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Introduction

Universality is a fundamental concept in the theory of computation. The question of finding a universal computing device in the class of Turing machines was originally proposed by A. Turing himself in [START_REF] Turing | On computable numbers, with an application to the Entscheidungsproblem[END_REF]. A universal Turing machine would be capable of simulating any other Turing machine T : given a description of T and the encoding of the input tape contents, the universal machine would halt with tape contents which would correspond to the encoding of the output of T for the supplied input.

In a more general setting of an arbitrary class C of computing devices, the universality problem consists in finding such a fixed element M 0 which would be able to simulate any other element M ∈ C. More formally, if the result of running M with the input x is y (usually written as M (x) = y), then y = f (M 0 (g(M ), h(x)), where g is the function enumerating C, while f and h are the decoding and encoding functions respectively. We remark that in some cases it can be possible to have M 0 ∈ C; then the input is the couple encoding of g(M ) and x (e.g. using the Cantor pairing function). It is generally agreed that f and h should not be "too" complicated. Since it is relatively common to rely on exponential coding when working with devices computing numbers, the functions f (x) = log a (x) and h(x) = b x , for some a, b ∈ N are often used (cf. [START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF][START_REF] Woods | The complexity of small universal Turing machines: A survey[END_REF]).

In this paper, we will adhere to the terminology established by I. Korec in [7] and call the element M 0 defined as above weakly universal (or just universal). In case the functions f and h are additionally required to be identities, M 0 will be referred to as strongly universal. Hence, the strong universality permits to capture the situations when the encoding does not alter the power of the device. For example, 2-register machines are weakly universal [START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF], but they cannot be strongly universal as they cannot compute even the square function [START_REF] Barzdin | Ob odnom klasse machin Turinga (machiny Minskogo), russian[END_REF][START_REF] Schroeppel | A two counter machine cannot calculate 2N[END_REF].

As a further development on the question of universality, C. Shannon [16] considered finding the smallest possible universal Turing machine, where the size is essentially given by the sizes of the alphabets of symbols and states. A series of important results concerning this direction were obtained [START_REF] Minsky | Size and structure of universal Turing machines using tag systems[END_REF]14,18]. For an overview of the recent results the reader is referred to [13]. Small universal devices are of considerable theoretical importance since they indicate the minimal choice ingredients sufficient for achieving computational completeness.

A k-counter machine (CM(k)) is an automaton with k counters that can hold non-negative values. In one step, the finite-state control of CM(k) can increment or decrement the contents by one or test whether it is zero or not. A related model is the register machine [START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF], having eventual restrictions on the form of the control and a richer set of potential instructions. However, the common variant of register machines is almost identical to CMs. Register machines and hence CMs were shown to be universal and it is known that already three registers/counters suffice for strong universality and two for the weak one [START_REF] Ivanov | Small universal non-deterministic Petri nets with inhibitor arcs[END_REF][START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF].

In [10] K. Morita studied reversible CMs and showed the universality of reversible CM [START_REF] Axelsen | What do reversible programs compute?[END_REF]. These machines are backward deterministic, i.e., each configuration has at most one predecessor. This research lines up in the study of other reversible systems such as reversible Turing machines, reversible cellular automata and reversible logic gates, see [START_REF] Bennett | Notes on the history of reversible computation[END_REF][START_REF] Morita | Reversible cellular automata[END_REF] for a general survey. We remark that in case of reversible machines, the notion of universality is slightly different than in the classical case [START_REF] Axelsen | What do reversible programs compute?[END_REF].

In 1996, I. Korec described a number of universal register machines with considerably fewer instructions than were known to be needed for universality before [7]. Based on this result small 2-and 3-register machines were constructed [1].

In this paper we consider the construction of small universal reversible counter machines. As in [7,[START_REF] Morita | Universal reversible Turing machines with a small number of tape symbols[END_REF]1] we are mainly interested in the number of instructions as well as in the trade-offs between this number an the number of counters. We construct four small universal reversible counter machines highlighting different trade-offs: (10, 109, 129), [START_REF] Morita | Reversible cellular automata[END_REF]227,270), [START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF]97,116) and [START_REF] Axelsen | What do reversible programs compute?[END_REF]1097,1568), where in parentheses we indicated the number of counters, the number of states and the number of instructions, respectively.

