
HAL Id: hal-01757992
https://hal.science/hal-01757992v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytic growth rate of gravitational instability in
self-gravitating planar polytropes

Jean-Baptiste Durrive, Mathieu Langer

To cite this version:
Jean-Baptiste Durrive, Mathieu Langer. Analytic growth rate of gravitational instability in self-
gravitating planar polytropes. Journal of Fluid Mechanics, 2019, 859, pp.362. �10.1017/jfm.2018.837�.
�hal-01757992�

https://hal.science/hal-01757992v1
https://hal.archives-ouvertes.fr


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Analytic growth rate of gravitational instability in
self-gravitating planar polytropes

Jean-Baptiste Durrive1† and Mathieu Langer2

1Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602, Japan
2Institut d’Astrophysique Spatiale, CNRS, UMR 8617, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121,
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Gravitational instability is a key process that may lead to fragmentation of gaseous structures
(sheets, filaments, haloes) in astrophysics and cosmology. We introduce here a method to derive
analytic expressions for the growth rate of gravitational instability in a plane stratified medium.
We consider a pressure-confined, static, self-gravitating fluid of arbitrary polytropic exponent,
with both free and rigid boundary conditions. The method we detail here can naturally be
generalised to analyse the stability of more complex systems. Our analytical results are in
excellent agreement with numerical resolutions.
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1. Introduction
Sheets and filaments of matter appear in many different astrophysical contexts. In the inter-

stellar medium of galaxies, the sheet-like and filamentary structure of giant molecular clouds has
been known for a long time. It results from the conspiring action of supernova explosions, thermal
instability, cloud-cloud collisions, turbulence, and magnetic fields (e.g. Schneider & Elmegreen
1979; Bally et al. 1987; Mizuno et al. 1995; Hartmann 2002; Myers 2009; Pudritz & Kevlahan
2013; André et al. 2014; André 2015; Federrath 2016; Kalberla et al. 2016). In the intergalactic
medium, numerical simulations demonstrate that matter gets gravitationally organised into a
cosmic web of voids delineated by cosmological walls and filaments (e.g. Klypin & Shandarin
1983; Klar & Mücket 2010). The nodes of the web, hosting galaxies and galaxy clusters, are
supplied with matter, baryonic and dark, flowing along the filaments that interconnect them. Part
of this accretion occurs intermittently (e.g. Kereš et al. 2009; Dekel et al. 2009a,b; Sánchez
Almeida et al. 2014), suggesting that denser clumps of matter might form not only within the
nodes of the cosmic web, but also in either voids, walls or filaments. It has been pointed out that
a fraction of the clumps may be of artificial origin due to numerical effects that are inherent to
classical Smooth Particle Hydrodynamics numerical codes (see Hobbs et al. 2013; Nelson et al.
2013, for a discussion), and less present in simulations based on moving mesh techniques (cf.
Springel 2010). However, the rest of the clumps most probably has a true physical origin (Hobbs
et al. 2016). Are the clumps in filaments and cosmic walls observed in cosmological numerical
simulations solely the product of the growth of primordial overdensities? Are these gas clumps
always subtended by collapsed dark matter haloes, or is it possible that baryon fragments form
and grow thanks to (sub-grid) gravitational instability? The fragmentation of self-gravitating
sheet-like and filamentary structures may in principle occur through many different instabilities.
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In the cosmological context, thermal, Rayleigh-Taylor, Kelvin-Helmholtz, etc., may play a rôle
in the denser environments of massive haloes (e.g. Kereš & Hernquist 2009). In the more dilute
environment of the filamentary cosmic web, gravity is the universal actor at play.

In order to answer these questions, we need to understand fully the gravitational fragmentation
of the baryonic fluid. A full analytic treatment of gravitational instability in inhomogeneous,
continuous media is still missing in the literature. Formally, the study of gravitational instability
boils down to an eigenvalue problem that is not easy to solve because the corresponding system
of equations is of fourth order, with complicated coefficients. Historically, the investigation of
gravitational instability was triggered by the work of Jeans (e.g. Jeans 1928). Other seminal
works include Ledoux (1951) and Simon (1965b) for sheet-like structures, and Chandrasekhar &
Fermi (1953) who explored the cylindrical case of isothermal magnetised filaments, essentially
in the context of the interstellar medium. These were then followed by many studies, exploring
further the rôle of the various ingredients relevant to describe astrophysical and cosmological
environments, notably the presence of an external pressure (e.g. Elmegreen & Elmegreen 1978;
Miyama et al. 1987a,b; Narita et al. 1988), uniform or differential rotation (e.g. Safronov
1960; Simon 1965a; Narita et al. 1988; Burkert & Hartmann 2004), flow (e.g. Lacey 1989),
the background expansion of the Universe and the dark matter component in the cosmological
context (e.g. Umemura 1993; Anninos et al. 1995; Hosokawa et al. 2000), the possible advent of
convective instability (e.g. Mamatsashvili & Rice 2010; Breysse et al. 2014), the local expansion
(or collapse) of the structure (e.g. Inutsuka & Miyama 1992; Iwasaki et al. 2011), etc. And
of course, a lot of focus has been put on magnetic fields, given their importance in interstellar
environments (e.g. Strittmatter 1966; Kellman 1972, 1973; Langer 1978; Nakano & Nakamura
1978; Tomisaka & Ikeuchi 1983; Nakano 1988; Hosseinirad et al. 2017). These studies were
performed in either planar or cylindrical geometries.

In this paper, we concentrate our attention exclusively on the rôle of gravity. We study
analytically the stability of a planar, pressure-confined, static, self-gravitating, polytropic fluid.
We focus on the planar geometry, leaving the cylindrical case for future work, because the
fragmentation of planar structures is the first key step in the full process of fragmentation
as suggested for instance by studies of linear and non-linear growth of perturbations (e.g.
in isothermal sheets in Miyama et al. (1987a,b)) which show that gas layers fragment into
numerous filaments which subsequently fragment into small blobs that ultimately constitute the
star-forming regions (see Larson 1985; Inutsuka & Miyama 1997). In addition, from a formal
point of view, cylindrical geometry adds a couple more difficulties that are all the better figured
out once the planar case is clear. Then, among the numerous physical ingredients that are relevant
to the astrophysical and cosmological contexts, we consider here a pressure-confined structure
with the two different types of boundary conditions commonly used in the literature for their
relevance and generality. Most critically, we keep the polytropic exponent γ arbitrary, while a
majority of authors so far focused on the special isothermal case γ = 1 because it has the property
of corresponding to a stratified equilibrium density with a simple analytic expression and with
a uniform speed of sound, which simplifies greatly the equations governing the dynamics. In
that sense, our results are already quite rich in terms of physics. Most importantly, it is very
natural and relatively straightforward to generalise the method we introduce here to include
the aforementioned additional physical ingredients. Increasing the complexity progressively will
help disentangle the rôle of each element in the dynamics, and we leave this effort for future
work.

In the papers mentioned above, a majority of authors solve the equations and obtain dis-
persion relations numerically. Others like Van Loo et al. (2014) or Dinnbier et al. (2017)
make use of numerical simulations. Analytic results were derived in special cases only, e.g.
in the incompressible case (e.g. Goldreich & Lynden-Bell 1965; Tassoul 1967) or the thin
sheet limit (e.g. Tomisaka & Ikeuchi 1985; Wünsch et al. 2010), or with restrictive scope
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like focusing on marginal stability (computing the critical wavenumber but not the maximum
growth rate and wavenumber, e.g. Oganesyan 1960; Goldreich & Lynden-Bell 1965), or working
under simplifying assumptions about the scale of perturbations (e.g. Lubow & Pringle 1993;
Clarke 1999). A number of authors examine this problem through variational approaches (e.g.
Chandrasekhar 1961; Lynden-Bell & Ostriker 1967; Raoult & Pellat 1978). They provide general
stability criteria but do not give explicit expressions for the eigenvalues. Recently, Demaerel &
Keppens (2016) derived an upper bound on the perturbed self-gravitational energy associated
with the Lagrangian displacement. Here, we are interested in deriving analytic expressions of
the growth rate as a function of the transverse wavenumber. As far as planar pressure-confined
self-gravitating polytropes are concerned, to the best of our knowledge, the most analytical
studies are the seminal work of Goldreich & Lynden-Bell (1965), and a recent contribution from
Kim et al. (2012) which both include considerations about rotation. In Goldreich & Lynden-
Bell (1965) the authors consider a generic polytropic exponent γ, but ultimately derive explicit
dispersion relations only in the incompressible case, and then for γ = 1 and γ = 2 they derive the
expressions of the critical wavenumber by solving the equations for the growth rate ω near zero.
Kim et al. (2012) however explicit analytic expressions approximating the numerical dispersion
relation for an arbitrary value of γ. They provide very good approximations with very simple
expressions, but their derivation is unfortunately not systematic, in the sense that their final result
relies on an assumption about the shape of the perturbation and on numerical fits that allow them
to essentially guess the approximate functional dependence of the fundamental frequency on the
transverse wavenumber. It seems therefore difficult to improve the accuracy of their results and
to generalise them in order to include more physics.

Here, we introduce a method that allows us to obtain explicitly the dispersion relation between
the fundamental frequency and the transverse wavenumber in terms of the physical properties
of the structure in principle up to arbitrary precision in a systematic way. For that purpose,
we reformulate and decompose the full fourth-order problem into a sequence of second-order
problems that can be solved separately. Interestingly, we show that the potentially unstable
fundamental frequency can be obtained from the stable higher order harmonics. Therefore, while
the aim is to compute the unstable part of the spectrum, we will also provide new expressions
for its stable part as a by-product. The paper is organised as follows. In section 2 we present
the equations governing the equilibrium state and the perturbations which, together with the
boundary conditions, bring us to formulate the eigenvalue problem. In section 3 we reformulate
these equations into a form that is more convenient for expressing the eigenvalue equation,
i.e. a scalar equation whose solutions are the eigenvalues. Then, in section 4, we compute the
fundamental eigenfrequency, corresponding to the growth rate of the gravitational instability.
For clarity, we decomposed this section into three steps, and we show in the main text only the
key intermediate results leading to formula (4.21), which is the main explicit result of this paper.
We provide the somewhat intricate details of the underlying derivations in appendices A and B
for steps I and II respectively. We conclude in section 5.

