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ABSTRACT

Context. The cosmological concordance model (ΛCDM) is the current standard model in cosmology thanks to its ability to reproduce
the observations. The first observational evidence for this model appeared roughly 20 years ago from the type-Ia supernovae (SNIa)
Hubble diagram from two different groups. However, there has been some debate in the literature concerning the statistical treatment
of SNIa, and their stature as proof of cosmic acceleration.
Aims. In this paper we relax the standard assumption that SNIa intrinsic luminosity is independent of redshift, and examine whether
it may have an impact on our cosmological knowledge and more precisely on the accelerated nature of the expansion of the universe.
Methods. To maximise the scope of this study, we do not specify a given cosmological model, but we reconstruct the expansion rate of
the universe through a cubic spline interpolation fitting the observations of the different cosmological probes: SNIa, baryon acoustic
oscillations (BAO), and the high-redshift information from the cosmic microwave background (CMB).
Results. We show that when SNIa intrinsic luminosity is not allowed to vary as a function of redshift, cosmic acceleration is definitely
proven in a model-independent approach. However, allowing for redshift dependence, a nonaccelerated reconstruction of the expan-
sion rate is able to fit, at the same level of ΛCDM, the combination of SNIa and BAO data, both treating the BAO standard ruler rd as
a free parameter (not entering on the physics governing the BAO), and adding the recently published prior from CMB observations.
We further extend the analysis by including the CMB data. In this case we also consider a third way to combine the different probes
by explicitly computing rd from the physics of the early universe, and we show that a nonaccelerated reconstruction is able to nicely
fit this combination of low- and high-redshift data. We also check that this reconstruction is compatible with the latest measurements
of the growth rate of matter perturbations. We finally show that the value of the Hubble constant (H0) predicted by this reconstruction
is in tension with model-independent measurements.
Conclusions. We present a model-independent reconstruction of a nonaccelerated expansion rate of the universe that is able to fit
all the main background cosmological probes nicely. However, the predicted value of H0 is in tension with recent direct measure-
ments. Our analysis points out that a final reliable and consensual value for H0 is critical to definitively prove cosmic acceleration in
a model-independent way.

Key words. cosmology: observations – cosmological parameters – supernovae: individual: SNIa luminosity evolution

1. Introduction

The cosmological concordance model (ΛCDM), mainly com-
posed of cold dark matter and dark energy, provides an
extremely precise description of the properties of our universe
with very few parameters. However, recent observations (Planck
Collaboration XIII 2016; Betoule et al. 2014; Beutler et al. 2011)
show that these components form about 95% of the energy con-
tent of the universe, and their true nature remains unknown.
The evidence for an accelerated expansion, coming from the
type-Ia supernovae (SNIa) Hubble diagram (Riess et al. 1998;
Perlmutter et al. 1999), was key to consider the ΛCDM as the
concordance model. However, there has recently been a debate
in the literature over whether SNIa data alone, or combined with
other low-redshift cosmological probes, can prove the acceler-
ated expansion of the universe (Nielsen et al. 2016; Shariff et al.
2016; Rubin & Hayden 2016; Ringermacher & Mead 2016;
Tutusaus et al. 2017; Dam et al. 2017; Lonappan et al. 2018;
Haridasu et al. 2017; Lin et al. 2018; Luković et al. 2018; Colin
et al. 2018). For instance, the authors in Nielsen et al. (2016)

claim that, allowing for the varying shape of the light curve and
extinction by dust, they find that SNIa data are still quite con-
sistent with a constant rate of expansion, while the authors in
Rubin & Hayden (2016) claim, redoing this analysis, a 11.2σ
confidence level for acceleration with SNIa data alone in a flat
universe.

In SNIa analyses it is usually assumed that two different
SNIa in two different galaxies with the same color, stretch of
the light curve, and host stellar mass, have on average the same
intrinsic luminosity, independently of the redshift. In this work
we follow the approach of our previous analysis (Tutusaus et al.
2017), and we relax this assumption by allowing these SNIa
to have different intrinsic luminosities as a function of redshift.
Relaxing this assumption of redshift independence has also been
considered in other analyses (Wright 2002; Drell et al. 2000;
Linden et al. 2009; Nordin et al. 2008; Ferramacho et al. 2009;
L’Huillier et al. 2019). In Tutusaus et al. (2017) it was shown
that a nonaccelerated power-law cosmology was able to fit the
main low-redshift cosmological probes: SNIa, the baryon acous-
tic oscillations (BAO), the Hubble parameter as a function of the
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redshift (H(z)), and measurements of the growth of structures
( fσ8(z)), when some intrinsic luminosity redshift dependence is
allowed. Nevertheless, this specific power-law model is excluded
when considering cosmic microwave background (CMB) infor-
mation (as it was shown in Tutusaus et al. 2016), and recently
confirmed by the authors of Riess et al. (2018a), who showed
that such a model cannot fit the latest SNIa observations at z > 1,
even when accounting for some luminosity evolution. In this
paper we extend our previous study with a model-independent
analysis, and we include the latest BAO observations as well
as the complementary high-redshift CMB data. Concerning the
model independence, we follow the approach of Bernal et al.
(2016) and reconstruct the expansion rate at late times through a
cubic spline interpolation.

In Sect. 2 we present the different cosmological probes and
the specific data sets considered in the analysis. In Sect. 3 we
describe the methodology used to reconstruct the expansion rate
in a model-independent way. We provide the results of our study
in Sect. 4, and we conclude in Sect. 5.

2. Cosmological probes

In this section we present the different cosmological probes con-
sidered in the analysis, as well as the specific data sets used.

2.1. Type-Ia supernovae

Type-Ia supernovae are considered standardizable candles and
they are useful to measure cosmological distances and break
some degeneracies present in other cosmological probes. The
standard observable used in SNIa measurements is the so-called
distance modulus,

µ(z) = 5log10

(H0

c
dL(z)

)
, (1)

where dL(z) = (1 + z)r(z) is the luminosity distance, and r(z) the
comoving distance.

The standardization of SNIa is based on empirical observa-
tion that they form a homogeneous class of objects, whose vari-
ability can be characterized by two parameters (Tripp 1998): the
time stretching of the light curve (X1) and the SNIa color at max-
imum brightness (C). If we assume that different SNIa with iden-
tical color, shape, and galactic environment have on average the
same intrinsic luminosity for all redshifts, the distance modulus
can be expressed as

µobs = m∗B − (MB − αX1 + βC), (2)

where m∗B corresponds to the observed peak magnitude in the
B-band rest-frame, while α, β and MB are nuisance parameters.
Although the mechanism is not fully understood, it has been
shown (Sullivan et al. 2011; Johansson et al. 2013) that both β
and MB depend on properties of the host galaxy. In this work
we use the joint light-curve (JLA) analysis from Betoule et al.
(2014), where the authors approximately correct for these effects
assuming that the absolute magnitude MB is related to the stellar
mass of the host galaxy, Mstellar, by a simple step function:

MB =

{
M1

B if Mstellar < 1010 M�,
M1

B + ∆M otherwise, (3)

where M1
B and ∆M are two extra nuisance parameters. The

authors also discard the additional dependency of β on the host
stellar mass because it does not have a significant impact on the
cosmology.