Definitions

We now recall the formal definition of CM given in [10]. We denote by N the set of all non-negative integers.

Definition 1. A k-counter machine (CM(k)) is the 5-tuple M = (k, Q, δ, q 0 , q f ),
where k is the number of counters, Q is a nonempty finite set of states, q 0 ∈ Q is the initial state, q f ∈ Q is the final (halting) state and δ is the move relation, which is a

subset of Q × {1, . . . , k} × {Z, P} × Q ∪ Q × {1, . . . , k} × {-, 0, +} × Q.
We will use the notation Ri to denote the counter i.

Definition 2. An instantaneous description of a CM(k) M = (k, Q, δ, q 0 , q f ) is a k + 1-tuple (q, n 1 , . . . , n k ) ∈ Q × N k .
The transition relation is defined as follows:

(q, n 1 , . . . , n i , . . . , n k ) (q, n 1 , . . . , n i , . . . , n k ) iff one of the following conditions is satisfied:

1. [q, i, Z, q ] ∈ δ and n i = n i = 0 (the zero test instruction). 2. [q, i, P, q ] ∈ δ and n i = n i > 0 (the non-zero instruction). 3. [q, i, -, q ] ∈ δ and n i -1 = n i (the minus instruction). 4. [q, i, 0, q ] ∈ δ and n i = n i (the jump instruction). 5. [q, i, +, q ] ∈ δ and n i + 1 = n i (the plus instruction).

In order to define the computation of the counter machine we need to consider input and output counters. Without losing the generality, we may assume that the input counters are numbered from 1 to i and the output ones are numbered from j to l. Then the result of the computation of M on the vector (n 1 , . . . , n i ) can be defined as follows:

M (n 1 , . . . , n i ) = {(n j , . . . , n l ) | (q 0 , n 1 , . . . , n i , 0, . . . , 0) * (q f , n 1 , . . . , n k )}.
According to Korec [7], a machine M is (weakly) universal if there exist recursive functions h and g such that for any machine M we have

M (x) = f (M (# M , h(x)))
, where # M is the number of M in some enumeration.

A machine is said to be strongly universal if f and h are identities. In [7] it was shown that there exist a strongly universal register machine U 32 with 32 instructions and a weakly universal register machine with 29 instructions. While the model of register machine used in [7] is slightly different from Definition 1, there is no difficulty in translating it to/from the form used in this paper. Moreover, this translation keeps the same number of states and basically the same number of instructions (with the remark that zero-test instructions from register machines correspond to two instructions in the counter machine). We give below the corresponding list of instructions. Note that this translation adds two additional states that are not considered in [7] for technical reasons: q 0 and q f corresponding to the start and the end state respectively. Hence, the resulting machine U 34 has 46 instructions. Notice also that U 32 is numbering registers from 0 to 7. We recall that the code of the simulated machine is initially stored in R1, the initial value in R2 and the result is obtained in R0. At the end of the computation all values of counters R3-R7 are bounded.

[q 1 , 1, P, q 2 ] [q 1 , 1, Z, q 6 ] [q 2 , 1, -, q 3 ] [q 3 , 7, +, q 1 ]
[q 4 , 5, P, q 5 ] [q 4 , 5, Z, q 7 ] [q 5 , 5, -, q 6 ] [q 6 , 6, +, q 4 ] [q 7 , 6, P, q 8 ] [q 7 , 6, Z, q 4 ] [q 8 , 6, -, q 9 ] [q 9 , 5, +, q 10 ] [q 10 , 7, P, q 11 ] [q 10 , 7, Z, q 13 ] [q 11 , 7, -, q 12 ] [q 12 , 1, +, q 7 ] [q 13 , 6, P, q 14 ] [q 13 , 6, Z, q 1 ] [q 14 , 4, P, q 15 ] [q 14 , 4, Z, q 16 ] [q 15 , 4, -, q 1 ] [q 16 , 5, P, q 17 ] [q 16 , 5, Z, q 23 ] [q 17 , 5, -, q 18 ] [q 18 , 5, P, q 19 ] [q 18 , 5, Z, q 27 ] [q 19 , 5, -, q 20 ] [q 0 , 1, 0, q 1 ] [q 20 , 5, P, q 21 ] [q 20 , 5, Z, q 30 ] [q 21 , 5, -, q 22 ] [q 22 , 4, +, q 16 ] [q 23 , 2, P, q 24 ] [q 23 , 2, Z, q 25 ] [q 24 , 2, -, q 32 ] [q 25 , 0, P, q 26 ] [q 25 , 0, Z, q 32 ] [q 26 , 0, -, q 1 ] [q 27 , 3, P, q 28 ] [q 27 , 3, Z, q 29 ] [q 28 , 3, -, q 32 ] [q 29 , 0, +, q 1 ] [q 30 , 2, +, q 31 ] [q 31 , 3, +, q 32 ] [q 32 , 4, P, q 15 ] [q 32 , 4, Z, q f ] As for register machines, counter machines can be represented in a graphical manner as a graph whose nodes are labeled by elements from Q and having a directed edge going from q to q labeled by iX if [q, i, X, q ] ∈ δ, see e.g. Fig. 1.

