

Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources

Pierre Hily-Blant, Alexandre Faure, Claire Rist, Guillaume Pineau Des Forêts, David R. Flower

▶ To cite this version:

Pierre Hily-Blant, Alexandre Faure, Claire Rist, Guillaume Pineau Des Forêts, David R Flower. Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477 (4), pp.4454-4472. 10.1093/mn-ras/sty881. hal-01757509

HAL Id: hal-01757509 https://hal.science/hal-01757509

Submitted on 3 Apr 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modelling the molecular composition and nuclear-spin chemistry of collapsing prestellar sources^{*}

P. Hily-Blant^{1,2}[†], A. Faure², C. Rist², G. Pineau des Forêts^{3,4}, D. R. Flower⁵

¹Institut Universitaire de France

² Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France

³IAS (UMR 8617 du CNRS), Bâtiment 121, Université de Paris Sud, F-91405 Orsay, France

⁴LERMA (UMR 8112 du CNRS), Observatoire de Paris, 61 Avenue de l'Observatoire, F-75014 Paris, France

⁵Physics Department, The University, Durham DH1 3LE, UK

ABSTRACT

We study the gravitational collapse of prestellar sources and the associated evolution of their chemical composition. We use the University of Grenoble Alpes Astrochemical Network (UGAN), which includes reactions involving the different nuclearspin states of H_2 , H_3^+ , and of the hydrides of carbon, nitrogen, oxygen, and sulfur, for reactions involving up to seven protons. In addition, species-to-species rate coefficients are provided for the ortho/para interconversion of the H_3^+ + H_2 system and isotopic variants. The composition of the medium is followed from an initial steady state through the early phase of isothermal gravitational collapse. Both the freeze-out of the molecules on to grains and the coagulation of the grains were incorporated in the model. The predicted abundances and column densities of the spin isomers of ammonia and its deuterated forms are compared with those measured recently towards the prestellar cores H-MM1, L16293E, and Barnard B1. We find that gas-phase processes alone account satisfactorily for the observations, without recourse to grain-surface reactions. In particular, our model reproduces both the isotopologue abundance ratios and the ortho:para ratios of NH₂D and NHD₂ within observational uncertainties. More accurate observations are necessary to distinguish between full scrambling processesas assumed in our gas-phase network—and direct nucleus- or atom-exchange reactions.

Key words:

Stars: formation—Molecular processes and data—Astrochemistry—ISM: abundances, molecules—ISM: individual objects H-MM1, L16293E, Barnard B1

1 INTRODUCTION

The gravitational collapse of gas and dust, which can lead ultimately to the formation of a star and planets, can be observed, in its early stages, through the molecular lines that are emitted by the contracting object. Many such observations have been performed in recent years, by means of ground-based and satellite observatories, and the ALMA array is now providing unprecedented angular resolution. Furthermore, there are converging lines of evidence that cometary ices carry signatures of prestellar core chemistry. Most recently, unexpectedly large abundances of O₂ and volatile S₂ in the coma of comet 67P/C-G were reported (Bieler et al. 2015; Calmonte et al. 2016), while observa-

tions with ground-based interferometers and with the submillimeter ESA/Herschel observatory indicate that more than about 80% of water from the prestellar core actually remains in solid form during the collapse of the protostellar envelope towards the protoplanetary disk (van Dishoeck et al. 2014).

As the object collapses, its density increases, and changes in the rates of physical and chemical processes cause the composition of the medium to evolve. These changes can be followed by means of models that incorporate both the dynamical processes associated with the collapse and the physical chemistry of the gas. Given that the timescale for gravitational collapse and those of many of the chemical processes are comparable, it is desirable that the numerical model should be able to solve simultaneously the dynamical and the chemical rate equations.

Our previous models of prestellar objects have either neglected the dynamics and assumed that the chemical com-

^{*} This paper is dedicated to the memory of Charles Malcolm Walmsley, outstanding astrophysicist and friend.

