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We study the natural extension of spacetime across Schwarzschild’s central singularity and the
behavior of the geodesics crossing it. Locality implies that this extension is independent from the
future fate of black holes. We argue that this extension is the natural ~→ 0 limit of the effective
quantum geometry inside a black hole, and show that the central region contains causal diamonds
with area satisfying Bousso’s bound for an entropy that can be as large as Hawking’s radiation
entropy. This result sheds light on the possibility that Hawking radiation is purified by information
crossing the internal singularity.

I. NON-RIEMANNIAN EXTENSION

Einstein cautioned repeatedly against giving excessive
weight to the fact that the gravitational field determines
a (pseudo-) Riemannian geometry [1]. He regarded this
fact as a convenient mathematical feature and a tool
to connect the theory to the geometry of Newton’s and
Minkowski’s spaces [2], but the essential point about gµν
is not that it describes gravitation as a manifestation of
a Riemannian geometry; it is that it provides a relativis-
tic field theoretical description of gravitation [3]. Well
behaved solutions of the field equations might thus be
physically relevant even when they fail to define a geom-
etry which is –strictly speaking– a Riemannian manifold.

This consideration is relevant for understanding the in-
terior of black holes. There is no Riemannian manifold
extending the Schwarzschild metric beyond the central
singularity where the Schwarzschild radius vanishes: rs =
0. There is indeed abundant mathematical literature
about the inextensibility in this sense and the related
geodesic incompleteness of the Schwarzschild spacetime
(see [4–6] for instance). But there is a smooth solution of
the equations that continues across rs = 0. It defines a
metric geometry that is Riemannian almost everywhere,
with curvature invariants diverging on a low dimensional
surface. The metric geometry defined by this extension
continues the interior of the black hole across rs = 0 into
the geometry of the interior of a white hole.

This possibility was noticed by several authors over the
past decades. To the best of our knowledge it was first
reported by Synge in the fifties [7] and rediscovered by
Peeters, Schweigert and van Holten in the nineties [8]. A
similar observation has recently been made in the context
of cosmology in [9]. Here we study this extension and all
geodesics that cross rs = 0.

This geometry can be seen as the ~→ 0 limit of an ef-
fective metric determined by quantum gravity. On phys-
ical grounds we expect what happens near rs = 0 to be
affected by quantum effects, because curvature reaches
the Planck scale in this region.

∗Electronic address: fabio.dambrosio@gmx.ch
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Notice that quantum gravity is expected to render
what happens at distances smaller than the Planck length
physically irrelevant [10], therefore curvature singulari-
ties on low dimensional surfaces are likely to be physi-
cally meaningless anyway. The possibility of a quantum
transitions across rs = 0 has been indeed explored by
many authors, see for instance [11–13].

Quantum gravity is also expected to bound curva-
ture [13–28]. If we assume that the curvature of the ef-
fective metric is bound at the Planck scale, the central
singularity is crossed by a regular (pseudo-) Riemman-
nian metric without singular regions. Below we write an
explicit ansatz for such an effective metric.

The quantum bound on the curvature determines the
size l of its minimal surface (the “Planck Star”, where

the geometry bounces) to be of order l ∼ m
1
3 in Planck

units [29]. We show that the central region of a black
hole contains causal diamonds with equators having large
area. In the case of a black hole of initial mass m evap-
orating in a time ∼ m3, this area can be as large as

A ∼ 2π
√

2ml m3 � 16πm2. (1)

According to Bousso’s covariant bound [30], this region
of spacetime is sufficiently large to contain an entropy of
the same order as the entropy of Hawking radiation.

This result supports the idea that Hawking radiation
is purified by information that crosses the central singu-
larity when a black hole quantum tunnels into a white
hole [31].

II. THE A REGION INSIDE A BLACK HOLE

Figure 1 represents the standard Carter-Penrose con-
formal diagram of a star that collapses in classical Gen-
eral Relativity, disregarding any quantum effects.

We pick a generic point P inside the hole and we
are interested in its future, in particular what happens
past the upper line of the figure, which is the central
Schwarzschild rs = 0 singularity. It is important to no-
tice that this region is causally disconnected from the
region indicated as B in the conformal diagram, which is
the region relevant for the long term future of the black
hole. Region B is going to be substantially affected by
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FIG. 1: The conformal diagram of the spacetime of a collaps-
ing star predicted by classical GR. The star is light grey, the
horizon is dotted, the rs = 0 singularity is the upper thick
line.

Hawking evaporation, possible final disappearance of the
black hole, and the like. We are studying all this else-
where [31]. But nothing of this concerns what happens
in the future of P near the singularity, because this is
causally disconnected from B.

We call the local transition that we study here, unaf-
fected by the long term behavior of the hole, “region A”.