A CM M is said to be deterministic if for any pair of instructions [p, i, X, p ] and [q, j, Y, q ] from δ it holds

p q ∨ (i = j ∧ X Y ∧ X, Y {-, 0, +}) .
A CM M is said to be reversible if if for any pair of instructions [p, i, X, p ] and [q, j, X, q ] from δ it holds

p q ∨ (i = j ∧ X Y ∧ X, Y {-, 0, +}).
In the graphical form the deterministic property implies that each node has at most two outgoing arcs. In the case of two arcs, both of them should correspond to the zero and non-zero test of the same counter. Since U 32 is deterministic, it is not surprising that U 34 is deterministic too.

Similarly, the reversible property implies that each node has at most two incoming arcs. As in the deterministic case, when there are two incoming arcs then both of them should correspond to the zero and non-zero test of the same counter. We will call non-reversible a node (state) that is not fulfilling this property.

We also recall the following results from [10]:

Theorem 1 ([10], Theorem 3.1). For any deterministic CM(k) M = (k, Q, δ, q 0 , q f ), there is a deterministic reversible CM(k + 2) M = (k + 2, Q , δ , q 0 , q f ) such that (q 0 , m 1 , . . . , m k ) * M (q f , n 1 , . . . , n k ) iff ∃h ∈ N (q 0 , m 1 , . . . , m k , 0, 0) * M (q f , n 1 , . . . , n k , h, 0)
holds for all m 1 , . . . , m k , n 1 , . . . , n k ∈ N.

The proof of above theorem produces the history of the computation, which is recorded in the value h using a method from [4]. Obviously, this value is not known in advance and it is not bounded. The next theorem shows that using k additional counters it is possible to bound it, hence obtaining each time a "clean" computation where only the value of the output is not bounded in advance. We should call such machines garbage-less.

Theorem 2 ([10], Theorem 3.2). For any deterministic CM(k)

M = (k, Q, δ, q 0 , q f ), there is a deterministic reversible CM(2k + 2) M = (2k + 2, Q , δ , q 0 , q f ) such that (q 0 , m 1 , . . . , m k ) * M (q f , n 1 , . . . , n k ) iff (q 0 , m 1 , . . . , m k , 0, . . . , 0) * M (q f , m k , . . . , m k , 0, 0, n 1 , . . . , n k )
holds for all m 1 , . . . , m k , n 1 , . . . , n k ∈ N.

Next theorem shows that as in [START_REF] Minsky | Computations: Finite and Infinite Machines[END_REF] any number of counters can be packed into two in a reversible manner.

Theorem 3 ([10], Theorem 4.1). For any deterministic CM(k)

M = (k, Q, δ, q 0 , q f ), there is a deterministic reversible CM(2) M = (2, Q , δ , q 0 , q f ) such that (q 0 , m 1 , . . . , m k ) * M (q f , n 1 , . . . , n k ) iff (q 0 , p m 1 1 . . . p m k k , 0) * M (q f , p n 1 1 . . . p n k k , 0)
holds for all m 1 , . . . , m k , n 1 , . . . , n k ∈ N, where p i denotes the ith prime number.