Concerning the errors and the correlations of the measure-
ments, we use the full covariance matrix provided in Betoule
et al. (2014), where the authors have considered several statisti-
cal and systematic uncertainties, such as the error propagation of
the light-curve fit uncertainties, calibration, light-curve model,
bias correction, mass step, dust extinction, peculiar velocities,
and contamination of nontype-Ia supernovae. This covariance
matrix depends on the α and β nuisance parameters, so when we
sample the parameter space we recompute the covariance matrix
at each step.

Allowing for some redshift dependence on the SNIa intrinsic
luminosity, the distance modulus can be expressed as

µobs = m∗B − (MB − αX1 + βC + ∆mevo(z)), (4)

where ∆mevo(z) stands for a nuisance term that accounts for the
intrinsic luminosity dependence as a function of redshift.

Although the mechanism of SNIa detonation is well under-
stood, the difficulty of observing the system before becoming
a SNIa leaves enough uncertainty to merit the consideration of
whether a luminosity dependence with redshift may have an
effect on the cosmological conclusions. A varying gravitational
constant, or a fine structure constant variation, could generate
a luminosity dependence on the redshift. Also, some studies
claim that the intrinsic luminosity of SNIa may depend on the
star formation rate (Rigault et al. 2013, 2017; Childress et al.
2014) – although other studies claim the contrary (see Jones et al.
2018 and references therein), the metallicity of the host galaxy
(Moreno-Raya et al. 2016), or that it could be dimmed by inter-
galactic dust (Goobar et al. 2018). All these effects depend on the
redshift. However, our approach here is just to consider a phe-
nomenological model to explore the degeneracy of SN distance-
dependent effects and the cosmological information. Different
phenomenological models have been proposed for ∆mevo(z) (see
Tutusaus et al. 2017 and references therein). In this work we only
consider Model B from Tutusaus et al. (2017), also illustrated in
Riess et al. (2018a), where ∆mevo(z) = εzδ. A lower δ power
contribution models a luminosity evolution dominant at low red-
shift, while a higher δ power contribution leads to a luminosity
evolution dominating at high redshift. It is important to note that
δ must be greater than zero in order not to be degenerate with
M1

B. When sampling the parameter space we limit δ ∈ [0.2, 2].

2.2. Baryon acoustic oscillations

The baryon acoustic oscillations are the characteristic patterns
observed in the galaxy distribution of the large-scale structure of
the universe. They are characterized by the length of a standard
ruler, rd, and, in the standard cosmological model, originate from
sound waves propagating in the early universe. The BAO scale rd
corresponds then to the comoving sound horizon at the redshift
of the baryon drag epoch,

rd = rs(zdrag) =

∫ ∞

zdrag

cs(z) dz
H(z)

, (5)

where zdrag ≈ 1060 and cs(z) is the sound velocity as a function
of the redshift,

cs(z) =
c

√
3(1 + Rb(z))

, with Rb(z) =
3ρb

4ργ
· (6)

In this latter expression ρb stands for the baryon density while
ργ corresponds to the photon density. Their ratio can be approx-
imated (Eisenstein & Hu 1998) by Rb(z) = 3.15 × 104Ωbh2Θ−4

2.7
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(1 + z)−1, with Θ2.7 = TCMB/2.7 K and Ωb being the baryon
energy density parameter. In this work we fix the temperature
of the CMB to TCMB = 2.725 K (Fixsen 2009).

However, it is known that models differing from the standard
ΛCDM framework may have a value for rd that is not compati-
ble with rs(zdrag) (Verde et al. 2017a). It has also been shown that
the computed value of rd may depend on the physics of the early
universe, and that adding dark radiation at early times could alle-
viate the tension between the local measurement and the CMB-
derived value of H0 (Bernal et al. 2016). Moreover, there has
recently been some analyses computing rd without any depen-
dence on late-time universe assumptions, thanks to the fact that
late-time physics only affect the CMB through projection effects
from real space to harmonic space, the late integrated Sachs-
Wolfe effect, and re-ionization (see Verde et al. 2017b and ref-
erences therein for all the details). Due to these phenomena, in
this work we consider three different methods to include BAO
data:
1. compute rd with Eq. (5),
2. let rd free,
3. include the prior rd = 147.4 ± 0.7 Mpc from Verde et al.

(2017b).
We note that the prior on rd from Verde et al. (2017b) is less con-
straining than the results from Planck Collaboration XIII (2016),
but it is more model independent, since the latter assume the con-
cordance ΛCDM model to constrain rd.

It is also worth mentioning that in this work we only compute
rd (using Eq. (5)) when we consider the combination of SNIa,
BAO, and CMB data, since this is the only case for which we
specify the expansion rate of the universe up to very high redshift
(see Sect. 3.2).

We consider here both isotropic and anisotropic measure-
ments of the BAO. The distance scale used for isotropic mea-
surements is given by

DV (z) =

(
r2(z)

cz
H(z)

)1/3

, (7)

while for the radial and transverse measurements the distance
scales are r(z) and c/H(z), respectively.

We use the isotropic measurements provided by 6dFGS at
z = 0.106 (Beutler et al. 2011) and by SDSS–MGS at z = 0.15
(Ross et al. 2015). We also consider the anisotropic final results
of BOSS DR12 at z = 0.38, 0.51, 0.61 (Alam et al. 2017),
and the new anisotropic measurements from the eBOSS DR14
quasar sample (Gil-Marín et al. 2018) at z = 1.19, 1.50, 1.83.
These results were obtained by measuring the redshift space dis-
tortions using the power spectrum monopole, quadrupole, and
hexadecapole. Gil-Marín et al. (2018) have shown that their
results are completely consistent with those obtained using dif-
ferent methods to analyze the same data (Hou et al. 2018;
Zarrouk et al. 2018). We finally consider the latest results from
the combination of the Ly-α forest auto-correlation function
(Bautista et al. 2017) and the Lyα-quasar cross-correlation func-
tion (du Mas des Bourboux et al. 2017) from the complete
BOSS survey at z = 2.4. We take into account the covari-
ance matrix provided for the measurements of BOSS DR12 and
eBOSS DR14, we consider a correlation coefficient of −0.38
for the Ly-α forest measurements, and we assume measure-
ments of different surveys to be uncorrelated. In order to take
into account the nonGaussianity of the BAO observable likeli-
hoods far from the peak, we follow Bassett & Afshordi (2010)
by replacing the usual ∆χ2

G = −2lnLG for a Gaussian likelihood
observable by

∆χ2 =
∆χ2

G√
1 + ∆χ4

G

(
S
N

)−4
, (8)

where the ratio S/N stands for the detection significance, in units
of σ, of the BAO feature. We consider a detection significance
of 2.4σ for 6dFGS, 2σ for SDSS–MGS, 9σ for BOSS DR12,
4σ for eBOSS DR14, and 5σ for the Ly-α forest. Some of these
values are slightly lower than those quoted by the different col-
laborations in order to follow a conservative approach, and in
case the likelihood becomes nonGaussian at these high confi-
dence levels.