[†] E-mail: pierre.hily-blant@univ-grenoble-alpes.fr

position attains steady-state at a given density (Le Gal et al. 2014), or followed the contraction of the radius, R, of a core of mass M by means of the equation of gravitational free-fall,

$$\frac{1}{R}\frac{\mathrm{d}R}{\mathrm{d}t} \equiv \frac{1}{x}\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{\pi}{2\tau_{\mathrm{ff}}x}\left(\frac{1}{x}-1\right)^{1/2} \tag{1}$$

(Flower et al. 2005), where t is the time and $x \equiv R/R_0 \le 1$. The initial radius, R_0 , of the condensation is given by

$$R_0 = \left(\frac{3M}{4\pi\rho_0}\right)^{1/3} \tag{2}$$

with ρ_0 the initial mass density. The timescale, $\tau_{\rm ff}$, for free-fall collapse is

$$\tau_{\rm ff} = \left(\frac{3\pi}{32G\rho_0}\right)^{1/2} \tag{3}$$

(Spitzer 1978). By integrating Equ. (1) in parallel with the chemical rate equations, the chemical composition of the medium may be derived, as a function of the (timedependent) density of the cloud.

Seminal studies of the gravitational collapse of condensations of material in interstellar clouds (Larson 1969, 1972; Penston 1969) have shown that, in the initial isothermal phase, the collapsing core becomes surrounded by an envelope whose density varies as r^{-2} , where r is the radial distance to a point in the condensation. The central object subsequently acquires mass via an outwards-propagating expansion shock wave (Shu 1977). This model was adopted by Visser et al. (2009, 2011) in order to simulate the chemical evolution of a molecular medium that is undergoing gravitational collapse. Their (two-dimensional) simulation assumes the condensation to be rotating, and consequently some of the infalling material accumulates in a disk. More recently, Keto et al. (2015) have applied a one-dimensional ("Larson-Penston") dynamical model in their study of the chemistry of collapsing prestellar cores.

In our approach, we distinguish between a central object ("core"), whose initial mass is equal to the Jeans mass and which is undergoing free-fall collapse, and the surrounding object ("envelope"), which forms through mass-loss from the core; the total mass of the core plus the envelope remains constant and equal to the Jeans mass. As the core evolves, its density increases but its mass decreases. The increasing density leads to an enhanced rate of adsorption of the molecular gas on to the grains, whilst an increasing fraction of the molecular column density is contributed by the surrounding envelope. We simulate the structure and chemical composition of the envelope by means of a time–dependent chemical model, assuming a r^{-2} density profile in the envelope and a constant temperature throughout. The column densities of atomic and molecular species are computed in the core and the envelope, and comparisons are made with the corresponding values observed in prestellar sources.

Our treatment of the chemistry of the medium distinguishes itself from other studies of protostellar collapse (Lesaffre et al. 2005; Visser et al. 2011; Aikawa et al. 2012; Keto et al. 2015) by including explicitly the various nuclear– spin states of the carbon, nitrogen, oxygen, and sulfur hydrides and their abundant deuterated forms. It has been known for over a decade that the (observed) deuterium enrichment of molecules such as ammonia is mediated by reactions with the deuterated forms of H_3^+ and is intimately linked to the evolution of ortho:para abundance ratios. Our model combines a chemistry of prestellar objects that incorporates isotopic and nuclear–spin modifications of the relevant species with a dynamical simulation of the initial phase of gravitational collapse that results in the formation of the prestellar object. The dynamical and chemical rate equations are solved numerically, in parallel, thereby allowing, in a self-consistent manner, for departures of the physical and chemical states of the medium from steady–state.

In Section 2, we summarize the characteristics of the model; Section 3 contains our results and comparisons with observations of prestellar objects, and Section 4 our concluding remarks.

2 THE MODEL

2.1 A new dynamical model

We consider a spherically–symmetric, isothermal, nonrotating medium, consisting of neutral, positively– and negatively–charged gas and dust. The mass contained in the collapsing sphere is

$$M_0 = \frac{4\pi}{3}R_0^3\rho_0$$

where R_0 is the initial radius and ρ_0 is the initial, uniform, mass density. Both the Jeans mass, M_J , and the critical mass for stability of a Bonnor–Ebert sphere, $M_{\rm crit}$, are of the same order, given by

$$M_{\rm J} \approx M_{\rm crit} \approx \left(\frac{\pi k_{\rm B}T}{\mu G}\right)^{3/2} \left(\frac{1}{\rho_0}\right)^{1/2},$$

where $\mu = 2.33 m_{\rm H} = 3.9 \times 10^{-24}$ g is the mean molecular mass and T = 10 K is the kinetic temperature of the gas. Taking $\rho_0 \equiv n_0 \mu = 1.4 n_{\rm H} m_{\rm H}$, where $n_0 = 6.0 \times 10^3$ cm⁻³ is the initial number density of the gas (corresponding to molecular gas with $n_{\rm H} = n({\rm H}) + 2n({\rm H}_2) = 10^4$ cm⁻³ and $n({\rm He})/n_{\rm H} = 0.10)$, yields $M_{\rm J} \approx 7$ M_{\odot}; the corresponding free–fall time is $\tau_{\rm ff} =$ 4.4×10^5 yr.