To study this region, let us write the metric explicitly.
The interior of a Schwarzschild black hole is spherically
symmetric and homogeneous in a third spacial direction,
which we coordinatize with a space-like coordinate x.
(Which is the Schwarzschild coordinate ts that becomes
space-like inside the horizon.) Therefore, it can be foli-
ated by space-like surfaces that have each the geometry
of a 3d cylinder. A sphere times the real line. By spher-
ical symmetry, and homogeneity along the x coordinate,
the gravitational field gµν(τ, x, θ, φ) can be written in the
form

ds2 = gττ (τ)dτ2 − gxx(τ)dx2 − gθθ(τ)dΩ2, (2)

where dΩ2 = dθ2 + sin2θ dφ2 is the metric of the unit
sphere. The coordinates θ ∈ [0, π] and φ ∈ [0, 2π[ are
standard coordinates on the sphere. The coordinate x ∈
]xmin, xmax[ runs along an arbitrary finite portion of the
cylinder’s axis, and τ is a temporal coordinate, whose
range we will explore in studying the dynamics. Inserting
this field in the Einstein equations we find the solution

gττ (τ) =
4τ4

2m− τ2 , gxx(τ) =
2m− τ2
τ2

, gθθ(τ) = τ4.

The value τ = 0 locates where the cylinder’s radius
shrinks to zero. The corresponding line element is

ds2 =
4τ4

2m− τ2 dτ2 − 2m− τ2
τ2

dx2 − τ4dΩ2. (3)

The region −
√

2m < τ < 0 is precisely the standard
interior of a black hole, namely region II of the Kruskal
extension of the Schwarzschild solution. This can be seen
by going to the usual Schwarzschild coordinates

ts = x and rs = τ2, (4)
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FIG. 2: Interior of black hole with (space-like) constant τ (or
constant Schwarzschild radius) surfaces.

which puts the metric in the usual Schwarzschild form

ds2 =

(
1− 2m

rs

)
dt2s −

(
1− 2m

rs

)−1
dr2s − r2sdΩ2. (5)

This line element, as is well known, solves the Einstein
equations also in the region rs < 2m where it describes
the black hole interior. As τ flows from −

√
2m to zero,

the Schwarzschild radius shrinks from the horizon to the
central singularity. The resulting geometry is depicted
in Figure 2, for the full range x ∈ ] − ∞,+∞[. The
divergence at τ = 0 is the central black hole singularity
at rs = 0.

But notice the following. Differential equations can
develop fake singularities because they are formulated
in inconvenient variables. For instance, a solution of the
equation yÿ−2ẏ2+y2 = 0, is y(t) = 1/sin t which diverges
at t = 0. However, by simply defining x = 1/y, the
differential equation turns into the familiar ẍ = −x whose
solution x = sin t is regular across t = 0.

The same can be done for the back hole interior. Let
us change variables from the three variables gττ , gxx, and
gθθ to the three variables a, b, and N defined by [32]

gττ = N2 a

b
, gxx =

b

a
, and gθθ = a2. (6)

This is a change of dynamical (configuration) variables,
not to be confused with a coordinate transformation,
namely with a change of the independent parameters
(τ, x, θ, φ). Inserting these new variables into the first
order action of General Relativity yields

S =
v

4G

∫
dτ

(
N − ȧḃ

N

)
, (7)

where v =
∫ xmax

xmin
dx and G is Newton’s constant. The

equations of motion of this action are

d

dτ

ȧ

N
= 0,

d

dτ

ḃ

N
= 0, and ȧḃ+N2 = 0. (8)

They are solved in particular by

a(τ) = τ2, b(τ) = 2m− τ2, N2(τ) = 4 a(τ). (9)

This gives precisely the solution (3), namely the black
hole interior. So far, we have only done a consistent
change of variables in a dynamical system.
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But now it is evident from equation (9) that the so-
lution can be continued past τ = 0 without any loss
of regularity. Expressed in terms of these variables, the
gravitational field evolves regularly past the central sin-
gularity of a black hole, to positive values of τ .

For positive values of τ the geometry determined by
this solution of the gravitational field equations is sim-
ply the time reversal of the black hole interior, namely
a white hole interior, joined to the black hole across the
singularity, as depicted in Figure 3.
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FIG. 3: The interior transition across the A region.

The geometry defined in this way is given by the line
element (3) where the coordinate τ covers the full range

−
√

2m < τ <
√

2m.
For positive and for negative τ this line element defines

a Ricci flat pseudo-Riemannian geometry. Not so for
τ = 0 where –for instance– the scalar K2 ∼ RµνρσRµνρσ
constructed by squaring the Riemann tensor, diverges as

K(τ) ∼ m

τ6
. (10)

Because of this divergence, this spacetime is not a Rie-
mannian manifold. However, it is still a metric manifold
and it can be approximated with arbitrary precision by
a genuine (pseudo-) Riemannian manifold.