2.3. Cosmic microwave background

The CMB is an extremely powerful source of information due
to the high precision of modern data. Furthermore it represents
high-redshift data, complementing low-redshift probes. As was
shown in Wang & Mukherjee (2007), a significant part of the
information coming from the CMB can be compacted into a few
numbers, the so-called reduced parameters: the scaled distance
to recombination R, the angular scale of the sound horizon at
recombination `a, and the reduced density parameter of baryons
ωb. For a flat universe their expressions are given by

R ≡
√

ΩmH2
0

∫ zCMB

0

dz
H(z)

,

`a ≡
πc

rs(zCMB)

∫ zCMB

0

dz
H(z)

, (9)

ωb ≡ Ωbh2,

where zCMB stands for the redshift of the last scattering epoch.
In this work we consider the data obtained from the Planck
2015 data release (Planck Collaboration XIV 2016), where the
compressed likelihood parameters are obtained from the Planck
temperature-temperature plus the low-` Planck temperature-
polarization likelihoods. We specifically consider the reduced
parameters obtained when marginalizing over the amplitude of
the lensing power spectrum for the lower values, since it leads
to a more conservative approach, together with their covariance
matrix.

It is important to recall that the reduced parameters can only
be used for models close to ΛCDM, since this is the model
assumed to derive the values of the reduced parameters from
Planck data. In this work, although we allow for a general expan-
sion rate at low redshift, we consider a concordance matter–
radiation-dominated early universe (see Sect. 3.2); therefore, we
only expect major differences with respect to the concordance
model at low redshift, which should have a small impact on
the integrals of the reduced parameters. Although not being per-
fectly model independent, we consider here the reduced param-
eters of the CMB. A fully model-independent analysis merg-
ing the model-independent reconstruction of the expansion rate
together with the Boltzmann code is left for future work.

3. Methodology

In this section we first reiterate the details of the standard ΛCDM
model and we then present the reconstruction method used to
obtain the expansion rate as a function of redshift. We give a
detailed explanation of how we introduce each cosmological
probe in the analysis, and we finally describe the method used
to sample the parameter space.
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3.1. The ΛCDM model

The flat ΛCDM model assumes a flat Robertson-Walker met-
ric together with Friedmann-Lemaître dynamics, leading to the
comoving distance,

r(z) = c
∫ z

0

dz′

H(z′)
, (10)

and the Friedmann-Lemaître equation,

E(z)2 ≡
H(z)2

H2
0

= Ωr(1 + z)4 + Ωm(1 + z)3 + (1 −Ωr −Ωm), (11)

where Ωm (Ωr) stands for the matter (radiation) energy density
parameter. We follow Planck Collaboration XIII (2016) in com-
puting the radiation contribution as

Ωr = Ωγ

1 + Neff

7
8

(
4

11

)4/3 , (12)

where Ωγ corresponds to the photon contribution

Ωγ = 4 × 5.6704 × 10−8 T 4
CMB

c3

8πG
3H2

0

· (13)

In this work we fix the effective number of neutrino-like rel-
ativistic degrees of freedom to Neff = 3.04. When we consider
only SNIa data, or SNIa combined with BAO data letting rd free,
we fix the value of H0 for the radiation contribution on ΛCDM
(see Eqs. (12), (13)) to H0 = 68 km s−1 Mpc −1, since there is no
sensitivity to H0 in these cases. However, H0 is left free for all
the other cases and reconstructions in the rest of the work. The
remaining parameters when fitting ΛCDM to the data are Ωm
and the corresponding nuisance parameters of the cosmological
probes considered (see Table 1).

3.2. Expansion rate reconstruction method

We want our reconstruction to be as model-independent as pos-
sible, and we impose a smooth and continuous expansion rate
together with a flat, homogeneous, and isotropic universe. Sev-
eral model-independent reconstruction methods have been used
in the literature (since a decade ago Seikel & Schwarz 2008,
2009) to reconstruct the dark energy equation of state param-
eter, or even the Hubble parameter. Among them let us men-
tion the principal component analysis (Huterer & Starkman
2003; Crittenden et al. 2009; Liu et al. 2016; Said et al. 2013;
Qin et al. 2015), the Gaussian processes (Clarkson & Zunckel
2010; Holsclaw et al. 2010; Seikel et al. 2012; Yu et al. 2018;
Busti et al. 2014; Wang & Meng 2017; Haridasu et al. 2018a),
the iterative model-independent smoothing method (Starobinsky
et al. 2006; Shafieloo 2007; L’Huillier et al. 2018; L’Huillier
& Shafieloo 2017), or, very recently, the weighted polynomial
regression method (Gómez-Valent & Amendola 2018; Gómez-
Valent 2018). See Vitenti & Penna-Lima (2015) for a detailed
review on different model-independent reconstruction methods.
In this work we follow the approach from Bernal et al. (2016),
reconstructing the late-time expansion history by expressing
E(z) ≡ H(z)/H0 in piece-wise natural cubic splines (see also
Penna-Lima et al. 2019 for a recent analysis using a cubic spline-
based reconstruction methodology). When we consider SNIa
data alone, E(z) is specified by its values at five different “knots”

in redshift: z = 0.1, 0.25, 0.57, 0.8, 1.31. Therefore, our recon-
struction when analyzing SNIa data considers the following set
of parameters {hi, α, β, M,∆M , ε, δ} with hi for i ∈ [1, 5] being
the five knots in redshift, α, β,M,∆M the standard SNIa nui-
sance parameters, and ε, δ the SNIa intrinsic luminosity evolu-
tion parameters.

When BAO data are added into the analysis we consider an
extra knot in our reconstruction at z = 2.42. We follow two differ-
ent approaches to include the BAO measurements: first we con-
sider the product H0rd as a free parameter, and secondly we add
information coming from the early universe through the prior on
rd from Verde et al. (2017b), rd = 147.4 ± 0.7 Mpc. In the first
case, the set of parameters considered in our reconstruction of
E(z) is {hi, α, β, M,∆M ,H0rd, ε, δ} with hi for i ∈ [1, 6] being the
six knots in redshift, while in the second case we consider H0 and
rd separately {hi, α, β, M,∆M ,H0, rd, ε, δ}. It is important to men-
tion here that our statistical approach in this work is frequentist;
therefore, by prior we mean here that we add a Gaussian likeli-
hood centered at the corresponding value (of rd in this case) with
the corresponding 1σ error to our full likelihood before minimiz-
ing the χ2 function. Rigorously, we are modifying the likelihood
from a frequentist approach.

When we finally add the reduced parameters for the CMB
we need to specify E(z) up to early times. In order to do this
we add the seventh knot at z = 2.7 computed according to a
matter-dominated model (with flat Robertson-Walker metric and
Friedmann-Lemaître dynamics) with free H0 and Ωm parame-
ters (see Eq. (11)), and we extend the model up to very high
redshift. The main idea in this reconstruction is to start at early
times following a matter-dominated model (plus radiation and
a negligible contribution of dark energy through a cosmologi-
cal constant) and, when we start to have low-redshift data and
a cosmological constant is still negligible with respect to the
quantity of matter present in the universe, we reconstruct E(z)
through a cubic spline interpolation; in this way we give our
reconstruction the freedom to choose the preferred expansion
without specifying a particular model for dark energy. When
analyzing the data we consider three different cases, depend-
ing on the way that the BAO measurements are introduced.
First, we consider rd as a free parameter, while, in a second
place, we add the prior on rd from Verde et al. (2017b). In
both cases, the set of parameters that enters into the recon-
struction is given by {hi, α, β, M,∆M ,H0, rd,Ωm, zCMB, ωb, ε, δ},
and we add the prior on zCMB = 1089.90 ± 0.23
(Planck Collaboration XIII 2016). As a last case we compute
the value of rd using Eq. (5). In this case the set of parameters
is given by {hi, α, β, M,∆M ,H0,Ωm, zCMB, ωb, zdrag, ε, δ}, and we
add the prior on zdrag = 1059.68 ± 0.29 (Planck Collaboration
XIII 2016).