Strong Universality

In this section we will construct several small universal reversible counter machines. We start by analyzing the machine U 34 . It can be easily seen that U 34 has the following non-reversible states: q 1 , q 4 , q 6 , q 7 , q 15 , q 16 , q 32 .

States q 1 and q 32 are non-reversible because of multiple incoming arcs (6 and 4 respectively). The other states are non-reversible because the incoming arcs do not correspond to opposite checks of the same counter.

We start by reducing the number of incoming arcs to each state to at most four. This is performed by adding two additional states as in [10], Lemma 3.1. We remark that added states are non-reversible. This yields the following machine U 36 , see also Fig. 1 (we emphasized in bold the differences with respect to the U 34 machine):

[q 1 , 1, P, q 2 ]
[q 1 , 1, Z, q 6 ] [q 2 , 1, -, q 3 ] [q 3 , 7, +, q 34 ] [q 4 , 5, P, q 5 ] [q 4 , 5, Z, q 7 ] [q 5 , 5, -, q 6 ] [q 6 , 6, +, q 4 ] [q 7 , 6, P, q 8 ] [q 7 , 6, Z, q 4 ] [q 8 , 6, -, q 9 ] [q 9 , 5, +, q 10 ] [q 10 , 7, P, q 11 ] [q 10 , 7, Z, q 13 ] [q 11 , 7, -, q 12 ] [q 12 , 1, +, q 7 ] [q 13 , 6, P, q 14 ] [q 13 , 6, Z, q 33 ] [q 14 , 4, P, q 15 ] [q 14 , 4, Z, q 16 ] [q 15 , 4, -, q 33 ] [q 16 , 5, P, q 17 ] [q 16 , 5, Z, q 23 ] [q 17 , 5, -, q 18 ] [q 18 , 5, P, q 19 ] [q 18 , 5, Z, q 27 ] [q 19 , 5, -, q 20 ] [q 0 , 1, 0, q 1 ] [q 20 , 5, P, q 21 ] [q 20 , 5, Z, q 30 ] [q 21 , 5, -, q 22 ] [q 22 , 4, +, q 16 ] [q 23 , 2, P, q 24 ] [q 23 , 2, Z, q 25 ] [q 24 , 2, -, q 32 ] [q 34 , 1, 0, q 1 ] [q 25 , 0, P, q 26 ] [q 25 , 0, Z, q 32 ] [q 26 , 0, -, q 33 ] [q 33 , 1, 0, q 34 ] [q 27 , 3, P, q 28 ] [q 27 , 3, Z, q 29 ] [q 28 , 3, -, q 32 ] [q 29 , 0, +, q 33 ] [q 30 , 2, +, q 31 ] [q 31 , 3, +, q 32 ] [q 32 , 4, P, q 15 ] [q 32 , 4, Z, q f ] Note that it was possible to reduce in the same manner the number of incoming arcs to two. Then it is possible to use the construction from Theorem 1 in order to construct an equivalent reversible machine. In this case each pair of arcs (instructions) leading to a non-reversible state are replaced by 21 instructions and 16 additional states. A quick computation shows that using this method a strongly universal reversible machine with 273 instructions and 235 states is obtained.

We show below that for U 36 a more efficient construction can be used. We will use a modified version of the technique from Theorem 1. We recall that the core of this proof is that in order to make non-reversible states reversible an additional counter is used to keep track of the computation history. More precisely, this counter stores a number whose bits keep track of which of the two incoming arcs was used to reach a non-reversible state. Another additional counter is needed for technical reasons.

q 1 q 2 q 3 1- 1P q 0 JMP 7+ q 4
q 5 q 6

5-5P 1Z q 7 q 8 q 9

6-6P 6+ 5Z 6Z q [START_REF] Morita | Universal reversible Turing machines with a small number of tape symbols[END_REF] q 11 q 10 7P 7-1+ 5+ q 13 q 14 7Z 6P 6Z q [START_REF] Schroeppel | A two counter machine cannot calculate 2N[END_REF] 4-4P q 16 q 19 q 17 q 18 q 23 q 21 q 22 q 20 q 25 q 26 q 28 q 27 q 29 q 30 q 31 q 32 q f 5P 4Z 5- With the goal of minimization of the number of instructions and states we allow up to four incoming arcs to a node. Hence, our history will keep a base-4 representation of the used choice. We start by the observation that in the case of state q 4 the incoming arcs are labeled by 6Z and 6+. We introduce a new state q 4 and we replace the instruction [q 6 , 6, +, q 4 ] by two instructions: [q 6 , 6, +, q 4 ], [q 4 , 6, P, q 4 ] A similar transformation is done for the state q 16 (using counter R4).

