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Abstract: The analysis and control of DES is often supported by interpreted Petri nets (IPN), allowing 

describing the input-output behavior of the involved components. One of the main challenges of the 

analysis and synthesis methods is the size of the model when the system is large and performs complex 

behavior. In order to alleviate this hardship, a model abstraction method for IPN is proposed in which the 

events and the outputs of the IPN are considered in order to preserve in the reduced model, the controllable 

observable language of the original IPN. The reductions are considerable in such a manner that reachability 

set is drastically reduced. The abstraction procedure is polynomial-time on the size of the IPN. 

Keywords: Interpreted Petri nets; Model abstraction; Controllable observable language.  



1. INTRODUCTION 

It is well known that for large Discrete Event Systems (DES) 

involving complex behaviour, the number of states can be 

extremely high and consequently, the models are huge despite 

the power of expression of Petri nets (PN). 

PN have been widely used for validation and control of DES 

in several problems, namely deadlock detection and 

avoidance, stability analysis and stabilizing control, process 

identification, supervisory control, and regulation control. One 

of the challenges in these problems is the efficiency of the 

methods due to the size of the PN when it is not possible to 

find structural-based solutions. 

In order to alleviate such a hardship, PN reduction methods 

have been proposed, allowing simplifying the models while 

preserving key properties for the analysis. The aim was to 

reduce the size of the PN and thus, reduce the size of the 

reachability graph. Several approaches can be found in 

[Berthelot, 1986], [Silva, 1985], [Lee-Kwang, 1985], [Lee-

Kwang, 1987] [Murata, 1989], [Desel, 1990], [Esparza, 1994], 

and [Desel, 1995]. 

In this paper, we present a model abstraction method for 

Interpreted PN (IPN), which reduces the size of the model by 

considering the type of input events associated to transitions 

and outputs associated to places. In contrast to other proposed 

methods, the events and the outputs of the IPN associated with 

transitions and places respectively are taken into account to 

preserve in the reduced model, the controllable output 

language of the original IPN. 

The method performs structural transformations around a 

designated subset of places labelled with specified outputs that 

must remain in the reduced IPN. This allows improving the 

efficiency of the techniques addressing for example the 

problems of regulation control [Santoyo, 2008] or stability 

analysis in which the reachability of markings involving a 

subset of places is handled. 

The method is based on a set of local transformation operators, 

which consider the behaviour of the IPN to preserve the 

properties regarding the controllability of firing sequences and 

the reachability of a subset of observable places associated to 

selected outputs. An efficient procedure manages the 

application of the operators; it obtains a reduced IPN that has 

the same controllable output language than the original one. 

The abstraction technique allows a drastic reduction of IPN 

size, and consequently, of the number of states. 

The rest of the paper is organised as follows. Section 2 presents 

the basic notions of observable behaviour of IPN. Section 3 

describes the abstraction technique, based on a kit of 

transformation operators for ordinary and safe IPN; an 

example of application to an IPN is presented to illustrate the 

model abstraction technique. 

2. THE OBSERVABLE LANGUAGES EQUIVALENCE 

2.1. Interpreted Petri Nets 

Definition 1. An ordinary Petri Net structure 𝐺 is a bipartite 

digraph represented by the 4-tuple 𝑁 =  (𝑃, 𝑇, 𝐼, 𝑂) where: 

𝑃 = {𝑝1, 𝑝2, … , 𝑝|𝑃|} and 𝑇 = {𝑡1, 𝑡2, … , 𝑡|𝑇|} are finite sets of 

vertices named places and transitions respectively; 𝐼 ∶ 𝑃 ×
𝑇 → {0,1} (𝑂 ∶ 𝑇 × 𝑃 → {0,1}) is a function representing the 

arcs going from places to transitions (from transitions to 

places) [Murata, 1989]. A marking function 𝑀 ∶ 𝑃 → {0,1} 
represents the number of tokens residing inside each place; it 

is usually expressed as an |𝑃|-entry vector.  

A Petri net (PN) is the pair (𝑁,𝑀0), where 𝑀0 is an initial 

marking. In a PN, a transition 𝑡𝑗 is enabled at marking 𝑀𝑘 if 

∀𝑝𝑖∈𝑃, 𝑀𝑘(𝑝𝑖) ≥ 𝐼(𝑝𝑖 , 𝑡𝑗); an enabled transition 𝑡𝑗 can be fired 

reaching a new marking 𝑀𝑘+1; it is computed by the state 
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equation:  𝑀𝑘+1= 𝑀𝑘 - 𝐼(𝑝𝑖 , 𝑡𝑗)+ 𝑂(𝑝𝑖 , 𝑡𝑗). The reachability set 

of a PN is the set of all possible reachable markings from 𝑀0 
firing only enabled transitions; this set is denoted as 𝑅(𝐺,𝑀0). 
For any 𝑡𝑗 ∈ 𝑇, •𝑡𝑗 = {𝑝𝑖  | 𝐼(𝑝𝑖 , 𝑡𝑗) = 1}, and 𝑡𝑗•= {𝑝𝑖  | 𝑂(𝑡𝑗 , 𝑝𝑖) =

1}; similarly, for any 𝑝𝑖 ∈ 𝑃, •𝑝𝑖 = {𝑡𝑗  | 𝑂(𝑡𝑗 , 𝑝𝑖) = 1}, and 𝑝𝑖•=

{𝑡𝑗  | 𝐼(𝑝𝑖 , 𝑡𝑗) = 1}. A PN where Mk(pi) {0,1} is called safe or 

1-bounded. 

An Interpreted Petri net (IPN) is an extension of a PN that 

includes events and outputs of a modelled process. 

