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NOTES ON TWO KINDS OF SPECIAL VALUES FOR THE BELL POLYNOMIALS OF THE SECOND KIND

In the paper, by methods and techniques in combinatorial analysis and the theory of special functions, the authors discuss two kinds of special values for the Bell polynomials of the second kind for two special sequences, find a relation between these two kinds of special values for the Bell polynomials of the second kind, and derive an identity involving the combinatorial numbers.

Motivation

In [START_REF] Charalambides | Enumerative Combinatorics[END_REF]Definition 11.2] and [2, p. 134, Theorem A], the Bell polynomials of the second kind, denoted by B n,k (x 1 , x 2 , . . . , x n-k+1 ) for n ≥ k ≥ 0, are defined by

B n,k (x 1 , x 2 , . . . , x n-k+1 ) = 1≤i≤n-k+1 i ∈{0}∪N n-k+1 i=1 i i =n n-k+1 i=1 i =k n! n-k+1 i=1 i ! n-k+1 i=1 x i i! i .
For more information on the Bell polynomials of the second kind B n,k , please refer to the monographs and handbooks [START_REF] Charalambides | Enumerative Combinatorics[END_REF][START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition[END_REF][START_REF]NIST Handbook of Mathematical Functions[END_REF] and closely related references therin.

In [1, p. 451], the formulas B 2r,k (0, 2!, . . . , 0, (2r 

)!) = (2r)! k! r -1 k -1 , B 2r-1,k (0,
B 2r,2s (1!, 0, . . . , (2r -1)!, 0) = (2r)! (2s)! r + s -1 2s -1 , B 2r,2s-1 (1!, 0, . . . , (2r -1)!, 0) = 0, B 2r-1,2s-1 (1!, 0, . . . , (2r -1)!, 0) = (2r -1)! (2s -1)! r + s -2 2s -2 , B 2r-1,2s (1! 
, 0, . . . , 0, (2r -1)!) = 0 were stated, but no proof was supplied for them there.

For simplicity, we denote

λ(n, k) = B n,k 0, 2!, 0, 4!, . . . , (n -k + 1)! 1 + (-1) n-k+1 2 and µ(n, k) = B n,k 1!, 0, 3!, 0, . . . , (n -k + 1)! 1 -(-1) n-k+1 2 .
In terms of these notations, the above claims in [1, p. 451] can be restated as

λ(2r, k) = (2r)! k! r -1 k -1 , λ(2r -1, k) = 0, µ(2r, 2s) = (2r)! (2s)! r + s -1 2s -1 , µ(2r, 2s -1) = 0, µ(2r -1, 2s -1) = (2r -1)! (2s -1)! r + s -2 2s -2 , µ(2r -1, 2s = 0.
In this paper, by methods and techniques in combinatorial analysis and the theory of special functions, we will provide alternative proofs for the above six formulas, find a relation between them, and derive an identity involving combinatorial numbers.

Main reults

We first derive an identity involving combinatorial numbers, which will be useful in next proofs of our main results.

Theorem 1. For k ≥ 1 and n ≥ 0, we have

n q=0 (-1) q k + q n q = 1 k k+n k . (2.1) Proof. Let f (x) = n q=0 (-1) q k + q n q x k+q , x ∈ [-1, 1].
Then f (0) = 0 and

f (x) = n q=0 (-1) q n q x k+q-1 = x k-1 n q=0 (-1) q n q x q = x k-1 (1 -x) n .
Integrating from 0 to t ∈ (0, 1] on both sides of the above equality yields

f (t) = t 0 x k-1 (1 -x) n d x = B(t; k, n + 1),
where B(z; a, b) denotes the incomplete beta function, see [3, p. 183]. Therefore, we obtain

f (1) = B(1; k, n + 1) = B(k, n + 1) = Γ(k)Γ(n + 1) Γ(k + n + 1) = (k -1)!n! (k + n)! = 1 k k!n! (k + n)! = 1 k n+k k ,
where B(a, b) and Γ(z) denote the beta function and the classical Euler gamma function respectively, see [3, p. 142] and [START_REF]NIST Handbook of Mathematical Functions[END_REF]Chapter 5]. The formula (2.1) is thus proved. The proof of Theorem 1 is complete.

We are now in a position to state and prove our main results.