Next, we observe that the two jump instructions at state q 1 can be replaced by the test of counter R8 that is supposed to store the history of the computation (recall that the construction from Theorem 1 adds two additional counters R8 and R9). Since at the beginning of the computation the history is empty (equal to zero) and after the first cycle returning to q 1 it is not empty, it is possible to correctly discriminate both cases:

[q 0 , 8, Z, q 1 ], [q 34 , 8, P, q 1 ] Now we concentrate on the state q 34 . On one branch the counter R7 is positive (because of the R7+ instruction). On the other branch counter R7 is always zero, because the last operation on R7 that is performed in order to reach q 34 is the instruction [q 10 , 7, Z, q 13 ] that ensures that R7 is empty. Hence, it is possible to use the following instructions to make q 34 reversible: [q 3 , 7, +, q 3 ], [q 3 , 7, P, q 34 ], [q 33 , 7, Z, q 34 ] Consider now the state q 15 . Using the flowchart depicted at Fig. 1 it can be easily verified that the value of counter R5 can discriminate the two branches. Indeed, the instruction [q 9 , 5, +, q 10 ] ensures that R5 is positive when going to q 15 from q 14 . On the other hand, in order to reach q 32 one has to pass through q 23 , q 27 or q 30 . But this implies a zero test on R5. Hence, we can use following instructions to obtain the reversible behavior of q 15 : [q 32 , 4, P, q 32 ], [q 32 , 5, Z, q 15 ], [q 14 , 4, P, q 14 ], [q 14 , 5, P, q 15 ] Thus, only 4 states (q 6 , q 7 , q 32 , q 33 ) need to be made reversible. We describe below the procedure that allows to replace any node with at most four incoming edges by an equivalent reversible construction.

Consider a state q t that has 4 incoming arcs. Let the corresponding instructions be [q s j , i s j , X j , q t ], 1 ≤ j ≤ 4. Then consider the following rules (depicted also on Fig. 2): q t1 q t2 q t3 q t5 q t7 q t9 q t4 q t6 q t8 q t10

8-9+

9P 9+ 9P 9+ 9P 9+ 9P 8P q t11 q t12 q t13 q t q t14 8Z 9- 8+ 9Z 9P 8P q s4 q s41 i s4 X 4 9Z q s3 q s31 i s3 X 3 9Z q s2 q s21 i s2 X 2 9Z q s1 q s11 i s1 X 1 9Z
Fig. 2 Reversible junction of 4 instructions in q t . states from U 36 , plus 5 additional states used for the reversibility of q 1 , q 4 , q 15 , q 16 and q 34 , plus 2 × 18 states used for the reversibility of q 32 and q 33 , plus 2 × 16 states used for the reversibility of q 6 and q 7 ) and 129 instructions (48

+ 5 + 2 × 20 + 2 × 18).
Theorem 4. There exists a strongly universal reversible counter machine U 109 with 10 counters, 109 states and 129 instructions. Now we will show how to bound the final value of non-output counters, i.e. obtain a garbage-less CM. We will use the construction from Theorem 2. This construction works as follows. Machine U 109 is run leaving the history in R8. Next the following copy procedure is executed transferring the resulting value from R0 to R10. This is done by copying the value of R0 to R9 and then copying it back from R9 to R0 and R10.

[q f , 9, Z, q c 1 ]

[q c 1 , 0, Z, q c 5 ] [q c 1 , 0, P, q c 2 ] [q c 2 , 0, -, q c 3 ]

[q c 3 , 9, +, q c 4 ] [q c 4 , 9, P, q c 1 ] [q c 5 , 9, Z, p f ] [q c 5 , 9, P, q c 6 ]

[q c 6 , 9, -, q c 7 ] [q c 7 , 0, +, q c 8 ] [q c 8 , 10, +, q c 9 ] [q c 9 , 0, P, q c 5 ]

Finally, the machine is run in a reverse manner (technically a copy of all rules with reverse operations should be provided, working on states where q replaced by p). This gives a total number of 109 × 2 + 9 = 227 states and 129 × 2 + 12 = 270 instructions.