More precisely, we can can view the metric (3) as a
“distributional Riemannian geometry”, in the following
sense. We say that a distributional Riemannian geome-
try ds on a manifold is the assignment of a length L[γ]
to any curve on the manifold, such that there is a one-
parameter family of Riemannian geometries dsl such that
liml→0

∫
γ

dsl = L[γ]. The metric (3) is a distributional

geometry in this sense.
In the Section IV we give an explicit example of a one

parameter family of Riemannian metrics dsl converging
to the metric (3) and we argue that dsl can have a direct
physical interpretation in quantum gravity. Before this,
in the next section we study the geodesics that cross the
singularity for the line element (3).

III. GEODESICS CROSSING rs = 0

We study the geodesics of the metric described above
using the relativistic Hamilton-Jacobi formalism. An ad-

vantage of this method is that it does not require us to
think in terms of evolution of the coordinates as func-
tions of an unphysical parameter; rather, it gives us di-
rectly the physical worldline in terms of coordinates as
functions of one another. It gives us directly a gauge
invariant expression for the geodesic.

The relativistic Hamilton-Jacobi approach requires us
to find a three-parameter family of solutions to the
Hamilton-Jacobi equation

gµν
∂S

∂xµ
∂S

∂xν
= ε, (11)

where S(xµ, Pa) is Hamilton’s principal function. The
three parameters Pa, a = 1, 2, 3, are integration constants
and ε = 1 for massive particles (time-like geodesics)
while ε = 0 for massless particles (null geodesics). The
geodesics are directly found by imposing

∂S(xµ, Pa)

∂Pa
−Qa = 0, (12)

where Qa are the other three integration constants.
Due to the spherical symmetry of the Schwarzschild

spacetime, angular momentum is conserved and the mo-
tions are planar. Without loss of generality we can choose
spherical coordinates such that the motions lie in the
equatorial plane θ = π

2 . This effectively reduces the prob-
lem to two dimensions. In the θ = π

2 plane, the metric
becomes

ds2 =
4τ4

2m− τ2 dτ2 − 2m− τ2
τ2

dx2 − τ4dφ2, (13)

and the Hamilton-Jacobi equation reads

2m− τ2
4

(
∂S

∂τ

)2

− τ6

2m− τ2
(
∂S

∂x

)2

−
(
∂S

∂φ

)2

= τ4ε.

Due to spherical symmetry we only need a two-parameter
family of solutions. This is easy to write:

S =Px+ Lφ− 2

∫ √
ετ4 + L2 +

P 2τ6

2m− τ2
dτ√

2m− τ2
.

It is parametrized by angular momentum L and the con-
served charge P conjugate to the cyclic variable x. Us-
ing (12) we have then the following expressions for the
geodesics

x(τ) = x0 +

∫
2Pτ6

(2m− τ2)
3
2

√
ετ4 + L2 + P 2τ6

2m−τ2

dτ,

φ(τ) = φ0 +

∫
2L

√
2m− τ2

√
ετ4 + L2 + P 2τ6

2m−τ2

dτ. (14)

These give the geodesic motions. Notice that the equa-
tions of motion are well defined in τ = 0 since the in-
tegrands are finite. In what follows we will first un-
cover the physical meaning of the conserved charge P
and then solve the integrals explicitly for time-like and
null geodesics under different assumptions on the con-
served charges P and L.
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A. The physical Meaning of S(xµ, Pa), P and L

Hamilton’s principal function for a particle on a fixed
background has a transparent physical meaning: It is
equal to the particle’s proper time along a given tra-
jectory. To see this in full generality, we consider the
particle’s Lagrangian

L (qµ, q̇µ) =
√
gµν(q)q̇µq̇ν (15)

in configuration space variables qµ, µ = 1, . . . n. Tra-
jectories qµ = qµ(λ) are assumed to be arbitrarily
parametrized by λ and the dot indicates a derivative with
respect to λ. As is well known, a Legendre transforma-
tion which trades the n velocities q̇µ for the n momenta
pµ leaves us with the vanishing Hamiltonian

H(qµ, pµ) = pµq̇
µ − L(qµ, pµ) = 0. (16)

A consequent canonical transformation then leads to the
Hamilton-Jacobi equation

H

(
qµ,

∂S

∂qµ

)
= 0, (17)

which is solved by S = S(qµ, Pa) with ∂S
∂qa = Pa = const.

for a = 1, . . . , k < n. The particle’s phase space is now
coordinatized by the n generalized coordinates qµ, the k
constants Pa and the n − k momenta ∂S

∂qi with k < i ≤
n. For simplicity we denote the momenta collectively as
pµ := (Pa,

∂S
∂qi ). It then follows that

dS(qµ, Pa) =
∂S

∂qµ
dqµ = pµdqµ = Padqa +

∂S

∂qi
dqi, (18)

which can be integrated along a geodesic with start and
end point qµ0 and qµ, respectively, to yield

S(qµ, Pa) =

∫ qµ

qµ0

pµdq̃µ = Pa (qa − qa0 ) +

∫ qi

qi0

∂S

∂q̃i
dq̃i.

