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Gaits Stabilisation for Legged Robots using
Energetic Regulation

N. K. M’Sirdi, D. El Ghanami, T. Boukhobza and N. Khraief.

LRP: Laboratoire de Robotique de Paris, University of Versailles. 10 Av. de I'Europe, 78140 Vélizy, FRANCE; Email:

msirdi@robot.uvsq.fr

Abstract— A new method is used to stabilize periodic cy-
cles for legged robots with fast dynamic gaits. The control
objective is regulation of the system energy (using a nominal
energetic representation) for stabilization of fast gaits. The
Controlled Limit Cycles (CLC) allow to establish a quasi pe-
riodic hopping gait by energy shaping and regulation. The
resulting control law is simple, efficient and easy to imple-
ment. This approach leads simultaneaously the control and
reference trajectories (implicitly generated). Robustness
and effectiveness of the proposed control are illustrated by
simulations and experimental results.

Keywords— Robots control, Gaits stabilization, Controlled
Limit Cycles, Hopping gaits, Energy regulation.

I. INTRODUCTION

For robots with fast gaits, the crucial problem is gaits
design and control, in order to preserve stability despite
interaction with an unkown and variable environment. For
fast gaits (long Uight phases where the robot is not com-
pletely controllable and short contact phases), the major
problem is to generate trajectories which cope with system
structure, the contact features and power optimization.

The CLC approach involves self generated trajectories
and stabilizes a quasi periodic hopping motion [1][2]. This
emphasizes the fact that the system’s behavior and trajec-
tories are consequences of robot’s dynamic + the control
and ground interactions. Energy shaping is performed by
use of an admissible control. We show that control of legged
robots can be reduced to study an equivalent energy model
involving the robot, the ground and a simple control law.
Our main objective is to introduce an approach leading to
efficient stabilization of quasi periodic gaits which can be
applied to legged robots. The energy of the system is reg-
ulated for an automatic generation of trajectories (implicit
and deduced from the dynamic behavior), and a rejection
of perturbations and unknown environment events. This is
realized by means of Controlled Limit Cycles (CLC) and
regulation of the system energy. For hopping gaits (mon-
itored by gravitation and potential effects), the limit cy-
cles correspond to a motion in the subspace (z,%) of the
phase space of the system. This can be obtained by projec-
tion of the robot’s dynamic on the motion subspace (z, £).
The projected motion correspond to a mass and spring sys-

tem as those studied in literature [3][4][5](6][7][8][9][10][11].

Then gaits are obtained by use of natural periodic cycles
of the system’s dynamic.

The proposed control approach, is based on a Variable
Structure Control as presented in Ugure (1). The presen-
tation of the approach has been Crst developped for one

DOF in [10][1][2] and then is extended here for 2 DOF and
more. This control approach is applied to generate tra-
jectories and stabilization for hopping gait. Afterward in
order to clarify its generalization to more complex systems,
a control structure is designed to stabilize periodic cycles
for systems with more than 3 DOF.
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Fig. 1. Control methodology for legged robots
Section 2 presents an invariant periodic orbit for mass

spring system and extension of the CLC approach for
2DOF system. In section 3 we present an application of
the proposed approach to SAP robot which has 3DOF.
Some discussions and comments are presented in section 4.
Our future prospects, investigation and some conclusions
in this work will be given.

II. VARIABLE STRUCTURE FOR RoBoTS CONTROL
A. The nominal models

Figure (2b) depicts an elementary system for analysis
of robots locomotion in fast motions. It is composed by
a body with a mass M and imertia I and two massless
springs with stiffness &, k. and nominal lenghts z,, z.,.
Two controllable displacement u; and u,. (inputs) are added
to spring lengths., Subscripts [ and r denote left and right
elements. The body has 2 degrees of freedom, a vertical
displacement denoted by z (displacement of mass center)
and a revolute displacement # around the center of mass.
‘We assume ponctual the contact between the end point of
springs and the ground (assumed more rigid than equiva-
lent impedance of the robot legs: A‘?ZL(}:\<< ke)
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Fig. 2. Mass-spring systems: a) 1L DOF and b) controlled 2DOF
This system has g motion phases: 13[ s‘gance where both

