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Abstract. In this paper, the dynamic stability problem of a parallel wrist mecha-
nism is studied by means of monodromy matrix method. This manipulator adopts
a universal joint as the ball-socket mechanism to support the mobile platform and
to transmit the motion/torque between the input shaft and the end-effector. The
linearized equations of motion of the mechanical system are established to an-
alyze its stability according to the Floquet theory. The instable regions are pre-
sented graphically in various parametric charts.
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1 Introduction

The parallel wrist mechanisms are intended for camera-orientating [9], minimally inva-
sive surgical robots [12] and robotic joints [1], thanks to their large orientation workspace
and high payload capacity. Besides, another potential application is that they can func-
tion as a tool head for complicated surface machining [19], where an unlimited torsional
motion is desired to drive the cutting tools in some common material processing such
as milling or drilling. For this purpose, a wrist mechanism [19] as shown in Fig. 1 was
proposed with a number of advantages compared to its symmetrical counterparts, such
as enhanced positioning accuracy [17], infinite rotation [1], structural compactness and
low dynamic inertia [18]. The design of the manipulator is simplified by using a uni-
versal (U) joint supported by an input shaft to generate infinite input/output rotational
motion. On the other hand, the U joint suffers from one major problem, namely, it
transforms a constant input speed to a periodically fluctuating one, which may induce
vibrations and wear. This paper will investigate the dynamic stability problem, focusing
on the aspect of the torsional stability.

To the best of the authors’ knowledge, Porter [13] was the first to investigate this
problem, where a single-degree-of-freedom linearized model was built to plot the sta-
bility chart by using the Floquet theory [8]. Later, similar modeling approaches were
adopted to derive the nonlinear equations for the stability analysis of U joint [14, 7,
2, 4, 3]. Moreover, multi-shaft system consisting of multiple shafts interconnected via
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Fig. 1. CAD model of the parallel wrist mechanism.

Hooke’s joints can also be handled using the previous various approaches [20, 11]. Be-
sides, lateral and coupled stability problem of the universal joint were studied [10, 15,
6], too. According to the literature, the previous studies focus on single or multiple U-
joint mechanisms. On the other hand, a U joint working as a transmitting mechanism
in a parallel mechanism has not received the attention, which will be the subject in this
work. From the reported works, common approaches to analyze the stability problem
of the linear/nonlinear dynamic model of the system include Floquet theory, Krylov–
Bogoliubov method, Poincaré–Lyapunov method, etc.. As the relationship between the
input and output shaft rotating speeds of the U joint is periodic, the Floquet theory will
be an effective approach to analyze the stability problem, which will be adopted in this
work.

This paper investigates the dynamic stability analysis problem of the wrist mecha-
nism by means of a monodromy matrix method. To this end, a linear model consisting
of input and output shafts interconnected via a Hooke’s joint is considered, and the
linearized equations of motion of the system are obtained. Numerical study is carried
out to assess the system stability and the effects of the parameters. Instable regions are
identified from various parametric charts.

2 Wrist Mechanism Architecture

Figure 1 depicts the wrist mechanism, an asymmetrical spherical parallel manipulator
(SPM). The mobile platform is composed of an outer and inner rings connected to each
other with a revolute joint, the revolute joint being realized with a revolve bearing. The
orientation of the outer ring is controlled by two limbs in-parallel, and it is constrained
by a fully passive leg that is offset from the center of the mobile platform to eliminate
the rotational motion around the vertical axis. Through a universal joint, the decoupled
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rotation of the inner ring is generated by the center shaft, which also supports the mobile
platform to improve the positioning accuracy.

The architecture of the wrist mechanism is displayed in Fig. 2. Splitting the outer
ring and the two parallel limbs as well as the passive one, the remaining parts of the
manipualtor can be equivalent to a U-joint mechanism. The center shaft is treated as
the driving shaft and the inner ring is treated as a driven disk. The bend angle, i.e., the
misalignment angle, is denoted by β , and the input/output angles are named as γ1/γ2,
respectively.

Fig. 2. Kinematic architectures of the wrist mechanism and its U joint.

3 Equation of Motion of Torsional Vibrations

The equations of motion for the U-joint mechanism shown in Fig. 2 is deduced via a
synthetical approach [3]. In accordance, the driving shaft and the driven disk are con-
sidered as two separate parts, as displayed in Fig. 3, where the cross piece connecting
the input/output elements is considered as massless.

The equation of motion of torsional vibrations of the driving part can be written as

JI γ̈1 =−c1γ̇1− k1γ1 +MI (1)

where γ1 is the rotational coordinate of JI , and MI is the reaction torque of the input
part of the Hooke’s joint. Moreover, k1 and c1 depict the torsional stiffness and viscous
damper of the driving shaft, respectively.

On the other hand, the driven part is under the effect of the reaction torque MO, for
which the dynamic equation is written as

c2γ̇2 + k2γ2 = MO =−JO(γ̈2 + ω̇o) (2)
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Fig. 3. The driving and driven parts of the U-joint mechanism.

where γ2 is the rotational coordinate of JO, and k2, c2 stand for the torsional stiffness
and viscous damper of the driven shaft. Moreover, the relationship between the input
torque and the output one of the Hooke’s joint can be written as

MO =
MI

η(t)
, η(t) =

cosβ

1− sin2
β sin2(Ω0t + γ1)

(3)

where Ω0 denotes the constant velocity of the driving shaft, henceforth, the following
equations of motion are derived

JI γ̈1 + c1γ̇1 + k1γ1−η(t)c2γ̇2−η(t)k2γ2 = 0 (4)
JO(γ̈2 + ω̇o)+ c2γ̇2 + k2γ2 = 0 (5)

with
ω̇o = η(t)γ̈1 + η̇(t)(Ω0t + γ̇1) (6)