2. Governing equations
In this section, we first present the equations governing the equilibrium state, then the lin-

earised equations of motion satisfied by the perturbations, and finally the boundary and symmetry
conditions considered. This ultimately brings us, in section 2.4, to formulate the eigenvalue
problem at the heart of this stability analysis. For now we present these equations in the form
usually found in the literature, but in section 3 we reformulate them in a form that is more efficient
for our purpose.
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2.1. Equilibrium state

In figure 1 we sketch how the equilibrium density profile of a planar, pressure-confined, static,
self-gravitating, polytropic structure typically looks like. We use the x-direction as the direction
of stratification, while it is homogeneous with infinite extent in the y and z directions. Therefore
all equilibrium quantities, marked with a subscript 0, depend only on position x. The equilibrium
state is assumed to be static, because it is methodologically convenient to start with this case
before generalising to more realistic situations in future work, and because it is physically
relevant for systems with slow accretion, typically slower than the growth of perturbations. The
hydrostatic equilibrium reads

− ∇p0 + ρ0g0 = 0 (2.1)

where ρ0, p0 and g0 are respectively the equilibrium density, pressure and gravitational acceler-
ation. The system is self-gravitating, meaning that its potential well is shaped by its own density
only, which translates into the Poisson equation

∇ · g0 = −4πGρ0 (2.2)

where G is Newton’s constant. For our choice of closure relation, we proceed as follows. In
the most general case, pressure and density are related by an equation of state of the form p =

p(ρ, s) or p = p(ρ,T ) where s and T are respectively the specific entropy and the temperature.
However, for a non-magnetised fluid to be at rest in a gravitational field, it must necessarily be
barotropic, i.e. p = p(ρ). Indeed, taking the curl of the hydrostatic equilibrium (2.1), since the
curl of a gradient vanishes and g0 is the gradient of the gravitational potential, we end up with
∇ρ0 × ∇p0 = 0. This means that the density and pressure gradients are aligned everywhere, and
surfaces of constant density coincide with surfaces of constant pressure. Here we consider the
case of a polytropic equation of state,

p0 = κρ
γ
0 (2.3)

where γ is the polytropic exponent and κ is a constant. In this work we derive our results for an
arbitrary polytropic index, which makes them very general.

For a polytrope (2.3), the adiabatic speed of sound c2
a ≡

∂p0
∂ρ0

is given by

c2
a = κγρ

γ−1
0 . (2.4)

Also, the hydrostatic equilibrium (2.1) may be rewritten as

g0 = c2
a
ρ′0
ρ0
. (2.5)

Plugging this in (2.2) gives the equation satisfied by the equilibrium density ρ0 namely

(ργ−1
0 )′′ +

4πG
κ

γ − 1
γ

ρ0 = 0 (2.6)

which is known as the Lane-Emden equation. Strictly speaking, we consider here γ , 1, but in
fact all the results presented in this paper are valid for the isothermal case as well, by taking the
limit γ → 1. Doing the analysis taking γ = 1 from the beginning gives interesting analytical
results, that we will explicit as part of a separate paper. As detailed in Horedt (2004), the Lane-
Emden equation for planar polytropes has simple analytic solutions only for the special cases
γ = 2

3 , 1, 2 and∞. However, more can be said for instance on the extent of these structures: γ 6 1
polytropes extend a priori to infinity, while for γ > 1 the solution has negative ρ values, which
are unphysical. For the latter, it is therefore common to define the width of the structure by the
position xt at which the solution first vanishes. Multiplying (2.6) by (ργ−1

0 )′, integrating twice and
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Figure 1. Sketch illustrating the important quantities of (i) The equilibrium state: In black, the typical
density profile (normalised density ρ as a function of normalised position x̄) of a self-gravitating, planar
polytrope. It is confined by an external pressure pext represented by the green arrow. The boundary is
at the position x̄b at which the internal pressure equates pext. The dashed green line indicates how the
profile would look like if pext were equal to zero. The position x̄t is such that beyond it the solution to the
Lane-Emden equation becomes unphysically negative. (ii) The perturbed state: In this paper we describe
perturbations with the variables ρ and θ rather than x̄. These are indicated in blue. The blue arrow indicates
qualitatively how θ evolves as x̄ decreases and ρ increases. Keep in mind however that this figure is really
just an illustration: the behaviour indicated by the blue arrow is only qualitative, and it should not be read
geometrically as tan θ = ρ/x̄. See definitions (3.6) and (3.11) for their precise relation.

using ρ0(xt) = 0, one can show that it is given by

xt =

√
κ

8πG
ρ

γ
2−1
c B

(
γ − 1
γ

,
1
2

)
(2.7)

where B is the Beta function and ρc ≡ ρ0(x = 0) is the mid-plane value of the density. The above
length xt must be taken with an important caveat too: by definition at this position the density
vanishes, therefore the speed of sound also reaches zero, so that at this boundary any motion is
supersonic and we would expect shock waves (Goldreich & Lynden-Bell 1965). In addition, the
infinite extent of γ 6 1 polytropes is not realistic. We may go around these two complications
by improving the modeling a little, taking into account the existence of an external pressure pext,
which is relevant both in the astrophysical and cosmological contexts. For any γ, we truncate
the solution of the Lane-Emden equation (2.6) at the position xb such that the internal pressure
equates the external one, i.e.

p0(xb) = pext (2.8)

and this defines the boundary of the structure. We illustrate all this in figure 1.

2.2. Equations of motion

Perturbations, marked with a subscript 1, are described in terms of the Lagrangian displace-
ment vector ξ. In the case of a static equilibrium, the Eulerian velocity perturbation v1 is related
to ξ by

v1 = ∂tξ (2.9)

so that here the linearised momentum conservation reads

ρ0∂
2
t ξ = F(ξ) (2.10)
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with the so-called force operator (Bernstein et al. 1958; Keppens & Demaerel 2016)

F(ξ) = −∇p1 + ρ1g0 + ρ0g1 (2.11)

where ρ1, p1 and g1 are, respectively, the density, pressure and gravitational acceleration per-
turbations. In (2.11), the first term gives rise to sound waves due to the compressibility of
the fluid. The second corresponds to the fact that the local density perturbation is evolving
in an background potential well dictated by the equilibrium potential. Finally, the third term
corresponds to the fact that perturbations generate local potential wells which affect the entire
density profile ρ0 of the structure. This term is the source of Jeans’ gravitational instability, which
is the focus of our study here.

The linearised mass continuity equation expressed in terms of ξ is

ρ1 = −∇ · (ρ0ξ) (2.12)

and the perturbation of the gravitational acceleration g1 satisfies the linearised Poisson equation

∇ · g1 = −4πGρ1, (2.13)

keeping in mind that it is a curl-free vector field, namely

∇ × g1 = 0. (2.14)

It is only with that additional constraint that (2.13) is equivalent to the more usual form ∆φ1 =

4πGρ1, where φ1 is the perturbed gravitational potential, since g1 = −∇φ1.
In order to close this set of equations for the perturbations, we need an additional relation.

Let us consider the case in which the timescale of the perturbations, i.e. the oscillation period
if stable and growth time if unstable, is shorter than the timescale of the heat transfer between
neighbouring fluid elements. The evolution of perturbations may then be considered as adiabatic,
and it can be shown (e.g. Thompson 2006) that the equation expressing the absence of heat
δQ = 0 translates into the following relation between the Lagrangian variation of pressure δp
and of density δρ:

δp
p0

= γad
δρ

ρ0
, (2.15)

where, in general, γad is not equal to the polytropic exponent γ of the polytropic equation of state
of the equilibrium (e.g. Cox 1980; Toci & Galli 2015). Here however, we will take them equal
because the purpose of this work is to focus on the gravitational instability of the Jeans type.
This assumption switches-off buoyancy so that we get rid of convective instability, and as far as
the stable part of the spectrum is concerned, since the Brunt-Väisälä frequency is now vanishing,
the acoustic oscillations we will obtain are equivalent to the p-modes of stellar physics, without
complicating the description with g-modes. Finally, rewriting (2.15) using the Eulerian variables
ρ1 and p1 (related to the Lagrangian description by δρ = ρ1 + ξ · ∇ρ0 and δp = p1 + ξ · ∇p0)
yields our closure relation

p1 = c2
a ρ1. (2.16)

We look for solutions by separation of variables, i.e. we consider that all quantities Q (namely
ξx, ξy, ξz, g1x, g1y, g1z, ρ1 and p1) are of the form Q(x, y, z, t) = Q̂(x) Y(y) Z(z) T (t) since we
are considering a planar geometry. Naturally, the respectively space- and time-translational
invariance along the y, z and t dimensions yields exponential dependencies for Y , Z and T . Also,
given that we are considering a planar geometry with an infinite extent transverse to the stratified
x-direction, the y and z directions are equivalent, so that we can rotate the axes in the (y, z) plane
in order to remove any dynamics in the z-direction. Therefore, without loss of generality we take
kz = 0 and we have

Q(x, y, z, t) = Q̂(x)ei(kyy−ωt). (2.17)
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2.3. Boundary conditions and symmetry conditions

The main difficulty to study gravitational instability is that the differential equations satisfied
by the perturbations are of order four. This is due to the term g1 which, with (2.13), turns the
force operator (2.11) into an integro-differential operator. Dealing with fourth-order equations,
we need to impose four conditions. In this paper we consider boundary conditions (BC) and
symmetry conditions commonly used in the literature. We briefly summarise them here and adapt
them to our notations. If need be, one may consult for example Goldreich & Lynden-Bell (1965),
Elmegreen & Elmegreen (1978) or Kim et al. (2012) for more details.