Definition 2. An Interpreted Petri Net (IPN) is a 6-tuple 𝑄 =
(𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑), also denoted as (𝑄,𝑀0) where: 

 Σ = {𝛼1, 𝛼2, … , 𝛼𝑟} is the finite input symbol alphabet. 

 Φ = {𝜙1, 𝜙2, … , 𝜙w} is the finite output symbol alphabet. 

 𝜆: 𝑇 → Σ ∪ {𝜀} is the transition labeling function with the 

following constraints: 

∀𝑡𝑗 , 𝑡𝑘 ∈ 𝑇, 𝑗 ≠ 𝑘, if ∀𝑝𝑖  𝐼(𝑝𝑖 , 𝑡𝑗) = 𝐼(𝑝𝑖 , 𝑡𝑘) ≠ 0 and  

𝜆(𝑡𝑗), 𝜆(𝑡𝑘) ≠ 𝜀, then 𝜆(𝑡𝑗) ≠ 𝜆(𝑡𝑘). 

 𝜑:ℛ(𝑄,𝑀0) → (𝑍
+)𝑞 is the output function, which 

associates each marking in ℛ(𝑄,𝑀0), with a 𝑞-entry output 

vector, where 𝑞 = |Φ|. 𝜑 is represented by a 𝑞 × |𝑃| matrix, 

such that if the output symbol 𝜙𝑖 is present every time that 

𝑀(𝑝𝑗) > 0, then 𝜑(𝑖, 𝑗) = 1, otherwise 𝜑(𝑖, 𝑗) = 0.  

The state equation of PN is completed with the marking 

projection 𝑌𝑘 = 𝜑𝑀𝑘, where 𝑌𝑘 ∈ (𝑍
+)𝑞 is output vector of 

the IPN associated with Mk.  

Definition 3. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an IPN. 

If 𝜆(𝑡𝑖) ≠ 𝜀, the transition 𝑡𝑖 is called controllable, otherwise 

is called uncontrollable. 𝑇𝑈 is the set of uncontrollable 

transitions and 𝑇𝐶 is the set of controllable transitions 

in (𝑄,𝑀0). 𝑇 = 𝑇𝑈 ∪ 𝑇𝐶 and 𝑇𝑈 ∩ 𝑇𝐶 = ∅. When an enabled 

transition 𝑡𝑖 is controllable, then to fire 𝑡𝑖 it is also needed that 

the input symbol 𝜆(𝑡𝑖) is present. When an enabled transition 

𝑡𝑖 is uncontrollable, it can be fired. A place 𝑝𝑖 ∈ 𝑃 is said to be 

measurable if the 𝑖-th column vector of 𝜑(denoted as 𝜑(, i)) 
is not null, otherwise it is non measurable. 𝑃 = 𝑃𝜑 ∪ 𝑃𝜑̅̅ ̅ 

and 𝑃𝜑 ∩ 𝑃𝜑̅̅ ̅ = ∅; where  𝑃𝜑 is the set of measurable places and 

𝑃𝜑̅̅ ̅ the set of non measurable places. 

Example 1. In Figure 1 it is shown an IPN (𝑄,𝑀0) =
(𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑). Σ = {𝑞, 𝑦, 𝑣, 𝑒, 𝑑, 𝑔}. Φ = {𝐴, 𝐵, 𝐶}. 
𝜆(𝑡0) = 𝑞, 𝜆(𝑡1) = 𝑦, 𝜆(𝑡2) = 𝑣, 𝜆(𝑡3) = 𝑒, 𝜆(𝑡4) = 𝜀,
𝜆(𝑡5) = 𝑑, 𝜆(𝑡6) = 𝑔. The matrix representing the output 

function 𝜑 is 

𝜑 = [
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

] 

where every row represents one of the outputs 𝐴, 𝐵, 𝐶 ∈ Φ. 

𝑃𝜑 = {𝑝1, 𝑝4, 𝑝6} , 𝑃𝜑̅̅ ̅ = {𝑝2, 𝑝3, 𝑝5}. Pictorially, places in 

𝑃𝜑and transitions in TU are dimmed. 

 
Fig. 1. Interpreted Petri net (𝑄,𝑀0). 

Definition 4. Let (𝑄,𝑀0) be an IPN. The set of all firing 

sequences of (𝑄,𝑀0), called the firing language of (𝑄,𝑀0), is  

ℒ(𝑄,𝑀0) = {𝜎 = 𝑡𝑖𝑡𝑗 …𝑡𝑘|𝑀0
𝑡𝑖
→𝑀𝑖

𝑡𝑗
→…

𝑡𝑘
→𝑀𝑘}. 

Note that for a reachable marking 𝑀𝑙 ∈ ℛ(𝑄,𝑀0), the firing 

language ℒ(𝑄,𝑀𝑙) = {𝜏 = 𝑡𝑚𝑡𝑛…𝑡𝑠| 𝑀𝑙 
𝑡𝑚
→  𝑀𝑚 

𝑡𝑛
→ … 

𝑡𝑠
→ 𝑀𝑠 } 

denotes the set of all firing sequences enabled from 𝑀𝑙 in 
(𝑄,𝑀0). 

Notation: The Parikh vector �⃗�: 𝑇 → (𝑍+)𝑚 of 𝜎 ∈ ℒ(𝑄,𝑀0) 
maps every 𝑡𝑖 ∈ 𝑇 to the number of occurrences of 𝑡𝑖 in 𝜎. The 

input language of (𝑄,𝑀0) is ℒ𝑖𝑛(𝑄,𝑀0) = {𝜆(𝜎)|𝜎 ∈
ℒ(𝑄,𝑀0)}. Given 𝑤 ∈ ℒ a word of a language ℒ the prefix set 

of 𝑤 is �̅� = {𝑤′| ∃𝑣 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑤′𝑣 = 𝑤}. 