springs are on the ground and compressed, 2) (iglt phase
(no contact with the ground), the robot has a ballistic tra-
jectory and 3) two other phases where only one spring is in
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contact with the ground (z, < z,, Or z; < z),). The begin-
ning of the Jight and stance are called lift-off and touch-
down, respectively. The apex and bottom correspond to
maximum and minimum body height, g = 9.81m.s"? is the
gravitational acceleration. Since the robot corresponds to
a variable structure system, let us delInecommutation con-
tact functions &.(z., u,-) and £;(z,u;) which are null during
Dight and equal to one during contact. They can be deCned
as: & =& (2, u) = %(1 U sign{z; 0 2z Uw)). (E=rori).
This allows us to represent all motion phases as:

{ F=06E (202, 0w) D& (2 D200 Duy) O g
0= 5;% (2 O 2o D) T fr% (z O 2pp O uy)

(1)
B. Invariant periodic orbits

The control proposed in this paper consists Orstin the
caracterization of an invariant periodic orbit and then to
design a control structure to stabilize such an orbit. To this
end we consider Urst the mass spring system of Cgure (2a)
studied in [10]. It has only vertical displacements (1DOF)
and 2 phases, Oiglt and stance, 1 DOF. The system equa-
tion can be written

. koo _ 9

£+ 6(2) 3 (211 20) = Tg (2)
During motion, if we assume the landing without rebonds
and no energy loss (no friction) [12], system energy evolu-
tions are: Potential (g) — kinetic — potential accumula-
tion — potential restitution — kinetic and so on [10].

This shows existence of periodic cycles corresponding
to system oscillations and the energy storage (in poten-
tial elastic form) for exchange between the ground and the
body (mass M). The system dynamic describes a closed
periodic orbit or an invariant limit set - ,(z,,t) (where z,
(2m, £F= 0) is initial state). This orbit - , can be described
by a Lyapunov equation (3):

1. :
ViD= Aozt 5 (z0 2 = Ve (3)

2M
The system is conservative: V}(z, %) = 0 Vz, V¢t > 0. All
the trajectories z(t) are in - ,, see Figure (3). For 1DOF
systems, equation (3) can be used to describe arbitrary mo-
tions which cope with the system'’s ability. Therefore, sys-
tem (2) has a hopping motion with constant jumps height

\/%. If the

system dissipates energy during the stance phase, it is clear
that no periodic orbit can exist. However, we can design
a control law to stabilize the energy to a reference value
Vic (definedat the apex zgmax or the lift off point £} see
Ogure (3)). If the system has more than one DOF, then
its motion depends on more degrees of freedom, namely

and a natural frequency depending on w, =

(z, 27,19,9-) for the example in case of the system of Ogure

(2b). The phase space is of dimension 4, but a closed orbit
can be obtained only for a motion in the vertical axis (z, £)
and the other cases are either not obvious or not realizable.
Invariant set corresponding to constant energy values V.

does not mean a closed orbit for more than 1DOF. In order
to stabilize a periodic motion (vertical hopping) by means
of Controlled Limit Cycles, in our approach we Crstproject
the system dynamics on (z, z) phase subspace and then we
stabilize a limit cycle in (z, #).
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I'ig. 3. Periodic orbit for 1DOF free system

C. CLC approach for cycle stabilization

The aim is to evaluate the system motion in the case
of hopping and then decompose his energy in two terms,
one for the transverse dynamics denoted Vr (i.e: motion in
8,8) and a second term for the cycle energy denoted Vi .
We can then apply a control ur to dissipate transverse
energy V. Then we stabilize a periodic cycle or regulate
the energy level Vo to Vi in the phase subspace (z, z).
Let us consider the Lypunov function:

1 I
V—§ﬁ+92+'2—ju—,8~ (4)
It can be splitted in two terms as:
. Vie =418+ g2
V =Vio + Vr with: jq 73 (5)
VT = mg

‘We propose the following non linear control structure:

1 1
Gur =5 (mo+ur) and §u =5 (e Dur)  (6)

where up should dissipate the transverse energy, in order
to project the motion on the phase subspace (z, 2) and uy o
stabilizes a cycle in (z, 2). ur and upe will be deQned by
stability analysis.