In order to test the degeneracy between a SNIa intrinsic lumi-
nosity evolution and cosmic acceleration, we consider different
cases with and without luminosity redshift dependence, so ε and
δ can be removed from the analysis. Finally, we also consider
the so-called coasting reconstructions, in which the universe has
a late-time constant expansion rate. More specifically, we fix
the first four knots3 (since it is roughly the region where the
expansion is accelerated in the concordance model) such that

1 These values have been chosen such that the expansion rate has a
significant amount of freedom at low redshift, and because this is the
interval for which SNIa data are available.
2 This corresponds to the redshift of the Ly-α forest measurements.
3 When using SNIa data alone we only fix the first three knots because
there is not a lot of data beyond z ∼ 0.8, but we have checked that fixing
the first four knots leads to equivalent conclusions.
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Table 1. Summary of the cosmological probes and parameters present in the different cases considered.

Case Cosmological probes Cosmological parameters Nuisance parameters

SNIa SNIa hi α, β,M,∆M
SNIa+BAO free H0rd SNIa+BAO hi,H0rd α, β,M,∆M
SNIa+ev+BAO free H0rd SNIa+BAO hi,H0rd α, β,M,∆M , ε, δ
SNIa+BAO prior rd SNIa+BAO hi,H0, rd α, β,M,∆M
SNIa+ev+BAO prior rd SNIa+BAO hi,H0, rd α, β,M,∆M , ε, δ
SNIa+BAO free rd+CMB SNIa+BAO+CMB hi,H0, rd,Ωm, ωb α, β,M,∆M , zCMB
SNIa+ev+BAO free rd+CMB SNIa+BAO+CMB hi,H0, rd,Ωm, ωb α, β,M,∆M , zCMB, ε, δ
SNIa+BAO prior rd+CMB SNIa+BAO+CMB hi,H0, rd,Ωm, ωb α, β,M,∆M , zCMB
SNIa+ev+BAO prior rd+CMB SNIa+BAO+CMB hi,H0, rd,Ωm, ωb α, β,M,∆M , zCMB, ε, δ
SNIa+BAO compute rd+CMB SNIa+BAO+CMB hi,H0,Ωm, ωb α, β,M,∆M , zCMB, zdrag
SNIa+ev+BAO compute rd+CMB SNIa+BAO+CMB hi,H0,Ωm, ωb α, β,M,∆M , zCMB, zdragε, δ

Notes. The i-index on hi goes from 1 to 5 for SNIa data alone, while it goes up to 6 when BAO data are included. When working with coasting
reconstructions we only consider the last two knots hi.

E(z) is equal to (1 + z) at these points. Let us reiterate that
E(z) ∝ H(z) ≡ ȧ/a; therefore, E(z) = (1 + z) implies that
ȧ/a ∝ 1/a; thus ȧ is constant, giving a coasting universe. See
Table 1 for a summary of the different cases considered and the
cosmological and nuisance parameters present in them.

3.3. Fitting the data

In order to reconstruct the expansion rate as a function of red-
shift, we fit the data minimizing the common χ2 function,

χ2 = (u − udata)T C−1(u − udata), (14)

where u stands for the model prediction, while udata and C hold
for the observables and their covariance matrix, respectively.
We sample the parameter space to minimize this function using
the MIGRAD application from the iminuit Python package4,
a Python implementation of the former MINUIT Fortran code
(James & Roos 1975), conceived to find the minimum value of a
multi-parameter function and analyze the shape of the function
around the minimum. We use it to extract the best-fit values for
the parameters, as well as their errors and the covariance matrix
of the parameters.

We also compute the probability that a higher value for the
χ2 occurs for a fit with ν = N − k degrees of freedom, where N
is the number of data points and k is the number of parameters,

P( χ2, ν) =

Γ

(
ν
2 ,

χ2

2

)
Γ
(
ν
2

) , (15)

where Γ(t, x) is the upper incomplete gamma function and Γ(t) =
Γ(t, 0) the complete gamma function. This value provides us with
a goodness of fit statistic. A probability close to 1 indicates that
it is likely to obtain higher χ2 values than the minimum found,
pointing to a good fit by the model. When we combine different
probes, we minimize the sum of the individual χ2 functions for
each probe, that is, we assume the probes to be uncorrelated.

It is worth mentioning that Eq. (15) can, in principle, only
be used when our N data points come from N independent ran-
dom variables with Gaussian distributions. However, SNIa data
come from correlated Gaussian random variables, as is the case
for BAO and CMB data. In other words, we consider the corre-
lations between the different measurements within probes. Nev-
ertheless, we have checked using Monte Carlo simulations that
4 https://github.com/iminuit/iminuit

the impact of these correlations is negligible when we consider
Eq. (15), and therefore we use this equation in the following.

4. Results

In this section we present the results of the reconstruction of
the expansion rate of the universe as a function of redshift for
different sets of cosmological probes: SNIa, SNIa combined with
BAO, and SNIa combined with both BAO and CMB data. We
also comment on the linear growth of structure measurements,
and the importance of the value of the Hubble constant, H0, to
draw conclusions on the accelerated expansion of the universe.

4.1. Case 1: SNIa

We first start considering only SNIa data. We present this case
as an illustration of the reconstruction method used. The best-
fit values for the cosmological and nuisance parameters are
presented in Table 2 together with the 1σ error bars, and the
reconstructions are shown in Fig. 1. We show three different
models in this case: the reconstruction through cubic splines
(red), the reconstruction for a coasting universe (labeled CS) at
low-redshift (fixing the first three knots – green), and ΛCDM
as a reference (black). We do not consider any SNIa luminosity
evolution for the moment. In Table 2 we also provide the ratio
of the χ2 to the number of degrees of freedom, and the probabil-
ity P( χ2, ν) from Eq. (15). In order to obtain the bands for the
reconstructions we generate 500 splines from an N-dimensional
Gaussian centered at the best-fit values and with the covari-
ance matrix obtained from the fit to the data. We further require
each spline to have a ∆χ2 value smaller than or equal to 1 with
respect to the best-fit reconstruction. We recall that the deriva-
tive of E(z)/(1 + z) is proportional to ä; therefore a decreasing
E(z)/(1 + z) as a function of the redshift implies acceleration,
while an increasing one implies deceleration.