2.2. IPN Observable language equivalence 

In this section we define the observable behaviour to describe 

when two IPN models can be equivalent, with respect to their 

output languages. 

2.2.1. Observable behaviour equivalence 

The measurable places in an IPN (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) 
generate signals that an external agent can observe; thus, given 

a reachable marking 𝑀 ℛ(𝑄,𝑀0), the output 𝜑(𝑀) describes 

the actual observable state of a process.  

The observable equivalence between two IPN determines the 

behaviour equivalence from an external point of view; i.e., 

when the observable behaviours of two IPN are 

indistinguishable regardless the evolution of their markings.  

A necessary condition for observable equivalence of an IPN 
(𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑), with respect to another IPN 
(𝑄′, 𝑀0

′) = (𝑁′, 𝑀0
′ , Σ′, Φ′, 𝜆′, 𝜑′), is that they share a set of 

output symbols Φ̃; (Φ̃ ⊆ Φ) ∧ (Φ̃ ⊆ Φ′).  

In order to consider only those outputs of interest, let �̃� be a 

new output function of (𝑄,𝑀0) that considers only those 

measurable places that are related to an output symbol in 
(𝑄′, 𝑀0

′); where �̃� is composed by only those rows in 𝜑 such 

that the i-th row of �̃� represents the activation of the same 

symbol 𝜙𝑖 as the i-th row of 𝜑′.  

The following notion deals with sequences that generate 

changes in the output.  

Definition 5. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an IPN. Let 

𝜎 = 𝑡1𝑡2𝑡3…𝑡𝑟 ∈ ℒ(𝑄,𝑀0) a sequence of transitions such 

that 𝑀0 
𝑡1
→ 𝑀1 

𝑡2
→ 𝑀2 

𝑡3
→ … 

𝑡𝑟
→ 𝑀𝑟. It is said that 𝜎 is an Output 

Switching sequence (OSS) in (𝑄,𝑀0) iff there exist 𝑖, 𝑗 such 

that:  
  𝜑(𝑀0) ≠ 0, 𝜑(𝑀𝑟) ≠ 0 

 ∀𝑀𝑥, 0 ≤ 𝑥 ≤ 𝑖,   𝜑(𝑀𝑥) =  𝜑(𝑀0) 
 𝑖𝑓 𝑗 = 𝑖 + 1 𝑡ℎ𝑒𝑛  𝜑(𝑀0) ≠  𝜑(𝑀𝑟), 𝑒𝑙𝑠𝑒 ∀𝑀𝑦, 𝑖 < 𝑦 < 𝑗,

𝜑(𝑀𝑦) = 0  

 ∀𝑀𝑧, 𝑗 ≤ 𝑧 ≤ 𝑟, 𝜑(𝑀𝑗) =  𝜑(𝑀𝑟) 

The firing of OSSs in (𝑄,𝑀0) determine observable words. 

Definition 6. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆,𝜑)  be an IPN. Let 

𝜎 = 𝜎1𝜎2…𝜎𝑙 ∈ ℒ(𝑄,𝑀0) such that 𝑀0 
𝜎1
→ 𝑀1 

𝜎2
→ … 

𝜎𝑙
→ 𝑀𝑙 and, 

𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑙) is an OSS or 𝜎 is empty. The observable 



 

 

     

 

language of (𝑄,𝑀0) is  ℒ𝑜𝑏𝑠(𝑄,𝑀0) = { 𝑤 | ∃𝜎 ∈
ℒ(𝑄,𝑀0)}, where 𝑤 =  𝜑(𝑀0) 𝜑(𝑀1)…  𝜑(𝑀𝑙) is the 

observable word generated by 𝜎 in (𝑄,𝑀0).  The function 

𝑓𝑜𝑏𝑠(𝑄,𝑀0): ℒ(𝑄,𝑀0) → ℒ𝑜𝑏𝑠(𝑄,𝑀0) maps every firing 

sequence into its observable word. 

Example 2. Consider the IPN (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆,𝜑) of 

Figure 1. When the sequence 𝜎 = 𝑡0𝑡1𝑡2𝑡3𝑡4𝑡5𝑡4𝑡6 is fired in 
(𝑄,𝑀0) it generates the observable word: 

𝑤 = 𝑓𝑜𝑏𝑠(𝑄,𝑀0)(𝑡0𝑡1𝑡2𝑡3𝑡4𝑡5𝑡4𝑡6) = [
1
0
0
] [
0
1
0
] [
0
0
1
] [
0
0
1
] [
1
0
0
] 

Now we can define the equivalence between two IPN with 

respect to their observable behaviour. 

Definition 7. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, �̃�) and 
(𝑄′, 𝑀0

′) = (𝑁′, 𝑀0
′ , Σ′, Φ′, 𝜆′, 𝜑′) be two IPN models. (𝑄,𝑀0) 

is observable equivalent to (𝑄′, 𝑀0
′)  iff ℒ𝑜𝑏𝑠(𝑄,𝑀0) =

ℒ𝑜𝑏𝑠(𝑄
′, 𝑀0

′).  

Is easy to see that for (𝑄,𝑀0) and (𝑄′, 𝑀0
′) in Figures 1 and 2.a 

respectively, (𝑄,𝑀0) is observable equivalent to (𝑄′, 𝑀0
′). 

a)  b)  

Fig. 2. Interpreted Petri nets (𝑄,𝑀0) and (𝑄′, 𝑀0
′). 

