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NOTES ON TWO KINDS OF SPECIAL VALUES FOR THE BELL

POLYNOMIALS OF THE SECOND KIND

FENG QI, DONGKYU LIM, AND YONG-HONG YAO

Abstract. In the paper, by methods and techniques in combinatorial analy-
sis, the authors discuss two kinds of special values for the Bell polynomials of

the second kind for two special sequences, find a relation between these two

kinds of special values for the Bell polynomials of the second kind, and derive
an identity involving the combinatorial numbers.

1. Motivation

In [1, Definition 11.2] and [2, p. 134, Theorem A], the Bell polynomials of the
second kind, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

For more information on the Bell polynomials of the second kind Bn,k, please refer
to the monographs and handbooks [1, 2, 3] and closely related references therin.

In [1, p. 451], the formulas

B2r,k(0, 2!, . . . , 0, (2r)!) =
(2r)!

k!

(
r − 1

k − 1

)
,

B2r−1,k(0, 2!, . . . , (2r − 2)!, 0) = 0,

B2r,2s(1!, 0, . . . , (2r − 1)!, 0) =
(2r)!

(2s)!

(
r + s− 1

2s− 1

)
,

B2r,2s−1(1!, 0, . . . , (2r − 1)!, 0) = 0,

B2r−1,2s−1(1!, 0, . . . , (2r − 1)!, 0) =
(2r − 1)!

(2s− 1)!

(
r + s− 2

2s− 2

)
,

B2r−1,2s(1!, 0, . . . , 0, (2r − 1)!) = 0

were stated, but no proof was supplied for them there.
For simplicity, we denote

λ(n, k) = Bn,k

(
1!, 0, 3!, 0, . . . , (n− k + 1)!

1− (−1)n−k+1

2

)
and

µ(n, k) = Bn,k

(
0, 2!, 0, 4!, . . . , (n− k + 1)!

1 + (−1)n−k+1

2

)
.
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2 F. QI, D. LIM, AND Y.-H. YAO

In terms of these notations, the above statements in [1, p. 451] can be restated as

µ(2r, k) =
(2r)!

k!

(
r − 1

k − 1

)
, µ(2r − 1, k) = 0,

λ(2r, 2s) =
(2r)!

(2s)!

(
r + s− 1

2s− 1

)
, λ(2r, 2s− 1) = 0,

λ(2r − 1, 2s− 1) =
(2r − 1)!

(2s− 1)!

(
r + s− 2

2s− 2

)
, λ(2r − 1, 2s = 0.

In this paper, we will provide alternative proofs for the above six formulas and
discover a relation between them.

2. Main reults

We first prove an identity involving combinatorial numbers.

Theorem 1. For k ≥ 1 and n ≥ 0, we have

n∑
q=0

(−1)q

k + q

(
n

q

)
=

1

k
(
k+n
k

) . (1)

Proof. Let

f(x) =

n∑
q=0

(−1)q

k + q

(
n

q

)
xk+q, x ∈ [−1, 1].

Then f(0) = 0 and

f ′(x) =

n∑
q=0

(−1)q
(
n

q

)
xk+q−1 = xk−1

n∑
q=0

(−1)q
(
n

q

)
xq = xk−1(1− x)n.

Integrating from 0 to t ∈ (0, 1] on both sides of the above equality yields

f(t) =

∫ t

0

xk−1(1− x)n dx = B(t; k, n+ 1),

where B(z; a, b) denotes the incomplete beta function, see [3, p. 183]. Therefore,
we obtain

f(1) = B(1; k, n+ 1) = B(k, n+ 1)

=
Γ(k)Γ(n+ 1)

Γ(k + n+ 1)
=

(k − 1)!n!

(k + n)!
=

1

k

k!n!

(k + n)!
=

1

k
(
n+k
k

) ,
where B(a, b) and Γ(z) denote the beta function and the classical Euler gamma
function respectively, see [3, p. 142] and [3, Chapter 5]. The formula (1) is thus
proved. The proof of Theorem 1 is complete. �

We are now in a position to state and prove our main results.