In Table 2 we can clearly see that all the SNIa nuisance-
parameter values (α, β,M,∆M) are compatible for the three mod-
els, and that a coasting universe shows a lower expansion rate
when we increase the redshift with respect to the standard spline
reconstruction. This is confirmed from Fig. 1 where we see that
the expansion rate drops above z ≈ 0.8. We can also observe
in this figure that the bands increase when we increase the red-
shift; this is expected since there are less data points in this
region. Comparing the three models, we observe that the spline

A15, page 5 of 13
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Fig. 1. Reconstruction of the expansion rate, E(z)/(1+z), as a function of
the redshift using SNIa data alone. The black line represents the ΛCDM
model, while the red band shows the reconstruction with ∆χ2 ≤ 1 with
respect to the best reconstruction (red line). The green band stands for
the reconstruction of a coasting universe at low redshift. See the text for
the details of the reconstruction.

reconstruction provides a slightly smaller χ2 value (681.38) than
ΛCDM (682.89), but the former has many more parameters in the
model, and so the ability of these models to fit the data is roughly
the same, being slightly better for ΛCDM (P( χ2, ν) = 0.915)
than the spline reconstruction (P( χ2, ν) = 0.905). However,
the χ2 value obtained for the coasting reconstruction (717.60)
is much larger than the previous values, which also implies that
this model is less able to perfectly fit the data (P( χ2, ν) =
0.661). A detailed model comparison is beyond the scope of
this work, since we do not aim to propose a new cosmologi-
cal model to confront ΛCDM but are interested in studying the
accelerated expansion of the universe and the relation it may
have with SNIa luminosity. However, the coasting reconstruc-
tion has a relative probability of exp(−∆χ2/2) ≈ 1.4 × 10−6%,
showing that a coasting universe at low redshift is highly disfa-
vored (>5σ)5, even using SNIa data alone, when SNIa intrinsic
luminosity is assumed to be redshift independent. We also note
that, even if we ask the reconstruction to be nonaccelerated at
low redshift, it prefers to add some acceleration at earlier times
(above z ≈ 0.8) rather than simply having a constant velocity
expansion.

4.2. Case 2: SNIa+BAO

After having shown how the reconstruction method works, and
having applied it to SNIa data alone, we focus on the combina-
tion of SNIa and BAO data. As is shown in Table 1 we consider
two different ways to combine these data sets: we either let the
product H0rd free, or we add a prior on rd. Since we consider
the models with and without SNIa intrinsic luminosity evolu-
tion, and we always add ΛCDM as a reference, we finally have
four different sub-cases with the corresponding three models per

5 We note that we do find more than a 5σ preference for cosmic accel-
eration (when SNIa luminosity does not evolve with the redshift), con-
trary to the results of Nielsen et al. (2016), because we consider the
standard SNIa systematics instead of the extra systematics proposed by
these authors. However, we are still far from the 11.2σ detection from
Rubin & Hayden (2016), because we use a model-independent recon-
struction with many more degrees of freedom than a fixed nonacceler-
ated model.

sub-case. The best-fit values and errors of the parameters for all
these cases are shown in Table 3.

Let us first focus on the case where H0rd is treated as a free
parameter. As was the case with SNIa data alone, all the SNIa
nuisance parameters (α, β,M,∆M) have compatible values for the
different models considered. However, the coasting reconstruc-
tion now does not show a reduced expansion rate at high redshift
(adding or not SNIa luminosity evolution), due to the addition of
the BAO data points above z ≈ 0.8. We can also see that the value
of H0rd obtained from the spline reconstruction is more or less
compatible with the one obtained with ΛCDM, but it is lower for
the coasting reconstruction, adding SNIa intrinsic luminosity or
not. Concerning the ability of the models to fit the data, the χ2

of the spline reconstruction is always slightly smaller than the
ΛCDM one (695.65 against 698.06, and 693.21 against 698.06
when we allow the SNIa luminosity to vary). But as was the case
before, the probability of providing a good fit is roughly the same
for both models, being slightly better for ΛCDM (0.902 against
0.912, and 0.904 for both when we account for evolution). This is
also what can be seen in the reconstruction plot on the left panel of
Fig. 2. With respect to the coasting reconstruction, we can see in
Table 3 that when SNIa intrinsic luminosity is allowed to vary we
obtain a χ2 value very close to the ΛCDM one, thus giving also
a good probability to correctly fit the data (0.901 against 0.904,
for the standard reconstruction, and for ΛCDM).

Let us now focus on the combination of SNIa and BAO data
with a prior on rd (two last rows of Table 3 and the right panel
of Fig. 2). This allows us to obtain a constraint on H0, and so we
represent in this case the expansion rate by H(z)/(1 + z). All the
best-fit values of the parameters are very close to the previous
case, with nearly the same χ2 values and the same probabili-
ties, since we have only added one data point and one param-
eter in the analysis. As before, a coasting universe provides a
good fit to the data with a probability of 0.901 against 0.904 for
the standard spline reconstruction, and 0.905 for ΛCDM, when
SNIa luminosity is allowed to vary. The interesting result from
these cases is that the value found for H0 for the spline recon-
struction is always smaller than the one obtained for ΛCDM, but
still compatible (67.4 ± 1.3 km s−1 Mpc−1 compared to 68.57 ±
0.99 km s−1 Mpc−1, when SNIa luminosity is allowed to vary),
while it is significantly smaller for the coasting reconstruction, as
can be seen in the right plot of Fig. 2 (62.12±0.56 km s−1 Mpc−1

compared to 68.57 ± 0.99 km s−1 Mpc−1, when SNIa luminosity
is allowed to vary). This is consistent with the lower value found
for H0rd in the previous cases for the coasting reconstruction.

4.3. Case 3: SNIa+BAO+CMB

Let us recall that the addition of CMB data is a key ingredient
when studying cosmological models thanks to its complemen-
tarity to low-redshift cosmological probes (see e.g., Tutusaus
et al. 2016 where cosmological models are ruled out thanks to
the introduction of CMB scale information). Therefore, as a final
case we consider the combination of the three main background
expansion cosmological probes: SNIa, BAO, and CMB. We have
already presented two different ways to combine SNIa and BAO
data, so when we add CMB data we keep this approach and,
since we now include the physics of the early universe, we add
a third way consisting in computing the explicit value of rd. The
best-fit values of the parameters for these three sub-cases are
presented in Table 4 with the 1σ errors, and the corresponding
reconstruction is shown in Fig. 3. Let us mention that even if
zCMB and zdrag in Table 4 seem to be fixed, both of them have
been fitted each time adding the Planck priors; however, the
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Fig. 2. Reconstruction of the expansion rate, E(z)/(1 + z) (left) and H(z)/(1 + z) (right), as a function of the redshift using the combination of SNIa
and BAO data. In the left panel the data sets have been combined considering H0rd a free parameter, while in the right panel a prior on rd has been
added. In both panels the black and gray lines represent the ΛCDM model (without and with SNIa luminosity evolution, respectively), while the
red band shows the reconstruction with ∆χ2 ≤ 1 with respect to the best reconstruction (red line). The green band stands for the reconstruction of
a coasting universe at low redshift when SNIa intrinsic luminosity is allowed to vary as a function of the redshift. See the text for the details of the
reconstruction.

best-fit values are very stable and are identical in the table given
the number of decimals presented.

Let us start with the combination considering rd a free
parameter. Either assuming the SNIa intrinsic luminosity to be
redshift independent or allowing it to vary, the three models pro-
vide compatible values for all the parameters except H0, which
is significantly smaller for the coasting reconstruction, as was
already shown in the combination of SNIa and BAO data, and
which is compensated by a larger Ωm. We note that the CMB
is sensitive to the physical matter energy density Ωmh2, which
is roughly equal to 0.14 for all models. Therefore, even if the
value of H0 is smaller than in the concordance model, if the
value of Ωm is large enough, the coasting reconstruction can
also perfectly fit the CMB. When SNIa luminosity is allowed
to vary, a coasting reconstruction provides roughly the same χ2

(698.30) as ΛCDM (698.09) with a slightly smaller probability
(0.898 against 0.908), showing that a nonaccelerated expanding
universe can fit the three main background probes when SNIa
intrinsic luminosity is allowed to vary.