D. Stability analysis

First, we have to dissipate the transverse energy V. Let
us take the Lyapunov function Vi = V2, its derivative is
W = ViV with: W = %9?? Substituting € (equation 1)
and using control functions (6), we obtain:

Ik =
‘F‘T e H (61 (Z[ U zlo) 0 & (Zr a zro) + UT)G_: (7)
We take as transverse control function uyp:
up = OTp(Vp)B0 & (21 0 20) + & (2, O 20)  (8)



F1 is a positive control gain and ¢(£) is positive function of
& such as ¥(£).€ > 0, V€ # 0 and P(0) =0 (namely sign or
saturation function). Then we have: Vo = 02 9(Vr )62,

(9)

Thus VrV) < 0 and therefore the transverse energy Vrp
converges to zero and is such as Ve; > 0,3ty > 0, such
as | Vr |< e, V¥t > tg. Then 8is bounded and tend to
zero,then we can choose a constant A such as ['62 = <
%, with G = max (9—) Using (9), ¥ < JJ‘\@—WTI and

Vi = 3VZ = Vr = 2V then ¥ < DA/
conclude that:

Vi = VeV = T Virp(Vip )62 <0

We can

Vi(ty)
A

therefore the sliding surface is attractive and V@ = 0 is
reached in a Onite time t1, the motion is then reduced to
(z,%£,0,0). Now to ensure convergence of V¢ to refrence
value Vi (dellninga desired cycle), let us choose as Lya-
punov function candidate:

‘/I(t):{)y t261:t0+2

1 1 . 2l
Vo =5VE+3 (Vi O Vig)’ (10)
Vo 1s a constant value and can be dellnedat the lift-of

(24) or at the apex (zZmax) as:

1
-o={(2,8) € R%: Vo = 522 + 92 = JZmax (11)
At t > t; we have (Vp, V) = (0,0), then:
Vi=(Vic OVic)Vic VE>t (12)
with: Vig = (+¢) & VE>t (13)

substituting # (1) and control (6) in V;c, we have:

I;;T'tc = £l’ (Z,{ | zlo) [ 51‘ (Zr [ ZT‘D) +uLC') zl (14)

A_I (2
The main objective is to make - , invariant and attractive.
To stabilize this orbit, we propose the feedback uzo:

Urc = DFQUD(V C

Zro)

(15)

T's is a positive control gain and then V},¢ becomes: Vi ¢ =
OETy(V [0 V)23 From equation (12), we obtain the
orbit stabilization condition:

)Z + El (2’[ 0 Zlo) e ér (zr

k
V= Eﬂfg(VLc IV w(Vie D Vi 2 <0 (16)

This stability condition gives the following two cases:

0 Casel: Vig > Vig = Vie = 0Ly (Vie D Vi) £2 <

0, the height is greater than zp,a, (orbit - ,), then system
energy is decreased and the control uy ¢ has dissipative ef-
fect.

n Case 2! Vig < Vi = Vie > 0, the jump height is
less than this of V= (2max ), then upo is active and supply
energy to system.
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We can then conclude, for the controlled limit cycle, that
the periodic orbit - , is a stable invariant set of the con-
trolled system. Trajectories z(t) converge asymptotically
to orbit - , de_nedabove (11). 6(t) and #{t) converge to
zero due to a control structure (8) and (15). wy will then
dissipate transverse energy and u;c can be either active
or passive (dissipatiwe) for cycle stabilization. Note that
the CLC control is enabled only in the stance phase (the
controllable region) and is frozen in the Jigh phase (un-
controllable region).

E. Stmulation of CLC

For the simulations, we use as 1 a saturation function
(with maximum and minimum values £0.2). The initial
conditions are z(0) = 0, 2(0) = 5.5m, 2z, = 27, = lm. The
control gains are [') = 0.2 and I’y = 0.008 and parameters
are k;/M = k./M = 500 and I = 2kg.m?. The desired
height of hopping i8 zmax = 3.5m. For the [Irstsimulation,
the initial condition is 8, = 0, 85 = 0. Figure (4) shows
a stabilization of body height to desired value zy,ax (Dgure
(4a)) and convergence of cycle energy to the reference value
(4b). The transverse energy remain equal to zero. This
situation is equivalent to systems with 1DOF, where only
ure acts to stabilize the limit cycle (system motion is in
(z, z) phase plane).
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Fig. 5. Transverse and cycle energy, CLC: 8, = lrad
We consider now 8, = 1rad. We keep the same condi-