Theorem 2. For n ≥ k ≥ 0, we have the relation

λ(n, k)

n!
=
µ(n+ k, k)

(n+ k)!
(2)

and two explicit formulas

λ(n, k) =
1 + (−1)n+k

2

n!

k!

(n+k
2 − 1

k − 1

)
, µ(n, k) =

1 + (−1)n

2

n!

k!

(n
2 − 1

k − 1

)
. (3)
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Proof. It is known [2, 16] that the quantities

〈x〉n =

n−1∏
`=0

(x− `) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1

1, n = 0

and

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1

1, n = 0

are called the falling and rising factorials respectively. In [2, p. 133], it was listed
that

1

k!

( ∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
(4)

for k ≥ 0. Hence, we have

∞∑
n=k

µ(n, k)
tn

n!
=

1

k!

[ ∞∑
m=1

m!
1 + (−1)m

2

tm

m!

]k
=

1

k!

(
t2

1− t2

)k

which is equivalent to

∞∑
n=0

µ(n+ k, k)
1(

n+k
n

) tn
n!

=

(
t

1− t2

)k

.

Since the function t
1−t2 is odd, we derive µ(2r − 1, k) = 0. Further computation

yields

µ(n+ k, k) =

(
n+ k

n

)
lim
t→0

dn

d tn

(
t

1− t2

)k

=

(
n+ k

n

)
1

2k
lim
t→0

[(
1

1− t
− 1

1 + t

)k](n)
=

(
n+ k

n

)
1

2k
lim
t→0

[
k∑

`=0

(
k

`

)(
1

1− t

)`

(−1)k−`
(

1

1 + t

)k−`
](n)

=

(
n+ k

n

)
1

2k

k∑
`=0

(−1)k−`
(
k

`

)
lim
t→0

n∑
q=0

(
n

q

)[(
1

1− t

)`](q)[(
1

1 + t

)k−`](n−q)

=

(
n+ k

n

)
1

2k

k∑
`=0

(−1)k−`
(
k

`

)
lim
t→0

n∑
q=0

(
n

q

)

×〈−`〉q(−1)q
(

1

1− t

)`+q

〈−(k − `)〉n−q
(

1

1 + t

)k−`+(n−q)

=
(−1)k

2k

(
n+ k

n

) k∑
`=0

(−1)`
(
k

`

) n∑
q=0

(−1)q
(
n

q

)
〈−`〉q〈`− k〉n−q

=
(−1)n+k

2k

(
n+ k

n

) k∑
`=0

(−1)`
(
k

`

) n∑
q=0

(−1)q
(
n

q

)
(`)q(k − `)n−q.

In summary, we obtain

µ(n, k) =
(−1)k

2k

(
n

k

) k∑
`=0

(−1)`
(
k

`

) n−k∑
q=0

(−1)q
(
n− k
q

)
〈−`〉q〈`− k〉n−k−q
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=
(−1)n

2k

(
n

k

) k∑
`=0

(−1)`
(
k

`

) n−k∑
q=0

(−1)q
(
n− k
q

)
(`)q(k − `)n−k−q. (5)

By similar argument as above, it follows that

∞∑
n=k

λ(n, k)
tn

n!
=

1

k!

[ ∞∑
m=1

m!
1− (−1)m

2

tm

m!

]k
=

(−1)k

k!2k

(
1

t− 1
+

1

t+ 1

)k

which is equivalent to

∞∑
n=0

λ(n+ k, k)
1(

n+k
n

) tn
n!

