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ABSTRACT
The disruption of a star by a supermassive black hole generates a sudden bright flare. Previous
studies have focused on the disruption by single black holes, for which the fallback rate decays
as ∝ t−5/3. In this paper, we generalize the study to the case of a supermassive black hole
binary (SMBHB), using both analytical estimates and hydrodynamical simulations, looking
for specific observable signatures. The range of binary separation for which it is possible
to distinguish between the disruption created by a single or a binary black hole concerns
typically separations of the order of a few milliparsecs for a primary of mass ∼106 M�. When
the fallback rate is affected by the secondary, it undergoes two types interruptions, depending
on the initial inclination θ of the orbit of the star relative to the plane of the SMBHB. For
θ � 70◦, periodic sharp interruptions occur and the time of first interruption depends on the
distance of the secondary black hole with the debris. If θ � 70◦, a first smooth interruption
occurs, but not always followed by a further recovery of the fallback rate. This implies that
most of the TDEs around a SMBHB will undergo periodic sharp interruptions of their light
curve.

Key words: black hole physics – hydrodynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

When a star wanders too close to a supermassive black hole, it can
be disrupted by the strong tidal field created by this compact object.
The resulting stellar debris are sent on highly elliptical orbits, or, if
their energy is large enough, can even by ejected out of the system.
The bound debris accrete on to the black hole, which leads to a
flare for which the time dependency of the light curve is generally
described by the power law L(t) ∝ t−5/3 derived by Rees (1988),
Phinney (1989), and Evans & Kochanek (1989). Such an event is
called a Tidal Disruption Event (TDE).

After many years of surveys since the first detection of such an
event by the ROSAT All-Sky survey, a TDE is thought to happen
every 105 years in each galaxy (van Velzen & Farrar 2014). The
resulting flare has a very broad spectrum ranging from γ -rays to X-
rays and even down to radio wavebands for the so-called jetted TDE,
as Swift J1644 (Bloom et al. 2011; Burrows et al. 2011; Levan et al.
2011; Zauderer et al. 2011) or in the UV and optical wavebands as
in PS1-10jh (Gezari et al. 2012). Simultaneous X-rays and optical
flares have also been detected, such as in the case of ASASSN14-li
(Holoien et al. 2016). This emission can last from months to years.

� E-mail: giuseppe.lodato@unimi.it

Whether the observed light curve at some given wavelength
should follow or not the time evolution of the fallback rate (and
thus produce the signature t−5/3 decline) has been the subject of
several theoretical investigations (Lodato & Rossi 2011; Shiokawa
et al. 2015; Bonnerot et al. 2017; Guillochon & McCourt 2017).
In addition, even the fact that the fallback rate should simply scale
as t−5/3 has been questioned, and it has been shown that it may
be modified in the early phases, depending on the stellar structure
(Lodato, King & Pringle 2009) or at late times if the disruption is
not complete (Guillochon & Ramirez-Ruiz 2013). Here, we will
concentrate on the fallback rate and its possible deviations from
the power law, expected in the simplest case. So far, these studies
generally focused on a TDE around a single black hole. Liu, Li &
Chen (2009), Ricarte et al. (2016), and more recently Coughlin et al.
(2017) studied the change in the light curve from the power law for a
TDE occurring around a supermassive black hole binary (SMBHB).
By using ballistic simulations, the first two papers showed that the
interaction with the secondary black hole could lead to interruptions
in the flare. Flares which present such characteristics could provide
a powerful probe of the population of SMBHBs in the Universe. In
this regard, Liu, Li & Komossa (2014) recently proposed a possible
candidate of a TDE around a SMBHB.

Coughlin et al. (2017) coupled hydrodynamical and statistical
three-body simulations to show that the light curve could even be
totally different from the standard description of TDEs. SMBHBs
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are expected to form after the coalescence of two galaxies, each
having a SMBH in its centre. Detecting the presence of a SMBHB
at sub-parsec scales is challenging, and most diagnostics (such as a
Doppler shift of the broad line region) are ambiguous. Still, these
scales are essential to probe from a theoretical perspective, because
it is at parsec scales that the process of merging of the binary
components is expected to stall (Milosavljević & Merritt 2001).
Further orbital decay, beyond parsec scales, should take the binary
down to milliparsec scales, where the decay time due to gravitational
wave emission becomes shorter than the age of the Universe and the
binary can then merge and provide a strong source of gravitational
waves, which can be detected by upcoming missions, such as LISA.

The purpose of the present paper is to complete both analytically
and numerically the work of Liu et al. (2009) and Ricarte et al.
(2016), especially by characterizing with hydrodynamical simula-
tions the light curve of a TDE around a SMBHB exploring a larger
parameter space than in the past. Our work also complements that
of Coughlin et al. (2017), in that while they analyse the fallback
rate mostly in a statistical sense, we describe more systematically
the effects of varying the fundamental physical and geometrical
parameters of the system.

The paper is organized as follows. In Section 2 we describe the
basic features of a TDE by a single black hole. In Section 3 we
discuss analytically the expectation for the fallback rate around
a SMBH binary. In Section 4 we describe our numerical setup. In
Section 5 we show our results. In Section 6, we discuss the accuracy
of the fallback rate computed numerically. In Section 7 we draw our
conclusions.