tions (gains value, initial z and desired height zyay ). Fig-
ure (5) shows that limit cycle is stahilized after four os-
cillations and convergnce of angle € to zero in [nite time
(t; = 8sec). This corresponds to the period necessary to
dissipate transverse energy Vi and to stabilize Vic to ref-
erence value (Cgure (5)). For robustness illustration, we
consider 6, = 1.5rad (near to the limit value 8, = Z), Fig-
ure (6) shows a stabe CLC. Figure (6) illustrates system
behavior when he strike the ground. System, under control
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action, deaden his motion to preserve his equilibrium and
to dissipate transverse energy. Note that the controller is
active only in stance phase.
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Fig. 6. Hopping heights and input [orces, CLC and rotation angle:

Rotudtiés is illustrated by Cgure (7), we have changed
stiffness k; and k, separately and 8, = 0.5rad. The orbit
- » is reached despite the use of k;/M six times greater
and &, /M six times smaller. We can observe appearance of
transverse energy quantity at each contact with the ground
due to the difference between stiffness and the controller
action which ﬂed.??.?srt.hcis quantity to zero.
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Fig. 8. CLC and rotate angle 0: changed ol springs original lenghts
Proceeding in a same manner, we have changed the orig-

inal lenghts z, and z., (2, = 1.2 and 2z, = 0.8). Simula-
tion shows that # is maintained around a value not null due
to difference between springs lenghts. Therefore the system
reach a favourable posture for a stable hopping motion (Og-
ure (8)). To analyse robustness of the controller versus fric-
tions, we introduce a viscous friction in the mechanism F#]
Then we obtain the closed loop equation on vertical axis:

" k " 210 T
z=10 (EFQ‘U‘)(V 0 VLC) + ﬂ‘) F AN g

The previous equation shows that when the amplitude of
control input urc is limited and if,

B>max(kTa(VOVYS) WeRy  (17)

then the system will be asymptotically stable near the ori-
gin and then no limit cycle exists. Introduction frictions
produces deformation of the orbit (symmetry is lost), re-
bonds reappears and the height of jumps is reduced. The

height reduction is important for high frictions level until
the periodic orbit disappears, the system becomes asym-
totically stable. To preserve limit cycle, we need a great
feedback gain ['s.

III. APPLICATION TO THE SAP ROBOT

In order to generalize the proposed approach, let us con-
sider the legged robot SAP presented in Ogure (9). The
cartesian variables can be delned, for the end point of
robot, as z = [z, 2, (]5]T with respect to a reference frame
Oxed to robot wheel. z, and z are respectively the hori-
zontal and vertical coordinates and ¢ the orientation. The
system dynamics in cartesian space is obtained by use of
geometric model z = L(g), where g = [q,, ql,qz}T is gener-
alized coordinates (with respect to a reference frame Cxed
to robot wheel), and the corresponding jacobian matrix J
(2= Jg

Fig. 9. SAP Robot ol LRP

M3+ C'¢+g"=F+ F, (18)
7 2P 2= [0, '7'1,7'2]T is the control input vector and F,
g* and C*ilare respectively vectors of ground reaction,
gravitational forces and centripetal and Coriolis forces. AM*
is the inertia matrix and J is the jacobien matrix. Note
that only g; and ¢o are actuated.

A, Stabilizing feedback

The Urst thing we have to deal with is delInition and
stabilization of a posture (nominal robot position) when
in contact with the ground in order to keep robot in equi-
librium. The robot confguration (posture) is presented
in Ogure (9) and delined by the desired position vector
2y = [Tpg, 24, 4|7 - This posture can be stabilized by a
position feedback:

F=Kp(zq O x) (19)
We consider also the ground very stiff (K. >> K,), the

EpKe
Kp+K. —

closed loop equation is [1]:

contact stiffness is K = K, then the system

M*3 4+ C* 8 g* + Ko = Kag (20)