=
(−1)k

2k
1

tk

(
1

t− 1
+

1

t+ 1

)k

=

(
1

1− t2

)k

. (6)

Since 1
1−t2 is even, we deduce immediately that λ(2r−1, 2s) = 0 and λ(2r, 2s−1) =

0. By the L’Hôspital rule and the identity (1) in Theorem 1, it follows that

λ(n+ k, k) =

(
n+ k

n

)
(−1)k

2k
lim
t→0

dn

d tn

[
1

tk

(
1

t− 1
+

1

t+ 1

)k]
=

(
n+ k

n

)
(−1)k

2k
lim
t→0

n∑
q=0

(
n

q

)
〈−k〉q
tk+q

[(
1

t− 1
+

1

t+ 1

)k](n−q)

=

(
n+ k

n

)
(−1)k

2k

n∑
q=0

(
n

q

)
〈−k〉q

(k + q)!
lim
t→0

[(
1

t− 1
+

1

t+ 1

)k](n+k)

=

(
n+ k

n

)
(−1)k

2k

n∑
q=0

(
n

q

)
(−1)q(k + q − 1)!

(k − 1)!(k + q)!

× lim
t→0

[
k∑

`=0

(
k

`

)(
1

t− 1

)`(
1

t+ 1

)k−`
](n+k)

=

(
n+ k

n

)
(−1)k

2k(k − 1)!

n∑
q=0

(−1)q

k + q

(
n

q

) k∑
`=0

(
k

`

)

× lim
t→0

n+k∑
m=0

(
n+ k

m

)[(
1

t− 1

)`](m)[(
1

t+ 1

)k−`](n+k−m)

=
(−1)k

2kk!

k∑
`=0

(
k

`

)
lim
t→0

n+k∑
m=0

(
n+ k

m

)

×〈−`〉m
(

1

t− 1

)`+m

〈`− k〉n+k−m

(
1

t+ 1

)(k−`)+(n+k−m)

=
(−1)k

2kk!

k∑
`=0

(−1)`
(
k

`

) n+k∑
m=0

(−1)m
(
n+ k

m

)
〈−`〉m〈`− k〉n+k−m.

In short, we obtain

λ(n, k) =
(−1)k

2kk!

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

(−1)m
(
n

m

)
〈−`〉m〈`− k〉n−m

=
(−1)n+k

2kk!

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

(−1)m
(
n

m

)
(`)m(k − `)n−m. (7)
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Comparing between (5) and (7) reveals

λ(n, k) =
(−1)n+k

2kk!

2k

(−1)n+k

1(
n+k
k

)µ(n+ k, k)

which can be rearranged as (2).
The Faà di Bruno formula, see [1, Theorem 11.4] and [2, p. 139, Theorem C],

can be described in terms of Bn,k(x1, x2, . . . , xn−k+1) by

dn

dxn
f ◦ h(x) =

n∑
k=0

f (k)(h(x)) Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
. (8)

In [1, p. 412] and [2, p. 135], one can find the identity

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1) (9)

for n ≥ k ≥ 0 and a, b ∈ C. In [9, Theorem 4.1] and [18, Section 3], it was set up
little by little that

Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n, (10)

where
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0. For detailed information on applications

of the formula (10), please refer to the papers [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
17, 18, 19, 20, 21] and closely related references therein. Then it follows from (6),
(8), (9), and (10) that, when denoting u = u(t) = 1− t2,

λ(n+ k, k) =

(
n+ k

n

)
lim
t→0

dn

d tn

(
1

1− t2

)k

=

(
n+ k

n

)
lim
t→0

n∑
`=0

(
1

uk

)(`)

Bn,`(−2t,−2, 0, . . . , 0)

=

(
n+ k

n

)
lim
t→0

n∑
`=0

〈−k〉`
1

uk+`
(−2)` Bn,`(t, 1, 0, . . . , 0)

=

(
n+ k

n

)
lim
t→0

n∑
`=0

〈−k〉`
1

(1− t2)k+`
(−2)`

1

2n−`
n!

`!

(
`

n− `

)
t2`−n

=

(
n+ k

n

)
lim
t→0

n∑
`=0

(k)`
n!

`!

(
`

n− `

)
(2t)2`−n

(1− t2)k+`

=

0, n = 2m− 1(
2m+ k

2m

)
(k)m

(2m)!

m!

(
m

2m−m

)
, n = 2m

=

0, n = 2m− 1
(2m+ k)!

k!