We compute the chemical evolution of a fluid particle that flows inwards, at speed, v(R), where R is the radius of the free–falling core. Following the early study of Larson (1969), the free–falling core, of radius R, has a uniform density ρ and is progressively surrounded by an envelope whose density ρ_{env} evolves as

$$\rho_{\rm env}(R_{\rm env}) = \rho_0 \left(\frac{R_0}{R_{\rm env}}\right)^2 = \rho \left(\frac{R}{R_{\rm env}}\right)^2,\tag{4}$$

which implies that the mass of the core is

$$M(R) = M_0 \frac{R}{R_0}.$$
(5)

The equation of motion under conditions of free–fall gravitational collapse is

$$\frac{d^2R}{dt^2} = -\frac{GM(R)}{R^2} \tag{6}$$

where G is the gravitational constant. Using Equ. (5), Equ. (6) may be integrated, yielding

$$v(R) = \frac{dR}{dt} = -\left[\frac{2GM_0}{R_0}\ln\left(\frac{R_0}{R}\right)\right]^{1/2}.$$
(7)

MNRAS 000, 1-?? (2017)

Figure 1. The evolution, in our "Larson-Penston" model, of the density profile of the gas (full curves), $n_{\rm H}$, as a function of the radius for a mass $M_0 = 7 \,\rm M_{\odot}$ and an initial density of $n_{\rm H} = 10^4 \,\rm cm^{-3}$. The time elapsed from the initial configuration (in Myr) is indicated for each curve. The filled circles indicate the location of the outer edge of the envelope, which varies with the core radius, in order that the total mass is conserved. The results of Larson (1969), for a $1 \,\rm M_{\odot}$ contracting cloud of initial density and radius $n_{\rm H} = 4.7 \times 10^4 \,\rm cm^{-3}$ and 1.1×10^4 au respectively, are also shown for comparison (broken curves, labeled with the times in units of $10^{13} \,\rm s$).

with the initial condition that v(R) = 0 when $R = R_0$.

We note that Equs. (4) and (5) have the form of the density and mass distributions of the "singular isothermal sphere" considered by Shu (1977) (his Equ. (2)). When transformed to his dimensionless variables, the infall velocity that we compute exhibits a profile that is similar to the isothermal collapse solutions plotted in his Fig. 3.

Our calculation traces the free–fall collapse of a particle at the edge of the core but is not truly Lagrangian. The flux of matter escaping outwards, across the boundary, R, of the collapsing condensation, is given by

$$4\pi R^2 \rho u = -\frac{\mathrm{d}M}{\mathrm{d}t} = -M_0 v(R)/R_0 \tag{8}$$

which can be written in the form

$$4\pi R_0^2 \rho_0 u = -\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{4\pi}{3} R_0^2 \rho_0 \frac{\mathrm{d}R}{\mathrm{d}t}.$$
(9)

It follows that the speed at which matter crosses the surface of the sphere is

$$u = -v(R)/3 \tag{10}$$

and hence the flow speed of this matter in an inertial frame is 2/3v(R). The outer radius R_{out} of the envelope contracts at this same speed (see Fig. 1), thereby ensuring conservation of the total mass of the core and the envelope.

In the following, comparisons to observations will be based on both abundances and column densities. To com3

Figure 2. Our "Larson-Penston" model. *Top panel:* the velocity profile of the inner collapsing core as a function of its radius (in au) and its central density (in cm⁻³). *Middle panel:* the temporal profiles of the total H nuclei density $n_{\rm H}$ (in units of $10^5 \,{\rm cm}^{-3}$), of the radii (in astronomical units) of the core (*R*) and the outer edge of the cloud ($R_{\rm out}$), and of the infall velocity ($-\nu(R)$, Equ. 7). The parameters are those of Table 1. *Bottom panel:* contributions of the core and the envelope to the mass (in M_{\odot}), $M_{\rm core}$ and $M_{\rm env}$, and to the total column density (in units of $10^{22} \,{\rm cm}^{-2}$), $N_{\rm core}$ and $N_{\rm env}$. In all panels, the time is expressed in Myr.

pute the column densities, we note that during a time interval dt, the core contracts by a distance -dR and the column density of any species in the envelope increases by

$$dN_{\rm env} = -\frac{1}{3}n_{\rm H}(R)X(R)dR,\tag{11}$$

where $n_{\rm H}(R)$ and X(R) represent the density and the abundance, with respect to total H nuclei, at radius R, respectively. Integration of that quantity thus gives the contribution of the envelope to the total column density. On the other hand, the column density of the uniform collapsing core is

Table 1. Initial parameters of the Flower et al. (2006b) (F06) and of the reference model used in our "Larson-Penston" collapse.