Due to the reflection symmetry of the governing equations with respect to the x = 0 plane,
the general solution is a superposition of symmetrical and antisymmetrical modes, which may
be considered separately. It has been shown that antisymmetric modes are stable as far as
gravitational instability is concerned. Therefore we will focus on symmetric modes, for which{

ξ̂x(x = 0) = 0
ĝ1x(x = 0) = 0, (2.18)

where we recall that quantities with a hat are defined through (2.17). We will refer to (2.18) as
the ‘symmetry conditions’.

Another condition is obtained as follows. Apply the divergence theorem to the linearised
Poisson equation for an infinitesimally thin shell containing the boundary layer. Compute the
gravitational acceleration outside the slab by solving Laplace’s equation (since the external fluid
is assumed to remain unperturbed), using the fact that it should not diverge at infinity. This results
in the constraint

ĝ1x(xb) − iĝ1y(xb) = 4πGρbξ̂x(xb). (2.19)

Finally, we consider two complementary types of BCs. First, the rigid BC corresponds to
the case in which the surface at the boundary does not move, i.e. the Lagrangian displacement
vanishes

ξ̂x(xb) = 0 (Rigid BC). (2.20)

Second, on the contrary, we leave the boundary surface move freely, but require continuity of
pressure throughout the dynamics, i.e. that the Lagrangian variation of pressure δp = p1 +ξ ·∇p0
vanishes at the boundary. With the hydrostatic equilibrium (2.1), the fourth condition in this Free
BC case is thus

p̂1(xb) = −ρ0(xB)g0(xb)ξ̂x(xb) (Free BC). (2.21)

2.4. The eigenvalue problem

Our setting is constituted by the closed set of equations (2.10), (2.12), (2.13), (2.14), and
(2.16), together with the conditions (2.18), (2.19), (2.20) and (2.21). With the form (2.17) of the
perturbations, this set becomes

ρ̂1 = −(ρ0ξ̂x)′ − ρ0ikyξ̂y

−ρ0ω
2ξ̂x = −c2

aρ̂
′
1 +

(
ĝ0 − (c2

a)′
)
ρ̂1 + ρ0ĝ1x

−ρ0ω
2ξ̂y = −ikyc2

aρ̂1 + ρ0ĝ1y

ĝ′1x + ikyĝ1y = −4πGρ̂1

ĝ1x =

(
ĝ1y

iky

)′ (2.22)

where here a prime denotes differentiation with respect to x, ′ = d
dx . From top to bottom these

are respectively: mass continuity, the x and y components of momentum conservation, Poisson
equation and the curl-free condition. Together with the boundary and symmetry conditions, this



8 J.-B. Durrive and M. Langer

constitutes an eigenvalue problem on ω2. The ultimate goal of this work is to compute the
negative eigenvalues since they give the growth rate of the gravitational instability.

3. Reformulating the governing equations
In this section, we first rewrite the governing system of equations (2.22) in a far more conve-

nient form, namely (3.13) below. Then we introduce a notation that will be very handy for the
calculations, namely matrix H in (3.15). Finally, from the boundary conditions we derive a scalar
equation, namely (3.28), whose solutions are the eigenvalues.

3.1. Reformulated equations of motion

First of all, let us work with dimensionless variables. From the homogeneous case (e.g.
Thompson 2006), it is well known that a key length scale in gravitational instability is given
by the critical Jeans wavenumber

kJ(x) ≡

√
4πGρ0(x)

c2
a(x)

(3.1)

which marks the balance between pressure and gravity. In this definition kJ is position dependent
since the equilibrium density profile ρ0 is not assumed homogeneous here. We use the central
value (subscripts c) of this quantity, noted as

kJc ≡ kJ(x = 0) =

√
4πG
κγ

ρ
2−γ
c (3.2)

where we used definition (2.4) of c2
a in the last equality, together with the central value of the

density ρc ≡ ρ0(x = 0), to define the following dimensionless parameters

 x̄ ≡ kJcx ρ ≡ ρ0
ρc

ω̄2 ≡ ω2

4πGρc
k̄y ≡

ky

kJc

ψ ≡ ρkJcξ̂x R ≡ ργ−2 ρ̂1
ρc
Gx ≡

kJc
4πGρc

ĝ1x Gy ≡
kJc

4πGρc
ik̄yĝ1y

. (3.3)

All these definitions are straightforward, except that of the variable R (this letter referring to
‘rho’, from ρ1). We choose to work with R ≡ ρ

γ−2
0 ρ̂1/ρ

γ−1
c rather than with the more natural

ρ̂1/ρc, because we notice that, using the definition (2.4) of c2
a and the hydrostatic equilibrium

(2.5) we have the relation

c2
aρ̂
′
1 +

(
−ĝ0 + (c2

a)′
)
ρ̂1 = κγρ0

(
ρ
γ−2
0 ρ̂1

)′
, (3.4)

which turns the second equation in (2.22) into a more compact form, such that we may rewrite
the whole system of equations into a matrix form that is by blocks. Indeed, with variables (3.3),
the system (2.22) reads

d
dx̄


ψ
Gx

R

Gy

 =


0 0

k̄2
y

ω̄2 ρ(x̄) − ρ(x̄)2−γ ρ(x̄)
ω̄2

0 0 −ρ(x̄)2−γ −1
ω̄2

ρ(x̄) 1 0 0
0 −k̄2

y 0 0



ψ
Gx

R

Gy

 (3.5)

where we plugged the third equation of (2.22) into its first equation. This is already better than the
initial formulation, but it is still very complicated, because we do not know what the coefficients
in this matrix equation look like explicitly. Indeed, to do so we would need to solve for ρ(x̄),
i.e. integrate the Lane-Emden equation (2.6), but as stated in section 2.1, this has simple analytic
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solutions only for the special cases γ = 2
3 , 1, 2 and ∞. And even in these cases in which the

equilibrium state is simple, the equation above, governing the evolution of the perturbations,
is not simple. For example with γ = 2 we have ρ(x̄) = cos(x̄), and γ = 1 we have ρ(x̄) =

cosh(x̄/
√

2)−2, so that the differential equation (3.5) is deceivingly complicated, especially for
arbitrary γ.

To improve this, let us do the change of variables (illustrated in figure 1)

ρ =
ρ0(x̄)
ρc

, (3.6)

which is possible because the equilibrium density profile ρ0 is monotonic so the change x̄ ↔ ρ
is bijective. Interestingly, this change of variables is implicit since we do not need to know
the functional form of ρ0(x̄). Indeed, using the chain rule, ρ′ is simple to compute: With the
dimensionless variables (3.3), the Lane-Emden relation (2.6) becomes

(ργ−1)′′ + (γ − 1)ρ = 0, (3.7)

and multiplying by (ργ−1)′, it can be rewritten as

d
dx̄

[
1
2

((
ργ−1

)′)2
+

(γ − 1)2

γ
ργ

]
= 0. (3.8)

We integrate this, determining the constant of integration by considering profiles that are flat at
the centre, i.e. ρ′(x̄ = 0) = 0, which is a natural choice. Then we get

dρ
dx̄

= −

√
2
γ
ρ2−γ

√
1 − ργ (3.9)

where we took the solution with negative sign because the profile is decreasing with x̄. Equation
(3.5) can thus be rewritten as

d
dρ


ψ
Gx

R

Gy

 = −

√
γ

2
ργ−2√
1 − ργ


0 0

k̄2
y

ω̄2 ρ − ρ
2−γ ρ

ω̄2

0 0 −ρ2−γ −1
ω̄2

ρ
1 0 0

0 −k̄2
y 0 0



ψ
Gx

R

Gy

 . (3.10)

Comparing (3.5) and (3.10) the modification may not look spectacular, but it is in fact a huge
progress: Equation (3.5) is very complicated because it has complicated coefficients that are not
even explicit (in its variable x̄), while (3.10) contains simple coefficients that are explicit (in its
variable ρ).

Finally, the occurrence of the square root
√

1 − ργ in (3.10) calls for another change of
variables (illustrated in figure 1), namely

sin θ = ργ/2, (3.11)

which makes sense since ρ ∈ [0, 1] by definition, and as we shall see below, this will indeed
facilitate greatly our calculations. Note that, in order to lighten expressions, we will often use the
shorthand notations {

s ≡ sin θ
c ≡ cos θ . (3.12)
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Therefore, in this paper we will work with the following form of system (2.22)

d
dθ


ψ
Gx

R

Gy

 = −

√
2
γ


0 0

k̄2
y

ω̄2 s − s
2
γ−1 s

ω̄2

0 0 −s
2
γ−1

−s1− 2
γ

ω̄2s1− 4
γ s1− 2

γ 0 0
0 −k̄2

y s1− 2
γ 0 0



ψ
Gx

R

Gy

 . (3.13)

Let us now define the matrix H such that(
R(θ)
Gy(θ)

)
= H(θ)

(
R( π2 )
Gy( π2 )

)
(3.14)

i.e. H describes the variation with position θ of (R,Gy) with respect to their value at the centre
(θ = π/2). We will use subscripts a = 1, 2, 3 and 4 to denote its coefficients, namely

H =

(
h1 h2
h3 h4

)
where ha ≡ ha(θ; ω̄2, k̄2

y ). (3.15)

The matrix H characterizes completely the eigenfunctions since, by the definition (3.14), H(θ)
gives the value of R and Gy at a given θ, and the two other eigenfunctions can be deduced, either
in integral form by integrating the first two rows of (3.13), namely(

ψ
Gx

)
= −

√
2
γ

∫ θ

π
2

dθ1

 k̄2
y

ω̄2 s − s
2
γ−1 s

ω̄2

−s
2
γ−1

−s1− 2
γ

 H(θ1)
(
R( π2 )
Gy( π2 )

)
(3.16)

(where we have used the symmetry conditions (3.19) below) or expressed with a derivative by
inverting the last two rows of (3.13), namely(

ψ
Gx

)
=

√
γ

2
s

4
γ−1

ω̄2k̄2
y

(
−k̄2

y −1
0 ω̄2s−

2
γ

)
H ′(θ)

(
R( π2 )
Gy( π2 )

)
. (3.17)

3.2. Reformulated boundary conditions and symmetry conditions

Let us start with two preliminary remarks. First, from now on, subscripts b will indicate values
taken at the boundary, notably x̄b, ρb and θb. Secondly, note that an interesting feature of the
change of variable (3.6) is that thanks to it, in this work we will derive the eigenvalues without
integrating the Lane-Emden equation (which is possible only in a few cases), i.e. without having
to obtain the equilibrium density as a function of position ρ0(x). What matters is not where the
BC is imposed (position x̄b), but the density ρb at the position where it is imposed. This is why
in the end, the explicit formulæ (4.21) are expressed in terms of ρb. Hence, given the importance
of ρb, let us see explicitly how it is related to the external pressure applied on the structure. With
the equation of state (2.3) and from the definition (2.8) of xb we have

ρb =

(
pext

pc

)1/γ

(3.18)

where pc ≡ p0(x = 0) = κρ
γ
c is the central value of the equilibrium pressure.