Theorem 5. There exists a strongly universal garbage-less reversible counter machine U 227 with 11 counters, 227 states and 270 instructions.

Weak universality

Now consider the weakly universal machine U 31 (based on U 29 from [7]). Below we give the list of rules of this machine. In fact, the only modification in this machine with respect to U 31 concerns the simulation block, which is also depicted on Fig. 3. We remark that states q 25 , q 26 and q 29 are absent. Below we bold emphasized corresponding changes. q 1 q 16 q 18 q 23 q 20 q 28 q 27 q 30 q 31 q 32 q f 4P 4Z Fig. 3 Weakly universal counter machine U 31 .

We observe that there are only 3 incoming arcs to q 32 . In order to minimize the number of nodes and arcs we will construct a machine with at most 3 incoming arcs to each node. First add states q 33 and q 34 like in the case of U 36 , see Fig. 1. Next, consider a new state q 35 and add following rules: [q 33 , 6, P, q 35 ] [q 13 , 6, Z, q 35 ] [q 35 , 1, 0, q 34 ] We remark that on the branch yielding to q 33 the value of R6 is positive, because of the rule [q 13 , 6, P, q 14 ]. Hence, q 35 is reversible. Now we remark that in order to make reversible a state with at most three incoming arcs we can use a slightly modified version of the flowchart from Fig. 2. In fact, states q s 41 , q t 3 and q t 4 should be removed and the arrow leading to q t 3 should lead now to q t 5 . This allows to store the incoming arc number in the history, interpreted as a base-3 number.

Hence we showed how it is possible to construct a weak universal reversible counter machine. This machine has 97 states (33 + 6 + 2 × 15 + 2 × 14) and 116 instructions (44 + 6 + 2 × 17 + 2 × 16). Theorem 6. There exists a weakly universal reversible counter machine U 97 with 9 counters, 97 states and 116 instructions. Now we can use the construction from Theorem 3 to obtain a weakly universal reversible counter machine U with 2 counters. We refer to [10] for more details. In order to compute the parameters of U we recall that each jump instruction from U 97 is performed by one instruction in U, each plus or minus instruction of Ri is performed by p i + 10 instructions and p i + 7 new states (p i being the ith prime number). Each couple of zero and non-zero check on Ri instructions is performed by 3p i + 3 instructions using 2p i + 2 new states. A single zero check instruction is simulated using 3p i + 2 instructions and 2p i + 1 states, while a single non-zero check instruction is simulated using 2p i + 4 instructions and p i + 2 states. To minimize the number of instructions we will use a different sequence of prime numbers associated to counters (trying to use smaller primes for more frequently used counters).

The table below gives the number of instructions of each type in U 97 , as well as the chosen prime number. Theorem 7. There exists a weakly universal reversible counter machine U 1097 with 2 counters, 1097 states and 1568 instructions.

Conclusions

The table below summarizes the parameters of universal reversible counter machines constructed in this paper. We remark that as noted by [START_REF] Axelsen | What do reversible programs compute?[END_REF] there is no universal reversible counter machine in the strict sense, because any reversible machine computes an injective function and, obviously, the universal machine as defined above is not injective. In [START_REF] Axelsen | What do reversible programs compute?[END_REF]4] it is highlighted that corresponding constructions provide a machine for reversibly simulating any irreversible machine. Another solution provided in the paper above is to define the universal machine M as follows M (# M , x) = (# M , M (x)), i.e., the result of the computation of the universal machine on the pair consisting of the code of the simulated machine M and its input x is equal to the pair of the code of the simulated machine M and the result of its computation on the given input x. Since U 32 keeps a copy of the code of the simulated machine in R1, we can deduce that the simulations that we provide are universal in the above sense.

There are several possible directions for further research. One of them is the investigation of different trade-offs between the number of counters, states and instructions. It can be particularly interesting to see if as in [7] the increase of the number of counters can lead to the decrease of the number of instructions. Another interesting direction is the investigation of the universality type and independency for different number of counters.

Fig. 1

 1 Fig. 1 Strongly universal counter machine U 36 .