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Small Universal Reversible Counter Machines

Artiom Alhazov, Sergey Verlan, and Rudolf Freund

Abstract A k-counter machine (CM(k)) is an automaton with k counters as an
auxiliary memory. It is known that CM(k) are universal for k ≥ 2. As shown by
Morita reversible CM(2) are universal. Based on results from Korec we construct
four small universal reversible counter machines highlighting different trade-offs:
(10, 109, 129), (11, 227, 270), (9, 97, 116) and (2, 1097, 1568), where in parentheses
we indicated the number of counters, states and instructions, respectively. Since
counter machines are used in many areas, our results can be the starting point for
corresponding reversible universal constructions.

1 Introduction

Universality is a fundamental concept in the theory of computation. The question of
finding a universal computing device in the class of Turing machines was originally
proposed by A. Turing himself in [17]. A universal Turing machine would be capable
of simulating any other TuringmachineT : given a description ofT and the encoding
of the input tape contents, the universal machine would halt with tape contents which
would correspond to the encoding of the output of T for the supplied input.

In a more general setting of an arbitrary class C of computing devices, the
universality problem consists in finding such a fixed elementM0 which would be
able to simulate any other elementM ∈ C. More formally, if the result of runningM
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with the input x is y (usually written asM (x) = y), then y = f (M0(g(M ′), h(x)),
where g is the function enumerating C, while f and h are the decoding and encoding
functions respectively. We remark that in some cases it can be possible to have
M0 ∈ C; then the input is the couple encoding of g(M ′) and x (e.g. using the Cantor
pairing function). It is generally agreed that f and h should not be “too” complicated.
Since it is relatively common to rely on exponential coding when working with
devices computing numbers, the functions f (x) = loga (x) and h(x) = bx , for some
a, b ∈ N are often used (cf. [9, 19]).

In this paper, we will adhere to the terminology established by I. Korec in [7] and
call the elementM0 defined as above weakly universal (or just universal). In case the
functions f and h are additionally required to be identities,M0 will be referred to
as strongly universal. Hence, the strong universality permits to capture the situations
when the encoding does not alter the power of the device. For example, 2-register
machines are weakly universal [9], but they cannot be strongly universal as they
cannot compute even the square function [3, 15].

As a further development on the question of universality, C. Shannon [16] con-
sidered finding the smallest possible universal Turing machine, where the size is
essentially given by the sizes of the alphabets of symbols and states. A series of im-
portant results concerning this direction were obtained [8, 14, 18]. For an overview
of the recent results the reader is referred to [13]. Small universal devices are of con-
siderable theoretical importance since they indicate the minimal choice ingredients
sufficient for achieving computational completeness.

A k-counter machine (CM(k)) is an automaton with k counters that can hold
non-negative values. In one step, the finite-state control of CM(k) can increment
or decrement the contents by one or test whether it is zero or not. A related model
is the register machine [9], having eventual restrictions on the form of the control
and a richer set of potential instructions. However, the common variant of register
machines is almost identical to CMs. Register machines and hence CMs were shown
to be universal and it is known that already three registers/counters suffice for strong
universality and two for the weak one [6, 9].

In [10] K.Morita studied reversible CMs and showed the universality of reversible
CM(2). These machines are backward deterministic, i.e., each configuration has at
most one predecessor. This research lines up in the study of other reversible systems
such as reversible Turing machines, reversible cellular automata and reversible logic
gates, see [5, 11] for a general survey. We remark that in case of reversible machines,
the notion of universality is slightly different than in the classical case [2].

In 1996, I. Korec described a number of universal register machines with consid-
erably fewer instructions than were known to be needed for universality before [7].
Based on this result small 2- and 3-register machines were constructed [1].

In this paper we consider the construction of small universal reversible counter
machines. As in [7, 12, 1] we are mainly interested in the number of instructions
as well as in the trade-offs between this number an the number of counters. We
construct four small universal reversible counter machines highlighting different
trade-offs: (10, 109, 129), (11, 227, 270), (9, 97, 116) and (2, 1097, 1568), where in
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parentheses we indicated the number of counters, the number of states and the
number of instructions, respectively.

2 Definitions

We now recall the formal definition of CM given in [10]. We denote by N the set of
all non-negative integers.