We now update our formulation of section 2.3 using the new variables (3.3). As far as
symmetry conditions are concerned, it is clear that (2.18) becomes ψ

(
π
2

)
= 0

Gx

(
π
2

)
= 0.

(3.19)

Then, the BC (2.19) reads
ψ(θb) − Gx(θb) + k̄−1

y Gy(θb) = 0. (3.20)
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We also combine (2.20) and (2.21) into a single expression,

ψ(θb) + ∆BC R(θb) = 0 (3.21)

where

∆BC ≡ δBC
4πGρc

kJc

ρb

g0(x̄b)
(3.22)

and we defined the following parameter

δBC ≡

{
1 for Free BC
0 for Rigid BC (3.23)

which enables us to switch between the two types of BCs and spares us the pain of writing
separate equations. With the definition of the sound speed (2.4) and the hydrostatic equilibrium
(2.5) we may rewrite ∆BC using the ρ and θ variables, as

∆BC = −δBC

√
γ

2
ρb√

1 − ργb

= −δBC

√
γ

2
(sin θb)2/γ

cos θb
. (3.24)

3.3. Eigenvalue equation

From the BC above, let us derive a single scalar equation which constrains the eigenvalue
parameter ω̄2. We rewrite the boundary conditions (3.20) and (3.21) in matrix form as(

1 −1
1 0

) (
ψ(θb)
Gx(θb)

)
+

(
0 1/k̄y

∆BC 0

) (
R(θb)
Gy(θb)

)
=

(
0
0

)
, (3.25)

and using (3.14) and (3.17), we rewrite this with the coefficients of matrix H and their derivatives,
namely (

q1(θb) q2(θb)
q3(θb) q4(θb)

)  R
(
π
2

)
Gy

(
π
2

)  =

(
0
0

)
(3.26)

where (all quantities below are evaluated at θ = θb)

q1 = k̄2
y h′1 + [1 + s−

2
γ ω̄2] h′3 −

√
2
γ

s1− 4
γ ω̄2k̄y h3

q2 = k̄2
y h′2 + [1 + s−

2
γ ω̄2] h′4 −

√
2
γ

s1− 4
γ ω̄2k̄y h4

q3 = k̄2
y h′1 + h′3 −

√
2
γ

s1− 4
γ ω̄2∆BCk̄2

y h1

q4 = k̄2
y h′2 + h′4 −

√
2
γ

s1− 4
γ ω̄2∆BCk̄2

y h2

. (3.27)

The matrix in (3.26) must be non invertible for non trivial solutions to exist: its determinant must
vanish,

q1q4 − q3q2 = 0. (3.28)
This relation is the starting point of our analysis. It is an equation on ω̄2, and its solutions are
the eigenvalues that we are looking for. For a given k̄y these solutions constitute the discrete
spectrum we are looking for, and we will refer to it as the ‘eigenvalue equation’. In the remainder
of this paper, we detail how we solve equation (3.28) and obtain the growth rate of gravitational
instability.

4. Growth rate
We now present the method we introduce to find the eigenvalues ω̄2. To the best of our

knowledge, it has not been introduced in the literature yet.
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Relation (3.28) is the equation on ω̄2 that we want to solve. In that form however, part of its
dependence on ω̄2 is implicit. Thus, let us first state it explicitly. As we see from their definitions
(3.27), the qa’s are linear combinations of the ha’s and their derivatives. The ha’s are unknown at
this stage, but we know that they are parameterised by ω̄2 and k̄2

y , i.e. ha = ha(θ; ω̄2, k̄2
y ), as stated

in (3.15). Let us expand the ha’s in powers of ω̄2, using the notation

ha =

∞∑
i=0

hi
a (ω̄2)i where hi

a ≡ hi
a(θ; k̄2

y ). (4.1)

Doing so, the qa’s are in the form

qa =

∞∑
i=0

qi
a (ω̄2)i, (4.2)

where it is straightforward to obtain the coefficients qi
a from (3.27) by gathering terms in powers

of ω̄2. Relation (3.28) then becomes

∞∑
k=0

ak (ω̄2)k = 0 (4.3)

where, using the Cauchy formula for the product of two infinite series,

ak =

k∑
`=0

(q`1qk−`
4 − q`3qk−`

2 ). (4.4)

Thus we wrote relation (3.28) as a power series in ω̄2. The point is that the zeros of this power
series are the eigenvalues we are looking for. They constitute a discrete set of values, the discrete
spectrum of the eigenvalue problem (2.22). In a way, by analogy with Quantum Mechanics,
equation (3.28) [or equivalently (4.3)] could be called a ‘quantization relation’. The power series
is a priori of infinite degree, which means that there may be an infinite number of eigenvalues†.
Let us denote these zeros by ω̄2

n, with n > 0. As many previous studies have already shown,
there is a lowest eigenfrequency ω̄2

0, called the fundamental, which becomes negative for some
values of k̄y, and which gives rise to the gravitational instability. However, previous authors did
not provide ways to derive general analytic expressions for the fundamental ω̄2

0 as a function of
k̄y, which is our aim here.

Now, at first sight relation (4.3) may not look very encouraging, because finding the roots of a
polynomial of order greater than 3 is extremely difficult, if not impossible. However, we can go
around this difficulty as follows. Consider a polynomial in ω̄2 of finite order N, with coefficients
an and roots ω̄2

n. We have
N∑

n=0

an(ω̄2)n = aN

N−1∏
n=0

(ω̄2 − ω̄2
n), (4.5)

so that, identifying the (ω̄2)0 and (ω̄2)1 terms from both sides, we get respectively

a0 = (−1)NaN

N−1∏
n=0

ω̄2
n (4.6)

† We expect this since, as it is well known, already in the Cowling approximation (see below) we end
up with a Sturm-Liouville problem (e.g. Cowling 1941), in which case the existence of an infinite number
of well ordered eigenfrequencies can be shown rigorously.
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and

a1 = (−1)N−1aN

N−1∑
k=0

N−1∏
n=0
n,k

ω̄2
n. (4.7)

These are simply the two first ‘root-coefficient relations’, also known as Vieta’s formulae. Divid-
ing (4.7) by (4.6) and taking the limit N → ∞, we can express the fundamental eigenfrequency
in terms of the higher order modes, namely

ω̄2
0 = −

a1

a0
+

∞∑
n=1

1
ω̄2

n

−1

. (4.8)

This is the key formula in our derivation. It is interesting per se, since it is a link between the
fundamental mode ω̄2

0, which is unstable (in some ranges of k̄y), and the higher order modes
ω̄2

n>1, which are stable (acoustic oscillations). Therefore, interestingly, in this paper we are going
to compute with formula (4.8) the unstable part of the spectrum using its stable part, the latter
being by far much easier to compute. In addition, by doing so, we will manage to decompose
the initial full fourth-order problem into a sequence of second-order problems that can be solved
separately. More precisely, we are going to compute the right hand side of formula (4.8) in the
three following steps.

Step I : Computing
∑∞

n=1 1/ω̄2
n

Let us first focus on the series appearing in formula (4.8). An outline is given here, and details
are provided in Appendix A. Interestingly, at first sight relation (4.8) does not look like a strategic
path to take at all. Indeed, it seems that in order to solve one fourth order problem (computing
ω̄2

0), we will have to solve an infinite number of fourth order problems (computing the ω̄2
n>1’s) and

in addition we will need to compute a series, which could in principle be extremely difficult too.
However, the key point is to notice that in fact, computing the ω̄2

n>1’s constitutes a much easier
problem than the initial one because, as in stellar oscillation theory, we may compute these high
order modes† with extremely high accuracy in the so-called Cowling approximation (Cowling
1941). It consists in neglecting the perturbation of the gravitational field g1 in the linearised
momentum conservation (2.10), in which case the problem becomes only second order, instead
of fourth. As a reminder of this, we will use the notation

C ≡
∞∑

n=1

1
ω̄2

n
(4.9)

where the letter C stands for ‘Cowling’.
Though by far much simpler than in the full case, the equations in the Cowling approximation

remain difficult to solve exactly. The second key point now is that we know that the ω̄2
n>1’s are

large, with even ω̄2
n → ∞ as n → ∞, so that when we want to solve our eigenvalue problem

looking for the high order modes, we know that the parameter ω̄ will be large. Therefore, we
may use the Wentzel - Kramers - Brillouin (WKB) method treating 1/ω̄ as a small parameter.

With the above two ideas (Cowling & WKB) we derive in Appendix A very precise formulas
for the eigenfunctions R and ψ (the only relevant ones in the Cowling approximation) of equation
(3.5), and the eigenvalues ω̄2

n>1’s. In the top and middle panels of figure 2, we show an example
of a plot of R and ψ using these analytic expressions, compared to the numerical resolution. For
a very wide range of the parameters (γ, ρb, n, k̄y) our WKB resolution gives excellent results. In
the bottom panel, we show the spectrum ω̄2

n>1 that we obtain with formula (A 26) and compare
it to the spectrum solved numerically using a shooting method. As we can see again, both agree

† We borrow here the terminology from Asteroseismology.
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extremely well. Let us stress that in the latter plot, the numerical solution corresponds to the
full resolution of the initial eigenvalue problem (2.22), without the Cowling approximation.
Therefore, this panel shows that it is not only the WKB resolution itself that works very well (as
illustrated in the top and middle panels of figure 2 for the eigenfunctions) but also the Cowling
approximation, since the eigenvalues (A 26) were obtained by combining both.