Let τ be equal to Ω0t + γ1. Some dimensionless parameters are defined as follows:

Ω =
Ω0√
k1/JI

, ζ =
c1

2
√

k1JI
, µ =

c2

c1
, ν =

JO

JI
, χ =

k2

k1
=

1
η(τ)2 (7)

Equations. (4) and (5) can be linearized and cast into a matrix form by discarding all
the nonlinear terms, namely,[

γ̈1
γ̈2

]
+

[
2ζ

Ω
− 2µζ

Ω
η(τ)

2η ′(τ)− 2ζ

Ω
η(τ) 2µζ

Ω

( 1
ν
+η2(τ)

)][γ̇1
γ̇2

]
+

[ 1
Ω 2 − χ

Ω 2 η(τ)

η ′′(τ)− 1
Ω 2 η(τ) χ

Ω 2

( 1
ν
+η2(τ)

)][γ1
γ2

]
=

[
0

−η ′(τ)

]
(8)

where primes denote differentiation with respect to τ , thus, Eq. (8) consists of a set of
linear differential equations with π-periodic coefficients.



Torsional Stability of a U–joint based Parallel Wrist Mechanism 5

4 Dynamic Stability Analysis

The homogeneous parts of Eq. (8) should be considered sequentially to analyze the
dynamic stability of the manipulator. Equation (8) can be expressed as::

γ̈γγ +Dγ̇γγ +Eγγγ = 0 (9)

with

γ̈γγ =
[
γ̈1 γ̈2

]T
, γ̇γγ =

[
γ̇1 γ̇2

]T
, γγγ =

[
γ1 γ2

]T (10a)

D =

[
2ζ

Ω
− 2µζ

Ω
η(τ)

2η ′(τ)− 2ζ

Ω
η(τ) 2µζ

Ω

( 1
ν
+η2(τ)

)] (10b)

E =

[ 1
Ω 2 − χ

Ω 2 η(τ)

η ′′(τ)− 1
Ω 2 η(τ) χ

Ω 2

( 1
ν
+η2(τ)

)] (10c)

which can be represented by a state-space formulation, namely,

ẋ(t) = A(t)x(t) (11)

with

x(t) =
[

γγγ

γ̇γγ

]
, A(t) =

[
02 I2
−E −D

]
(12)

whence A(t) is a 4×4 π-periodic matrix. According to Floquet theory, the solution to
equation system (11) can be expressed as

ΦΦΦ(τ) = P(τ)eτR (13)

where P(τ) is a π-periodic matrix and R is a constant matrix, which is related to an-
other constant matrix H, referred to as monodromy matrix, with R = lnH/π . If the
fundamental matrix is normalized so that P(0) = I4, then H = P(π).

The eigenvalues λi, i = 1, 2, 3, 4, of matrix H, referred to as Floquet multipliers,
govern the stability of the system. The system is asymptotically stable if and only if
the real parts of all the eigenvalues λi are non-positive [5]. Here, the matrix H is ob-
tained numerically with the improved Runge Kutta Method [16] with a step size equal
to 10−6, and and its eigenvalues are calculated to assess stability of the system. The
monodromy matrix method is a simple and reliable method to determine the stability of
parametrically excited systems.

5 Numerical Study on Torsional Stability

This section is devoted to numerical stability analysis, where the stability charts are
constructed on the Ω0–β and k1–β parametric planes to study the effect of parameters
onto the system stability. From the CAD model of the robotic wrist, µ = 1, ν = 10,
JI = 0.001kg ·m2, c1 = 0.001Nm/(rad/s).

Figure 4 depicts the stability chart Ω0–β to detect the instability of the U-joint
mechanism, with a constant stiffness k1 = 10Nm/rad, where the dotted zones represent
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the unstable parametric regions. When the rotating speed Ω0 of the driving shaft is
lower than 11π rad/s, this system is always stable when the misalignment angle β is
between 0 and 30◦. On the contrary, angle β should be smaller than 5◦ to guarantee
dynamic stability of the parallel wrist mechanism when Ω0 is equal to 19π rad/s.
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Fig. 4. Effects of the driving shaft speed Ω0 and bend angle β onto the torsional stability of the
parallel wrist with stiffness k1 = 10Nm/rad (blue point means torsional dynamic instability).

Similarly, the influence of the torsional stiffness of the driving shaft and the mis-
alignment angle to the stability is illustrated in Fig. 5, with the driving shaft speed
Ω0 = 19π rad/s. It is apparent that the higher the torsional stiffness of the input shaft,
the more stable the parallel robotic wrist. The system is stable when k1 > 25Nm/rad.
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Fig. 5. Effects of the driving shaft stiffness k1 and bend angle β onto the dynamic torsional
stability with speed Ω0 = 19π rad/s.
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6 Conclusion

This paper dealt with the dynamic torsional stability analysis of a parallel wrist mech-
anism that contains a universal joint. Differing from the symmetrical counterparts, the
asymmetrical architecture of this robotic wrist ensures an infinite torsional movement
of the end-effector under a certain tilt angle. This unique feature allows the wrist mech-
anism to function as an active spherical joint or machine tool head, with a simple archi-
tecture.

The stability problem of the wrist mechanism due to the nonlinear input–output
transmission of the universal joint is studied, where a linear model consisting of in-
put and output shafts interconnected via a Hooke’s joint is considered. The linearized
equations of motion of the system are obtained, for which the stability problem is in-
vestigated by resorting to a monodromy matrix method. The approach used to analyze
the torsional stability of the parallel robotic wrist is numerically illustrated, wherein the
instable regions are presented graphically. Moreover, some critical parameters, such as
torsional stiffness and rotating speeds, are identified. Future work includes the complete
parametric stability analysis of the system as well as its lateral stability.
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