2.2.2. Controllability 

Let (𝑄,𝑀0) be an IPN and 𝐾 ⊆ ℒ(𝑄,𝑀0) be the specification 

language. The language 𝐾 is controllable with respect 

to ℒ(𝑄,𝑀0), iff ∀𝑡𝑖 ∈ 𝑇𝑈 it holds that 𝐾𝑡𝑖 ∩ ℒ(𝑄,𝑀0) ⊆ 𝐾. 

Now it is possible to define all those observable words that can 

be generated by an IPN by the firing of controllable firing 

sequences only. 

Definition 8. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆,𝜑) be an IPN 

model. The controllable observable language of (𝑄,𝑀0) is 
ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0) = {𝑤 ∈ ℒ𝑜𝑏𝑠(𝑄,𝑀0)|  ∃𝜎 controllable in (𝑄,𝑀0) 

 s. t. 𝑓𝑜𝑏𝑠(𝑄,𝑀0)(𝜎) = 𝑤}; it is the set of all the controllable 

observable words in ℒ𝑜𝑏𝑠(𝑄,𝑀0). 

Now we can define when two IPN models can be equivalent, 

with respect to their controllable observable languages. 

Definition 9. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆,𝜑) and 
(𝑄′, 𝑀0

′) = (𝑁′, 𝑀0
′ , Σ′, Φ′, 𝜆′, 𝜑′) be two IPN models. (𝑄,𝑀0) 

is controllable observable equivalent to (𝑄′, 𝑀0
′)  

iff ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0) = ℒ𝑜𝑏𝑠

𝒸 (𝑄′, 𝑀0
′). 

Given (𝑄,𝑀0) and (𝑄′, 𝑀0
′), when the controllable observable 

languages of (𝑄,𝑀0) and (𝑄′, 𝑀0
′) are equal, it means that for 

every controllable firing sequence in (𝑄′, 𝑀0
′) that generates 

an observable word 𝑤, there exists a controllable firing 

sequence in (𝑄,𝑀0) that generates 𝑤 and vice versa.  

It is easy to see that for (𝑄,𝑀0) and (𝑄′, 𝑀0
′) in Figures 1 and 

2.b respectively, ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0) = ℒ𝑜𝑏𝑠

𝒸 (𝑄′, 𝑀0
′); thus, (𝑄,𝑀0) 

is controllable observable equivalent to (𝑄′, 𝑀0
′). 

3. IPN ABSTRACTION 

Several transformation methods have been proposed in 

[Berthelot, 1986], [Murata, 1989] and [Lee-Kwang, 1987], 

which are applicable to general PN. The rules from [Berthelot, 

1986] preserve the paths in the original net that always fire 

consecutively the transitions to be merged by the 

transformation. Whereas the interest in some of the reduction 

rules from [Murata, 1989] and [Lee-Kwang, 1987] is to 

remove unnecessary paths and redundant nodes.  

The above-mentioned transformations do not consider 

properties regarding the controllability of events and 

reachability of observable states. Then, an abstraction 

technique based on a kit of graph rewriting operators 𝒪 for safe 

IPN is proposed in this paper; the aim is to eliminate structural 

redundancies and unnecessary parallel evolutions while 

preserving the observable language and controllable 

observable language with respect to a set of outputs Φ̃. 

3.1 Transformation operators 

A transformation operator 𝓣𝒙 changes a part of a source 

IPN (𝑄,𝑀0) into another one preserving desired properties 

while reducing the number of nodes. The resulting IPN after 

the application of an operator 𝓣𝒙 is denoted as (𝑄,𝑀0)|𝓣𝒙.  

Six transformation operators 𝒪 = {𝒯1, 𝒯2, 𝒯3, 𝒯4, 𝒯5, 𝒯6} are 

presented; every 𝒯𝑥 is illustrated through an example.  

3.1.1 Operator 𝓣𝟏:  post-fusion of transitions 

This operator eliminates a non-measurable place 𝑝  and merges 

the pre-set 𝐵 of  𝑝 with its post-set F; that is, the transitions in 

𝐵 and 𝐹 are substituted by a set of transitions that represent the 

possible firing sequences from a transition in 𝐵 to a transition 

in 𝐹. Then, the original paths are recorded as transition 

sequences in the new transitions of the abstracted net. 

Definition 10. Operator  𝒯1. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) 
be an ordinary and safe IPN. The operator 𝓣𝟏 is applicable to 
(𝑄,𝑀0) if there exist a non-measurable place 𝑝 ∈ 𝑃 and sets 

𝐵 = 𝑝 
• , 𝐹 = 𝑝• ⊆ 𝑇 such that: 

i. 𝐵 ∩ 𝐹 = ∅,           𝑝 ∉ 𝐵 
•  𝑎𝑛𝑑 𝑝 ∉ 𝐹• 

ii. 𝐹 
• = {𝑝},            The only input of 𝐹 is 𝑝 

iii. 𝐹• ≠ ∅,             𝐹 has at least one output place 

iv. (|𝐵| = 1) ∨ (|𝐹| = 1) 𝐵 or 𝐹 has only one transition 

v. 𝑀0(𝑝) = 0,          𝑝 is initially unmarked 

vi. 𝑝 ∉ 𝑃𝜑,     𝑝 is not a measurable place 

vii. One of the following conditions holds: 

vii.1. 𝐵 
• ∩ 𝑃𝜑 = ∅, 𝐵

• = {𝑝} and either vii.1.1 or  

                  vii.1.2 is fulfilled 

vii.1.1. (𝐵 ∪ 𝐹) ∩ 𝑇𝑈 = ∅ and  

  ∀𝑡 ∈ 𝐵, ∀𝑡′ ∈ ((( 𝑡 
• )•\{𝑡}) ∩ 𝑇𝑈); 𝑡

′
 
• ⊆ 𝑡 

•   

vii.1.2. 𝐹 ⊆ 𝑇𝑈 𝑎𝑛𝑑 |𝐹| = 1 

vii.2. 𝐹• ∩ 𝑃𝜑 = ∅,(𝐵•\{𝑝𝑖})
• ∩ 𝑇𝑈 = ∅, 𝐵• ∩ 𝐹• = ∅ and 

(vii.2.1. or vii.2.2. ) 

vii.2.1. (𝐵 ∪ 𝐹 ∪ 𝐹••) ∩ 𝑇𝑈 = ∅  

vii.2.2. 𝐹 ⊆ 𝑇𝑈 , |𝐹| = 1 

therefore, (𝑄,𝑀0) can be transformed into (𝑄,𝑀0)|𝓣𝟏 after the 

application of the following steps: 