Then finally, in Appendix A, we compute the series (4.9) with the pleasant satisfaction of being
able to express it in a simple closed form,

C =
1

2Ab2
BC

[
πbBC tanh (πbBC)2δBC−1 + δBC − 1

]
(4.10)

where 

bBC =

√
B k̄2

y + C + DBC

A

A =
γπ2

2I− 1
γ
(θb)

B = I
2− 3

γ

(θb)

C =
(γ − 3)

8γ

[
(5 − γ) I 1

γ

(θb) + (3γ − 5) I 1
γ
−2

(θb)
]

DBC = −2 sin(θb)
1
γ−1 cos(θb)

(
1 + (δBC − 1)

1 + γ

4

)
,

(4.11)

the subscripts ‘BC’ denoting quantities that depend on the type of BCs (δBC = 1 for Free BC, 0
for Rigid BC), and we use the notation

Ip(θ) ≡
∫ θ

π
2

(sin θ)p dθ = 2p
[
B 1−cos θ

2

(
p+1

2 , p+1
2

)
− B 1

2

(
p+1

2 , p+1
2

)]
, (4.12)

where the second equality comes from the definition of the incomplete Beta function.

Step II : Computing a1/a0

Let us now focus on the other term, a1/a0, contributing to ω̄2
0 in formula (4.8), details being

provided in Appendix B. First of all, it is interesting to note that thanks to (4.8), we need to
compute only two of the coefficients ak of the power series (4.3). What is more, these first two
are also the simplest. Then, from definition (4.4), it turns out that the only things needed are the
functions h0

a and h1
a of expansion (4.1). That is, out of an a priori infinite number of functions,

we need only eight (since a = 1, 2, 3 and 4). Now, as detailed in Appendix B, in order to obtain
h0

a and h1
a, we first derive the differential equations they satisfy from the equation of motion

(3.13). Then, recalling that for gravitational instability only large scale perturbations are relevant
(i.e. small k̄y, otherwise pressure balances gravity), we look for the solutions by expanding h0

a
and h1

a in powers of k̄y (cf. definition (4.13) below). The practical advantage of this expansion
is that, while h0

a and h1
a satisfy fourth order equations, the problem is actually reduced to a(n

infinite) sequence of second order problems that are fully-solvable, namely equation (B 23) in
the Appendix. Therefore, we compute h0

a and h1
a exactly, but order by order in k̄y. For this reason,

in the end we obtain a0, a1, and consequently ω̄2
0, as power series in k̄y. We show the general

procedure in Appendix B, but let us give here only the intermediary expressions necessary to
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Figure 2. In Appendix A we compute the stable part of the spectrum (i.e. harmonics n > 1). Here we
compare our analytic expressions (red lines) with the numerical resolution (black dots) for the eigenfunction
R(θ) in the top panel, ψ(θ) at the centre, and for the eigenvalues ω̄2

n given by (A 26) at the bottom (shown
are n = 1, 2, 3 and 4). In the top and middle panels, the x-axis ranges from θb (the boundary) to π/2 (centre
of the slab). In this example we chose the Rigid BC (hence the fact that the curve for ψ(θ) reaches zero
on the left and right of its plot), with values γ = 1.3, ρb = 0.2, n = 10 and k̄y = 2.5. Normalization has
been chosen such that R(θb) = 1. Gray dashed lines indicate the envelopes, such as the one appearing in
front of the cosine in expression (A 17). Note that the numerical resolution for the eigenfunctions here is
done in the Cowling approximation, to show that the WKB resolution gives very satisfying results (such
an agreement between the analytic and numerical solutions happens for a very wide range of parameters).
However, in the bottom panel, the analytic result is compared to the full numerical result, i.e. not in the
Cowling approximation. Therefore, the bottom plot shows that the approximate spectrum (A 26) fits the full
numerical result very well, which validates our procedure of combining the Cowling approximation with
the WKB method, and makes expression (4.10) for C very efficient.
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derive ω̄2
0 up to the second order in k̄y. Denoting the expansions in k̄y by

hi
a =

∞∑
j=0

hi
a, j

(
k̄2

y

) j
, a0 =

∞∑
m=0

a0,m(k̄y)m and a1 =

∞∑
m=0

a1,m(k̄y)m, (4.13)

we obtain that the useful hi
a, j’s are given by

h0
1,0(θ) =

[
Q

1− 1
γ

1
γ

(0)
]−1

yQ(θ)

h1
1,0(θ) = 2

γ
Γ

(
2
γ

) [
Q

1− 1
γ

1
γ

(0)
]−1 [

yQ(θ)
∫ θ
π
2

(
c
s y′Q + yQ

)
yP
s dθ1 − yP(θ)

∫ θ
π
2

(
c
s y′Q + yQ

) yQ

s dθ1

]
(4.14)

where Γ is the Gamma function and we defined
yP(θ) ≡ (sin θ)1− 1

γ P
1− 1

γ

1
γ

(cos θ)

yQ(θ) ≡ (sin θ)1− 1
γ Q

1− 1
γ

1
γ

(cos θ)
(4.15)

with Pµ
λ and Qµ

λ the associated Legendre functions of the first and second kind. The useful an,m’s
are given by  a0,1 = 2

γ
cs

2
γ

(
(h0

1,0)′ + δBC
s
c h0

1,0

)
a1,0 =

√
2
γ

s
2
γ

(
(h0

1,0)′ + δBC
s
c h0

1,0

) (4.16)

for the linear expansion of ω̄2
0 (cf. (4.20a) below), while those for the quadratic expansion (cf.

(4.20b) below) read 
a0,2 = −

(
2
γ

) 3
2 c s h0

1,0

a1,1 = 2
γ

s
2
γ

[
s1− 2

γ δBCh0
1,0 + c

(
(h1

1,0)′ + δBC
s
c h1

1,0

)
− 2
γ
(I1− 2

γ
− I−1− 2

γ
)
(
(h0

1,0)′ + δBC
s
c h0

1,0

)] (4.17)

where all quantities are to be evaluated at θ = θb.

Step III: The growth rate ω̄2
0

Finally, we put together the results from steps I and II, and obtain explicit expressions for the
growth rate. Now, the resulting expression for ω̄2

0 from (4.8) comes out as an expansion in k̄y, but
this is in fact physically most relevant since gravitational instability precisely occurs for small k̄y.
More precisely, with the expansions (4.13) of a0 and a1, and expanding C with a similar notation
as

C =

∞∑
m=0

Cm(k̄y)m, (4.18)

relation (4.8) becomes

ω̄2
0(k̄y) = ω̄2

0,1 k̄y + ω̄2
0,2 k̄2

y + O(k̄3
y ) (4.19)

(it turns out that ω̄2
0,0 = 0) where

ω̄2
0,1 = −

a0,1

a1,0

ω̄2
0,2 =

(
a0,2

a0,1
−

a1,1

a1,0

)
ω2

0,1 + C0 ω
4
0,1.

(4.20a)

(4.20b)
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Then, with (4.16) on the one hand, and with (4.14) and (4.17) on the other hand, we respectively
obtain the final result

ω̄2
0,1 = −

√
2
γ

(
1 − ργb

)
ω̄2

0,2 =
4
γ2

c2

c
s y′Q + δBCyQ

 γ2 (1 + δBC) s−
2
γ yQ −

(c
s

y′P + δBC yP

)
Γ

(
2
γ

) ∫ θb

π
2

(c
s

y′Q + yQ

) yQ

s
dθ1

+

(c
s

y′Q + δBC yQ

) Γ (
2
γ

) ∫ θb

π
2

(c
s

y′Q + yQ

) yP

s
dθ1 +

1
c

(
I−1− 2

γ
− I1− 2

γ

)
+
γ

2
C0

 .
(4.21)

We remind the reader that in this expression all quantities outside integrals are evaluated at the
boundary θ = θb, and we recall the following definitions: ρb = (pext/pc)1/γ where pc is the
equilibrium pressure at the centre and pext 6 pc is the external pressure†; θb = arcsin ργ/2b ;
s = sin θ; c = cos θ; yP and yQ are defined in (4.15); Γ is the Gamma function; δBC = 0 for Rigid
BC and δBC = 1 for Free BC; Ip is defined in (4.12); and C0 = C (k̄y = 0) is given by formula
(4.10).

Let us now give a couple of comments on this formula, beginning with the linear order (first
line above). First, this result is exact, in the sense that we did not need the Cowling approximation
to obtain it as C does not show in the linear expansion. Second, it is interesting to note that
this result is independent of the BC. Indeed, while a0,1 and a1,0 both depend on the BC, that
dependence cancels out when we take their ratio. Third, note that we have the following relations:∫ x̄

0
ρ(s) ds =

1
1 − γ

∫ x̄

0
(ργ−1)′′ ds =

1
1 − γ

(ργ−1)′ =

√
2
γ

(1 − ργ) (4.22)

where we used the Lane-Emden equation (3.7) in the first equality, in the second equality we used
the fact that the profiles we are considering are flat at x̄ = 0, and in the third equality we used
expression (3.9) for the derivative of ρ. From this, we see that ω̄2

0,1 in (4.21) actually corresponds
to the column density from the centre to the boundary of the slab, i.e. essentially to the mass (per
unit area) of the structure.

