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Tension Distribution Algorithm for Planar
Mobile Cable-Driven Parallel Robots

Tahir Rasheed1, Philip Long2, David Marquez-Gamez3, and Stéphane Caro4

Abstract Cable-Driven Parallel Robots (CDPRs) contain numerous advantages over
conventional manipulators mainly due to their large workspace. Reconfigurable
Cable-Driven Parallel Robots (RCDPRs) can increase the workspace of classical
CDPRs by modifying the geometric architecture based on the task feasibility. This
paper introduces a novel concept of RCDPR, which is a Mobile CDPR (MCDPR)
mounted on multiple mobile bases allowing the system to autonomously reconfigure
the CDPR. A MCDPR composed of two mobile bases and a planar CDPR with four
cables and a point mass is studied as an illustrative example. As the mobile bases
containing the exit points of the CDPR are not fixed to the ground, the static and
dynamic equilibrium of the mobile bases and the moving-platform of the MCDPR
are firstly studied. Then, a real time Tension Distribution Algorithm (TDA) that
computes feasible and continuous cable tension distribution while guaranteeing the
static stability of mobile bases and the equilibrium of the moving-platform of a n= 2
Degree of Freedom (DoF) CDPR driven by n+2 cables is presented.
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1 Introduction

A Cable-Driven Parallel Robot (CDPR) is a type of parallel robot whose moving-
platform is connected to the base with cables. The lightweight properties of the
CDPR makes them suitable for multiple applications such as constructions [1], [10],
industrial operations [3], rehabilitation [11] and haptic devices [4].

A general CDPR has a fixed cable layout, i.e. fixed exit points and cable config-
uration. This fixed geometric structure may limit the workspace size of the manip-
ulator due to cable collisions and some extrernal wrenches that cannot be accepted
due to the robot configuration. As there can be several configurations for the robot
to perform the prescribed task, an optimized cable layout is required for each task
considering an appropriate criterion. Cable robots with movable exit and/or anchor
points are known as Reconfigurable Cable-Driven Parallel Robots (RCDPRs). By
appropriately modifying the geometric architecture, the robot performance can be
improved e.g. lower cable tensions, larger workspace and higher stiffness. The re-
cent work on RCDPR [2, 3, 9, 12, 15] proposed different design strategies and algo-
rithms to compute optimized cable layout for the required task, while minimizing
appropriate criteria such as the robot energy consumption, the robot workspace size
and the robot stiffness. However, for most existing RCDPRs, the reconfigurability
is performed either discrete and manually or continuously, but with bulky reconfig-
urable systems.

This paper deals with the concept of Mobile Cable-Driven Parallel Robots
(MCDPRs). The idea for introducing MCDPRs is to overcome the manual and dis-
crete reconfigurability of RCDPRs such that an autonomous reconfiguration can be
achieved. A MCDPR is composed of a classical CDPR with m cables and a n degree-
of-freedom (DoF) moving-platform mounted on p mobile bases. Mobile bases are
four-wheeled planar robots with two-DoF translational motions and one-DoF rota-
tional motion. A concept idea of a MCDPR is illustrated in Fig. 1 with m = 8, n = 6
and p = 4. The goal of such system is to provide a low cost and versatile robotic
solution for logistics using a combination of mobile bases and CDPR. This system
addresses an industrial need for fast pick and place operations while being easy
to install, keeping existing infrastructures and covering large areas. The exit points
for the cable robot is associated with the position of its respective mobile bases.
Each mobile base can navigate in the environment thus allowing the system to alter
the geometry of the CDPR. Contrary to classical CDPR, equilibrium for both the
moving-platform and the mobile bases should be considered while analyzing the
behaviour of the MCDPR.

A Planar Mobile Cable-Driven Parallel Robot with four cables (m = 4), a point
mass (n = 2) and two mobile bases (p = 2), shown in Fig. 2, is considered through-
out this paper as an illustrative example. This paper is organized as follows. Sec-
tion 2 presents the static equilibrium conditions for mobile bases using the free
body diagram method. Section 3 introduces a modified real time Tension Distri-
bution Algorithm (TDA), which takes into account the dynamic equilibrium of the
moving-platform and the static equilibrium of the mobile bases. Section 4 presents
the comparison between the existing and modified TDA on the equilibrium of the
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Fig. 1: Concept idea for Mobile Cable-Driven Parallel Robot (MCDPR) with eight
cables (m = 8), a six degree-of-freedom moving-platform (n = 6) and four mobile
bases (p = 4)

MCDPR under study. Finally, conclusions are drawn and future work is presented
in Section 5.