(19)

This general expression is of the same form as the ex-
plicit solution found in the previous section. But no-
tice that since the vanishing Hamiltonian implies pµq̇

µ =
L(qµ, pµ), the one-form dS can equivalently be written
as

dS(qµ, Pa) = pµdqµ = pµq̇
µdλ = L(qµ, pµ)dλ. (20)

Integrating this one-form along the same geodesic as be-
fore yields

S(qµ, Pa) =

∫ qµ

qµ0

pµdq̃µ =

∫ λ

λ0

L(qµ, q̇µ)dλ̃

=

∫ λ

λ0

√
gµν(q)q̇µq̇νdλ̃. (21)

That is: Hamilton’s principal function is equal to the
particle’s proper time along a given geodesic.

This equivalence simplifies the interpretation of the
conserved charges P and L. On the right hand side of
(21) we have the standard action for a particle on a fixed
background gµν . This action is invariant under variations
of the Schwarzschild coordinates ts and φ in the r > 2m
region, which gives rise to two conserved charges. More
precisely, there are two Killing vector fields, V = ∂ts and
W = ∂φ, and the conserved charges can be written as

E = gtstsV
ts ṫs and L = gφφW

φφ̇. (22)

To call L angular momentum requires no further jus-
tification while E is found to coincide with the special
relativistic notion of energy when rs →∞.

As the conserved charges are given in a manifestly co-
ordinate independent form and we know of many gauges
which extend smoothly across the horizon we reach the
following conclusion. Particle trajectories in the outside
region are labelled by E and L and a particle crossing the
horizon from the outside continues on one of the inside
geodesics discussed in this article, which are labelled by
P and L. We can thus identify P with the energy E.

The sign of P determines whether the geodesic is mov-
ing towards decreasing or increasing x. If we join the
horizons τ = ±

√
2m to two complete Kruskal space-

times (see Figure 4), time-like geodesics incoming from
the lower region III and emerging in the upper region I
have positive P , and P can be identified with the conven-
tional energy E at rs →∞ in this region. E is negative
for the time-like geodesics moving in the opposite direc-
tion.

I

IIII

III

P
=

E
<

0

τ = 0 x = +∞x = −∞

P
=

E
>

0

τ
= √

2m
τ
=

√ 2m

τ
= − √

2m

τ
=

−
√ 2m

FIG. 4: Time-like geodesics with E > 0 originate from the
lower region III and extend into the upper region I. Geodesics
with E < 0 move from the lower right to the top left.

B. L = 0

We first consider the case of a null particle (a photon)
falling into the black hole with vanishing angular mo-
mentum: L = 0. The general motions (14) reduce to the
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simpler form

x(τ) = x0 ± 2

∫ |τ |3
2m− τ2 dτ

φ(τ) = φ0. (23)

The signs derive from the sign of P and correspond to
the null geodesics coming from the left or from the right
(see also Figure 4). The integral gives

x(τ) = x0 ∓ sτ

[
τ2 + 2m log

(
1− τ2

2m

)]
, (24)

with sτ := sign τ for notational convenience. This solu-
tion is regular for all τ ∈ ] −

√
2m,
√

2m [. These null
geodesics start at x = ∓∞ and end at x = ±∞, while
intersecting the surface τ = 0 at x = x0. See the blue
line in Figure 5.

x = x0

τ = 0
x = ∞x = −∞

τ
=

−
√ 2m

τ
=

√ 2m

FIG. 5: Illustration of null (blue line) and time-like (green
curve with E < 0) geodesics with L = 0. The geodesics start
in the black hole region (lower part of the diamond), cross the
singularity, and continue into the white hole region (top part
of the diamond).

The equations of motion for time-like geodesics with
zero angular momentum

x(τ) = x0+

∫
2 τ4E

(2m− τ2)
3
2

√
1 + τ2

2m−τ2E2
dτ

φ(τ) = φ0, (25)

can also be integrated explicitly yielding the solution

x(τ) =x0+

[
4m arctanh

Eτ√
2m+ (E2 − 1)τ2

+
2m (3− 2E2)E

(E2 − 1)
3
2

arnsinh

√
E2 − 1

2m
τ

− Eτ
√

(E2 − 1)(2m+ (E2 − 1)τ2)

(E2 − 1)
3
2

]
. (26)

As in the null case, the solution is well-defined in τ = 0.
What seems to be more worrisome is the parameter range
|E| ≤ 1: For |E| → 1 the solution (26) seems to be
divergent and for |E| < 1 some terms become complex.