2 TD E O N A SI N G L E B L AC K H O L E

In the following, a Newtonian potential is assumed for the black
holes. General relativistic effects are essential to determine the fate
of the debris as they circularize and possibly form a disc. For the
purpose of this paper, in which we are concerned only with the
fallback rate, we can safely neglect these effects.

In order for a star to be disrupted by a black hole, it has to reach a
certain distance Rt from the black hole, called the tidal radius, and
given by:

Rt � R�

(
Mh

M�

)1/3

, (1)

where Mh is the mass of the black hole, R� the radius of the star, and
M� the mass of the star. By requiring that Rt > RS, the Schwarzschild
radius of the black hole, equation (1) leads to a maximum limit of
the black hole mass above which no TDE is possible anymore. This
limit is Mh,max = 5 × 107 M�, for non-spinning black holes.

The theory related to a TDE on a single black hole has been de-
veloped in the article of Rees (1988) and demonstrated numerically
by Evans & Kochanek (1989). The accretion rate resulting from the
event is associated with the fallback rate of the debris to the peri-
centre of the initial orbit of the star. This fallback rate is determined
by the distribution of orbital energy of the debris by the following
relation:

dM

dT
= dM

dE

(2πGMh)2/3

3
T −5/3, (2)

where T is the orbital period of the bound debris. One of the main as-
sumptions behind this formula is that, after the return to pericentre,
the debris lose rapidly energy and angular momentum and circular-
ize or accrete to the black hole in a time shorter than T. Therefore,

we can consider the mass fallback rate to be the accretion rate Ṁ

on to the black hole.
By taking a uniform mass distribution dM/dE we have

dM

dT
= 1

3

M�

tmin

(
t

tmin

)−5/3

, (3)

where tmin corresponds to the return time of the most bound debris
and is given by

tmin = 2πR3
t

(GMh)1/2(2R�)3/2
. (4)

This hypothesis of a uniform mass distribution is very simple and
far from realistic but has the advantage of giving analytical predic-
tion of the fallback rate which fits well the bolometric luminosity
of observed TDEs (Lodato 2012). A better estimate of the energy
distribution can be obtained either analytically, by assuming that
the stellar structure is unperturbed upon reaching the tidal radius
(Lodato et al. 2009) or, more realistically, through numerical sim-
ulations (Lodato et al. 2009; Guillochon & Ramirez-Ruiz 2013).
For complete disruptions, even with a more realistic treatment of
the energy distribution, the t−5/3 decline is preserved at late times,
while it may show strong deviations for partial disruptions and/or
non-parabolic encounters (Guillochon & Ramirez-Ruiz 2013).

3 TI DAL DI SRUPTI ON EVENTS BY A SMBH
BI NA RY

We now consider a TDE occurring around a SMBHB. Such a bi-
nary can result from the merging of two galaxies. The population
of SMBHBs is thought to be smaller than the population of sin-
gle supermassive black holes. However, the rate of TDEs detected
around a SMBHB is not necessarily lower than for single black
holes. For one galaxy, this rate can indeed be at least one order of
magnitude higher than the one of a single supermassive black hole
(see Amaro-Seoane, Brem & Cuadra 2013).

3.1 Restriction of the parameters

A TDE around a SMBHB implies many more parameters than
on a single black hole. There are two kinds of parameters: those
concerning the binary black holes, and those concerning the initial
orbit of the star. They are summarized in Fig. 1.

3.1.1 Binary parameters

For the binary, we consider the black hole involved in the disrup-
tion to be the primary and call M1 its mass. The secondary black
hole has a mass M2. We can set the eccentricity eBH, the sum of
the semi-major axis aBH of the orbit of each black hole around
the centre of mass, the mass of the primary M1 and the mass ratio
q = M2/M1. Milosavljević & Merritt (2001) showed that the eccen-
tricity of SMBHBs is moderated due to a fast circularization after
their formation, and with aBH � 10 pc, we can consider the eccen-
tricity to be approximately eBH = 0. So from now, we consider only
SMBHBs with eBH = 0. Also, in this case the binary separation is
constant and equal to aBH. We choose to take only moderate black
hole masses, with M1 = 106 M�.

The choice of M1, q, and aBH is restricted by the theoretical
estimations of the fallback rate made later in Section 3.2.
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Figure 1. Illustration of the system. The SMBHB is in the x − y plane and has an angular momentum in the direction of positive z. The red full line is the
initial orbit of the star around the primary. Ri and Vi are the initial position and velocity of the star.

3.1.2 Star parameters

We take a solar type star of mass M� and radius R�. The pa-
rameters describing the initial orbit of the star around the primary
are the orbital elements: the eccentricity e�, the pericentre Rp, the
inclination of the orbital plane of the star and that of the binary θ ,
the angular position of the line of nodes �, the apsidal position of
the pericentre ω, and the initial true anomaly ν i. Their definition
is such that when θ = � = ω = ν i = 0, the star is at pericentre
between the two black holes. The reference plane is the plane of
the SMBHB. The reference axis for � is the x-axis, i.e. initial axis
linking the two black holes.