(
m+ k − 1

k − 1

)
, n = 2m

=

0, n = 2m− 1

(n+ k)!

k!

(n+2k
2 − 1

k − 1

)
, n = 2m

for m ∈ N. The first formula in (3) is thus proved.
Substituting the first formula in (3) into (2) and simplifying lead readily to the

formula in (3). The proof of Theorem 2 is complete. �
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3. Remarks

In this section, we state several remarks on something related.

Remark 1. In [9, Theorem 2.1], it was proved that

Bn,k

(
1, 0, 1, . . . ,

1− (−1)n−k+1

2

)
=

1

2kk!

k∑
`=0

(−1)`
(
k

`

)
(k − 2`)n

and

Bn,k

(
0, 1, 0, . . . ,

1 + (−1)n−k+1

2

)
=

1

2kk!

2k∑
`=0

(−1)`
(

2k

`

)
(k − `)n

for n ≥ k ≥ 0, where 00 is regarded as 1. In [9, Section 3], basing on numerical
calculation, the authors guessed that

B2`−1,k

(
0, 1, 0, . . . ,

1 + (−1)(2`−1)−k+1

2

)
= 0, 2`− 1 ≥ k ≥ 0, (11)

B2`,k

(
0, 1, 0, . . . ,

1− (−1)2`−k+1

2

)
= 0, 2` > k > `, (12)

B2`,k

(
0, 1, 0, . . . ,

1− (−1)2`−k+1

2

)
6= 0, ` ≥ k ≥ 1, (13)

Bk+2`,k(1, 0, 1, . . . , 1, 0, 1) 6= 0, k, ` ∈ N, (14)

and

Bk+2`−1,k(1, 0, 1, . . . , 0, 1, 0) = 0, k, ` ∈ N. (15)

In [9, Theorem 3.1], the identity (15) was proved to be true. In fact, the identi-
ties (11) and (15) can be deduced readily from the proof of [9, Theorem 2.1] as
follows. From the formula (4), it followed that

∞∑
n=k

Bn,k

(
0, 1, 0, . . . ,

1 + (−1)n−k+1

2

)
tn

n!
=

(cosh t− 1)k

k!
(16)

and
∞∑

n=k

Bn,k

(
1, 0, 1, . . . ,

1− (−1)n−k+1

2

)
tn

n!
=

sinhk t

k!
. (17)

In (16), the function cosh t − 1 is even, so the identity (11) is clearly valid. Since
the function sinh t in (17) is odd, then

B2n,2k−1(1, 0, 1, . . . , 1, 0) = 0 and B2n−1,2k(1, 0, 1, . . . , 1, 0) = 0

which are equivalent to the identity (15). However, the validity of the identities (12),
(13), and (14) has not been verified yet.

Remark 2. The formula (7) can be rewritten as

λ(n, k) =
(−1)n+kn!

2kk!

k∑
`=0

n∑
m=0

(−1)`+m

(
k

`

)(
`+m− 1

`− 1

)(
(k − `) + (n−m)− 1

k − `− 1

)
.

(18)
Then combining the formulas (7) and (18) with the first formula in (3) and rear-
ranging arrive at

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

(−1)m
(
n

m

)
(`)m(k − `)n−m = [1 + (−1)n+k]2k−1n!

(n+k
2 − 1

k − 1

)
and
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n∑
m=0

k∑
`=0

(−1)`+m

(
k

`

)(
`+m− 1

`− 1

)(
(k − `) + (n−m)− 1

k − `− 1

)

= [1 + (−1)n+k]2k−1
(n+k

2 − 1

k − 1

)
.

Comparing these identities with the Vandermonde convolution formula
n∑

k=0

(
n

k

)
〈x〉k〈y〉n−k = 〈x+ y〉n

in [1, Theorem 3.1] and [2, p. 44] motivates us to ask a question: is the quantity

n∑
k=0

(−1)k
(
n

k

)
〈x〉k〈y〉n−k

summable?
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