The equation (20) describes the legged system with a pri-
mary feedback loop which is able to have energy exchanges
with the environment (introduction of elastic storage).
P1: The elements of the system’s model (20) are such that
the matrix N = %ﬂﬁﬁ* 0 C* is skew symmetric [13].
P2: The mapping v = Kxy — y = & veriDesthe passivity
property f; yTudt = fot 2T Kzqdt > 042 [14].
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Motion Evaluation and gait deInition: The robot
SAP has 3 DOF and can be considered as an association
of 3 coupled second order subsystems:

jr f.r:(Xa Xd+ I()
Z 1= f(x:xa K) (21)
(,‘6 .f{ﬁ(X: Xdak)

where y = [a: , &7 is the model state vector. For motion
evaluation in the case of hopping, the preceeding analysis
shows that the phase space {x, ) have to be decomposed
in two subspaces, one for the robot hopping (z, ) and its
transverse. Proceeding in a same way, we consider the
Lyapunov function:

V(z,£) = Lirar T+ Py (t) (22)

where potential energ% due to gravity is Py(t) =

fo s)ds. Then this Lyapunov function can be sphtted

in two parts (one for the limit cycle and the second for the
transverse motion):

Vx, &) = —:LTI'»I*:EI—F Py(t) =Vie+Vp (23)
For hopping, we éan specify, for reference energy, either
the height of the jumps (zm) or the lift off velocity (43).

Vie(z, £) = m:fd = Mgzm (24)

where m is the equivalent®mass of the robot. We then

must stabilize two subsystems at (z, = 0,4} = 0) and (¢ =

0,¢ = 0) asymptotically and control the one of vertical
motion (z, #) to obtain a CLC.

B. Controlled Limit Cycles for SAP robot

Let us consider the nominal position z, = [Zy40, 2o, Pdo] a
arround which the cycles will be stabilized, and the control
functions:

Ty = [Q?rd, Zd, Gi’d]T = [a:rd(, + Uz, 2o + Uz, Q"do + usﬁ]T' ( 5)
The energetic control and the CLC are realwed by the con-
trol functions u = ur + urc = [uz,uz,u¢] deCned as
U = [U,UZ,O]T and uy = [ux,O,u¢]T. 1, is used to
control the hopping motion in the phase plane (z, £) and
(Uz,uy) maintain the system motion in this phase sub-
space. This reduces the energy to the cycles one in a [I-
nite time ¢; by means of ur. up o stabilizes an orbit - , by
regulatation of energy Vyc(z, 2) to a reference value V..
Then we propose the control structure (T'y, I’y and '3 are
positive control gains):

Uy =2y D Tpg, O L F (Vp)d} (26)
Ug 2 &
"7 us=00¢4,0 mw(VrM@
UG Uy =2z 1 2o [ ’]j—zv,b(VLc G Vig)d (27)
22

C. Stability analysis for SAP robot

Let us consider the Lyapunov function (23), its time
derivative is then (using the skew symmetry of M*):

V=i"K (24U z) = Vo + Vi (28)
= dpky (@rg 0 2,) + Phiss (da O b) + 2hag (24 0 2)

The transverse dynamics of the two subsystems f, and
f» are deCned by transverse energy variation Vr and Vic
describes the limit cycle of f.. Conditions to ensure trans-
verse energy dissipation, can be obtained with the Lya-
punov function V; and its time derivative is (see 28):

1

W=V (29)

W =V = Vp (‘ﬂku (zra O ) + Piss (g D Cf)))

Substituting the desired trajectories (25) and control (26),
we obtain:

Vi = 0V (V) (fﬁrl i q@grgj <0 (30)
VrVi is negative (convergence condition is satisiled), we
can conclude that £} and ¢-are bounded and tend to zero.
We can choose A such as #2I'y + $*I'y < \/42

Thus equation (30) becomes V] < D%[Vﬂ and from
Vr = +2Vy, we have Vi < OA/V;. Then Vi(t) = 0 for
>t =t + 2@

We can conclude that Vi = 0in Onitetime ¢; and Vi = 0
and at ¢ > ¢, the system energy is reduced to cycle energy
(24) V=Vic= V = Fkoy {zd O Z)

Proceeding in a same manner, we consider the Lyapunov
function candidate (for ¢ > £1):

1..
V2:§Vq§ 2(VLC 1 Vig)?