2 Static Equilibrium of Mobile Bases

This section aims at analyzing the static equilibrium of the mobile bases of MCD-
PRs. As both the mobile bases should be in equilibrium during the motion of the
end-effector, we need to compute the reaction forces generated between the ground
and the wheels of the mobile bases. Figure 2 illustrates the free body diagram for
the jth mobile base. ui j denotes the unit vector of the ith cable attached to the jth
mobile base, i, j = 1, 2. ui j is defined from the point mass P of the MCDPR to the
exit point Ai j. Using classical equilibrium conditions for the jth mobile base p j, we
can write:

∑ f = 0⇒ m jg+ f1 j + f2 j + fr1 j + fr2 j = 0 (1)

All the vectors in Eq. (1) are associated with the superscript x and y for respec-
tive horizontal and vertical axes. Gravity vector is denoted as g = [0 − g]T where
g = 9.8 m.s−2, f1 j = [ f x

1 j f y
1 j]

T and f2 j = [ f x
2 j f y

2 j]
T are the reaction forces due to

cable tensions onto the mobile base p j, C1 j and C2 j are the front and rear wheels con-
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Fig. 2: Point mass Mobile Cable-Driven Parallel Robot with p = 2, n = 2 and m = 4

tact points having ground reaction forces fr1 j = [ f x
r1 j f y

r1 j]
T and fr2 j = [ f x

r2 j f y
r2 j]

T ,
respectively. In this paper, wheels are assumed to be simple support points and the
friction between those points and the ground is supposed to be high enough to pre-
vent the mobile bases from sliding. The moment at a point O about z-axis for the
mobile base to be in equilibrium is expressed as:

Mz
O = 0⇒ gT

j ET m jg+aT
1 jE

T f1 j +aT
2 jE

T f2 j + cT
1 jE

T fr1 j + cT
2 jE

T fr2 j = 0 (2)

with

E =

[
0 −1
1 0

]
(3)

a1 j = [ax
1 j ay

1 j]
T and a2 j = [ax

2 j ay
2 j]

T denote the Cartesian coordinate vectors of the
exit points A1 j and A2 j , c1 j = [cx

1 j cy
1 j]

T and c2 j = [cx
2 j cy

2 j]
T denote the Cartesian
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coordinate vectors of the contact points C1 j and C2 j. g j = [gx
j gy

j]
T is the Cartesian

coordinate vector for the center of gravity G j of the mobile base p j. The previous
mentioned vector are all expressed in the base frame FB. Solving simultaneously
Eqs. (1) and (2), the vertical components of the ground reaction forces take the
form:

f y
r1 j =

m jg(cx
2 j−gx

j)+ f y
1 j(a

x
1 j− cx

2 j)+ f y
2 j(a

x
2 j− cx

2 j)− f x
1 j ay

1 j− f x
2 j ay

2 j

cx
2 j− cx

1 j
(4)

f y
r2 j = m jg− f y

1 j− f y
2 j− f y

r1 j (5)

Equations (4) and (5) illustrate the effect of increasing the external forces (cable
tensions) onto the mobile base. Indeed, the external forces exerted onto the mobile
base may push the latter towards frontal tipping. It is apparent that the higher the
cable tensions, the higher the vertical ground reaction force f y

r1 j and the lower the
ground reaction force f y

r2 j . There exists a combination of cable tensions such that
f y
r2 j = 0. At this instant, the rear wheel of the jth mobile base will lose contact with

the ground at point C2 j, while generating a moment MC1 j about z-axis at point C1 j:

Mz
C1 j = (g j− c1 j)

T ET m jg+(a1 j− c1 j)
T ET f1 j +(a2 j− c1 j)

T ET f2 j (6)

Similarly for the rear tipping f y
r1 j = 0, the jth mobile base will lose the contact with

the ground at C1 j and will generate a moment Mc2 j about z-axis at point C2 j:

Mz
C2 j = (g j− c2 j)

T ET m jg+(a1 j− c2 j)
T ET f1 j +(a2 j− c2 j)

T ET f2 j (7)

As a consequence, for the first mobile base p1 to be always stable, the moments
generated by the external forces should be counter clockwise at point C11 while
it should be clockwise at point C21. Therefore, the stability conditions for mobile
base p1 can be expressed as:

Mz
C11 ≥ 0 (8)

Mz
C21 ≤ 0 (9)

Similarly, the stability constraint conditions for the second mobile base p2 are ex-
pressed as:

Mz
C12 ≤ 0 (10)

Mz
C22 ≥ 0 (11)

where Mz
C12 and Mz

C22 are the moments of the mobile base p2 about z-axis at the
contact points C12 and C22, respectively.
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3 Real-time Tension Distribution Algorithm

In this section an existing Tension Distribution Algorithm (TDA) defined for classi-
cal CDPRs is adopted to Mobile Cable-driven Parallel Robots (MCDPRs). The ex-
isting algorithm, known as barycenter/centroid algorithm is presented in [7, 8]. Due
to its geometric nature, the algorithm is efficient and appropriate for real time appli-
cations [5]. First, the classical Feasible Cable Tension Domain (FCTD) is defined
for CDPRs based on the cable tension limits. Then, the stability (static equilibrium)
conditions for the mobile bases are considered in order to define a modified FCTD
for MCDPRs. Finally, a new TDA aiming at obtaining the centroid/barycenter of
the modified FCTD is presented.

3.1 FCTD based on cable tension limits

The dynamic equilibrium equation of a point mass platform is expressed as:

Wtp +we = 0 =⇒ tp =−W+we (12)

where W = [u11 u21 u12 u22] is n×m wrench matrix mapping the cable tension
space defined in Rm onto the available wrench space defined in R(m−n). we denotes
the external wrench exerted onto the moving-platform. W+ is the Moore Penrose
pseudo inverse of the wrench matrix W. tp = [tp11 tp21 tp12 tp22]

T is a particular
solution (Minimum Norm Solution) of Eq. (12). Having redundancy r = m−n = 2,
a homogeneous solution tn can be added to the particular solution tp such that:

t = tp + tn =⇒ t =−W+we +Nλλλ (13)

where N is the m× (m− n) null space of the wrench matrix W and λλλ = [λ1 λ2]
T

is a (m−n) dimensional arbitrary vector that moves the particular solution into the
feasible range of cable tensions. Note that the cable tension ti j associated with the
ith cable mounted onto the jth mobile base should be bounded between a minimum
tension t and a maximum tension t depending on the motor capacity and the trans-
mission system at hand. According to [5,7], there exists a 2-D affine space Σ defined
by the solution of Eq. (12) and another m-dimensional hypercube Ω defined by the
feasible cable tensions:

Σ = {t |Wt = we} (14)

Ω = {t | t ≤ t ≤ t} (15)

The intersection between these two spaces amounts to a 2-D convex polygon also
known as feasible polygon. Such a polygon exists if and only if the tension dis-
tribution admits a solution at least that satisfies the cable tension limits as well as
the equilibrium of the moving-platform defined by Eq. (12). Therefore, the feasible
polygon is defined in the λλλ -space by the following linear inequalities:
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t− tp ≤ Nλλλ ≤ t− tp (16)

The terms of the m× (m−n) null space matrix N are defined as follows:

N =


n11
n21
n12
n22

 (17)

where each component ni j of the null space N in Eq. (17) is a (1×2) row vector.

3.2 FCTD based on the stability of the mobile bases

This section aims at defining the FCTD while considering the cable tension limits
and the stability conditions of the mobile bases. In order to consider the stability of
the mobile bases, Eqs. (8 - 11) must be expressed into the λλλ -space. The stability
constraint at point C11 from Eq. (8) can be expressed as:

0 ≤ (g1− c11)
T ET m1g+(a11− c11)

T ET f11 +(a21− c11)
T ET f21 (18)

fi j is the force applied by the ith cable attached onto the jth mobile base. As fi j is
opposite to ui j (see Fig. 2), from Eq. (13) fi j can be expressed as:

fi j =−[tpi j +ni jλλλ ] ui j (19)

Substituting Eq. (19) in Eq. (18) yields:

(c11−g1)
T ET m1g ≤ (c11−a11)

T ET [tp11+n11λλλ ]u11+(c11−a21)
T ET [tp21+n21λλλ ]u21

(20)
MC11 ≤ (c11−a11)

T ET [n11λλλ ]u11 +(c11−a21)
T ET [n21λλλ ]u21 (21)

Term [ni jλλλ ]ui j is the mapping of homogeneous solution tni j for the ith cable carried
by the jth mobile base into the Cartesian space. MC11 represents the lower bound
for the constraint (8) in the λλλ -space:

MC11 = (c11−g1)
T ET m1g+(a11− c11)

T ET tp11 +(a21− c11)
T ET tp21 (22)

Simplifying Eq. (21) yields:

MC11 ≤
[
(c11−a11)

T ET u11 (c11−a21)
T ET u21

][n11
n21

][
λ1
λ2

]
(23)

Equation (23) can be written as:

MC11 ≤ nC11λλλ (24)
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where nC11 is a 1×2 row vector. Similarly the stability constraint at point C21 from
Eq. (9) can be expressed as:

nC21λλλ ≤MC21 (25)

where:

MC21 = (c21−g1)
T ET m1g+(a11− c21)

T ET tp11 +(a21− c21)
T ET tp21 (26)

nC21 =
[
(c21−a11)

T ET u11 (c21−a21)
T ET u21

][n11
n21

]
(27)

Equations (24) and (25) define the stability constraints of the mobile base p1 in
the λλλ - space for the static equilibrium about frontal and rear wheels. Similarly, the
above procedure can be repeated to compute the stability constraints in the λλλ -space
for mobile base p2. Constraint Eqs. (10) and (11) for point C12 and C22 can be
expressed in the λλλ -space as:

nC12λλλ ≤MC12 (28)

MC22 ≤ nC22λλλ (29)

Considering the stability constraints related to each contact point (Eqs. (24), (25),
(28) and (29)) with the cable tension limit constraints (Eq. (16)), the complete sys-
tem of constraints to calculate the feasible tensions for MCDPR can be expressed
as: [

t− tp
M

]
≤
[

N
Nc

][
λ1
λ2

]
≤
[

t− tp
M

]
(30)

where:

Nc =


nC11
nC21
nC12
nC22

 , M =


MC11
−∞

−∞

MC22

 , M =


∞

MC21
MC12

∞

 , (31)

The terms −∞ and ∞ are added for the sake of algorithm [5] as the latter requires
bounds from both ends. The upper part of Eq. (30) defines the tension limit con-
straints while the lower part represents the stability constraints for both mobile
bases.

3.3 Tracing FCTD into the λλλ -space

The inequality constraints from Eq. (30) are used to compute the feasible tension
distribution among the cables using the algorithm in [5] for tracing the feasible
polygon PI . Each constraint defines a line in the λλλ -space where the coefficients of
λλλ define the slope of the corresponding lines. The intersections between these lines
form a feasible polygon. The algorithm aims to find the feasible combination for
λ1 and λ2 (if it exists), that satisfies all the inequality constraints. The algorithm
can start with the intersection point vi j between any two lines Li and L j where
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Fig. 3: Feasible Polygon considering only tension limit constraints
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Fig. 4: Feasible Polygon considering both tension limit and stability constraints

each intersection point v corresponds to a specific value for λλλ . After reaching the
intersection point vi j, the algorithm leaves the current line L j and follows the next
line Li in order to find the next intersection point vki between lines Lk and Li.

The feasible polygon PI is associated with the feasible index set I, which contains
the row indices in Eq. (30). At each intersection point, the feasible index set is
unchanged or modified by adding the corresponding row index of Eq. (30). It means
that for each intersection point, the number of rows from Eq. (30) satisfied at current
intersection point should be greater than or equal to the number of rows satisfied at
previous visited points. Accordingly, the algorithm makes sure to converge toward
the solution. The algorithm keeps track of the intersection points and updates the
first vertex v f of the feasible polygon, which depends on the update of feasible index
set I. If the feasible index set is updated at intersection point v, the first vertex of the
polygon is updated as v f = v. Let’s consider that the algorithm has reached a point
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vki by first following line L j, then following Li intersecting with line Lk. The feasible
index set Iki at vki should be such that Ii j ⊆ Iki. If index k is not available in Ii j, then
Iki = Ii j ∪ k as the row k is now satisfied. At each update of the feasible index set I,
a new feasible polygon is achieved and the first vertex v f of the polygon is replaced
by the current intersection point. This procedure is repeated until a feasible polygon
(if it exists) is found, which is determined by visiting v f more than once. After
computing the feasible polygon, its centroid, namely the solution furthest away from
all the constraints is calculated. The λλλ coordinates of the centroid is used to calculate
the feasible tension distribution using Eq. (13).