About the quadratic order, we first point out that this result is exact as long as we take C0
from its definition, namely the value of C defined in (4.9) at k̄y = 0, because we have computed
exactly the term a1/a0 order by order in k̄y. It is only once we use expression (4.10) to express C0
explicitly that the result becomes approximate, since the latter was deduced using the Cowling
approximation and the WKB method. However, we find numerically that C0 is small compared
to the other terms, all the more that ρb approaches unity. Second, we write ω̄2

0,2 in (4.21) in this
manner in order to highlight the first term in the brackets, which dominates in the high pressure
limit ρb → 1. Third, in figure 3, we show a typical example: the linear expansion is plotted in
green, the quadratic expansion in orange and the numerical solution in black dots. As we can
see, the quadratic formula is in excellent agreement with the numerical solution for small k̄y,
namely for k̄y from zero to a value close to k̄y,max, the wavenumber of fastest growth (i.e. for
0 6 k̄y . 0.5 in the shown example). Therefore, from this quadratic formula one can already get
good approximations of the maximum growth rate and the corresponding wavenumber, and fair
approximations in the full unstable range, i.e. up to the critical wavenumber k̄crit at which the
fundamental frequency ω̄2

0 reaches zero again.

Beyond the quadratic formula

An important aspect of the method presented in this paper is that it is systematic, in the sense
that if need be, it is straightforward to increase the accuracy of expression (4.19) by increasing

† We exclude pext > pc because in this case the condition (2.8) cannot be fulfilled and no proper
equilibrium state exists.
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0.5 1.0 1.5

- 0.15

- 0.10

- 0.05

0.00

Figure 3. At the top of this figure we reproduce the formula for the fundamental eigenfrequency ω̄2
0 as an

expansion in k̄y up to the fourth order. The color coding used in this expression corresponds to the different
curves in the plot: green, orange, red and blue curves are respectively the linear, quadratic, cubic and quartic
expansions. The numerical solution is shown in black dots. In this plot we naturally see that, as we increase
the order, we increase the range of k̄y over which the analytical result fits the numerical solution. In this
example we chose Free BC, γ = 12 and ρb = 0.6, and the full unstable range (the range of k̄y for which ω̄2

0
is negative) is perfectly matched by the fourth order expansion. Note that the lower order expansions are all
the better that ρb is close to one (i.e. high external pressure), and the second order (4.19) becomes excellent
for ρb & 0.8 in general.

the order of the expansions‡. As a general rule, we find that in order to get excellent match
between numerical and analytic results, we need to increase the order of the expansion in k̄y as
we lower the value of ρb. Indeed, for large values of ρb, typically larger than 0.8, the second
order can already be excellent, i.e. as good as the fourth order in Fig 3. In Figs 4 and 5 we show
that we obtain excellent agreement for a very wide range of parameters (varying γ and ρb), but
for this to happen on the full unstable range, we need to expand up to the fourth order. Now,
the third order is already much more cumbersome than the second order, while it improves the
accuracy by only typically several percents. Therefore quite a lot of effort is required to improve
the accuracy of the quadratic formula, and whether or not the gain is worth the effort depends on
the specific problem at hand. As exemplified by Fig 3, the quadratic formula already gives good
results on the full unstable range, so in many cases it may constitute the best compromise.

The relevant scales for gravitational instability are 0 6 k̄y 6 k̄crit, by definition of the critical
wavenumber k̄crit. As shown in figures 3,4 and 5, over that range, our formulas are very efficient.
However, let us note that they are generally not valid much beyond the unstable range. This is no
surprise since, in the quartic formula for instance, the function ω̄2

0 is a fourth order polynomial
in k̄y, and it has no lower bound for very large k̄y, which is obviously unphysical. This can be
seen in the right panel of figure 4: the curve in light grey is part of the ρb = 0.4 solution, but we
coloured that branch in light grey because it is outside the relevant domain. In the other curves
of figures 3,4 and 5 this is not visible simply because it happens beyond the plotted regions.

‡ To be more precise, with formula (4.8) we have an ‘intrinsic’ limitation, given by the accuracy
of the Cowling approximation. To increase even further the accuracy, one may consider the first three
root-coefficient relations, rather than just the first two as we did here. Doing so, we are limited by the
accuracy of the Cowling approximation for one harmonic higher, and since that approximation is all the
better than the harmonics are high, the total accuracy will indeed be improved. However, this improvement
is at the cost of more cumbersome expressions, and given how precise the results are already here (cf. Figs. 4
and 5) it seems to us that this is not necessary in practice here. It could however turn out to be useful in
more complicated systems (with magnetic field, non-static equilibrium, non-self-gravitating, etc.).



Gravitational instability in self-gravitating planar polytropes 19

0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00
0.2 0.4 0.6 0.8

- 0.20

- 0.15

- 0.10

- 0.05

0.00

Figure 4. Results fixing γ = 1 and varying ρb. Solid lines are the analytic solutions at fourth order, and
dashed lines are the numerical solutions. In the left panel we use Rigid BC, while in the right panel we use
Free BC. We indicate by an arrow how the slope at the origin varies as we increase the parameter ρb. Here
we increase the values of ρb from 0.4 to 0.9 by steps of 0.1. Formally this evolution can be clearly seen with
the expression of ω̄2

0,1 in (4.21). The light grey branch in the right panel is explained in section 4.
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Figure 5. Results fixing ρb = 0.6 and varying γ. Solid lines are the analytic solutions at fourth order, and
dashed lines are the numerical solutions. In the left panel we use Rigid BC, while in the right panel we use
Free BC. We indicate by an arrow how the slope at the origin varies as we increase the parameter γ. Here we
plot the curves for γ = 0.5, 1.5, 3.5 and 5. Formally this evolution can be clearly seen with the expression
of ω̄2

0,1 in (4.21).
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5. Conclusion
We have presented a method to obtain analytic expressions for the growth rate of the grav-

itational instability of a planar pressure-confined static self-gravitating polytropic fluid. The
results are in excellent agreement with the numerical resolution. Formula (4.21) for the first and
second order constitute the main explicit result of this paper. The strength of that formula lies
in the fact that it allows us to understand explicitly how physical properties such as the column
density, the pressure, the polytropic index, the boundary conditions, etc., control the behaviour
of gravitational instability in polytropic self-gravitating sheets. In addition, as the approach we
introduced here is perturbative, one may easily increase the accuracy of that formula by pushing
the expansions further. The higher accuracy of the third and fourth order approximations is
exhibited in Figs. 3, 4 and 5. Finally and most importantly, we emphasise that this method can
naturally be extended to more complex systems (adding magnetic field, flow, expansion, other
components, etc.). Indeed, all the steps we presented here are very general: the link (4.8) between
the eigenvalues is universal, the Cowling approximation will always be excellent for high-order
modes, the stable part of the spectrum is always constituted of large eigenvalues, and we solved
the equations using only standard perturbative methods. Generalising the results of this paper is
left for future work.

J.B.D. acknowledges financial support by the P2IO LabEx (ANR-10-LABX-0038) in the
framework ‘Investissements d’Avenir’ (ANR-11-IDEX-0003-01) managed by the French Na-
tional Research Agency (ANR) when this work has been initiated. This work has been in part
supported by MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 15K2173
(J.B.D.).

Appendix A. Details of step I (computing C )
In this Appendix we focus on the harmonics ω̄2

n>1, i.e. the stable part of the spectrum, by
studying the dynamics in the Cowling approximation in order to derive an explicit expression for
C , namely (4.10).

A.1. Governing equations in the Cowling approximation

In the Cowling approximation the eigenvalue problem is not (2.22) but
ρ̂1 = −(ρ0ξ̂x)′ − ρ0ikyξ̂y

−ρ0ω
2ξ̂x = −c2

aρ̂
′
1 +

(
ĝ0 − (c2

a)′
)
ρ̂1

−ρ0ω
2ξ̂y = −ikyc2

aρ̂1

(A 1)

(where here ′ = d
dx ) because we do not consider g1 which makes the linearised Poisson equation

irrelevant. Then, using the dimensionless parameters (3.3) defined above, it becomes

d
dx̄

(
ψ
R

)
=

 0
k̄2

y

ω̄2 ρ(x̄) − ρ(x̄)2−γ

ω̄2

ρ(x̄) 0

 ( ψ
R

)
. (A 2)

Changing to the ρ variable yields

d
dρ

(
ψ
R

)
= −

√
γ

2
ργ−2√
1 − ργ

 0
k̄2

y

ω̄2 ρ − ρ
2−γ

ω̄2

ρ
0

 ( ψ
R

)
, (A 3)

and with the θ variable we finally get

d
dθ

(
ψ
R

)
= −

√
2
γ

 0
k̄2

y

ω̄2 s − s2/γ−1

ω̄2s1−4/γ 0

 ( ψ
R

)
. (A 4)
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This equation corresponds to (3.13) but in the Cowling approximation. Now, differentiating the
second line of (A 4) and plugging it in the first, it is straightforward to get the following scalar
equation on R

R′′ +

(
4
γ
− 1

)
c
s
R′ +

2
γ

(
s−1− 2

γ ω̄2 − s1− 4
γ k̄2

y

)
R = 0, (A 5)

where, and from now on, ′ = d
dθ . We prefer to work with the equation on R because it turns out

to be simpler than that satisfied by ψ. We now need just to solve (A 5), and from the obtained
expression of R, we will be able get ψ by inverting the second line of (A 4), i.e.

ψ = −
1
ω̄2

√
γ

2
s

4
γ−1 dR

dθ
. (A 6)

A.2. The eigenfunctions ψ and R for n > 1

In order to solve (A 5), it is convenient to change variables in the following way:

R = (sin θ)β u (A 7)

where the chosen value of the constant β is such that in the equation satisfied by u the term with
a first derivative vanishes, i.e.

β =
1
2
−

2
γ
. (A 8)

Then we have

u′′ + (ω̄2q − f )u = 0 (A 9)

where  q(θ) = 2
γ

s−
2
γ

f (θ) = 2
γ
k̄2

y s2− 4
γ +

(
2
γ
− 1

2

) (
2
γ
− 3

2

)
s−2 −

(
2
γ
− 1

2

)2
.

(A 10)

Now, as we are looking for the high order modes (i.e. not the fundamental), we know that the
values of interest of the parameter ω̄, namely the eigenvalues, are large. Therefore, let us treat
the quantity 1/ω̄ as a small parameter, in which case we may write explicitly the solution of
an equation of the classical form (A 9) using the WKB method. Following the presentation of
Holmes (1995), we set

ε ≡
1
ω̄

(A 11)

and look for solutions in the form

u(θ) ∼
[
u0(θ) + εu1(θ) + ε2u2(θ) + . . .