The true anomaly ν i is just the initial angular position of the
star on the orbit. We can replace, without any loss of generality, ν i

by the initial distance to the primary Ri. This parameter does not
play an essential role in the final result. On the one hand, the star
needs to have time to be deformed by the black hole before reaching
pericentre, but on the other hand the trajectory between the initial
position and the pericentre must not be perturbed by the secondary
in order to reach the wanted pericentre. For all the simulations, we
took Ri = 3Rp, which satisfies both conditions.

The pericentre is always taken to be at the tidal radius, Rp = Rt.
We take in all the simulations a parabolic orbit, i.e. e� = 1. Also, for

a single black hole, a study of the effects of an initial elliptic orbit
is made by Bonnerot et al. (2016).

The most interesting parameters are θ , �, and ω because they
determine in which direction with respect to the secondary the
debris will be thrown. We simulate essentially two different cases
which probe two different effects the secondary might have on the
debris.

First, we make the disruption in the binary plane (θ = ω = 0◦)
with a range of � ∈ {0◦; 90◦; 180◦; 270◦}. Because the debris are
mainly in the plane, crossing of the secondary into the stream of
these debris can occur. Thus we probe the effects of a direct, or at
least close, encounter of this black hole with the debris.

Secondly, we make the disruption perpendicular to the plane
of the SMBHB, i.e. θ = 90◦ and ω = 90◦, with � ∈ {0◦; 90◦;
180◦; 270◦}. In this case the secondary never crosses the stream
of the debris. These simulations probe the effects of the global
modification of the gravitational potential due to the binary.

Finally, we considered a number of intermediate inclinations (θ ∈
{0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦}, with ω = � = 90◦)
to understand the transition between the two extreme behaviours.

� is used for probing the influence of the azimuthal position of
the stream of the debris with respect to the secondary.
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3.2 Theoretical estimates

In order to make some estimates of the perturbations the secondary
might have on the TDE, one has to consider a three-body system,
the two black holes, and a debris element. As we will show, the
dynamic of the debris depends mainly on the distance between the
two black holes.

3.2.1 Truncation time

If the binary separation is large enough, the most bound debris are
on S-type orbit, i.e. their orbit is not perturbed by the secondary.
The fallback rate of such debris is also the classical power law
Ṁ ∝ t−5/3. Since these debris represent the very first moments of
the fallback rate, then the light curve will follow the power law in
the beginning. However, when arriving to debris that have orbits
that can be highly perturbed by the secondary black hole, the power
law stops working. In the N-body simulations of Liu et al. (2009)
and Ricarte et al. (2016), the following fallback rate undergoes
interruptions. It is, however, difficult to make analytical predictions
for the subsequent orbit of the perturbed debris and for the time at
which they will return to pericentre. But it is possible to estimate
which debris will be perturbed and which ones will not.

Let us define a critical semi-major axis acr for the debris orbit
above which they will be perturbed by the secondary. Then we can
say that the light curve will differ from the classical power law after
the time of the first return to pericentre of these perturbed debris.
In Liu et al. (2009) they call this time the truncation time because
they observe net truncations in the light curve. We call it ttr. Then
using Kepler’s third law, we obtain:

ttr = 2π

(
a3

cr

GMh

)1/2

. (5)

The critical semi-major axis can have different definitions. The one
of Liu et al. (2009) results from a semi-empirical boundary condition
between the chaotic behaviour or not of a triple system. In this paper
we choose (as in Coughlin et al. 2017) to take a more usual definition
of acr: the size of the Roche lobe Rlobe. The solution is not analytical
and is approximately given by the formula of Eggleton (1983) with
a precision of 1 per cent:

Rlobe = 0.49q2/3

0.6q2/3 + ln
(
1 + q1/3

)aBH, (6)

where Rlobe is normalized by the binary separation.
Then Rlobe is the maximum apocentre with respect to the primary

that a debris can reach without being perturbed. In terms of semi-
major axis this gives after some simple algebra:

acr = Rlobe + Rp

2
≈ Rlobe

2
, (7)

where the last approximation holds since the typical separation of
the binary is of the order of (M1/M�)1/3 larger than the tidal radius
(see equation (8) below).

3.2.2 Interval of binary separation

Here, we estimate the interval of binary separations for which we
expect the binary to perturb the TDE light curve. As quoted in
Section 2, the first return of the debris occurs at t = tmin. This means
that if the truncation time is lower than tmin, then the power law is
not followed at all. Thus we have a lower limit ttr, min for ttr. In the
same way, we can define an upper limit ttr,max using observational

constraints. Komossa (2015) showed that it is possible to follow the
evolution of the light curve until a luminosity of ≈1 per cent of the
peak luminosity. This leads to a maximum time of observation of
the order of some years. If ttr is above this time, we will not be able
to detect any change in the power law and identify the TDE to be
around a SMBHB.