However, we show in Appendix A that the imaginary
terms cancel rendering (26) real also in the parameter
range |E| < 1. Moreover, we show that the |E| → 1 limit
exists and is given by

x(τ) = x0±
[
4m arctanh

τ√
2m
− 2 τ3

3
√

2m
− 2
√

2mτ

]
.

(27)

We also prove in Appendix A that in the |E| → ∞ limit
the solution (26) converges to the null solution (24)

lim
|E|→∞

x(τ) = x0∓sτ
[
τ2 + 2m log

(
1− τ2

2m

)]
, (28)

which is exactly what one would expect intuitively.

C. E = 0

Under the assumption of vanishing E and arbitrary
L ∈ R\{0}, the equations of motion for null geodesics
read

x(τ) = x0

φ(τ) = φ0 ± 2

∫
dτ√

2m− τ2
, (29)

where now the sign is determined by the sign of L. The
above integral is elementary and yields

φ(τ) = φ0 ± 2 arctan
τ√

2m− τ2
. (30)

We see that this solution is as well regular in τ = 0.
Moreover, the limit |τ | →

√
2m exists and is found to be

lim
|τ |→

√
2m
φ(τ) = φ0 ± sτπ. (31)

This means that in the interval ] −
√

2m,
√

2m[ the an-
gular change is 2π.

Interestingly, the trivial solution x(τ) = x0 is not as
innocuous as it appears at first sight. A generic x(τ) = x0
curve is not a straight line at 45◦ in a Carter-Penrose
diagram. Rather, it looks like the red curve in Figure 5,
which describes a time-like E = L = 0 geodesic. The only
x(τ) = x0 lines which are null are obtained by sending
x0 → ±∞. We are therefore led to conclude that E = 0
null geodesics are confined to the horizons.

The E = 0 equations of motion for time-like geodesics
turn out to be not integrable in closed analytical form.
It is nevertheless possible to integrate them numerically
without running into any difficulties.

D. The general Case

For the general case with L 6= 0 and E 6= 0 it is not
possible to write down closed analytic solutions to the
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equations of motion (14). But it is still possible to solve
the equations numerically and to understand the behav-
ior of geodesics in a neighborhood of τ = 0 by Taylor
expanding the integrands of (14). This expansion results
in the approximate solutions

x(τ) =x0+
E√
2mL

[
τ6

m
+

3τ8

4m2
+

(15L2 − 16m2ε)τ10

32L2m3

]
+O

(
τ11
)

φ(τ) =φ0+
1√
2m

[
2τ +

τ3

6m
+
τ5

80

(
3

m3
− 16ε

L2

)
+

(
5L2 − 16m2(2E2 + ε)

)
τ7

448L2m3

]
+O

(
τ8
)
. (32)

We observe that both solutions are well-behaved as τ → 0
and that there is no problem in crossing the singular-
ity. Moreover, we observe that in both solutions the
terms containing an ε, the parameter distinguishing be-
tween time-like and null geodesics, is highly suppressed as
τ → 0. This implies that massive particles approach the
behavior of photons the closer they get to the singularity.
Notice also the contrast to special relativity: In special
relativity, an infinite amount of energy is required to ac-
celerate a massive particle to the speed of light. Hence,
only in the limit |E| → ∞ does a time-like geodesic ap-
proach the behavior of a null geodesic. In the case of
a time-like geodesic crossing the Schwarzschild singular-
ity, nothing of the sort is required: Energy is conserved
along every time-like geodesic and every E 6= 0 time-like
geodesic crosses the rs = 0 singularity while approach-
ing the behavior of a null geodesic as described by the
approximate solution (32).

For completeness’ sake we present a sample solution in
Figure 6 obtained by numerical integration.

-� -� -� � � �
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-���

-���

���

���
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FIG. 6: Integration of (14) for x(τ) and φ(τ), with m = 20,
L = −2, E = 7. Blue curve: Null solution. Green curve:
Time-like solution

IV. QUANTUM GRAVITY AROUND rs = 0.

The real world is quantum mechanical. The gravita-
tional field is a quantum field and undergoes quantum
fluctuations at small scales. In the real world, therefore,
the spacetime metric cannot be everywhere sharp. A
spacetime metric ds~ can still be defined in terms of the
effective gravitational field, namely the expectation value
of gµν on a quantum state.

In general, ds~ will deviate from the Einstein equa-
tion in the vicinity of the classical singularity, because
quantum effects are expected to become strong here, and
the classical equations of motion are expected to fail; the
deviations from an exact solution of the Einstein field
equations are parametrized by ~.