]
exp

(
A(θ)
ε

)
. (A 12)

Plugging this into (A 9) and identifying by powers of ε gives a hierarchy of equations that can
be solved one after the other. Note that if we take only the first WKB order, the spectrum

{
ω̄2

n

}
at

this level of approximation does not depend on k̄y. Therefore we have to develop u(θ) up to the
second order, which is why we go up to the ε2u2 term in the above expression. We find then that
the general solution of (A 9) is

u(θ) ∼ q−
1
4

a (
1 +

iK
ω̄

)
exp

iω̄∫ θ

π
2

√
q dx

 + b
(
1 −

iK
ω̄

)
exp

−iω̄
∫ θ

π
2

√
q dx

 (A 13)
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where a and b are constants, possibly complex, determined by the boundary (or symmetry)
conditions, and

K(θ) ≡
1
2

∫ θ

π
2

1
√

q

 5
16

(
q′

q

)2

−
1
4

q′′

q
− f

 dx. (A 14)

Using definitions (A 10) of q and f and definition (4.12) of Ip, expression (A 14) becomes

K(θ) =
γ−

3
2

8
√

2

{
(3 − γ)(5 − γ) I 1

γ

(θ) − (3 − γ)(5 − 3γ) I 1
γ
−2

(θ) − 8γ I
2− 3

γ

(θ) k̄2
y

}
. (A 15)

Then, with relation (A 6), the symmetry condition ψ(π/2) = 0 becomesR′(π/2) = 0 and given the
change of variables (A 7), we have R′ = sin(θ)β(u′ + β cot(θ)u), so that this symmetry condition
translates into

u′
(
π
2

)
= 0. (A 16)

Therefore a = b in (A 13). Finally, rewriting the complex number 1 ± iK/ω̄ in exponential form
(K is real), we can rewrite the solution (A 13) as

u(θ) = a

√
1 +

K2

ω̄2 q−
1
4 cos

ω̄∫ θ

π
2

√
q dθ1 + ϕ

 (A 17)

where the phase is given by

ϕ = arctan
(K
ω̄

)
. (A 18)

To help get an intuition of this expression, note that, going back the various changes of variables
above (θ ↔ ρ and ρ↔ x̄), we have∫ θ

π
2

√
q dθ1 = −

∫ x̄

0

√
ρ(x̄)1−γ dx̄, (A 19)

so that for example in the isothermal case γ = 1 this factor is in fact simply equal to (minus) the
position x̄.

Finally, plugging relation (A 17) into (A 7) directly gives the expression for R, and with
relation (A 6) the function ψ is obtained. In figure 2 we compare them with the numerical
resolution of (A 4).

A.3. The eigenvalues ω̄2
n for n > 1

The expressions for R and ψ that we just obtained are parameterised by ω̄2, since they are
essentially given by (A 17). As we plug them into the boundary condition (3.21) we get†

tan
ω̄∫ θb

π
2

√
q dθ1 + ϕ

 = Φ (A 20)

where

Φ ≡
1
ω̄

KK′ +
(

1
2 −

3
2γ

)
c
s −

√
2
γ
∆BCs1− 4

γ ω̄2
(
ω̄2 + K2

)
K′ +

√
2
γ

s−
1
γ
(
ω̄2 + K2) . (A 21)

† We can indeed divide by cos
(
ω̄

∫ θ
π
2

√
q dθ1 + ϕ

)
because it must be non zero, otherwise the BC (3.21)

is not satisfied.
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This is a rather complicated equation on ω̄, and there is little hope to find its solutions in closed
form. Therefore we solve it perturbatively by looking for solutions in the form

ω̄n = ω̄(1)n + ω̄(0) + ω̄(−1)
1
n

+ . . . (A 22)

Since these correspond to the high order modes, n is a large parameter, which is not convenient
to perform Taylor expansions. Therefore we rewrite (A 20) in a way such that we may simply use
Taylor expansions near 0, i.e. developments in 1/n only. For this, we first apply arctan, keeping
in mind that this brings an nπ term. Then the choice of BC matters. For rigid BC (∆BC = 0) we
have Φ ∼ 1/n3 for large n, so we can Taylor expand, but for Free BC (∆BC , 0) we have Φ ∼ n,
so that we first use the identity† arctan(x) = π

2 × sgn(x) − arctan( 1
x ), where sgn(x) is the sign of

x, to work only with 1/n indeed. Finally, we also divide the whole equation by n, put everything
on the left hand side and define

G ≡
ω̄2

n

n2 (A 23)

in order to factor out the n dependence. Doing so, we rewrite (A 20) for Rigid BC as

sgn(Φ)π −
√

2G
γ

I− 1
γ
(θb) −

1
n

arctan
(

1
n

K
√

G

)
+

1
n

arctan

 1

n3
√

G

c
s

(
1
2 −

3
2γ

) (
G + K2

n2

)
+ KK′

n2√
2
γ

s−
1
γ

(
G + K2

n2

)
+ K′

n2

 = 0,

(A 24)
and for Free BC as

sgn(Φ)π
(
1 − 1

2n

)
−

√
2G
γ

I− 1
γ
(θb) −

1
n

arctan
(

1
n

K
√

G

)
−

1
n

arctan
 √G

n

(√
2
γ

s−
1
γ

(
G +

K2

n2

)
+

K′

n2

)
×

−√
2
γ
∆BCs1− 4

γ G
(
G +

K2

n2

)
+

1 − 3
γ

2n2

c
s

(
G +

K2

n2

)
+

KK′

n4


−1 = 0.

(A 25)
We may now Taylor expand the functions on the left hand sides, and then identifying by orders
of 1/n we get a system of equations for the coefficients in the expansion (A 22). Solving this
system and rearranging terms, we finally get that the solution up to order O

(
n−2

)
is

ω̄2
n =

A
(
n − 1

2δBC

)2
+ B k̄2

y + C + DBC

I− 1
γ
(θb)

(A 26)

where we used the notation δBC defined in (3.23) to avoid separating the cases, and the coeffi-
cients A, B,C and DBC were defined in (4.11).

A.4. Expression for C

We are now finally ready to compute the series C given by (4.9). The pleasant surprise is that
the ω̄2

n’s given by (A 26) have simple quadratic dependencies in n, so that we may obtain a closed
form for the expression of C , by using the identity

∞∑
n=1

1(
n − 1

2

)2
+ b2

=
π tanh(bπ)

2b
(A 27)

† This is what brings a difference in the two types of BC in the solution (A 26) (ω̄2
n contains n2 for Rigid

BC while it is (n − 1/2)2 for Free BC).
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for the Free BC (δBC = 1), and
∞∑

n=1

1
n2 + b2 = −

1
2b2 +

π coth(bπ)
2b

(A 28)

for the Rigid BC case (δBC = 0). In order to show a single expression combining the two types of
BC, rather than having to separate the cases inelegantly, we again used the notation δBC to write
C in the form (4.10).

Appendix B. Details about step II (computing a1/a0)
In this Appendix we show how to compute a0 and a1, and in particular how expressions (4.14),

(4.16) and (4.17) are obtained.

B.1. Equations for the h0
a’s and h1

a’s

From the relation (4.4) defining the ak’s, it turns out that we only need the h0
a’s and the h1

a’s,
not higher order terms in the expansion in ω̄2 of H in order to compute a0 and a1. To find them,
let us derive the differential equations they satisfy. First we obtain the equation satisfied by the
matrix H , by plugging (3.14) and (3.17) in the equation formed by the first two rows of (3.13).
Then, treating R(π/2) and Gy(π/2) as independent variables, we send each coefficient of that
matrix equation to zero, which gives four equations. Finally, plugging definition (4.1) of the hi

a’s,
we can identify by powers of ω̄2 to get the following equations. The zeroth power gives the
equations for h0

1 and h0
3, namely

(h0
1)′′ +

c
s

(
4
γ
− 1

)
(h0

1)′ +
2
γ

(
1 − k̄2

y s2− 4
γ

)
h0

1 +
2
γ

c
s

1
k̄2

y
(h0

3)′ = 0

(h0
3)′′ +

c
s

(
2
γ
− 1

)
(h0

3)′ −
2
γ

k̄2
y s2− 4

γ h0
3 −

2
γ

k̄2
yh0

1 = 0

(B 1a)

(B 1b)

and, with the substitution (1→ 2) and (3→ 4) in the subscripts, one obtains the equations for h0
2

and h0
4. Then the powers i > 1 give for hi

1 and hi
3,

(hi
1)′′ +

c
s

(
4
γ
− 1

)
(hi

1)′ +
2
γ

(
1 − k̄2

y s2− 4
γ

)
hi

1 +
2
γ

c
s

1
k̄2

y
(hi

3)′ +
2
γ

s−
2
γ hi−1

1 = 0

(hi
3)′′ +

c
s

(
2
γ
− 1

)
(hi

3)′ −
2
γ

k̄2
y s2− 4

γ hi
3 −

2
γ

k̄2
yhi

1 = 0

(B 2a)

(B 2b)

and, with the substitution (1→ 2) and (3→ 4) in the subscripts, one obtains the equations for hi
2

and hi
4. Note that, as stated above, in order to get ω̄2

0 with (4.8), we only need h0
a and h1

a, so that
in fact only the case i = 1 above is used in the following. However, if one is also interested in
the full expression of the eigenfunctions, then in principle all the hi

a’s are required, and it turns
out that solving for i = 1 or generalising to any i > 1 is immediate, so we might as well treat the
more general case directly.

B.2. Solving for h0
1 and h0

3

Let us focus first on the system (B 1), i.e. on the pair (h0
1, h

0
3). A most natural way of pursuing

further is to express h0
1 in terms of h0

3 and its derivatives from the equation (B 1b) and plug that
into (B 1a). This gives an equation for h0

3 that we could try and solve. Had we managed to solve
it, we would be able to deduce h0

1 using (B 1b). This approach however requires to deal with
complicated fourth order differential equations.