In a second place we add a prior on rd (Verde et al. 2017b)
obtained without assumptions on the late-time universe. All the
best-fit values are compatible between the different models as
before, except for H0 and Ωm, which are smaller and larger for a
coasting reconstruction, respectively, accounting for SNIa lumi-
nosity evolution or not. The obtained χ2 values are very simi-
lar, leading to very similar probabilities to correctly fit the data,
P(χ2, ν), and they show that a coasting reconstruction can cor-
rectly fit the data when SNIa luminosity evolution is accounted
for. In the last place we compute rd using Eq. (5). All the best-fit
values are compatible with the previous results, and compatible
between the different models, except for H0 and Ωm. It is also
the case for the χ2 values and the corresponding probabilities.

We conclude that, if we account for a redshift dependence in
the intrinsic luminosity of SNIa, the main cosmological probes
cannot firmly prove the accelerated nature of the expansion of
the universe in a model-independent way, since a nonaccelerated
reconstruction of the expansion rate can correctly fit the observa-
tions.

For completeness, we present in Fig. 4 the residuals to
SNIa and BAO observations for three different models: ΛCDM

(black), the reconstruction through cubic splines (red), and the
nonaccelerated model using a coasting reconstruction (green)
taking into account SNIa intrinsic luminosity evolution. We also
provide the predictions for the CMB quantities R, `a, and ωb
in Table 5. All these predictions have been computed using the
best-fit values of the parameters obtained from the global fit to
the combination of SNIa, BAO, and CMB data, explicitly com-
puting the value of rd using Eq. (5). From these results we can
see graphically that all three models are perfectly able to fit the
data; including the coasting reconstruction with SNIa luminos-
ity evolution. As can be seen in Table 4, a different approach
when combining SNIa, BAO, and CMB data (free rd or prior
on rd) gives nearly the same values for the parameters of the
reconstruction, which leads to almost the same predictions for
the observables.

4.4. Pantheon SNIa sample

Although our main cosmological data set for SNIa measurements
in this analysis is the JLA compilation from Betoule et al. (2014),
there is a newer compilation available in the community called
Pantheon (Scolnic et al. 2018). It contains SNIa measurements
coming from the Pan-STARRS1 Medium Deep Survey, SDSS,
SNLS, various low-redshift surveys, and HST samples. Pantheon
is the largest combined sample of SNIa with a total amount of
1048 SNIa from z = 0.01 up to z = 2.3. Besides the increased
number of SNIa compared to JLA (740), and the extended red-
shift range (z ≈ 1 for JLA), the Pantheon compilation consid-
ers a different treatment of SNIa systematic errors. For instance,
the mass step ∆M , α, and β nuisance parameters appearing in the
JLA compilation are here pre-solved in a cosmology independent
manner (see Scolnic et al. 2018 for the details), so the Pantheon
compilation provides only the redshifts, distance moduli, and dis-
tance moduli uncertainties, together with the covariance matrix
for the distances moduli. A detailed comparison between the dif-
ferent treatment of systematic errors between these two compila-
tions is beyond the scope of this work.

Our interest here is to test the stability of our results from
the previous section when using the Pantheon sample instead
of the JLA compilation. In order to do this, we reconstruct
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Fig. 3. Reconstruction of the expansion rate, H(z)/(1 + z), as a func-
tion of the redshift using the combination of SNIa, BAO, and CMB
data. In the top panel the data sets have been combined considering rd
a free parameter, while in the central panel a prior on rd has been used,
and it has been explicitly computed in the bottom panel. In all panels
the black and gray lines represent the ΛCDM model (without and with
SNIa luminosity evolution, respectively), while the red band shows the
reconstruction with ∆χ2 ≤ 1 with respect to the best reconstruction (red
line). The green band stands for the reconstruction of a coasting uni-
verse at low redshift when SNIa intrinsic luminosity is allowed to vary
as a function of redshift. See the text for the details of the reconstruction.

the expansion rate for case 3: SNIa+BAO+CMB, computing rd
explicitly and replacing the JLA compilation with the Pantheon
one. The results are shown in Fig. 5 and they should be

compared to the bottom panel of Fig. 3. As can be seen from
the comparison of the figures (and the χ2/d.o.f. values quoted in
them), our main results from the previous section remain qualita-
tively unaltered. The coasting reconstruction, when SNIa intrin-
sic luminosity is allowed to vary as a function of the redshift,
is able to provide a very good fit to the main background cos-
mological probes. It is important to mention however that the
∆χ2 between the coasting reconstruction in Fig. 3 (JLA) and the
concordance model is equal to −0.3 (smaller for the coasting
reconstruction), while the ∆χ2 when considering the Pantheon
compilation is equal to 4.3 (smaller for the concordance model).
Although this difference is not large enough to rule out the coast-
ing reconstruction, it already shows some tension; therefore, it
might point towards the fact that with future SNIa compila-
tions, with even higher sample sizes, we might be able to discard
this kind of reconstruction. It is also interesting to note that the
reduced χ2/d.o.f. are always smaller than 1 when considering
the Pantheon compilation, but they are slightly larger than the
ones obtained with the JLA compilation. This is probably due to
the different treatment of systematic errors in the different com-
pilations; however, all models provide a very good fit to the data
and a detailed comparison on the treatment of systematic errors
is beyond the scope of this work.

4.5. Growth rate

The measurements of the growth rate of matter perturbations
offer an additional constraint on cosmological models. Their val-
ues depend on the theory of gravity used and it is well known that
there are identical background evolutions with different growth
rates (Piazza et al. 2014). Defining the linear growth factor of
matter perturbations as the ratio between the linear density per-
turbation and the energy density, D ≡ δρm/ρm, we can derive the
standard second-order differential equation for D (Peebles 1993)

D̈ + 2HḊ − 4πGρmD = 0, (16)

where the dot stands for differentiation over cosmic time.
Neglecting second-order corrections, this differential equa-
tion can be rewritten with derivatives over the scale factor
(Dodelson 2003)

D′′(a) +

[
3
a

+
H′(a)
H(a)

]
D′(a) −

3
2

Ωm
H2

0

H2(a)
D(a)
a5 = 0, (17)

which is valid under the assumption that dark energy cannot be
perturbed and does not interact with dark matter. We can now
define the growth rate as

f (a) ≡
d lnD
d lna

, (18)

and then compute the observable weighted growth rate fσ8 as

fσ8(z) = f (z) ·
(
σ8Planck

D(z)
DPlanck(0)

)
, (19)

where σ8Planck stands for the ΛCDM observed value (with Planck)
of the root mean square mass fluctuation amplitude on scales of
8h−1 Mpc at redshift z = 0 (fixed to 0.8159 in this work Planck
Collaboration XIII 2016), and DPlanck represents the ΛCDM
Planck growth factor (Planck Collaboration XIII 2016). In this
work we consider the measurements of the weighted growth rate
from the 6dFGS survey (Beutler et al. 2012), the WiggleZ sur-
vey (Blake et al. 2012), and the VIPERS survey (de la Torre et al.
2013), as well as the different SDSS projects: SDSS-II MGS DR7
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Fig. 4. Residuals between the observations and the prediction of the different models, ΛCDM, spline reconstruction, and coasting reconstruction
with SNIa intrinsic luminosity evolution, for the SNIa and BAO observables. The predictions have been computed using the best-fit values for the
parameters obtained from the fit of the combination SNIa+BAO+CMB computing rd explicitly. Left plot: residuals of the SNIa distance modulus
for the three different models: ΛCDM (black, top panel), spline reconstruction (red, central panel), and coasting reconstruction (green, bottom
panel). The residuals have been normalized with respect to the prediction for each model. Right plot: residuals of the BAO measurements following
the same color convention as in the left panel. The residuals have been normalized with respect to the prediction for each model.