For the given end-effector position in static equilibrium (see Fig. 2), the feasible
polygon PI1 based only on the cable tension limits is illustrated in Fig. 3 while the
feasible polygon PI2 based on the cable tension limits and the stability of the mobile
bases is illustrated in Fig. 4. It can be observed that PI2 is smaller than PI1 and, as a
consequence, their centroids are different.

4 Case Study

The stability of the mobile bases is defined by the position of their Zero Moment
Point (ZMP). This index is commonly used to determine the dynamic stability of the
humanoid and wheeled robots [6,13,14]. It is the point where the moment of contact
forces is reduced to the pivoting moment of friction forces about an axis normal to
the ground. Here the ZMP amounts to the point where the sum of the moments due
to frontal and rear ground reaction forces is null. Once the feasible cable tensions
are computed using the constraints of the modified TDA, the ZMP d j of the mobile
base p j is expressed by the equation:

Mz
d j = M̃z

O− f y
r j d j (32)

where f y
r j is the sum of all the vertical ground reaction forces computed using

Eqs. (4) and (5), Md j is the moment generated at ZMP for the jth mobile base
such that Mz

d j = 0. M̃O is the moment due to external forces, i.e., weight and cable
tensions, except the ground reaction forces at O given by the Eq. (2). As a result
from Eq. (32), ZMP d j will take the form:

d j =
M̃z

O

f y
r j

=
gT

j ET m jg + aT
1 jE

T f1 j + aT
2 jE

T f2 j

f y
r j

(33)

For the mobile base p j to be in static equilibrium, ZMP d j must lie within the contact
points of the wheels, namely,

cx
21 ≤ d1 ≤ cx

11 (34)

cx
12 ≤ d2 ≤ cx

22 (35)
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Fig. 5: (a) Evolution of ZMP for mobile base p1 (b) Cable tension profile

Modified Algorithm for MCDPRs is validated through simulation on a rectangu-
lar test trajectory (green path in Fig. 2) where each corner of the rectangle is a zero
velocity point. A 8 kg point mass is used. Total trajectory time is 10 s having 3 s for
1−2 and 3−4 paths while 2 s for 2−3 and 4−1 paths. The size of each mobile base
is 0.75 m× 0.64 m× 0.7 m. The distance between the two mobile bases is 5 m with
exit points A2 j located at the height of 3 m. The evolution of ZMP for mobile base
p1 is illustrated in Fig. 5a. ZMP must lie between 0 and 0.75, which corresponds to
the normalized distance between the two contact points of the wheels, for the first
mobile base to be stable. By considering only cable tension limit constraints in the
TDA, the first mobile base will tip over the front wheels along the path 3-4 as ZMP
goes out of the limit (blue in Fig. 5a). While considering both cable tension lim-
its and stability constraints, the MCDPR will complete the required trajectory with
the ZMP satisfying Eqs. (34) and (35). Figure 5b depicts positive cable tensions
computed using modified FCTD for MCDPRs.

A video showing the evolution of the feasible polygon as a function of time
considering only tension limit constraints and both tension limits and stability con-
straints can be downloaded at1. This video also shows the location the mobile base
ZMP as well as some tipping configurations of the mobile cable-driven parallel
robot under study.

5 Conclusion

This paper has introduced a new concept of Mobile Cable-Driven Parallel Robots
(MCDPR). The idea is to autonomously navigate and reconfigure the geometric
architecture of CDPR without any human interaction. A new real time Tension Dis-
tribution algorithm is introduced for MCDPRs that takes into account the stability
of the mobile bases during the computation of feasible cable tensions. The proposed
algorithm ensures the stability of the mobile bases while guaranteeing a feasible ca-

1 https://www.youtube.com/watch?v=XmwCoH6eejw
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ble tension distribution. Future work will deal with the extension of the algorithm
to a 6-DoF MCDPR by taking into account frontal as well as sagittal tipping of
the mobile bases and experimental validation thanks to a MCDPR prototype under
construction in the framework of the European ECHORD++ “FASTKIT” project.

Acknowledgements This research work is part of the European Project ECHORD++ “FASTKIT”
dealing with the development of collaborative and mobile cable-driven parallel robots for logistics.
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14. M. Vukobratović and B. Borovac. Zero-moment pointthirty five years of its life. International
Journal of Humanoid Robotics, 1(01):157–173, 2004.

15. X. Zhou, C. P. Tang, and V. Krovi. Analysis framework for cooperating mobile cable robots.
In proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA
2012), pages 3128–3133. IEEE, 2012.