These limits of the truncation time can be translated into limits
for the binary separation aBH,min and aBH,max. This leads to⎧⎨
⎩ a

para
BH,min = 0.6q2/3+ln (1+q1/3)

0.49q2/3 R�

(
M1
M�

)2/3
,

a
para
BH,max = ε−2/5aBH,min

(8)

where ε is the minimum observable luminosity relative to the peak
luminosity. We take ε = 0.01 and Rp = Rt. The superscript ‘para’
refers to the fact that in this case we have assumed a parabolic
orbit for the star. Roughly, equation (8) implies that aBH, min is the
separation at which the binding energy of the binary ≈GM1/aBH (in
the limit that q 
 1) is comparable to the energy spread imparted by
the tidal disruption on to the stellar debris 
E = GM1R�/R

2
t . Now,

it is interesting to note that Coughlin et al. (2017) have shown that in
the case of TDEs from a binary black hole, the orbital energy of the
incoming star can assume a wide range between ≈− 2GM1/aBH and
≈2GM1/aBH. It may thus be possible that non-parabolic encounters
might alter the range of relevant binary separations significantly.
We have thus computed the interval of binary separations for which
we expect the fallback to be significantly affected by the binary also
for the case in which the incoming star has got a non-negligible
orbital energy, with modulus E� > 0. We then find:{

a
E�
BH,min = a

para
BH,min

1
1±E�/
E

,

a
E�
BH,max = ε−2/5a

E�
BH,min,

(9)

where


E = GM1R�

R2
t

≈ GM1

R�

(
M1

M�

)−2/3

, (10)

and the superscript ‘E�’ indicates that here we consider stellar or-
bits with non-negligible energy. In equation (9) the plus and minus
sign refer to the case where the stellar orbit is elliptical and hy-
perbolic, respectively. From Coughlin et al. (2017), we expect that
the maximum E� ≈ 2
E. This would imply a change of at most a
factor of a few in the relevant separations for the case of elliptical
stellar orbits. For hyperbolic orbits the fallback can be affected by
the binary presence already at significantly larger separations. For
extremely hyperbolic encounters, when E� > 
E, all the debris be-
come unbound and there will be no fallback flare. In the following,
we will consider only the case where E� = 0.

We make use of equations (8) to choose the range of binary sep-
arations taken in the simulations. Fig. 2 illustrates the position in
the parameter space (q; aBH) of the points (in red) that are simu-
lated, with respect to the interval of binary separation allowed by
equation (8) (blue area). We choose to take q < 1, which corresponds
to a disruption only on the more massive black hole. Chen, Liu &
Magorrian (2008), Chen et al. (2009), and more recently Coughlin
et al. (2017) showed that statistically this is the more probable case.
For each point we perform eight simulations with different orienta-
tions of the initial orbit of the star, four in the plane of the binary
and four perpendicular to the plane (see Section 3.1.2).

4 N U M E R I C A L S E T U P

We use Smoothed Particle Hydrodynamic (SPH) which is a La-
grangian method of hydrodynamic simulation using fluid particles.
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Figure 2. The blue area depicts, as a function of the mass ratio q, the range
of binary separations for which truncations of the power law can be seen,
calculated with equation (8). The mass of the primary is M1 = 106 M�.
The red dots correspond to the points in the parameter space where the
simulations have been done. For each of these points we perform eight
simulations with different orientations of the initial orbit of the star, four in
the plane of the binary and four perpendicular to the plane (see Section 3.1.2).

In order to take shocks into account we introduce the typical arti-
ficial viscosity parameters of SPH, αAV, and βAV, and the switch
of Cullen & Dehnen (2010) that reduces αAV and βAV away from
the shocks. Using this switch, αAV is bounded between a minimum
value αAV

min = 0 and a maximum value αAV
max = 1, while βAV = 2.

We perform the simulations using PHANTOM (Lodato & Price 2010;
Price & Federrath 2010; Price et al. 2017). The code units are
set to be the solar radius for the distances, the solar mass for the
masses, and we set G to be equal to 1. The SMBHB is modelled
as a time-dependent external force which acts on the particles.
In all the simulations we include the gas self-gravity and we use
an adiabatic equation of state, with γ = 5/3. The simulation is
initialized by distributing the particles to reproduce the density
profile of a polytropic star. This is first perform without the external
force until the star has reached equilibrium. Then we ensure this
star on a parabolic orbit around the primary black hole according to
the initial conditions given by Section 3.1.2. Initially, the distance
Ri of the star to the primary is set to be three times the pericentre
distance. Higher values have been tested (Ri = 5Rp for instance) and
no discrepancies have been found. One should note that the time for
the star to reach pericentre is negligible with respect to the period of
the SMBHB. Thereby the trajectory of the star between the initial
position and the pericentre is not perturbed by the dynamic of the
SMBHB and is the wanted parabola.

In all the simulations we take N = 105 particles. Simulations
have been performed also with N = 106 particles and only minor
differences have been found (see Section 6).

In order to avoid the time-step to go to zero when particles get
very close to one of the black holes, we define an ‘accretion radius’
Racc for both black holes. If a particle passes under this radius it is
removed from the simulation. The accretion radius of the secondary
is the radius of the Innermost Stable Circular Orbit (ISCO) of this
black hole, which is the radius of the last stable orbit, equal to three

times the Schwarzschild radius for a non-spinning black hole, such
as those considered here.