 



 

 

     

 

1. ∀𝑡𝑖 ∈ 𝑝 
• , ∀𝑡𝑗 ∈ 𝑝

• 

1.1. 𝑇 = 𝑇 ∪ {𝑡𝑘} 

1.2. ∀𝑝𝑞 ∈ 𝑡𝑖 
• , 𝐼(𝑝𝑞 , 𝑡𝑘) ← 1 

1.3. ∀𝑝𝑠 ∈ (𝑡𝑖
•\𝑝 ∪ 𝑡𝑗

•), 𝑂(𝑝𝑠, 𝑡𝑘) ← 1 

1.4. 𝜆(𝑡𝑘) ← 𝜆(𝑡𝑖) ∙ 𝜆(𝑡𝑗)                                                         

2. 𝑇 ← 𝑇\( 𝑝 
• ∪ 𝑝•) 

3. 𝑃 ← 𝑃\{𝑝} 

Notice that 𝜆(𝑡𝑘) created in step 1.4 is the concatenation of the 

labels of the merged transitions. 

The conditions from i to iii are sufficient to preserve liveness 

and safeness; they are equivalent to those in [Berthelot, 1986] 

when the conditions are restricted to safe Petri nets. The 

condition iv is needed to assure that every application of 𝒯1 
always reduces the number of nodes of the original IPN. The 

application conditions v and vi are needed to preserve the 

initial marking and the measurable places of interest. 

Conditions in vii are necessary to preserve the observable and 

controllable observable languages from the original IPN.  

Example 3. Fig. 3.a shows an IPN that satisfies 𝐵 
• ∩ 𝑃𝜑 =

∅, 𝐵• = {𝑝1}, it also satisfies conditions vii.1.1 and vii.1.2 

respectively. The transformed IPN is shown in figure 3.b. The 

dashed places and arrows represent structural conditions that 

are not allowed for applying the operator 𝒯1. 

 
Fig. 3. 𝑎) IPN (𝑄,𝑀0) satisfying vii.1.1.  𝑏) (𝑄,𝑀0)|𝒯1. 

3.1.2. Operator 𝓣𝟐:  pre-fusion of transitions 

Alike to 𝒯1, this operator merges the single transition 𝑏 in the 

pre-set of a non measurable place 𝑝, with the set of 

transitions 𝐹 of the post-set of 𝑝, when the enabling of any 

transition in 𝐹 cannot occur before the firing of 𝑏.  

Definition 11. Operator 𝒯2. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) 
be an ordinary and safe IPN. The transformation operator 𝓣𝟐 

is applicable to (𝑄,𝑀0) if there exist a place 𝑝 ∈ 𝑃, a transition 

𝑏 ∈ 𝑇 and a set 𝐹 = 𝑝• ⊆ 𝑇 such that: 

i. 𝑝 
• = {𝑏},   The only input of 𝑝 is 𝑏 

ii. 𝑏• = {𝑝},   The only output of 𝑏 is 𝑝 

iii. 𝑏 
• ≠ ∅,  𝑏 has at least an input place 

iv. 𝑏 ∉ 𝐹,  𝑏 is not an output of 𝑝 

v. 𝑀0(𝑝) = 0,     𝑝 is initially unmarked 

vi. ( 𝑏 
• )• = {𝑏},    𝑏 does not share its input places 

vii. 𝑝 ∉ 𝑃𝜑,         𝑝 is not a measurable place 

viii. 𝑏 
• ∩ 𝑃𝜑 = ∅ and one of the following conditions:  

     viii.1.      ({𝑏} ∪ 𝐹) ∩ 𝑇𝑈 = ∅    
     viii.2.      𝐹 ∩ 𝑇𝑈 ≠ ∅, 𝑏 ∈ 𝑇𝑈 𝑎𝑛𝑑 (𝐹 ∩ 𝑇𝑈) 

• = {𝑝}  
then, (𝑄,𝑀0) is transformed into (𝑄,𝑀0)|𝓣𝟐 after the 

application of the following steps: 

1. ∀𝑡𝑖 ∈ 𝑝
• 

1.1. 𝑇 = 𝑇 ∪ {𝑡𝑘} 
1.2. 𝜆(𝑡𝑘) ← 𝜆(𝑏)𝜆(𝑡𝑖)  
1.3. ∀𝑝𝑟 ∈ ( 𝑡𝑖 

• \{𝑝} ∪ 𝑏 
• ), 𝐼(𝑝𝑟 , 𝑡𝑘) ← 1 

1.4. ∀𝑝𝑞 ∈ 𝑡𝑖
•, 𝑂(𝑝𝑞 , 𝑡𝑘) ← 1 

2. 𝑇 ← 𝑇\({𝑏} ∪ 𝑝•) 
3. 𝑃 ← 𝑃\{𝑝} 

Similarly to 𝒯1, the application conditions from i to vi are 

sufficient to preserve liveness and safeness, since they are 

equivalent to those in [Berthelot, 1986] when the conditions 

are restricted to ordinary and safe Petri nets. Conditions vii and 

viii are necessary to preserve the observable language and 

controllable observable language from the original IPN.  