Definition 1. A k-counter machine (CM(k)) is the 5-tuple M = (k,Q, δ, q0, qf ),
where k is the number of counters, Q is a nonempty finite set of states, q0 ∈ Q is the
initial state, qf ∈ Q is the final (halting) state and δ is the move relation, which is a
subset of Q × {1, . . . , k} × {Z, P} ×Q ∪Q × {1, . . . , k} × {−, 0,+} ×Q.

We will use the notation Ri to denote the counter i.

Definition 2. An instantaneous description of a CM(k) M = (k,Q, δ, q0, qf ) is a
k + 1-tuple (q, n1, . . . , nk ) ∈ Q × Nk .

The transition relation ` is defined as follows:

(q, n1, . . . , ni, . . . , nk ) ` (q, n1, . . . , n′i, . . . , nk )

iff one of the following conditions is satisfied:

1. [q, i, Z, q′] ∈ δ and ni = n′i = 0 (the zero test instruction).
2. [q, i, P, q′] ∈ δ and ni = n′i > 0 (the non-zero instruction).
3. [q, i,−, q′] ∈ δ and ni − 1 = n′i (the minus instruction).
4. [q, i, 0, q′] ∈ δ and ni = n′i (the jump instruction).
5. [q, i,+, q′] ∈ δ and ni + 1 = n′i (the plus instruction).

In order to define the computation of the counter machine we need to consider
input and output counters. Without losing the generality, we may assume that the
input counters are numbered from 1 to i and the output ones are numbered from j to
l. Then the result of the computation of M on the vector (n1, . . . , ni ) can be defined
as follows:

M (n1, . . . , ni ) = {(n′j, . . . , n
′
l ) | (q0, n1, . . . , ni, 0, . . . , 0) `∗ (qf , n′1, . . . , n

′
k )}.

According to Korec [7], a machineM is (weakly) universal if there exist recursive
functions h and g such that for any machine M we have

M (x) = f (M (#M, h(x))), where #M is the number of M in some enumeration.

A machine is said to be strongly universal if f and h are identities.
In [7] it was shown that there exist a strongly universal register machine U32 with

32 instructions and a weakly universal register machine with 29 instructions. While
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the model of register machine used in [7] is slightly different from Definition 1,
there is no difficulty in translating it to/from the form used in this paper. Moreover,
this translation keeps the same number of states and basically the same number
of instructions (with the remark that zero-test instructions from register machines
correspond to two instructions in the counter machine). We give below the corre-
sponding list of instructions. Note that this translation adds two additional states that
are not considered in [7] for technical reasons: q0 and qf corresponding to the start
and the end state respectively. Hence, the resulting machine U34 has 46 instructions.
Notice also that U32 is numbering registers from 0 to 7. We recall that the code of
the simulated machine is initially stored in R1, the initial value in R2 and the result
is obtained in R0. At the end of the computation all values of counters R3–R7 are
bounded.

[q1, 1, P, q2] [q1, 1, Z, q6] [q2, 1,−, q3] [q3, 7,+, q1]
[q4, 5, P, q5] [q4, 5, Z, q7] [q5, 5,−, q6] [q6, 6,+, q4]
[q7, 6, P, q8] [q7, 6, Z, q4] [q8, 6,−, q9] [q9, 5,+, q10]
[q10, 7, P, q11] [q10, 7, Z, q13] [q11, 7,−, q12] [q12, 1,+, q7]
[q13, 6, P, q14] [q13, 6, Z, q1] [q14, 4, P, q15] [q14, 4, Z, q16]
[q15, 4,−, q1] [q16, 5, P, q17] [q16, 5, Z, q23] [q17, 5,−, q18]
[q18, 5, P, q19] [q18, 5, Z, q27] [q19, 5,−, q20] [q0, 1, 0, q1]
[q20, 5, P, q21] [q20, 5, Z, q30] [q21, 5,−, q22] [q22, 4,+, q16]
[q23, 2, P, q24] [q23, 2, Z, q25] [q24, 2,−, q32]
[q25, 0, P, q26] [q25, 0, Z, q32] [q26, 0,−, q1]
[q27, 3, P, q28] [q27, 3, Z, q29] [q28, 3,−, q32] [q29, 0,+, q1]
[q30, 2,+, q31] [q31, 3,+, q32] [q32, 4, P, q15] [q32, 4, Z, qf ]

As for register machines, counter machines can be represented in a graphical
manner as a graph whose nodes are labeled by elements from Q and having a
directed edge going from q to q′ labeled by iX if [q, i, X, q′] ∈ δ, see e.g. Fig. 1.