However, we take another definition for the accretion radius of
the primary. For this black hole we take Racc,1 = 0.8Rp. The reason
why we do not take the ISCO radius is related to a numerical reason.
The part of the stream of debris that is returning to the pericentre is
greatly stretched due to the fact that we chose a parabolic orbit. Then
very few particles resolve this part of the stream, even with N = 106.
It follows that the artificial viscosity is abnormally increased for the
particles closest to the black hole, and therefore their dynamics is
not well simulated. For instance, with Racc,1 = RISCO,1, RISCO,1 be-
ing the ISCO radius of the primary, we observed a very fast (and
obviously not physical) ejection of some particles after their return
to the pericentre. To get rid of this problem, we take a large accre-
tion radius. This is a well-known issue when simulating parabolic
disruptions (Bonnerot et al. 2016) but here we are interested in fall-
back rate rather than accretion rate, so avoiding this issue by taking
a larger accretion radius does not affect our results. One should note
that this problem is not present for the secondary since we do not
have a ‘parabolic returning’, leading to a small density of particles,
near this black hole. That is why we take the ISCO radius for its
accretion radius.

5 R ESULTS

5.1 Influence of the initial orientation

In this section we analyse the effects of the initial orientation of
the orbit of the star at the points of Fig. 2, in the case where the
initial orbit is in the plane of the binary and in the case where it is
perpendicular to this plane.

5.1.1 Disruption in the plane

Fig. 3 shows the accretion rate on to the primary for each pair of
mass ratio and binary separation of Fig. 2 as indicated on the top-
right of each panel, in the case of a disruption in the plane. The
red curves are plotted for comparison and corresponds to the single
black hole case (SBHC). The black curves are the accretion rate for
the binary case for different � and with θ = ω = 0◦ (� = 0◦ in full
line, � = 90◦ in long-dashed line, � = 180◦ in short-dashed line,
and � = 270◦ in dot–dashed line). The vertical arrows represent
the theoretical truncation time. The simulations are stopped after
5 years. The time at which the luminosity is 1 per cent of the peak
luminosity is approximately 3 years.

For each plot (except for {q = 1; aBH = 0.5mpc}) and each �, the
accretion rate follows the SBHC in the beginning. Then it undergoes
several sharp drops (interruptions) and retrievals of the SBHC. The
first interruption arises rarely at the theoretical truncation time and
depends mainly on ω. The periodicity of the drops is not always
present. For instance for {q = 1; aBH = 1mpc}, after the first drop,
the accretion rate becomes chaotic.

When we have a periodicity, the period of the retrievals is ap-
proximately the orbital period of the black holes. Each drop corre-
sponds to the passage of the secondary into the stream of in-falling
debris. During this passage, the secondary disturbs a part of the
stream. This part will not return normally at the pericentre, or even-
tually at a delayed time, and then the accretion rate undergoes an
interruption.

In conclusion, when the disruption is in the plane, the process
that leads to the interruption of the accretion rate results from the

MNRAS 476, 5312–5322 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/476/4/5312/4923087 by guest on 04 June 2024



Tidal disruption of stars in a SMBHB system 5317

Figure 3. Accretion rate into the primary as a function of time in the case of a TDE occurring in the plane. Each panel corresponds to a different set of mass
ratio and binary separation according to Fig. 2 and this is specified in the top-right corner of each graphic. The red curve is the SBHC. The black curves
correspond to the binary case with θ = ω = 0◦ and different �: � = 0◦ in black full line, � = 90◦ in black long-dashed line, � = 180◦ in black short-dashed
line, and � = 270◦ in black dot–dashed line. The vertical arrows represent the theoretical truncation time corresponding to each curve.

close passages of the secondary near the stream of debris. That is
why there is a big dependency of the time of first interruption on the
initial �, i.e. on the azimuthal position of the stream. For instance,
for � = 90◦, the stream is sent on the opposite side of the initial
position of the secondary and the first interruption occurs at a later
time than for � = 270◦ (see Fig. 3). This result confirms the one of
Ricarte et al. (2016).

Coughlin & Nixon (2015) and Coughlin et al. (2016) have shown
that the stream of debris after a TDE by a single black hole can
become gravitationally unstable and form clumps, which may add
a level of variability in the fallback rate. While this is not the main
focus of this paper, we confirm that similar clumps also appear
in the case of disruption by binary black holes, implying that the

additional tidal shear due to the binary potential is not sufficient to
prevent self-gravitating clump formation.

5.1.2 Disruption perpendicular to the plane

Fig. 4 shows the accretion rate on to the primary for each pair of
mass ratio and binary separation of Fig. 2 as indicated on the top-
right of each panel, in the case of a disruption perpendicular to the
plane. The red curves are plotted for comparison and corresponds to
the SBHC. The black curves are the accretion rate for the binary case
for different � and with θ = ω = 90◦ (� = 0◦ in full line, � = 90◦

in long-dashed line, � = 180◦ in short-dashed line, and � = 270◦

in dot–dashed line). As before, the vertical arrows represent the
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Figure 4. Accretion rate into the primary as a function of time in the case of a TDE occurring perpendicular to the plane. Each panel corresponds to a different
set of mass ratio and binary separation according to Fig. 2 and this is specified in the top-right corner of each graphic. The red curve is the SBHC. The black
curves correspond to the binary case with θ = ω = 90◦ and different �: � = 0◦ in black full line, � = 90◦ in black long-dashed line, � = 180◦ in black
short-dashed line, and � = 270◦ in black dot–dashed line. The vertical arrows represent the theoretical truncation time corresponding to each curve.

theoretical truncation time and the simulations are stopped after
5 years.