Example 4. In the IPN shown in Figure 4, the place 𝑝1 is 

removed after the application of the operator 𝒯2, since the 

conditions  𝐵 
• ∩ 𝑃𝜑 = ∅ and viii.1 are satisfied. The dashed 

places and arrows represent some structures not allowed. 

 

Fig. 4. 𝑎) IPN (𝑄,𝑀0) satisfying viii.1. 𝑏) (𝑄,𝑀0)|𝒯2. 

3.1.3. Operator 𝓣𝟑:  parallel place removal 

This transformation operator removes a non measurable place 

𝑝 in the Petri net, when there exist another place that has the 

same pre-set and post-set than 𝑝, such that the initial marking 

assigns the same number of tokens to them.  

Definition 12. Operator 𝒯3. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) 
be an ordinary and safe IPN. The transformation operator 𝓣𝟑 

is applicable to (𝑄,𝑀0) if there exist non-measurable 

places 𝑝, 𝑟 ∈ 𝑃 where 𝑝 ≠ 𝑟, such that: 

i. 𝑝 
• = 𝑟 

• ,  
ii. 𝑝• = 𝑟•, 

iii. 𝑀0(𝑝) = 𝑀0(𝑟), 
iv. 𝑝 ∉ 𝑃𝜑 𝑜𝑟 𝑟 ∉ 𝑃𝜑. 

then, (𝑄,𝑀0) is transformed into (𝑄,𝑀0)|𝓣𝟑 after applying the 

update: 𝑖𝑓 𝑝 ∈ 𝑃𝜑  𝑡ℎ𝑒𝑛  𝑃 ← 𝑃\{𝑟} 𝑒𝑙𝑠𝑒 𝑃 ← 𝑃\{𝑝}.  

It is easy to see that this operator preserves liveness and 

safeness of the PN. Furthermore, this transformation does not 

alter the firing sequences, since no transition is ever removed 

and for every reachable marking, both 𝑟 and 𝑝 have the same 

number of tokens.  

Example 5. Figure5.a shows an IPN (𝑄,𝑀0), where the places 

𝑝5 and 𝑝6 are parallel to 𝑝2 and 𝑝3 respectively. Figure 5.b 

shows (𝑄,𝑀0)|𝒯3, the resulting IPN after the application of the 

operator 𝒯2, where the non measurable parallel places 𝑝5 and 

𝑝6 are eliminated. 

 

 



 

 

     

 

 

Fig. 5. 𝑎) IPN (𝑄,𝑀0). 𝑏) (𝑄,𝑀0)|𝒯3. 

3.1.4. Operator 𝓣𝟒:  identical transition removal 

The identical transition removal operator deletes a controllable 

transition when there exists another transition with the same 

pre-set and post-set, because the firing of either one will lead 

to the same marking. If one transition is not controllable, then 

the controllable one is eliminated. This transformation 

operator preserves liveness and safeness of the IPN. 

Definition 13.  Operator 𝒯4. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) 
be an ordinary and safe IPN. The transformation operator 𝓣𝟒 

is applicable to (𝑄,𝑀0) if there exist transitions 𝑡, 𝑦 ∈ 𝑇, 𝑡 ≠
𝑦 such that: 

i. 𝑡 
• = 𝑦 

• ,  
ii. 𝑡• = 𝑦• 

iii. 𝑡 ∉ 𝑇𝑈 or 𝑦 ∉ 𝑇𝑈 

(𝑄,𝑀0) is transformed into (𝑄,𝑀0)|𝓣𝟒 after the application of 

the following step: 

𝐼𝑓 𝑡 ∉ 𝑇𝑈  𝑡ℎ𝑒𝑛  𝑇 ← 𝑇\{𝑡}  𝑒𝑙𝑠𝑒 𝑇 ← 𝑇\{𝑦}  

Example 6. Figure 6.a shows an IPN (𝑄,𝑀0), where the 

transition 𝑡4 is redundant with respect to 𝑡1. Fig. b shows the 

resulting IPN after the application of the operator 𝒯4, where the 

identical transition  𝑡4 is removed. 

 
Fig. 6. 𝑎) IPN (𝑄,𝑀0). 𝑏) (𝑄,𝑀0)|𝒯4. 

3.1.5. Operator 𝓣𝟓:  self-loop places removal  

The transformation operator 𝒯5 removes an initially marked 

self-loop place when it is non-measurable. 

Definition 14. Transformation operator 𝒯5. Let (𝑄,𝑀0) =
(𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an ordinary and safe IPN. The 

transformation operator 𝓣𝟓 is applicable to (𝑄,𝑀0) if there 

exist a non-measurable place 𝑝 ∈ 𝑃 and transition 𝑡 ∈ 𝑇 such 

that: 

i. 𝑝 
• = 𝑝•,  

ii. 𝑀0(𝑝) = 1, 

iii. 𝑝 ∉ 𝑃𝜑 

iv. |𝑃| > 1 
(𝑄,𝑀0) is transformed into (𝑄,𝑀0)|𝓣𝟓 after the application of 

the following step:  𝑃 ← 𝑃\{𝑝} 

Is easy to see that this transformation operator preserves 

liveness and keeps the PN safe. Since no transition is removed, 

this transformation does not alter the firing sequences. 

Example 7. Figure 7 shows two IPN representing the original 

IPN (a) and the resulting IPN after the application of the 

transformation operator 𝒯5(b); the initially marked non 

measurable self-loop place 𝑝3 is eliminated. 

 
Fig. 7. 𝑎) IPN (𝑄,𝑀0)  𝑏) (𝑄,𝑀0)|𝒯5. 