A simple ansatz for ds~ can be obtained replacing
a(τ) = τ2 in (9) by

a(τ) = τ2 + l, (33)

where l�m is a constant depending on ~ in a manner
that we shall fix soon. This defines the line element

ds2l =
4(τ2 + l)2

2m− τ2 dτ2− 2m− τ2
τ2 + l

dx2−(τ2+ l)2dΩ2. (34)

This line element defines a genuine pseudo-Riemannian
space, with no divergences and no singularities. The cur-
vature is bounded (see Figure 7). In fact, up to terms of
order O (l/m) we can easily compute

K2(τ) =
9 l2 + 96 lτ2 + 48 τ4

(l + τ2)8
m2, (35)

which has the finite maximum value

K2(0) =
9m2

l6
. (36)

In this geometry the cylindric tube does not reach zero
size but bounces at a small finite radius l. The Ricci
tensor vanishes up to terms of order O(l/m).

τ

Κ2K2

τ

K2

τ

FIG. 7: The bounded curvature scalar (35).

The essential point we emphasize in this article is that
the ~ → 0 limit of the effective quantum geometry ds~
is the geometry (3), depicted in Figure 3, and not just
its lower half, namely region II of the Kruskal exten-
sion. That is: not a spacetime that ends at a singularity,
but rather, a spacetime that crosses the singularity. The
physical relevance of the classical theory is to describe the
geometry at scales larger than the Planck scale, and the
proper description of the geometry (34) at scales much
larger than l is a classical spacetime that continues across
the central singularity, as described in the first part of this
article.
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We can estimate the value of the parameter l from the
requirement that the curvature is bound at the Planck
scale; we obtain (restoring physical units)

l ∼ lPl
(

m

mPl

) 1
3

, (37)

where lPl and mPl is the Planck length and Planck mass.
Notice that the bounce away from rs = 0 is not at the
Planck length, but at a larger scale, defining a “Planck
star” [29].

Consider the proper time of a worldline of constant
x going all the way from τ = −

√
2m to τ = +

√
2m,

crossing τ = 0. Its proper time is

T =

∫ √2m

−
√
2m

dτ

√
4(τ2 + l)2

2m− τ2 = 2π (m+ l) . (38)

In the limit in which l can be disregarded with respect
to m, a particle following this worldline goes from the
Schwarzschild horizon to τ = 0 in a proper time πm
as predicted by the standard theory, but then contin-
ues for another proper time lapse πm to the white hole
Schwarzschild horizon on the other side of τ = 0.

In the next section, we study an important aspect of
the geometry of the effective metric (34).

A. Causal Diamonds crossing rs = 0 and their
Entropy

The recent article [31] discusses a solution to the black
hole information paradox where quantum gravity effects
spark a transition of a black hole into a white hole. The
black hole horizon is then a trapped horizon but not an
event horizon and information that fell into the black
hole crosses the transition region and emerges from the
white hole. While the full geometry considered in [31] is
far more complicated than the geometry considered here,
the transition across the A region is the same.

A tentative estimate of the transition probability per
unit time for the black-to-white hole tunneling has been
computed from covariant loop quantum gravity in [33]

to be proportional to e−(m/mPl)
2

where m is the mass
of the hole at transition time. This makes the transition
probable at the end of Hawking evaporation when m →
mPl. The full evaporation time is ∼ m3

o, where mo is
the initial mass of the hole. During the evaporation, the
interior volume of the black hole grows, reaching a volume
of order ∼ m4

o [34–38]. The quantum transition gives rise
to a white hole with small horizon area and large interior
volume.

Remnants in the form of geometries with a small throat
and a long tail were called “cornucopions” in [39] by
Banks et.al. and studied in [40–43]. What was realized in
[31] is that objects of this kind are precisely predicted by
conventional classical General Relativity —white holes
with an horizon small enough to be stable— and are the

natural results of the quantum tunneling that ends the
life of the black hole. The large interior volume can en-
code a substantial amount of information, despite the
smallness of the horizon area. This information is slowly
released from the long-lived Planck-mass white hole, pu-
rifying the Hawking radiation emitted during the evapo-
ration.

For this scenario to be consistent, the transition re-
gion must be large enough to carry the relevant amount
of information. In [31], an estimate of that amount was
given in terms of the interior volume of a preferred fo-
liation. Here we give a stronger argument, that avoids
the non covariance of the choice of the foliation, and is
based on Bousso’s covariant entropy bound [30]. Bousso’s
conjecture states that the entropy S on a light-sheet
L orthogonal to any two-dimensional surface B satisfies
S(L) ≤ A(B)/4~, where A is the area of the surface B.
Here we show that in the crossing region there are closed
2d surfaces with large area satisfying the conditions of
Bousso’s entropy bound for a large enough entropy to
purify the Hawking radiation.

More precisely, we study the causal diamond defined
by two points at opposite sides of the minimal rs surface:
a spacetime point p = (−τp, xp, φp, π2 ) in the black hole

interior (i.e. 0 < τp <
√

2m) and a spacetime point
p′ = (τp, xp, φp,

π
2 ) in the white hole interior. As p′ lies

in p’s future, the future light cone of p intersects with
the past light cone of p′ and hence gives rise to a causal
spacetime diamond. In this case, the surface B is given
by the intersection of the future and past light cone of p
and p′ while L is the boundary of the causal diamond.