For q = 0.1, {q = 1; aBH = 1mpc}, and {q = 1; aBH = 2mpc} we
observe, as in Section 5.1.1, an initial decline, following the SBHC
and then a first interruption. However, this interruption is not always
followed by a retrieval of the SBHC and is largely smoother than
the ones in the disruptions in the plane. Moreover, the time of the
first drop does not depend on � and corresponds to the theoretical
truncation time. We have a totally different behaviour and process
that leads to the interruptions of the SBHC in the case where the
disruption is perpendicular to the plane.

This difference can be explained by the way the secondary inter-
acts with the debris. When the disruption is in, or close to, the plane,
the secondary has periodic very close passages near the in-falling

stream. This results in violent periodic disturbances of the stream,
and also very net interruptions of the accretion rate. However, when
the disruption is out of the plane, the stream is mainly located in
the z-axis (the location does not depend on �) and the distance
between one part of the stream and the secondary is constant. Thus,
the perturbation created by this black hole on the stream is not pe-
riodic and is of the same order all the time. This leads to a smooth
interruption of the accretion rate. Moreover, because the stream is
mainly located in the z-axis, � has no major influences on the rel-
ative position of this stream with respect to the secondary and that
is why there is no dependency of the time of first interruption in �.

One should note that this behaviour is not present in the case
q = 0.01, where the accretion rate follows the SBHC for each � and
aBH. We can conclude that the process leading to the perturbations of
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Figure 5. Accretion rate into the primary for q = 0.1, aBH = 0.5mpc, and
ω = � = 90◦. The red curve is the SBHC. The black curves represent dif-
ferent inclinations θ . The vertical arrow represents the theoretical truncation
time corresponding to each curve.

the stream in the case of a perpendicular disruption is not efficient
for small q. Then, for q = 0.01, only a close encounter of the
secondary with the stream, i.e. disruption close to the plane, can
perturb this stream and create visible interruptions (see Fig. 3, left
panels).

5.1.3 Boundary between the two behaviours

We observed interruptions of the accretion rate due to the secondary.
These interruptions behave differently depending on the initial ori-
entation of the orbit of the star. If the initial orbit is in the plane of the
SMBHB, sharp and periodic interruptions occur. On the contrary,
if the initial orbit is perpendicular to the plane, a first very smooth
interruption occurs, which is eventually, but not always, followed
by a retrieval of the SBHC before the maximum observational time.
Then a new question appears: what is the critical inclination θ cr

separating those two behaviours?
Fig. 5 compares the accretion rate for different inclinations θ ∈

{0◦, 60◦, 70◦, 80◦, 90◦} (black curves) with q = 0.1, aBH = 0.5mpc,
and ω = � = 90◦. The red curve is the SBHC and the vertical arrow
represents the theoretical truncation time. We see that when the
inclination goes from 0◦ to 90◦, the accretion rate evolves smoothly
from the periodic behaviour to the smoother behaviour. Even if we
cannot define a precise critical inclination, we see that with θ = 60◦

there are still periodic retrievals of the SBHC. This only begins to
vanish from θ = 70◦, and has totally vanished for θ = 80◦. We can
reasonably say that the critical inclination is θ cr ∼ 70◦.

5.2 Influence of the binary separation

The influence of the binary separation on the accretion rate was not
discussed by Liu et al. (2009) and Ricarte et al. (2016).

First, we analyse the case of a disruption in the plane. If we refer
to Fig. 3, we see that the first interruption occurs always before
3 years (maximum observational time we chose). The exception is
the case {q = 0.01; aBH = 2mpc} where the first interruption occurs

before 3 years only for � = 270◦. In this case, the detection of the
interruption, and also of the secondary, would be difficult. This is
indeed predicted by equation (8) since the corresponding point in
Fig. 2 is above the blue area. We can conclude that the upper limit
fixed by equation (8) is valid for a disruption in the plane. If the
disruption is perpendicular to the plane (Fig. 4), an interruption
occurs only for q = 0.1 and q = 1. Thus equation (8) overpredicts
the effects of the secondary for the smallest mass ratios.

Concerning the lower limit, the same conclusion arises. By
analysing the case {q = 1; aBH = 0.5mpc} in which the theo-
retical truncation time is smaller than tmin, we see that at no moment
the SBHC is followed and the accretion rate is chaotic. So not
only we will not be able to detect the secondary, but also it will
not be possible to determine the light curve to be resulting from a
TDE, at least with the method using the power law. Thus the case
{q = 1; aBH = 0.5 mpc} depicts the fact that for very small binary
separations, the most bound debris are disturbed by the secondary
before they return to the pericentre. The usual description of TDEs,
made by the power law, does not hold anymore. The lower limit of
equation (8) accounts well for this phenomenon.