Theorem 2. For n ≥ k ≥ 0, we have the relation µ(n, k) n! = λ(n + k, k) (n + k)! (2.2) 
and two explicit formulas

λ(n, k) = 1 + (-1) n 2 n! k! n 2 -1 k -1 (2.3) and µ(n, k) = 1 + (-1) n+k 2 n! k! n+k 2 -1 k -1 . (2.4)
Proof. It is known [START_REF] Comtet | Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition[END_REF][START_REF] Qi | Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers[END_REF] that the quantities

x n = n-1 =0 (x -) = x(x -1) • • • (x -n + 1), n ≥ 1 1, n = 0 and (x) n = n-1 =0 (x + ) = x(x + 1) • • • (x + n -1), n ≥ 1 1, n = 0
are called the falling and rising factorials respectively. In [2, p. 133], it was listed that

1 k! ∞ m=1 x m t m m! k = ∞ n=k B n,k (x 1 , x 2 , . . . , x n-k+1 ) t n n! (2.5)
for k ≥ 0. Hence, we have

∞ n=k λ(n, k) t n n! = 1 k! ∞ m=1 m! 1 + (-1) m 2 t m m! k = 1 k! t 2 1 -t 2 k which is equivalent to ∞ n=0 λ(n + k, k) 1 n+k n t n n! = t 1 -t 2 k . Since the function t 1-t 2 is odd, we derive λ(2r-1, k) = 0. Further computation yields λ(n + k, k) = n + k n lim t→0 d n d t n t 1 -t 2 k = n + k n 1 2 k lim t→0 1 1 -t - 1 1 + t k (n) = n + k n 1 2 k lim t→0 k =0 k 1 1 -t (-1) k- 1 1 + t k-(n) = n + k n 1 2 k k =0 (-1) k-k lim t→0 n q=0 n q 1 1 -t (q) 1 1 + t k-(n-q) = n + k n 1 2 k k =0 (-1) k-k lim t→0 n q=0 n q × -q (-1) q 1 1 -t +q -(k -) n-q 1 1 + t k-+(n-q) = (-1) k 2 k n + k n k =0 (-1) k n q=0 (-1) q n q -q -k n-q = (-1) n+k 2 k n + k n k =0 (-1) k n q=0 (-1) q n q ( ) q (k -) n-q .
In summary, we obtain

λ(n, k) = (-1) k 2 k n k k =0 (-1) k n-k q=0 (-1) q n -k q -q -k n-k-q = (-1) n 2 k n k k =0 (-1) k n-k q=0 (-1) q n -k q ( ) q (k -) n-k-q . (2.6)
By similar argument as above, it follows that

∞ n=k µ(n, k) t n n! = 1 k! ∞ m=1 m! 1 -(-1) m 2 t m m! k = (-1) k k!2 k 1 t -1 + 1 t + 1 k which is equivalent to ∞ n=0 µ(n + k, k) 1 n+k n t n n! = (-1) k 2 k 1 t k 1 t -1 + 1 t + 1 k = 1 1 -t 2 k . (2.7)
Since 1 1-t 2 is even, we deduce immediately that µ(2r-1, 2s) = 0 and µ(2r, 2s-1) = 0. By the L'Hôspital rule and the identity (2.1) in Theorem 1, it follows that

µ(n + k, k) = n + k n (-1) k 2 k lim t→0 d n d t n 1 t k 1 t -1 + 1 t + 1 k = n + k n (-1) k 2 k lim t→0 n q=0 n q -k q t k+q 1 t -1 + 1 t + 1 k (n-q) = n + k n (-1) k 2 k n q=0 n q -k q (k + q)! lim t→0 1 t -1 + 1 t + 1 k (n+k) = n + k n (-1) k 2 k n q=0 n q (-1) q (k + q -1)! (k -1)!(k + q)! × lim t→0 k =0 k 1 t -1 1 t + 1 k-(n+k) = n + k n (-1) k 2 k (k -1)! n q=0 (-1) q k + q n q k =0 k × lim t→0 n+k m=0 n + k m 1 t -1 (m) 1 t + 1 k-(n+k-m) = (-1) k 2 k k! k =0 k lim t→0 n+k m=0 n + k m × -m 1 t -1 +m -k n+k-m 1 t + 1 (k-)+(n+k-m) = (-1) k 2 k k! k =0 (-1) k n+k m=0 (-1) m n + k m -m -k n+k-m .
In short, we obtain

µ(n, k) = (-1) k 2 k k! k =0 (-1) k n m=0 (-1) m n m -m -k n-m = (-1) n+k 2 k k! k =0 (-1) k n m=0 (-1) m n m ( ) m (k -) n-m . (2.8)
Comparing between (2.6) and (2.8) reveals

µ(n, k) = (-1) n+k 2 k k! 2 k (-1) n+k 1 n+k k λ(n + k, k)
which can be rearranged as (2.2). The Faà di Bruno formula, see [START_REF] Charalambides | Enumerative Combinatorics[END_REF]Theorem 11.4] and [2, p. 139, Theorem C], can be described in terms of B n,k (x 1 , x 2 , . . . , x n-k+1 ) by

d n d x n f • h(x) = n k=0 f (k) (h(x)) B n,k h (x), h (x), . . . , h (n-k+1) (x) .
(2.9)