A CM M is said to be deterministic if for any pair of instructions [p, i, X, p′] and
[q, j,Y, q′] from δ it holds

p , q ∨ (i = j ∧ X , Y ∧ X,Y < {−, 0,+}) .

A CM M is said to be reversible if if for any pair of instructions [p, i, X, p′] and
[q, j, X, q′] from δ it holds

p′ , q′ ∨ (i = j ∧ X , Y ∧ X,Y < {−, 0,+}).
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In the graphical form the deterministic property implies that each node has at
most two outgoing arcs. In the case of two arcs, both of them should correspond to
the zero and non-zero test of the same counter. Since U32 is deterministic, it is not
surprising that U34 is deterministic too.

Similarly, the reversible property implies that each node has at most two incoming
arcs. As in the deterministic case, when there are two incoming arcs then both of
them should correspond to the zero and non-zero test of the same counter. We will
call non-reversible a node (state) that is not fulfilling this property.

We also recall the following results from [10]:

Theorem 1 ([10], Theorem 3.1).For any deterministic CM(k) M = (k,Q, δ, q0, qf ),
there is a deterministic reversible CM(k + 2) M ′ = (k + 2,Q′, δ′, q0, qf ) such that

(q0,m1, . . . ,mk ) `∗M (qf , n1, . . . , nk ) iff
∃h ∈ N (q0,m1, . . . ,mk, 0, 0) `∗M ′ (qf , n1, . . . , nk, h, 0)

holds for all m1, . . . ,mk, n1, . . . , nk ∈ N.

The proof of above theorem produces the history of the computation, which is
recorded in the value h using a method from [4]. Obviously, this value is not known
in advance and it is not bounded. The next theorem shows that using k additional
counters it is possible to bound it, hence obtaining each time a “clean” computation
where only the value of the output is not bounded in advance. We should call such
machines garbage-less.

Theorem 2 ([10], Theorem 3.2).For any deterministic CM(k) M = (k,Q, δ, q0, qf ),
there is a deterministic reversible CM(2k + 2) M ′ = (2k + 2,Q′, δ′, q0, q′f ) such that

(q0,m1, . . . ,mk ) `∗M (qf , n1, . . . , nk ) iff
(q0,m1, . . . ,mk, 0, . . . , 0) `∗M ′ (q′f ,mk, . . . ,mk, 0, 0, n1, . . . , nk )

holds for all m1, . . . ,mk, n1, . . . , nk ∈ N.

Next theorem shows that as in [9] any number of counters can be packed into two
in a reversible manner.

Theorem 3 ([10], Theorem 4.1).For any deterministic CM(k) M = (k,Q, δ, q0, qf ),
there is a deterministic reversible CM(2) M ′ = (2,Q′, δ′, q0, qf ) such that

(q0,m1, . . . ,mk ) `∗M (qf , n1, . . . , nk ) iff
(q0, pm1

1 . . . pmk

k
, 0) `∗M ′ (qf , pn1

1 . . . pnk

k
, 0)

holds for all m1, . . . ,mk, n1, . . . , nk ∈ N, where pi denotes the ith prime number.
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3 Strong Universality

In this section we will construct several small universal reversible counter machines.
We start by analyzing themachineU34. It can be easily seen thatU34 has the following
non-reversible states:

q1, q4, q6, q7, q15, q16, q32.

States q1 and q32 are non-reversible because of multiple incoming arcs (6 and 4
respectively). The other states are non-reversible because the incoming arcs do not
correspond to opposite checks of the same counter.

