints

χij ≡ pij − βðtÞ ffiffiffi
γ

p
γij ≈ 0: ðC5Þ

To go further, it is very useful to decompose the family of
primary constraints into two independent sets ðχijÞ ¼
ðχik; χi⊥Þ where χik are the 3 longitudinal components of
the constraints

χik ≡Dj

�
χijffiffiffi
γ

p
�

¼ Dj

�
pijffiffiffi
γ

p
�
; ðC6Þ

and ðχi⊥Þ are the 3 transverse components. Thus, the total
Hamiltonian reads

Htot ¼
Z

d3x
ffiffiffi
γ

p ½−fðtÞ3Rþ λiχ
i⊥ þ μiχ

i
k�; ðC7Þ

where λi and μi are Lagrange multipliers which enforce the
primary constraints. It is easy to see that χik ≈ 0 are always
conserved under time evolution whereas the conservation
of χi⊥ ≈ 0 leads to 3 secondary constraints φi ≈ 0. To see
this in indeed the case, let us remark that

_χij ¼
∂χij
∂t þ fχij; Htotg ¼ fðtÞGij − _βðtÞγij ≈ 0; ðC8Þ

where Gij are the component of the Einstein tensor
associated to γij. Now, it becomes obvious (due to the
conservation of Gij) that _χik ≈ 0 with no conditions, and
only three components of _χij are nonvanishing, which leads
to three secondary constraints.
The Dirac algorithm closes here (there is no tertiary

constraints) with 9 constraints in total: χik ≈ 0 are in fact

first class (and they are associated to the invariance of the
theory under spatial diffeomorphisms); the six remaining
constraints form a set of second class constraints. As
we started with six pairs of variables, we end up with
½6 − 3 − 6=2� ¼ 0 d.o.f.
In the special case where ð∂β=∂NÞ ¼ 0, which means

that β depends on t only, the action (C1) reduces to

S ¼
Z

d4x
ffiffiffi
γ

p ½fðNÞ3Rþ βðtÞγij _γij þ α̃ðNÞγij∂iN∂jN�;

ðC9Þ

where α̃ðNÞ ¼ α5ðNÞ=N7. To make the Hamiltonian analy-
sis, we start now with 7 pairs of conjugate variables

fγijðx⃗Þ; pklðy⃗Þg ¼ δkðiδ
l
jÞδ

3ðx⃗ − y⃗Þ;
fNðxÞ; πðyÞg ¼ δ3ðx⃗ − y⃗Þ; ðC10Þ

which satisfy the seven primary constraints

χij ≡ pij − βðtÞγij ≈ 0; π ≈ 0: ðC11Þ

The analysis of the constraints χij is exactly the same as the
previous case. Concerning the new constraint π ≈ 0, its
time evolution leads to the secondary constraint

H≡ δS
δN

≈ 0; ðC12Þ

which is nothing but the Euler-Lagrange equation for the
lapse N. There are no tertiary constraints and we end up
with three first-class constraints (associated to the invari-
ance under space diffeomorphisms) together with eight
second-class constraints. As we have started with seven
pairs of conjugate variables, here again we conclude that
the theory has no d.o.f.
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[24] A. Wang, Hořava gravity at a Lifshitz point: A progress
report, Int. J. Mod. Phys. D 26, 1730014 (2017).

[25] G. Gabadadze and L. Grisa, Lorentz-violating massive
gauge and gravitational fields, Phys. Lett. B 617, 124
(2005).

GENERALIZED INSTANTANEOUS MODES IN HIGHER- … PHYS. REV. D 98, 084024 (2018)

084024-13

https://doi.org/10.1088/1475-7516/2015/02/018
https://doi.org/10.1088/1475-7516/2015/02/018
https://doi.org/10.1103/PhysRevD.89.064046
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1088/1475-7516/2004/04/001
https://doi.org/10.1088/1475-7516/2004/04/001
https://doi.org/10.1088/1126-6708/2006/12/080
https://doi.org/10.1088/1126-6708/2006/12/080
https://doi.org/10.1088/1126-6708/2008/03/014
https://doi.org/10.1088/1126-6708/2008/03/014
https://doi.org/10.1088/1475-7516/2013/02/032
https://doi.org/10.1088/1475-7516/2013/02/032
https://doi.org/10.1088/1475-7516/2013/08/025
https://doi.org/10.1088/1475-7516/2013/08/025
https://doi.org/10.1142/S021827181443010X
https://doi.org/10.1142/S021827181443010X
https://doi.org/10.1088/1475-7516/2017/05/033
https://doi.org/10.1088/1475-7516/2014/10/071
https://doi.org/10.1103/PhysRevD.92.084013
https://doi.org/10.1103/PhysRevD.92.084013
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1103/PhysRevLett.110.071301
https://doi.org/10.1142/S0218271817300142
https://doi.org/10.1016/j.physletb.2005.04.064
https://doi.org/10.1016/j.physletb.2005.04.064