The future light cone I+ of p can be defined as the
union of all future null geodesics emerging from that
point. Geodesics are labelled by L and E and conser-
vation of angular momentum implies that we can al-
ways choose coordinates such that the motion lies in a
θ = const. plane. More precisely, there is always a ro-
tation we can perform to achieve this and therefore it
suffices to study in detail the θ = π

2 section of I+ to
reconstruct the whole light cone. We can formally write

I+(p)
∣∣
θ=π

2

=
⋃
L∈R

⋃
E∈R

(x(τ), φ(τ)), (39)

where the functions x(τ) and φ(τ) are explicitly given by

x(τ) = xp +

∫ τ

−τp

2E τ̃6

(2m− τ̃2)
3
2

√
L2 + E2τ̃6

2m−τ̃2

dτ̃

φ(τ) = φp +

∫ τ

−τp

2L
√

2m− τ̃2
√
L2 + E2τ̃6

2m−τ̃2

dτ̃ , (40)

where −τp ≤ τ <
√

2m ensures that the geodesics pass
through p and extend into its future. However, different
choices of L and E can correspond to the same geodesic
and hence there is a lot of redundancy in the above def-
inition of the light cone. To get rid of this redundancy
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we rewrite x(τ) and φ(τ) as

x(τ) = xp +

∫ τ

−τp

2λτ̃6

(2m− τ̃2)
3
2

√
1 + λ2τ̃6

2m−τ̃2

dτ̃

φ(τ) = φp +

∫ τ

−τp

2 signL
√

2m− τ̃2
√

1 + λ2τ̃6

2m−τ̃2

dτ̃ . (41)

These equations are obtained from (40) by pulling L
out of the square root and defining the new parameter
λ := E

|L| . The advantage is that now it is obvious that all

geodesics where E and L have a fixed ratio λ and where
L has the same sign describe the same geodesic. Also,
instead of having to build the union over the two contin-
uous parameters E and L to define the light cone we only
need to take the union over the continuous parameter λ
and the discrete values of signL.

I+(p)
∣∣
θ=π

2

=
⋃
λ∈R

signL=±1

⋃
λ=±∞
signL=0

(x(τ), φ(τ)). (42)

The past light cone I− of p′ is defined in an analo-
gous manner, the only difference being the replacement
of −τp with τp and the interchange of the integration
boundaries in (41). Due to the symmetrical set up,
the intersection surface B := I+(p) ∩ I−(p′) lies on
the τ = 0 hypersurface and the shape of its cross sec-
tion is determined by (41) by setting τ = 0 and per-
forming the integrals for all values of λ ∈ R. This
gives two parametric curves in the x-φ-plane, one for
signL = −1 and an other one for signL = +1. They
are joined together by the special points λ = ±∞ with
signL = 0. Incidentally, these two points simply corre-
spond to the solution discussed in subsection III B and
are explicitly given by (φp, xp±τp±2m log

(
1− τ2p/2m

)
).

There are two other special points we can easily locate
in the x-φ-plane: λ = 0 with signL = ±1 corresponds
to the solution discussed in subsection III C and we get
(φp ± 2 arctan(τp/(2m − τ2p )

1
2 ), xp). These four special

cases determine the ranges over which φ and x change
and as we wish to maximize the surface of intersection,
we should maximize these ranges. This is achieved by
assuming τp to be close to

√
2m, i.e. τp =

√
2m− ε. The

range of x is then given by [−2m log(
√
m√
2ε

), 2m log(
√
m√
2ε

)]

and the range of φ is to very good approximation [−π, π].
All the other points on the two curves can be deter-

mined by numerically evaluating the integrals (41) for a
large range of λ’s. Figure 8 illustrates the result of such
a numerical evaluation.

The intersection of geodesics lying in other θ = const.
planes with the τ = 0 hypersurface leads to the same
elongated sort of rectangle as depicted in Figure 8. The
intersection area can therefore be approximated using
the regularized metric (34) integrated over [xmin, xmax]×
[θmin, θmax] = [−2m log(

√
m√
2ε

), 2m log(
√
m√
2ε

)] × [0, π] for

both choices of signL = ±1 and neglecting the φ con-

FIG. 8: Numerical evaluation of the intersection of (41) with
the τ = 0 hypersurface for m = 200 and

√
2m− τp = 10−11.

tribution to the area (which essentially amounts to ne-
glecting the area of two spheres of radius l).