3.1.6. Operator 𝓣𝟔: self-loop transitions removal 

The self-loop transition removal transformation operator 

eliminates a self-loop transition when it is controllable. 

Definition 15. Transformation operator 𝓣𝟔. Let (𝑄,𝑀0) =
(𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an ordinary and safe IPN. The 

transformation operator 𝓣𝟔 is applicable to (𝑄,𝑀0) if there 

exist a transition 𝑡 ∈ 𝑇, and a non-measurable place 𝑝 ∈ 𝑃 

such that: 

i. 𝑡 
• = 𝑡• = {𝑝} 

ii.  𝑡 ∉ 𝑇𝑈 
(𝑄,𝑀0) is transformed into (𝑄,𝑀0)|𝓣𝟔 after the application of 

the following step: 𝑇 ← 𝑇\{𝑡} 

A self-loop transition can be removed because its firing leads 

to the same marking; then it is not useful for the reachability 

analysis. The constraint regarding the controllable transitions 

is held to preserve the controllability of the IPN firing 

sequences. This transformation also preserves liveness and 

safeness of the transformed IPN.  

Example 8. In Figure 8 it is shown two IPN representing the 

original IPN (a) and the resulting IPN after the application of 

the transformation operator 𝒯6 (𝑏), where the controllable self-

loop transitions 𝑡3 and 𝑡5 are removed. 

 
Fig. 8. a) IPN (𝑄,𝑀0). 𝑏) (𝑄,𝑀0)|𝒯6. 

After the application of the operators, the incidence matrix 

changes. After removing a place 𝑝𝑖 the i-th column of the 

matrix 𝜑 is removed. Similarly, for a transition tj the  j-th row 

is removed. 

3.2. Properties of the model transformed by the operators 

As mentioned in subsection 3.1, all the operators preserve 

liveness and safeness. Besides safeness, in order to apply a 

transformation operator to an already transformed IPN it is 

necessary that the resulting IPN remains ordinary.  



 

 

     

 

Proposition 1. Let (𝑄,𝑀0) be an ordinary and safe IPN and 

let (𝑄′, 𝑀0
′) be the resulting safe IPN after the application of 

the transformation operators 𝒯𝑥 ∈ 𝒪 to (𝑄,𝑀0). (𝑄
′, 𝑀0

′) is an 

ordinary Petri net. 

Now, we can state that the abstraction obtained by the 

application of all the transformation operators 𝒯𝑥 ∈ 𝒪 

preserves the observable and controllable output languages. 

This is summarised in the next statement: 

Proposition 2. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an 

ordinary and safe IPN and let (𝑄′, 𝑀0
′) =

(𝑁′, 𝑀0
′ , Σ′, Φ′, 𝜆′, 𝜑′) be the resulting IPN after the 

application of the transformation operator 𝒯𝑥 ∈ 𝒪  to (𝑄,𝑀0), 
for x=1, 2, … 6. 

i) (𝑄,𝑀0) is observable equivalent to (𝑄′, 𝑀0
′) 

(𝑖. 𝑒. ℒ𝑜𝑏𝑠(𝑄,𝑀0) = ℒ𝑜𝑏𝑠(𝑄
′, 𝑀0

′)). 

ii) (𝑄,𝑀0) is controllable observable equivalent to (𝑄′, 𝑀0
′) 

(𝑖. 𝑒. ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0) = ℒ𝑜𝑏𝑠

𝒸 (𝑄′, 𝑀0
′)). 

The proofs are omitted for space reasons; they can be found in 

[Chavarin, 2017]. Indeed, they are twelve proofs regarding the 

application conditions and the transforming steps for every 

𝒯𝑥 ∈ 𝒪 and the languages ℒ𝑜𝑏𝑠 and ℒ𝑜𝑏𝑠
𝒸 . 

4. AN IPN REDUCTION SCHEME 

As described in [Silva, 1985], there are two ways to apply the 

transformation operators: a predefined strategy or a specific 

strategy. The predefined strategy consists in defining a priori 

the order of the application of each transformation operator; 

this approach allows handling complex structures efficiently.. 

In contrast, the specific strategy consists in selecting stepwise, 

the application of the next operator; this procedure must be 

driven by an expert. 

4.1 Strategy 

Here, we propose as a convenient strategy, to apply first the 

transformation operators 𝒯6 and 𝒯5, because they may yield 

structures in which the transformation operators 𝒯1-𝒯4 can be 

applied. After that, the operators 𝒯3 and 𝒯4 can be applied to 

remove redundant nodes. Finally the operators 𝒯1 and 𝒯2 can 

be applied since they produce more significant reductions.  

This predefined strategy has shown experimentally to obtain 

faster the abstract IPN [Chavarin, 2017]. It is summarised 

below as a procedure ; 𝒯x
∗ denotes the application of 

𝒯𝑥 repeatedly until there is no more transformation.  

: Do { 𝒯6
∗; 𝒯5

∗; 𝒯4
∗; 𝒯3

∗; 𝒯2
∗; 𝒯1

∗} while a 𝒯𝑥 can be applied. 

The complexity of the procedure for applying the kit of 

transformation operators is polynomial-time on the size of the 

Petri net.  

The application of any operator of the kit reduces the net at 

least by one node. The number of possible transformations is 

finite. Furthermore, all the transformations operators are local. 

If one operator in  {𝒯1, 𝒯2, 𝒯4, 𝒯6} is applied, the reachability 

graph decreases, whereas if 𝒯3 or 𝒯5 are applied, the marking 

size is reduced but the size of the reachability graph is not 

decreased; however, they are needed to unlock new possible 

applications of other operators. 