We start by reducing the number of incoming arcs to each state to at most four.
This is performed by adding two additional states as in [10], Lemma 3.1. We remark
that added states are non-reversible. This yields the following machine U36, see also
Fig. 1 (we emphasized in bold the differences with respect to the U34 machine):

[q1, 1, P, q2] [q1, 1, Z, q6] [q2, 1,−, q3] [q3, 7,+, q34]
[q4, 5, P, q5] [q4, 5, Z, q7] [q5, 5,−, q6] [q6, 6,+, q4]
[q7, 6, P, q8] [q7, 6, Z, q4] [q8, 6,−, q9] [q9, 5,+, q10]
[q10, 7, P, q11] [q10, 7, Z, q13] [q11, 7,−, q12] [q12, 1,+, q7]
[q13, 6, P, q14] [q13, 6, Z, q33] [q14, 4, P, q15] [q14, 4, Z, q16]
[q15, 4,−, q33] [q16, 5, P, q17] [q16, 5, Z, q23] [q17, 5,−, q18]
[q18, 5, P, q19] [q18, 5, Z, q27] [q19, 5,−, q20] [q0, 1, 0, q1]
[q20, 5, P, q21] [q20, 5, Z, q30] [q21, 5,−, q22] [q22, 4,+, q16]
[q23, 2, P, q24] [q23, 2, Z, q25] [q24, 2,−, q32] [q34, 1, 0, q1]
[q25, 0, P, q26] [q25, 0, Z, q32] [q26, 0,−, q33] [q33, 1, 0, q34]
[q27, 3, P, q28] [q27, 3, Z, q29] [q28, 3,−, q32] [q29, 0,+, q33]
[q30, 2,+, q31] [q31, 3,+, q32] [q32, 4, P, q15] [q32, 4, Z, qf ]

Note that it was possible to reduce in the samemanner the number of incoming arcs
to two. Then it is possible to use the construction fromTheorem1 in order to construct
an equivalent reversible machine. In this case each pair of arcs (instructions) leading
to a non-reversible state are replaced by 21 instructions and 16 additional states.
A quick computation shows that using this method a strongly universal reversible
machine with 273 instructions and 235 states is obtained.

We show below that forU36 a more efficient construction can be used. We will use
a modified version of the technique from Theorem 1. We recall that the core of this
proof is that in order to make non-reversible states reversible an additional counter
is used to keep track of the computation history. More precisely, this counter stores
a number whose bits keep track of which of the two incoming arcs was used to reach
a non-reversible state. Another additional counter is needed for technical reasons.
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Fig. 1 Strongly universal counter machineU36.

With the goal of minimization of the number of instructions and states we allow up
to four incoming arcs to a node. Hence, our history will keep a base-4 representation
of the used choice.

We start by the observation that in the case of state q4 the incoming arcs are
labeled by 6Z and 6+. We introduce a new state q′4 and we replace the instruction
[q6, 6,+, q4] by two instructions:

[q6, 6,+, q′4], [q
′
4, 6, P, q4]

A similar transformation is done for the state q16 (using counter R4).
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Next, we observe that the two jump instructions at state q1 can be replaced by the
test of counter R8 that is supposed to store the history of the computation (recall that
the construction from Theorem 1 adds two additional counters R8 and R9). Since at
the beginning of the computation the history is empty (equal to zero) and after the
first cycle returning to q1 it is not empty, it is possible to correctly discriminate both
cases:

[q0, 8, Z, q1], [q34, 8, P, q1]

Now we concentrate on the state q34. On one branch the counter R7 is positive
(because of the R7+ instruction). On the other branch counter R7 is always zero,
because the last operation on R7 that is performed in order to reach q34 is the
instruction [q10, 7, Z, q13] that ensures that R7 is empty. Hence, it is possible to use
the following instructions to make q34 reversible:

[q3, 7,+, q′3], [q
′
3, 7, P, q34], [q33, 7, Z, q34]

Consider now the state q15. Using the flowchart depicted at Fig. 1 it can be easily
verified that the value of counter R5 can discriminate the two branches. Indeed, the
instruction [q9, 5,+, q10] ensures that R5 is positive when going to q15 from q14. On
the other hand, in order to reach q32 one has to pass through q23, q27 or q30. But this
implies a zero test on R5. Hence, we can use following instructions to obtain the
reversible behavior of q15:

[q32, 4, P, q′32], [q
′
32, 5, Z, q15], [q14, 4, P, q′14], [q

′
14, 5, P, q15]

Thus, only 4 states (q6, q7, q32, q33) need to be made reversible. We describe
below the procedure that allows to replace any node with at most four incoming
edges by an equivalent reversible construction.