A(B) =

∫
B

√
g|B d2σ ≈ 2

∫ xmax

xmin

dx

∫ π

0

dθ
√
gxxgθθ

= 8πm
√

2ml log

(√
m√
2ε

)
. (43)

This area can be made bigger and bigger by taking τp
closer to the horizon, but it cannot be made arbitrarily
big. The reason is that we can only trust our computa-
tions as long as quantum gravity effects are negligible,
i.e. as long as we are in region A of Figure 1. The finite
extent ∆x = xmax − xmin of region A has been linked to
the lifetime τbh ∼ m3 ∼ ∆x of the black hole [31] and
yields a finite maximal area of

A(B) ∼ 2π
√

2ml m3 � 16πm2. (44)

This result is consistent with the argument given in [31].

V. CONCLUSION

Imagine our technology is so advanced that we can
build a spaceship surviving Planckian pressure and we
decide to enter the recently found 17 billion solar mass
supermassive black hole in the galaxy NGC 1277 [44].
We of course enter the horizon without any particular
bump and start descending. What happens next?

Current physical knowledge is insufficient to answer
this question. But the question is well posed in principle
and should have a correct answer. One possibility is that
the world ends at τ = 0. But there is another possibility,
which may sound more plausible. Things can traverse
the τ = 0 surface and find themselves in the metric of an
expanding white hole. The results of this paper makes
this possibility more plausible.

Whether or not this portion of spacetime is going to be
connected to the region outside the black hole depends
on the physics of the region B of Figure 1, which requires
a more specific use of quantum gravity. This is discussed
elsewhere [31].
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Appendix A: Various Limiting Cases

Here we show that the solution (26) is real in the
parameter range |E| < 1, despite the presence of com-
plex terms. Moreover, we show that the limits |E| → 1
and |E| → ∞ exist and are given by the equations (27)
and (28), respectively.
To verify that the imaginary part of (26) vanishes we
observe that the argument of the artanh function is real
and well defined for all values of the parameter E ∈ R
since τ is restricted to the interval I := ]−

√
2m,
√

2m [.
We therefore do not need to worry about it.
The last term in the bracket of (26) has, under the as-
sumptions |E| < 1 and τ ∈ I, a purely imaginary nom-
inator and a purely imaginary denominator. It is there-
fore, as a whole, a real term. The argument of the arsinh
function, on the other hand, is purely imaginary. Using
the identity

arsinh z = log
(
z +

√
1 + z2

)
∀z ∈ C (A1)

with

z = i τ

√
1− E2

2m
=: i y y ∈ R, (A2)

we deduce

arsinh z = log
(
i y +

√
1− y2

)
= iArg

(
i y +

√
1− y2

)
. (A3)

Since the Arg-function is real and the term in front of
the arsinh is purely imaginary, we find that the middle
term in the bracket of (26) is real, too. This shows that
the solution (26) is real in |E| < 1.

The simplest way to verify the validity of equa-
tion (27) is to start from (25) and set |E| = 1. This
results in the integral equation

x(τ) = x0 ±
√

2

m

∫
τ4

2m− τ2 dτ, (A4)

which indeed yields

x(τ) = x0 ±
[
4m artanh

τ√
2m
− 2τ3

3
√

2m
− 2
√

2mτ

]
.

(A5)

That this is the same as taking the |E| → 1 limit of
equation (26) follows from the fact that the integrand
of (25) converges uniformly to the integrand of (A4).
That is, define the functions

fn(τ) :=
2 τ4

(
1− 1

n

)
(2m− τ2)

3
2

√
1 + τ2

2m−τ2

(
1− 1

n

)2
f(τ) :=

√
2

m

τ4

2m− τ2 . (A6)

Then,

sup
τ∈I
|fn(τ)− f(τ)|

n→∞
−−−→ 0

⇐⇒ fn −→ f uniformly on I. (A7)

The |E| → 1 limit of solution (26) now follows suit:

lim
|E|→1

x(τ) = x0 ± lim
n→∞

∫
fn(τ) dτ

= x0 ±
∫
f(τ) dτ. (A8)

This is precisely the anticipated result. The |E| → ∞
limit of equation (26) can be obtained in a similar man-
ner. To this end, we define the functions

gn(τ) :=
2 τ4n

(2m− τ2)
3
2

√
1 + τ2

2m−τ2n2

g(τ) := 2
|τ |3

2m− τ2 . (A9)

We recognize the second function to be the integrand
of (23), i.e. the integrand of the null equation of motion
with L = 0. Moreover, one verifies easily that gn −→ g
uniformly on I. We can therefore again exchange limit
and integration from which we find for the solution (26)

lim
|E|→∞

x(τ) = x0 ± lim
n→∞

∫
gn(τ) dτ

= x0 ±
∫
g(τ) dτ, (A10)

which is precisely the result anticipated in (28). We
conclude that (26) is real valued and well-defined for
all parameter values E ∈ R\{−1, 1} and that the lim-
its |E| → 1 and |E| → ∞ exist and are given by the
equations (27) and (28), respectively.
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