Table 5. Prediction of the different models for the CMB quantities R,
`a, ωb, for the combination of SNIa, BAO, and CMB data computing rd
explicitly, and accounting for SNIa intrinsic luminosity evolution as a
function of the redshift when dealing with a coasting reconstruction.

Parameter Measured value ΛCDM Splines CS (4 knots)+ev

R 1.7382 ± 0.0088 1.7409 1.7384 1.7381
`a 301.63 ± 0.15 301.68 301.65 301.64
102ωb 2.262 ± 0.029 2.255 2.262 2.262

Notes. The measured values are added as a reference.

(Howlett et al. 2015; with the main galaxy sample of the sev-
enth data release), SDSS-III BOSS DR12 (Alam et al. 2017; with
the LRGs from the twelfth BOSS data release), and SDSS-IV
DR14Q (Gil-Marín et al. 2018; with the latest quasar sample of
eBOSS). We have not included this data set in our fitting anal-
ysis for simplicity, but we show in Fig. 6 that when using the
best-fit values of the parameters from the SNIa+BAO+CMB fit
the prediction for the three models considered (ΛCDM, spline
reconstruction, and coasting reconstruction with SNIa luminos-
ity evolution) is in very good agreement with the observations.
We note that the values for the parameters used in Fig. 6 have been
obtained computing the value of rd, but the results are equivalent
using the other approaches for the combination of our three main
data sets.

4.6. The Hubble constant

The Hubble constant, H0, is one of the most important parame-
ters in modern cosmology, since it is used to construct time and
distance cosmological scales. It was first measured by Hubble to
be roughly 500 km s−1 Mpc−1 (Hubble 1929). Current data sup-
ports a value for H0 close to 70 km s−1 Mpc−1. However, nearly
100 years later there is still no consensus on its value. Local
measurements already show some tension on the results depend-
ing on the calibration of SNIa distances and the methodology
used. Using median statistics, the authors from Gott et al. (2001),
Chen et al. (2003), and Chen & Ratra (2011) finally found a
local value of H0 equal to 68±5.5 km s−1 Mpc−1 (95% statistical

and systematic errors). Following these studies, there were dif-
ferent analyses claiming values close to 68 km s−1 Mpc−1 using
different methods and assumptions (see e.g., Chen et al. 2017;
Yu et al. 2018; Rigault et al. 2015; Zhang et al. 2017; Dhawan
et al. 2018; Fernández Arenas et al. 2018; Lin & Ishak 2017, and
Haridasu et al. 2018b). However, there are other studies claim-
ing significantly higher values (Riess et al. 2018b,c, 2016), and
some others finding slightly smaller values (Tammann & Reindl
2013). Moreover, there is also some tension between some direct
measurements of H0 and the value inferred from the CMB
assuming a ΛCDM model (Planck Collaboration XIII 2016).
There have been many attempts in the literature to solve this
discrepancy both from an observational and a theoretical pers-
pective (see Bernal et al. 2016; Gómez-Valent & Amendola
2018; Mörtsell & Dhawan 2018; Dhawan et al. 2018; Ben-Dayan
et al. 2014; D’Arcy Kenworthy et al. 2019; Shanks et al. 2019;
Riess et al. 2018d, and references therein for a detailed discus-
sion on the trouble with H0). In this work we consider two recent
cosmological model-independent measurements of H0 in order
to check its effect on the conclusions we can draw concerning
cosmic acceleration. We first consider the value obtained from
the Hubble Space Telescope observations (Riess et al. 2018b;
R18 in the following), H0 = 73.45 ± 1.66 km s−1 Mpc−1. We
then consider the value obtained with Gaussian processes using
SNIa data, and constraints on H(z) from cosmic chronometers
(Gómez-Valent & Amendola 2018; GVA18 in the following),
H0 = 67.06 ± 1.68 km s−1 Mpc−1. This last value is closer to
the one derived with an “inverse distance ladder” approach in
Aubourg et al. (2015), H0 = 67.3 ± 1.1, where the measure-
ment assumes standard pre-recombination physics but is insen-
sitive to dark energy or space curvature assumptions. It is also
closer to the value derived from the CMB observations using a
flat ΛCDM model, H0 = 67.51±0.64 (Planck Collaboration XIII
2016).

Let us mention that in this work we also provide constraints
on H0 obtained using a cubic spline reconstruction on SNIa,
BAO, and CMB data without SNIa intrinsic luminosity evolu-
tion (as in GVA18). They are given by H0 = 68.5 ± 1.7 (free rd),
H0 = 68.3 ± 1.2 (prior rd), and H0 = 68.2 ± 1.2 (compute rd).
See Table 4 for the constraints including SNIa luminosity evolu-
tion. All our constraints are compatible (within 1σ) with GVA18
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Fig. 5. Reconstruction of the expansion rate, H(z)/(1 + z), as a function
of the redshift using the combination of SNIa, BAO, and CMB data,
explicitly computing the value of rd. In this case the Pantheon compila-
tion of SNIa has been used instead of the JLA compilation. The black
and gray lines represent the ΛCDM model (without and with SNIa lumi-
nosity evolution, respectively), while the red band shows the reconstruc-
tion with ∆χ2 ≤ 1 with respect to the best reconstruction (red line). The
green band stands for the reconstruction of a coasting universe at low
redshift when SNIa intrinsic luminosity is allowed to vary as a function
of redshift. See text for details of the reconstruction.

and Planck but they are in tension with R18. However, we keep
R18 and GVA18 in the following to use H0 constraints, without
assumptions on the cosmological model, which are independent
from this work.

In Fig. 7 we represent the profile likelihood (assuming Gaus-
sian likelihoods) for both the observed values of H0, R18 (black)
and GVA18 (blue), and the values derived from the nonacceler-
ated reconstruction for the combination SNIa+BAO+CMB tak-
ing into account the SNIa intrinsic luminosity evolution. We
present the three values obtained for the three approaches fol-
lowed when combining the data sets: considering rd a free
parameter (green), adding a prior on it (yellow), or computing
it explicitly (purple). From the figure alone it is clear that the
H0 value for the nonaccelerated reconstruction is in tension
with R18 at more than 5σ, independently of the approach used
when combining the data sets. More precisely, a nonacceler-
ated reconstruction is ruled out if we consider the R18 mea-
surement at 5.60σ (free rd, H0 = 62.2 ± 1.1), 6.47σ (prior rd,
H0 = 62.13 ± 0.55), or 6.55σ (compute rd, H0 = 62.08 ± 0.51),
showing that, with the R18 measurement, cosmic acceleration
is proven even if some astrophysical systematic errors evolv-
ing with the redshift modify the intrinsic luminosity of SNIa.
However, we can also see from the figure that if we consider
the measured value from the Gaussian processes, a nonaccel-
erated reconstruction shows slightly less than a 3σ tension.
More precisely, there is a tension of 2.39σ (free rd), 2.79σ
(prior rd), or 2.84σ (compute rd). In this case, the measured
value of H0 points towards ruling out these reconstructions,
but the tension is still far from the usually recognized 5σ
threshold.