In conclusion, the limits set by equation (8) are a good restriction
of the binary separation needed for detecting the secondary if the
disruption is in the plane. In the case it is perpendicular to the plane,
the limits only hold for q � 0.1.

6 AC C U R AC Y O F FA L L BAC K R AT E S

Care should be taken about the method used to compute the fallback
rate from the numerical simulations.

Liu et al. (2009), Ricarte et al. (2016), and Coughlin et al. (2017)
computed the accretion rate using the accretion radius of the pri-
mary. A major drawback of this method is that it depends mainly
on the value of this radius, as quoted in Ricarte et al. (2016), and
clearly shown also in Coughlin et al. (2017), where they evaluate
two different fallback rates using different choices for the accretion
radius. In this article we chose to use a different method, which
makes use of equation (2).

For each time T we compute the mass distribution dM/dE1, where
E1 is the orbital energy of a particle with respect to the primary.
dM/dE1 depends on E1 and T. Following the same methods as
Rees (1988), Kepler’s third law gives us E1 as a function of T.
Then we obtain dM/dE1 as a function only of T, and finally with
equation (2) we get dM/dT at the time T. We repeat these steps for
each time T by recomputing the mass distribution at these times.

For simplicity, we call our method (using the mass distribution)
‘method 1’, and the method using the accretion radius ‘method 2’.

Fig. 6 compares the accretion rate as a function of time calculated
with the two methods (method 1 in red full line and method 2 in
red dot–dashed line) with the theoretical power law of equation
(3) (dashed black line) for the case of a single black hole of mass
Mh = 106 M�. Only method 1 fits the expected power law well.
Because of the polytropic shape of the star this is only true at late
times as shown by Lodato et al. (2009). The peak luminosity of
method 2 is significantly below the theoretical peak and the t−5/3

behaviour is never reached, even at late times. This confirms that
our method is well appropriate for a single black hole.

Obviously, since the gravitational potential in the case of a binary
black hole system is not Keplerian, we do not expect the debris to fall
back exactly at the rate predicted by our method. Still, our method
can be regarded as a way to measure the changes in the debris
specific energies due to the presence of the binary companion.
If the distribution is unperturbed (negligible modifications to the
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Figure 6. Accretion rate on to the primary as a function of time in the
case of a single black hole of mass Mh = 106 M�. The black dashed line
represents the theoretical power law of equation (3), the red full line is the
accretion rate calculated with method 1, and the red dot–dashed line with
method 2. We see that method 1 fits well the power law at late times, while
method 2 does not fit at any time the power law.

standard t−5/3 regime), the binary does not affect the disruption,
while significant changes to the t−5/3 decline indicate that debris that
are expected to fall back at a given time will be strongly influenced
by the binary potential.

In order to estimate the uncertainty in the fallback rate associated
with our choice, we plot in Fig. 7 the fallback rates estimated with
our method (black solid line) and using an accretion radius, taken
to be 0.8Rp (black dashed line). The two panels refer in particular

to the case with a mass ratio q = 0.1, a separation aBH = 0.5 mpc,
for an encounter in the orbital plane of the binary (θ = ω = � = 0◦,
left panel) and perpendicular to it (θ = ω = 90◦ and � = 0◦, right
panel). The major difference in the two calculations is that the initial
fallback rate is much smaller when using method 2, in line with our
findings for a single black hole. In this respect, we can therefore
state that at least initially our method represents more faithfully
the fallback of the debris. At late times, when the interaction with
the secondary becomes important and the fallback is interrupted,
we note that the two methods give comparable results, although the
exact details clearly change somewhat. In particular, the fact that,
for an encounter in the binary plane, the fallback undergoes a series
of quasi periodic interruptions while, for a perpendicular encounter,
there is a smoother reduction in the fallback rate is evident for
both methods. Fig. 7 also shows, with red lines, the results of a
convergence test, where the fallback rates with the two methods have
been evaluated based on a simulation with 10 times more particles
than our standard one, i.e. with 106 particles. Again, the solid lines
refer to the fallback computed based on the energy distribution of
the debris (method 1), while the dashed lines refer to that computed
based on the sink radius (method 2). It can be immediately seen
that method 1 is much more robust and less sensitive to resolution
than the accretion radius method in order to estimate the fallback
rate. Indeed, while with method 1 the fallback rate is only mildly
modified at high resolution, we can see that using the accretion
radius changes significantly the estimated rate already from the
initial phases, resulting in a suppression of the fallback rate as
resolution is increased. These results give us confidence of the
validity of the results presented in the sections above.

7 C O N C L U S I O N S

We have performed numerical simulations of the TDE of a star by
a SMBHB using Smooth Particle Hydrodynamic. The main results
of this work are as follows:

Figure 7. Comparison between the fallback rate computed by using our method based on the energy distribution of the debris (method 1, solid line) and by
using an accretion radius (taken to be 0.8Rp, dashed line). The two panels show the case with 105 particles, a mass ratio q = 0.1, a separation aBH = 0.5 mpc,
for an encounter in the orbital plane of the binary (θ = ω = � = 0◦, left panel) and perpendicular to it (θ = ω = 90◦ and � = 0◦, right panel). The red lines
refer to the same simulations, but at the higher resolution of 106 particles, and again the solid lines refer to method 1 and the dashed lines to method 2.
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(i) The fallback rate to pericentre of the debris undergoes inter-
ruptions of the typical power law Ṁ ∝ t−5/3. The time at which
the interruptions occur depends mainly on the distance between the
stream of the debris and the secondary.