Consider a state qt that has 4 incoming arcs. Let the corresponding instructions
be [qs j , is j , X j, qt ], 1 ≤ j ≤ 4. Then consider the following rules (depicted also on
Fig. 2):

[qs j , is j , X j, qs j1 ], 1 ≤ j ≤ 4

[qs11, 9, Z, qt10 ] [qs21, 9, Z, qt8 ] [qs31, 9, Z, qt6 ] [qs41, 9, Z, qt4 ]
[qt1, 8,−, qt2 ] [qt2, 9,+, qt3 ] [qt3, 9, P, qt4 ] [qt4, 9,+, qt5 ]
[qt5, 9, P, qt6 ] [qt6, 9,+, qt7 ] [qt7, 9, P, qt8 ] [qt8, 9,+, qt9 ]
[qt9, 9, P, qt10 ] [qt10, 8, P, qt1 ] [qt10, 8, Z, qt11 ] [qt11, 9,−, qt12 ]
[qt12, 8,+, qt13 ] [qt13, 9, P, qt14 ] [qt13, 9, Z, qt ] [qt14, 8, P, qt11 ]

Clearly, the above rules allow to reach qt in a reversible manner. We also observe
that if a node has less than four incoming arcs, then for reversibility it is sufficient to
delete unused qs j1 nodes.

Now considering all above constructions together it is possible to construct a
strong universal reversible counter machine. Such a machine has 109 states (36
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states from U36, plus 5 additional states used for the reversibility of q1, q4, q15, q16
and q34, plus 2× 18 states used for the reversibility of q32 and q33, plus 2× 16 states
used for the reversibility of q6 and q7) and 129 instructions (48+5+2×20+2×18).

Theorem 4. There exists a strongly universal reversible counter machine U109 with
10 counters, 109 states and 129 instructions.

Nowwe will show how to bound the final value of non-output counters, i.e. obtain
a garbage-less CM. We will use the construction from Theorem 2. This construction
works as follows. Machine U109 is run leaving the history in R8. Next the following
copy procedure is executed transferring the resulting value from R0 to R10. This is
done by copying the value of R0 to R9 and then copying it back from R9 to R0 and
R10.

[qf , 9, Z, qc1 ] [qc1, 0, Z, qc5 ] [qc1, 0, P, qc2 ] [qc2, 0,−, qc3 ]
[qc3, 9,+, qc4 ] [qc4, 9, P, qc1 ] [qc5, 9, Z, pf ] [qc5, 9, P, qc6 ]
[qc6, 9,−, qc7 ] [qc7, 0,+, qc8 ] [qc8, 10,+, qc9 ] [qc9, 0, P, qc5 ]

Finally, the machine is run in a reverse manner (technically a copy of all rules
with reverse operations should be provided, working on states where q replaced by
p). This gives a total number of 109 × 2 + 9 = 227 states and 129 × 2 + 12 = 270
instructions.

Theorem 5. There exists a strongly universal garbage-less reversible counter ma-
chine U227 with 11 counters, 227 states and 270 instructions.
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4 Weak universality

Now consider the weakly universal machine U31 (based on U29 from [7]). Below we
give the list of rules of this machine. In fact, the only modification in this machine
with respect to U31 concerns the simulation block, which is also depicted on Fig. 3.
We remark that states q25, q26 and q29 are absent. Below we bold emphasized
corresponding changes.

[q1, 1, P, q2] [q1, 1, Z, q6] [q2, 1,−, q3] [q3, 7,+, q38]
[q4, 5, P, q5] [q4, 5, Z, q7] [q5, 5,−, q6] [q6, 6,+, q4]
[q7, 6, P, q8] [q7, 6, Z, q4] [q8, 6,−, q9] [q9, 5,+, q10]
[q10, 7, P, q11] [q10, 7, Z, q13] [q11, 7,−, q12] [q12, 1,+, q7]
[q13, 6, P, q14] [q13, 6, Z, q37] [q14, 4, P, q15] [q14, 4, Z, q16]
[q15, 4,−, q36] [q16, 5, P, q17] [q16, 5, Z, q23] [q17, 5,−, q18]
[q18, 5, P, q19] [q18, 5, Z, q27] [q19, 5,−, q20] [q0, 1, 0, q1]
[q20, 5, P, q21] [q20, 5, Z, q30] [q21, 5,−, q22] [q22, 4,+, q16]
[q23, 0, P, q24] [q23, 0, Z, q1] [q24, 0,−, q32]
[q27, 2, P, q28] [q27, 2, Z, q1] [q28, 2,−, q32]
[q30, 0,+, q31] [q31, 2,+, q32] [q32, 4, P, q15] [q32, 4, Z, qf ]
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Fig. 3 Weakly universal counter machineU31.
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We observe that there are only 3 incoming arcs to q32. In order to minimize the
number of nodes and arcs we will construct a machine with at most 3 incoming arcs
to each node. First add states q33 and q34 like in the case of U36, see Fig. 1. Next,
consider a new state q35 and add following rules:

[q33, 6, P, q35] [q13, 6, Z, q35] [q35, 1, 0, q34]

We remark that on the branch yielding to q33 the value of R6 is positive, because
of the rule [q13, 6, P, q14]. Hence, q35 is reversible.

Nowwe remark that in order tomake reversible a state with at most three incoming
arcs we can use a slightly modified version of the flowchart from Fig. 2. In fact, states
qs41 , qt3 and qt4 should be removed and the arrow leading to qt3 should lead now
to qt5 . This allows to store the incoming arc number in the history, interpreted as a
base-3 number.

Hence we showed how it is possible to construct a weak universal reversible
counter machine. This machine has 97 states (33 + 6 + 2 × 15 + 2 × 14) and 116
instructions (44 + 6 + 2 × 17 + 2 × 16).

Theorem 6. There exists a weakly universal reversible counter machine U97 with 9
counters, 97 states and 116 instructions.

Now we can use the construction from Theorem 3 to obtain a weakly universal
reversible counter machine U with 2 counters. We refer to [10] for more details.
In order to compute the parameters of U we recall that each jump instruction from
U97 is performed by one instruction in U, each plus or minus instruction of Ri is
performed by pi + 10 instructions and pi + 7 new states (pi being the ith prime
number). Each couple of zero and non-zero check on Ri instructions is performed
by 3pi + 3 instructions using 2pi + 2 new states. A single zero check instruction is
simulated using 3pi +2 instructions and 2pi +1 states, while a single non-zero check
instruction is simulated using 2pi + 4 instructions and pi + 2 states. To minimize the
number of instructions we will use a different sequence of prime numbers associated
to counters (trying to use smaller primes for more frequently used counters).

The table below gives the number of instructions of each type in U97, as well as
the chosen prime number.

i + − P&Z Z P pi

0 1 1 1 0 0 23
1 1 1 1 0 0 19
2 1 1 1 0 0 17
4 1 1 2 0 1 11
5 1 4 4 1 1 5
6 1 1 2 0 2 7
7 1 1 1 1 1 13
8 4 4 4 1 5 3
9 10 4 4 12 12 2
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Theorem 7. There exists a weakly universal reversible counter machine U1097 with
2 counters, 1097 states and 1568 instructions.

5 Conclusions

The table below summarizes the parameters of universal reversible counter machines
constructed in this paper.

Counters states instructions universality garbage-less
10 109 129 strong no
11 227 270 strong yes
9 97 116 weak no
2 1097 1568 weak no

We remark that as noted by [2] there is no universal reversible counter machine
in the strict sense, because any reversible machine computes an injective function
and, obviously, the universal machine as defined above is not injective. In [2, 4]
it is highlighted that corresponding constructions provide a machine for reversibly
simulating any irreversible machine. Another solution provided in the paper above
is to define the universal machineM as followsM (#M, x) = (#M, M (x)), i.e., the
result of the computation of the universal machine on the pair consisting of the code
of the simulated machine M and its input x is equal to the pair of the code of the
simulated machine M and the result of its computation on the given input x. Since
U32 keeps a copy of the code of the simulated machine in R1, we can deduce that
the simulations that we provide are universal in the above sense.

There are several possible directions for further research. One of them is the
investigation of different trade-offs between the number of counters, states and
instructions. It can be particularly interesting to see if as in [7] the increase of the
number of counters can lead to the decrease of the number of instructions. Another
interesting direction is the investigation of the universality type and independency
for different number of counters.
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