Instead, let us remember that pressure balances gravity on small scales, giving rise to acoustic
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oscillations. We thus expect gravitational instability to be triggered by large scales perturbations,
i.e. for small k̄y. It is therefore natural to look for the hi

a’s by expanding them in terms of k̄y

around 0. As we will see right now, this actually enables us to reduce the problem to just second
order equations. Most remarkably, these equations possess well known closed form solutions.
Indeed, let us now expand the hi

a’s as

hi
a =

∞∑
j=0

hi
a, j

(
k̄2

y

) j
where ha, j ≡ hi

a, j(θ). (B 3)

Then, identifying in powers of k̄2
y in (B 1a) gives

(h0
3,0)′ = 0,

(h0
1,0)′′ +

c
s

(
4
γ
− 1

)
(h0

1,0)′ +
2
γ

h0
1,0 +

2
γ

c
s

(h0
3,1)′ = 0,

and for j > 1 :

(h0
1, j)
′′ +

c
s

(
4
γ
− 1

)
(h0

1, j)
′ +

2
γ

h0
1, j −

2
γ

s2− 4
γ h0

1, j−1 +
2
γ

c
s

(h0
3, j+1)′ = 0,

(B 4a)

(B 4b)

(B 4c)

and in (B 1b) it gives
(h0

3,0)′′ +
c
s

(
2
γ
− 1

)
(h0

3,0)′ = 0,

and for j > 1 :

(h0
3, j)
′′ +

c
s

(
2
γ
− 1

)
(h0

3, j)
′ −

2
γ

h0
1, j−1 −

2
γ

s2− 4
γ h0

3, j−1 = 0.

(B 5a)

(B 5b)

In the following, we will need constraints to determine the constants of integration when solving
these equations. We get the constants using the fact that from the definition (3.14) of H ,

H
(
π

2

)
= 11 (B 6)

and given the relation (3.17) between H and (ψ,Gx) together with the symmetry conditions
(3.19), we take

H ′
(
π

2

)
= 0. (B 7)

Let us now analyse the equations from (B 4) and (B 5) as follows.
First, consider (B 4a) and (B 5a): equation (B 5a) does not add any new information here,

since it is automatically satisfied due to (B 4a). At least it is a consistency check. Then (B 4a)
with (B 6) directly gives

h0
3,0(θ) = 0 (B 8)

for all θ.
Second, consider (B 4b) and (B 5b) with j = 1: summing these together gives

(h0
1,0 + h0

3,1)′′ +
c
s

(
4
γ
− 1

)
(h0

1,0 + h0
3,1)′ = 0. (B 9)

This is simply a linear homogeneous first order differential equation for the function (h0
1,0 +h0

3,1)′.
Its solution reads

(h0
1,0 + h0

3,1)′ = y0 (sin θ)1− 4
γ (B 10)

where y0 is a constant. Now with (B 7) we have that (h0
1,0)′( π2 ) = 0 and (h0

3,1)′( π2 ) = 0, so that in
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fact y0 = 0, and (B 10) becomes trivial to integrate. The constant of integration is given by (B 6),
and we finally get that for all θ

h0
3,1(θ) = 1 − h0

1,0(θ). (B 11)

We may now plug this expression of h0
3,1 into (B 4b) to get an equation on h0

1,0 only. This yields

L[h0
1,0] = 0 (B 12)

where the operator L is such that

L[y] ≡ y′′ +
(

2
γ
− 1

)
cos θ
sin θ

y′ +
2
γ

y. (B 13)

The letter L stands for ‘Legendre’ because when L[y] = 0, the function z = (sin θ)
1
γ−1y satisfies

z′′ +
cos θ
sin θ

z′ +
{
λ (λ + 1) −

µ2

sin2 θ

}
z = 0 (B 14)

where λ = 1
γ

and µ = 1 − 1
γ
, which is the associated Legendre equation, with solutions Pµ

λ and
Qµ
λ. In other words, the general solution of (B 12) is

h0
1,0(θ) = A0

1,0 yP(θ) + B0
1,0 yQ(θ) (B 15)

where it is useful to define 
yP(θ) = (sin θ)1− 1

γ P
1− 1

γ

1
γ

(cos θ)

yQ(θ) = (sin θ)1− 1
γ Q

1− 1
γ

1
γ

(cos θ)
(B 16)

because all the following results may naturally be expressed in terms of these two functions. The
coefficients A0

1,0 and B0
1,0 are constants, and using relations (B 6) and (B 7), we get that

A0
1,0 = 0 and B0

1,0 = [Q
1− 1

γ

1
γ

(0)]−1, (B 17)

hence the expression for h0
1,0 in (4.14). Now that h0

1,0 is obtained, h0
3,1 simply follows from (B 11).

Finally, consider (B 4c) for a given j > 1 and (B 5b) with j + 1: summing these together gives

(h0
1, j + h0

3, j+1)′′ +
c
s

(
4
γ
− 1

)
(h0

1, j + h0
3, j+1)′ =

2
γ

s2− 4
γ

[
h0

1, j−1 + h0
3, j

]
. (B 18)

At this point, it is important to notice the two things. First, the left hand side above is the same as
in (B 9), so that the solution of the homogeneous equation is simply like (B 10). Second, the right
hand side is a known function, by iteration. Indeed, the solutions (B 11) and (B 15) we obtained
above initialise the iterative process (B 18). Hence (B 18) is simply a linear first order differential
equation with a source term. Applying the method of variation of parameters, the general solution
is

(h0
1, j + h0

3, j+1)′ = (sin θ)1− 4
γ

2
γ

∫ θ

π
2

sin θ1

[
h0

1, j−1 + h0
3, j

]
dθ1 (B 19)

where the conditions (h0
1, j)
′( π2 ) = 0 and (h0

3, j+1)′( π2 ) = 0 from (B 7) have been used. Integrating
once more gives then

h0
3, j+1(θ) = −h0

1, j(θ) +

∫ θ

π
2

(sin θ1)1− 4
γ

2
γ

∫ θ1

π
2

sin θ2

[
h0

1, j−1 + h0
3, j

]
dθ1 dθ2 (B 20)

where we used the conditions (h0
1, j)(

π
2 ) = 0 and (h0

3, j+1)( π2 ) = 0 from (B 6).
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We may now insert this expression of h0
3, j+1 back into (B 4c) and get an equation on h0

1, j only.
It is the inhomogeneous equation

L[h0
1, j] = S0

1, j (B 21)

where the source term on the right hand side is

S0
1, j =

2
γ

s2− 4
γ h0

1, j−1 −
4
γ2 c s−

4
γ

∫ θ

π
2

sin θ1

[
h0

1, j−1 + h0
3, j

]
dθ1. (B 22)

We obtain the explicit solution of (B 21) below, as we generalise it.

B.3. Generalisation: Solving for all the hi
a, j’s

Because the systems of equations (B 1) and (B 2) have similar forms, the procedure we detailed
in the previous section can actually be carried out to deduce all the hi

a, j’s. Indeed, with the same
steps, we may write the equation satisfied by any hi

a, j as

L[hi
a, j] = Si

a, j, (B 23)

which is the same equation (B 12) satisfied by h0
1,0, but with a non zero right hand side. In the

following we may call Si
a, j ‘the source term’ for hi

a, j, because it does not depend on hi
a, j. To

begin with, let us assume that we know Si
a, j. Then solving (B 23) is straightforward, because the

solution of the homogeneous equation L[hi
a, j] = 0 is known (it is a linear combination of yP

and yQ), and we may use the method of variation of parameters to solve it. In fact, apart from
(i, a, j) = (0, 1, 0) and (i, a, j) = (0, 3, 1), the solution of the homogeneous equation is always
equal to zero because the conditions (B 6) and (B 7) give hi

a, j (π/2) = 0 and (hi
a, j)
′ (π/2) = 0 and

therefore the coefficients in the linear combination of yP and yQ both vanish. Hence the solution
of (B 23) is (Bender & Orszag 1978)

hi
a, j(θ) = Γ( 2

γ
) yP(θ)

∫ θ

π
2

s
2
γ−1 yQ(θ1) S i

a, j(θ1) dθ1

−Γ( 2
γ
) yQ(θ)

∫ θ

π
2

s
2
γ−1 yP(θ1) S i

a, j(θ1) dθ1

(B 24)

where Γ is the Gamma function, yP and yQ are defined in (B 16), and we used their Wronskian
W[yP(θ), yQ(θ)] = − sin(θ)1−2/γ/Γ(2/γ).

Let us now illustrate the general procedure to obtain all the source terms S i
a, j, by focusing on

the special case S1
1,0. We take this as example because it is all that we need to obtain a parabolic

expression for ω̄2
0 (i.e. the expansion up to the second order in k̄y, cf. eqn. 4.19). Following the

procedure detailed in Appendix B.2, it is straightforward to show that

S1
1,0 = −

2
γ

s−
2
γ

[c
s

(h0
1,0)′ + h0

1,0

]
. (B 25)

The point is to notice that this expression (useful for h1
1,0) involves a hi

a, j of lower i and j (namely
h0

1,0), the full expression of which is known (expression B 15). Therefore with (B 15) and (B 25)
we have S1

1,0 explicitly. Hence, with (B 24), the explicit expression of h1
1,0 shown in (4.14).

This feature is general: the explicit expression of any Si
a, j is always given by some hi

a, j of
lower i and j, the expression of which is known by iteration, starting from the solution (B 15) of
h0

1,0. Hence, we may obtain all the hi
a, j’s as a sequence of equations that we may solve exactly.
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B.4. Functions a0 and a1

Now that we have all the hi
a, j’s, it is just a matter of bookkeeping to obtain a0 and a1 as

expansions in k̄y, i.e. to obtain the coefficients a0,m and a1,m of their respective expansions (4.13),
by using the definition (4.4) with the qi

a’s directly obtained in terms of the hi
a, j’s from (3.27). The

first coefficients are shown in (4.16) and (4.17).
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