In [1, p. 412] and [2, p. 135], one can find the identity 

B n,k abx 1 , ab 2 x 2 , . . . , ab n-k+1 x n-k+1 = a k b n B n,k (x 1 , x 2 , . . . , x n-k+1 ) (2.
B n,k (x, 1, 0, . . . , 0) = 1 2 n-k n! k! k n -k x 2k-n , (2.11) 
where 0 0 = 1 and p q = 0 for q > p ≥ 0. For detailed information on applications of the formula (2.11), please refer to the papers [4-8, 12, 14-17] and closely related references therein. Then it follows from (2.7), (2.9), (2.10), and (2.11) that, when denoting u = u

(t) = 1 -t 2 , µ(n + k, k) = n + k n lim t→0 d n d t n 1 1 -t 2 k = n + k n lim t→0 n =0 1 u k ( ) B n, (-2t, -2, 0, . . . , 0) = n + k n lim t→0 n =0 -k 1 u k+ (-2) B n, (t, 1, 0, . . . , 0) = n + k n lim t→0 n =0 -k 1 (1 -t 2 ) k+ (-2) 1 2 n- n! ! n - t 2 -n = n + k n lim t→0 n =0 (k) n! ! n - (2t) 2 -n (1 -t 2 ) k+ =    0, n = 2m -1 2m + k 2m (k) m (2m)! m! m 2m -m , n = 2m =    0, n = 2m -1 (2m + k)! k! m + k -1 k -1 , n = 2m =    0, n = 2m -1 (n + k)! k! n+2k 2 -1 k -1 , n = 2m
for m ∈ N. The formula in (2.4) is thus proved. Substituting the formula in (2.4) into (2.2) and simplifying lead readily to the formula in (2.3). The proof of Theorem 2 is complete.

Remarks

In this section, we state several remarks on something related. Remark 1. In [8, Theorem 2.1], it was proved that B n,k 1, 0, 1, . . . ,

1 -(-1) n-k+1 2 = 1 2 k k! k =0 (-1) k (k -2 ) n and B n,k 0, 1, 0, . . . , 1 + (-1) n-k+1 2 = 1 2 k k! 2k =0 (-1) 2k (k -) n
for n ≥ k ≥ 0, where 0 0 is regarded as 1. In [8, Section 3], basing on numerical calculation, the authors guessed that B 2 -1,k 0, 1, 0, . . . ,

1 + (-1) (2 -1)-k+1 2 = 0, 2 -1 ≥ k ≥ 0, (3.1) 
B 2 ,k 0, 1, 0, . . . ,

1 -(-1) 2 -k+1 2 = 0, 2 > k > , (3.2) 
B 2 ,k 0, 1, 0, . . . ,

1 -(-1) 2 -k+1 2 = 0, ≥ k ≥ 1, (3.3) B k+2 ,k (1, 0, 1, . . . , 1, 0, 1) = 0, k, ∈ N, (3.4) 
and B k+2 -1,k (1, 0, 1, . . . , 0, 1, 0) = 0, k, ∈ N.

(3.5)

In [8, Theorem 3.1], the identity (3.5) was proved to be true. In fact, the identities (3.1) and (3.5) can be concluded readily from the proof of [8, Theorem 2.1] as follows. From the formula (2.5), it followed that Remark 2. The first formula in (2.3) of Theorem 2 was also discussed in [9, Lemma 2.5], [START_REF] Qi | Special values of the Bell polynomials of the second kind for some sequences and functions[END_REF] and closely related references therein. summable?

∞ n=k B n,k 0, 1, 0, . . . , 1 + (-1) n-k+1 2 
t n n! = (cosh t -1) k k! (3.6) and ∞ n=k B n,k 1, 0, 1, . . . , 1 -(-1) n-k+1 2 
t n n! = sinh k t k! . ( 3 
Remark 4. This paper is a slightly revised version of the preprint [START_REF] Qi | Notes on two kinds of special values for the Bell polynomials of the second kind[END_REF].

  10) for n ≥ k ≥ 0 and a, b ∈ C. In [8, Theorem 5.1] and [15, Section 3], it was set up little by little that

. 7 )

 7 In(3.6), the function cosh t -1 is even, so the identity (3.1) is clearly valid. Since the function sinh t in (3.7) is odd, then B 2n,2k-1 (1, 0, 1, . . . , 1, 0) = 0 and B 2n-1,2k (1, 0, 1, . . . , 1, 0) = 0 which are equivalent to the identity (3.5). However, the validity of the identities (3.2), (3.3), and (3.4) has not been verified yet.

Remark 3 . 1 .

 31 The formula (2.8) can be rewritten asµ(n, k) = (-1) n+k n!2Comparing these identities with the Vandermonde convolution formula n k=0 n k x k y n-k = x + y n in [1, Theorem 3.1] and [2, p. 44] motivates us to ask a question: is the quantity n k=0 (-1) k n k x k y n-k
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