V;l = (VLC [ VEC)@C at t > ;.

(31)
(32)

substituting (28) in V¢ and using the control function
(27), we can write:

V3 = OA(Vie O Vi )w(Vic U Vig)d <0at t > ¢y,

(33)

V4 < 0 leads to the periodic orbit stabilization in the same
way as described before. We then conclude that transverse
energy converge to zero in [nite time and that the limit
cycle deOned by the invariant orbit - , is asymptotically
stable. Thus the system energy comnverge to the reference
one and acheive a controlled limit cycle.

D. Ezperimental results

In this section, we present 3 experimental results
acheived with the SAP robot. The Figure (9), illustrates
an equilibrium posture and deiine the following angular
relation: g, + q1 + 4 + 6 = 7 and vertical body’s posi-
tion z = r, + {, cos(g,) U Isin(g,). An appropriate choice
of posture allow us to consider g, and  small and then
z=r,+ 1, + 1 (q1 + 9‘2& 0 7r). Therefore we can deduce
desired angulars ¢f and ¢¢ from the desired trajectories
zg =1 (q‘f + %i) This is used to implement the control
functions. The control input is 7 = kp (g% U ¢) U kg, the
control function z4 = D——w(VLg'J Vo). Asenergy func-

tion, we use Voo = -%mz + mgz and a reference energy



value V' = mgzmax. Note that SAP robot has a poten-
tiometer and an encoder to measure angular positions g4
and g9 and gyroscop to measure the velocity of the body £l
The desired height of jumps is zy.x = 0.03m. The control
gains are k, = 0.7, k;; = 0.124, for angular position ¢,
kp = 0.7, kya = 0.091 for ¢» and I's = 5 for control func-
tion u, and % £ 0.2. We introduce a saturation to avoid
geometric model singularities (to limit angle variation of &

(Jgure (9))).
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Fig. 11. Controled Limit Cycles (Expérience N2 and N3)
The Ulrstresults (Ligure (10)) show a stabilized limit cy-

cle. The cycle is distored when the leg strikes the ground.
This correponds to the position [lem. The body’s jump
height is 4em and is stabilized around the nominal posi-
tion z, = (. We consider as hopping range, the difference
between the maximum height and the contact point, then
it is Bem. This error or inaccuracy is caused by difficul-
ties to calibrate sensors and to deduce the absolute posi-
tion z. The motion period is 3 jump per second. Figure
(10) shows the applied control function CLC, the hopping
velocity and the hopping frequency. In the second expe-
rience we have changed the robot inertia by adding, on
robot body, a mass equivalent to the leg mass. Figure (11)
shows a stable limit cycle. The hopping height is 5em and
the motion period is 0.442sec. We can conclude that the
additional mass changes only system frequency and the cy-
cle becomes more stable with thin orbit (the coupling is
less important). Thus control approach is robust versus
parameters variation. Figure (11) illustrates the third ex-
perience. We have changed initial conditions (position &
velocity) and the measurements show the transient. The
body’s height (Ugure{11)) shows that cycle is set up after
a time period equal to 3.6 sec. This period of time depends
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on control gains and the saturation value . After that, the
jumping height becomes stable and equal to 5.8cm. Then
the hopping range is 5 em.

IV. CONCLUSION

We have presented a new control strategy for legged
robots with fast gaits. It exploits energetic aspects and
passivity properties of system. The control methodology
stabilizes a periodic hopping cycle by regulation of system
energy to a reference value. For more than 1 DOF sys-
tems, the control approach decomposes the system energy,
for hopping motion, in two terms. One of these two terms
desribes the transverse dynamics. The second one describes
the limit cycle to stabilize. Thus a robust control structure
was proposed. It depends on system number of degrees
of freedom VCS (Variable Control Structure), dissipates
transverse energy in Onitetime and stabilizes cycle energy
to a reference value and therefore a Controlled Limit Cycle
is obtained. The method was successful in simulation for
1DOF and 2 DOF systems and in experimentation for SAP
robot with 3DOF. It is robust for large parameters varia-
tion and initial conditions variation and disturbances. The
control approach allow us to stabilize a gait, an implicit
trajectory generation and energy optimization by control-
ling system energy. It is easy to implement.
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