Before moving on to our conclusions, let us mention that
there have been several analyses in the literature where the
authors constrain the expansion rate of the universe, H(z), using
measurements of it. Different cosmological models or recon-
struction methods have been used (see e.g., Farooq & Ratra
2013; Farooq et al. 2017, 2013; Moresco et al. 2016, and Yu
et al. 2018). Using local measurements of H0, these analyses
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Fig. 6. Prediction of the different models, ΛCDM, spline recon-
struction, and coasting reconstruction with SNIa intrinsic luminosity
evolution, for the growth of matter perturbations fσ8 observable. The
predictions have been computed using the best-fit values for the param-
eters obtained from the fit of the combination SNIa+BAO+CMB com-
puting rd explicitly. Therefore, it is not a fit to the fσ8 measurements.
We follow the same color legend as in the previous figures: black for
ΛCDM, red for the spline reconstruction, and green for the coasting
reconstruction.

also show current acceleration and earlier deceleration, which
enables us to obtain the redshift of transition between decelera-
tion and acceleration. In order to compare our results to theirs,
we compute this transition redshift for the different (noncoast-
ing) spline reconstructions. For SNIa alone, the redshift of tran-
sition is zt = 0.9±1.2, given the lack of constraining power from
SNIa data alone. However, when we include BAO data this tran-
sition becomes zt = 0.55 ± 0.32 (free H0rd) and zt = 0.54 ± 0.25
(prior on rd). If we also add CMB data into the analysis, the
transition redshift is then given by zt = 0.53 ± 0.33 (free rd),
zt = 0.53 ± 0.24 (prior rd), and zt = 0.53 ± 0.24 (compute
rd). These results are compatible with the transition redshift
derived in a model-independent way in Moresco et al. (2016):
zt = 0.4 ± 0.1, as well as the value derived using median statis-
tics in Farooq et al. (2017): zt = 0.74 ± 0.05. Therefore, our
cubic spline reconstructions (without SNIa intrinsic luminosity
evolution) provide information on the transition from decelera-
tion to acceleration compatible to that obtained with H(z) and
H0 data.

5. Conclusions

Here we address the question of whether or not relaxing the stan-
dard assumption that SNIa intrinsic luminosity does not depend
on the redshift can have an impact on the conclusions that can
be drawn on the accelerated nature of the expansion of the uni-
verse. Although there is no theoretically fully motivated model
for this luminosity evolution yet, it has not been proven that two
SNIa in two galaxies with the same light curve, color, and host
stellar mass have the same intrinsic luminosity independently of
redshift. Moreover, there are different studies claiming a detec-
tion of SNIa luminosity dependence on the star formation rate
or metallicity of the host galaxy, which depend on the redshift
(Rigault et al. 2013, 2017; Childress et al. 2014; Moreno-Raya
et al. 2016). Also, with this kind of analysis we can distinguish
between the effect of unknown astrophysical systematics varying
with the redshift and the cosmological information.

The impact of SNIa luminosity evolution on our cosmo-
logical knowledge has already been addressed (Wright 2002;
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Drell et al. 2000; Linden et al. 2009; Nordin et al. 2008;
Ferramacho et al. 2009; Tutusaus et al. 2016, 2017; L’Huillier
et al. 2019), but in this work we have extended the analysis by
including the physics of the early universe (z ≈ 1000), and con-
sider the main background cosmological probes: SNIa, BAO, and
the CMB. In order to maximise the scope of this study, we have
not imposed a cosmological model, but we have reconstructed the
expansion rate of the universe using a cubic spline interpolation.

We first applied, as an illustration of the method, the recon-
struction to SNIa data alone with the standard assumption of
SNIa luminosity independence. We have shown that with this
assumption cosmic acceleration is definitely preferred against a
local nonaccelerated universe.

In a second step we added the latest BAO data to our analysis.
We considered two different ways to combine it with SNIa data:
either we considered H0rd as a free parameter, or we added a
prior on rd coming from CMB observations, without any depen-
dence on late-time universe assumptions. In both cases we see
that a nonaccelerated universe is able to fit the data nearly as
well as ΛCDM, when we allow the SNIa intrinsic luminosity to
vary as a function of the redshift.

Subsequently, we extended the data sets in the analysis
by adding the information coming from the CMB through the
reduced parameters. In order to deal with this information we were
forced to specify the model up to very high redshifts. We decided
to follow a matter–radiation-dominated model from the early uni-
verse down to z ≈ 3, where we start to have low-redshift data.
We then coupled the model to our spline reconstruction. In other
words, we considered a matter–radiation-dominated model at the
early universe and, when we entered the redshift range where we
have low-redshift data and a cosmological constant is still negli-
gible, we allowed the expansion rate to vary freely without spec-
ifying any dark energy model. When adding the CMB data we
followed three different approaches: treat rd as a free parameter,
add a prior on it, or compute it assuming that the BAO and the
CMB share the same physics. For simplicity we did not add the
fσ8 measurements of the growth rate of matter perturbations, but
we checked that when using the best-fit values from the global

fit SNIa+BAO+CMB we were able to correctly predict the latest
fσ8 measurements.

In all three cases we have seen that a nonaccelerated model
is able to nicely fit the main background cosmological probes,
when SNIa intrinsic luminosity is allowed to vary as a function
of the redshift, including the information on the early universe
coming from the CMB.

After this conclusion, we focus on the impact that the Hub-
ble constant may have on this question. We considered two differ-
ent recent model-independent measurements of H0: 73.45 ± 1.66
km s−1 Mpc−1 (R18) from Riess et al. (2018b), and 67.06 ± 1.68
km s−1 Mpc−1 (GVA18) from Gómez-Valent & Amendola (2018).
We showed that if we consider the R18 value, cosmic accelera-
tion is proven at more than 5.60σ for a general expansion rate
reconstruction (for which we get H0 = 62.2 ± 1.1 (free rd),
H0 = 62.13 ± 0.55 (prior rd), and H0 = 62.08 ± 0.51 (compute
rd)), even if SNIa intrinsic luminosity varies as a function of the
redshift due to some astrophysical unknown systematic error. It
is important to mention, however, that if we consider the GVA18
value, a nonaccelerated reconstruction for the expansion rate is at a
3σ tension with the measurement, but still below the 5σdetection.

In conclusion, if SNIa intrinsic luminosity varies as a func-
tion of the redshift, a nonaccelerated universe is able to correctly
fit all the main background probes. However, the value of H0
turns out to be a key ingredient in the conclusions we can draw
concerning cosmic acceleration. If we take H0 into account we
are close to claiming an accelerated expansion of the universe
using an approach that is very independent of the cosmological
model assumed, and even if SNIa intrinsic luminosity varies as
a function of the redshift. A final consensus on a direct mea-
surement of H0 and its precision will be decisive in finally prov-
ing the cosmic acceleration independently of the cosmological
model and any redshift dependent astrophysical systematic error
that may remain in the SNIa analysis.
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