If the TDE occurs in the plane, the initial azimuthal orientation
of the orbit can mainly change the time of the first interruption. On
the contrary in the case of a TDE perpendicular to the plane, the
initial azimuthal orientation of the orbit has no major influences
on the first interruption because the average distance between the
stream and the secondary is constant. This result confirms the one
of Ricarte et al. (2016).

(ii) As theoretically predicted by equation (8), for each black
hole mass and binary mass ratio, there is an interval out of which
the interruptions are not detectable. This interval lies approximately
between 0.5 and 2 mpc for M1 ∼ 106 M�.

(iii) The shape of the interruptions is different for different incli-
nations of the initial orbit of the star. Periodic sharp interruptions
of the fallback rate are only present if there are close or direct
encounters of the secondary with the stream of the debris. Other-
wise, if the stream is mainly perpendicular to the plain, the fallback
rate undergoes a first smooth interruption beginning approximately
at the theoretical truncation time. Thereafter, a smooth return to
the power law can eventually occur but is not necessarily present.
These results are different than for previous studies using N-body
simulations.

(iv) In the case q = 0.1 and aBH = 0.5 mpc, we determined the
critical inclinations θ cr ∼ 70◦ between these two behaviours.

We have not explored here the interesting case where the TDE is
around the less massive black hole (q > 1). In this case the accretion
on the secondary, which we did not take into account, could be in
the same order than for the primary and could take an important
part in the light curve.

We have also limited ourselves to parabolic stellar orbits with
penetration factors equal to 1. While we do expect the latter con-
dition to be most likely for binary black holes as it is for single
black holes, it is not obvious that a parabolic encounter is the most
likely outcome of the three-body interaction between the star and
the black hole binary. Coughlin et al. (2017) indeed find, based on
their three-body calculations, that the energy distribution of the in-
coming star is relatively broad, ranging from ≈− 2 to ≈2 in units
of GM/aBH, where M is the mass of the binary and aBH is the binary
separation. While we have not considered the case of non-parabolic
encounters in our simulations, we have nonetheless estimated the
range of separations for which we expect the binary to alter the fall-
back rate also in this case (equation 9). While for elliptical orbits
the range of interesting separations is reduced by a factor of a few
at most, very hyperbolic encounters can be substantially affected
for in principle much larger separations.

By looking at observed events, it would be very interesting to
check whether some TDE candidates already show the features de-
scribed in the present paper. The case discussed in Liu et al. (2014)
does not have a detailed enough sampling of the light curve to con-
clusively assess its nature as a TDE by binary black holes. A recent
very promising case is that of ASASSN-15lh (Leloudas et al. 2016).
While this object has been initially considered as a superluminous
supernova, Leloudas et al. (2016) make the case that it is instead a
TDE. However, the black hole mass inferred based on correlations
with the galaxy properties is ≈108 M�, which would then require
the black hole to be rapidly spinning in order to disrupt a solar
mass star (Kesden 2012). An alternative possibility is that the dis-
rupting black hole is the lower mass companion of a more massive

binary system. This interpretation has been proposed by Coughlin
& Armitage (2018), who also mention in support of this view the
fact that the UV light curve of ASASSN-15lh does show a sudden
dimming and rebrightening after ≈100 d (Leloudas et al. 2016).
Note that 100 d is actually the period of a SMBHB with total mass
equal to 108 M� and a separation of 1 mpc, at which we expect
the fallback to be significantly affected by the binary. Coughlin &
Armitage (2018) show some fallback rate from their large statistical
sample of simulated disruptions but do not attempt a direct com-
parison with the observed light curves. One of their fallback curves
shows a rebrightening after ≈100 d but the specific shape does not
match closely the observed one. A detailed comparison with our
fallback rates is not possible first because we do not treat the case of
disruptions by the secondary black hole, as mentioned above, and
secondarily because we consider lower mass primaries. However,
we note that the smooth dimming and rebrightening of ASASSN-
15lh is remarkably similar to the fallback curves that we obtain for
pole-on disruptions (see e.g. the middle-right and the lower-middle
panels of Fig. 4) as opposed to the sequence of abrupt interruptions
for in-plane disruptions. If ASASSN-15lh is indeed a disruption by
a binary black hole, we would argue that the stellar orbit must have
been significantly inclined with respect to the binary orbit. Another
interesting object is iPTF16fnl (Blagorodnova et al. 2017), whose
optical light curve appears to decline exponentially rather than as
t−5/3. The interpretation in this case is, however, much more am-
biguous. The signature feature of disruptions by binary black holes
is the dimming and then rebrightening of the light curve, which is
not observed for iPTF16fnl. Actually, Blagorodnova et al. (2017)
fit the luminosity evolution with a partial disruption by a single
black hole. To date, the best case in favour of TDEs by binary black
hole remains ASASSN-15lh, although a detailed modelling of this
source within this framework has not been carried out yet.
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