4.2 Properties of the abstract model 

Theorem 1. Let (𝑄,𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) be an ordinary 

and safe IPN and let (𝑄′, 𝑀0
′) = (𝑁′, 𝑀0

′ , Σ′, Φ′, 𝜆′, 𝜑′) be the 

resulting ordinary and safe IPN after the application of the 

procedure  to (𝑄,𝑀0). 
a) (𝑄,𝑀0) is observable equivalent to (𝑄′, 𝑀0

′) 

(𝑖. 𝑒. ℒ𝑜𝑏𝑠(𝑄,𝑀0) = ℒ𝑜𝑏𝑠(𝑄
′, 𝑀0

′)). 

b) (𝑄,𝑀0) is controllable observable equivalent to (𝑄′, 𝑀0
′) 

 (𝑖. 𝑒. ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0) = ℒ𝑜𝑏𝑠

𝒸 (𝑄′, 𝑀0
′)). 

Proof: By Proposition 2, we have that the application of each 

transformation operator to a safe IPN will preserve both the 

observable language and the controllable observable language. 

Then, applying consecutively any transformation in any order, 

in particular that stablished by , the observable languages will 

be preserved. ∎ 

Observe that Theorem 1 ensures that for every controllable 

observable word 𝑤 ∈ ℒ𝑜𝑏𝑠
𝒸 (𝑄,𝑀0), there exist a controllable 

firing sequence 𝜎 ∈ ℒ(𝑄′, 𝑀0
′) that generates 𝑤. 

Is easy to see that the firing sequences in a resulting IPN model 
(𝑄′, 𝑀0

′), after the application of any of the operators 𝒯3-𝒯6 to 

an IPN (𝑄,𝑀0), is a firing sequence of  ℒ(𝑄,𝑀0). For the case 

of the operators 𝒯1 and 𝒯1, each transition 𝜏𝑏𝑥 resulting of 

fusing transitions 𝑡𝑏𝑡𝑥 by the application of the operator 𝒯1 
or 𝒯1 to (𝑄,𝑀0), represents the firing of the transition 𝑡𝑏 

followed  by 𝑡𝑥, thus every firing sequence in ℒ(𝑄′, 𝑀0
′) 

represents a firing sequence in ℒ(𝑄,𝑀0).  

Example 9. Let the IPN (𝑄𝑃, 𝑀0) = (𝑁,𝑀0, Σ, Φ, 𝜆, 𝜑) shown 

in Figure 9 representing a manufacturing process, T𝑈 =
{𝑡10, 𝑡11, 𝑡12, 𝑡14, 𝑡22}, 𝑇𝐶 = 𝑇\𝑇𝑈, 𝑃𝜑 = 𝑃 and 𝑃𝜑̅̅ ̅ = ∅. The 

measurable places of interest are 𝑃�̃� = {𝑝4, 𝑝11, 𝑝12, 𝑝19}. The 

output function �̃� that considers only the output symbols of 

interest ΦR ∈ Φ with respect to the reference model (𝑄𝑅, 𝑀0
𝑅) 

is    

�̃� = [

0
0
0
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] 

 

Fig. 9. IPN process model of Example 9.  

Now, by the iterative application of the operator 𝒯1 the places 

𝑝1, 𝑝10, 𝑝14, 𝑝15, 𝑝21, 𝑝22, 𝑝23, 𝑝3 and 𝑝8 are removed, the 

resulting IPN after this transformation is represented by the 

IPN depicted in Figure 10. 

After that, the redundant nodes 𝒑𝟔, 𝒕𝟕𝒕𝟐𝟎 and 𝒑𝟏𝟔 are removed 

by the application of the operators 𝓣𝟓, 𝓣𝟒 and 𝓣𝟑 respectively, 

the resulting IPN is shown in Figure 11. 



 

 

     

 

 

Fig.10: Resulting IPN after 𝒯1
∗. 

 

Fig. 11: IPN after the removal of nodes 𝑝6, 𝑡7, 𝑡20, and 𝑝16. 

The removal of the redundant nodes create new application 

cases; the nodes 𝑝2 and 𝑝0 are removed by the operators 𝒯2 and 

𝒯1 respectively. After that, the self-loop transition 𝑡21𝑡22𝑡3𝑡2𝑡4 
and the self-loop place 𝑝9 are removed by the operators 𝒯6 and 

𝒯5 respectively. Those were the final possible reductions by , 

the resulting IPN representing the abstract model (𝑄𝐴, 𝑀0
𝐴) of 

the processs (𝑄𝑃, 𝑀0) with respect to the output symbols of 

interest, is shown in Figure 12. 

 

Fig. 12: Resulting IPN from (𝑄𝑃, 𝑀0) of Example 9. 

It is easy to verify that both the observable language and the 

controllable observable language are preserved. Furthermore, 

the reachability set is highly decreased: the reachability graph 

of the original IPN has 315 states with 890 arcs, while that of 

the abstract model has 16 states with 32 arcs. 

The abstract IPN of this example (and many others) has been 

obtained with the help a software developed using the 

proposed technique. This is reported in [Chavarin, 2017], 

where the abstract models are used in regulation control 

scheme. 

4. CONCLUSIONS 

A model abstraction technique for safe Interpreted Petri Nets 

(IPN) has been proposed. The technique is oriented to the 

analysis and control of Discrete Event Systems (DES); it can 

be used to simplify the controllability analysis and the 

controller synthesis in a regulation control framework. The 

abstraction method includes a kit of local transformation 

operators that simplifies stepwise the structure of an initial IPN 

by reducing its size progressively. The abstraction is done with 

respect to a subset of observable places of interest, by 

preserving the controllability feature of the paths in the 

transformed structures. Thus, the abstracted IPN preserves the 

observable language and the controllable observable language 

with respect to the original IPN. 
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