Parameter	Notation	Unit	Va	alue
			F06	Reference
Mass	M_0	M_{\odot}	-	7
Initial cloud radius	R_0	$au^{\$}$	_	3.5×10^4
Initial Density	$n_{\rm H}$	$\rm cm^{-3}$	10^{4}	10^{4}
Kinetic temperature	Т	Κ	10	10
Cosmic ray ionization rate ^{\dagger}	ζ	s^{-1}	1×10^{-17}	3×10^{-17}
Initial radius of the refractory grain core	a_{g}	μ m	0.05	0.10
Initial free–fall time	$ au_{ m ff}$	Myr	0.43	0.43

§ The abbreviation "au" is used here for the astronomical unit of distance $(1.5 \times 10^{13} \text{ cm})$.

 $\dagger \zeta$ is the rate of cosmic-ray ionization of H₂, namely the sum of the ionization and dissociative ionization of H₂.

simply

$$N_{\rm core}(R) = n_{\rm H}(R)X(R)R.$$
(12)

Note that in our approach, the chemical composition of the envelope is not computed explicitly but is determined by that of the free–falling inner core (see Section 3.3.3). In the following, the contributions to the column densities from both the front and the rear of the cloud are included, assuming spherical symmetry. Although the mass of the envelope becomes greater than that of the contracting core early in the collapse process—when the density, $n_{\rm H}$, of the core is about 2×10^4 cm⁻³—the total column density remains dominated by the contracting core. As will be seen below, this is not necessarily the case for the chemical species, owing to freeze-out.

Our approach simulates well the density profile and, qualitatively, the velocity profile calculated by Larson (1969): the evolution of the density profile of the envelope and core is shown in Fig. 1. Initially, when $R = R_0$, the gas is at rest in an inertial frame. Subsequently, the infall velocity increases as R decreases, as may be seen from Equ. (7) and the results in Fig. 2, in which the contributions of the collapsing core and of the envelope to the total column density and mass are also shown. On the other hand, the infall velocity predicted by the "Larson-Penston" solution of Keto et al. (2015) increases with R. Furthermore, the gas is not initially at rest, which is inconsistent with one of the conditions specified by Larson (1969). Thus, whilst the profile of the density of the gas that we calculate is analogous to that of Keto et al., the velocity profile is qualitatively different.

The reason for the discrepancy in the velocity profiles is that the "Larson-Penston" profile of Keto et al. derives from the similarity solution considered in Appendix C of Larson (1969) and not from his numerical results. The similarity solution for the infall speed tends, at large radius, to a value of 3.28 times the isothermal sound speed; but Larson notes that the computed velocity profile approaches the similarity solution only slowly, and the collapse must be followed over at least 12 orders of magnitude in density to approach the limiting value. In practice, we are concerned with the early stage of the collapse process, during which the density increases by only a few orders of magnitude from its initial value and the gas at large radius remains approximately at rest.

In our model, the differential equations are solved where R is the only variable. The elapsed time is then computed as $t = \int_{R_0}^{R} dx/v(x)$. The equation of mass conservation applied to

each of the neutral, positively- and negatively-charged fluids in the free–falling core takes the generic form

$$\frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}R} = \frac{S}{\rho\dot{R}} - \frac{2}{R} \tag{13}$$

where $\rho(R)$ is the mass density, S(R) is the rate of production of mass per unit volume, for the appropriate fluid, and $\dot{R} = v(R)$. In the case of a free–falling core with no envelope, such as in F06, the second term on the right hand side would be 3/R. In our case, the core loses mass, hence building up the envelope (see Equ. 5), such that dM/M = dR/R which yields $d\rho/\rho = -2dR/R$ instead of -3dR/R.

Chemical processes result in mass exchange amongst the three fluids (e.g. in the production of a neutral by recombination of a positive and a negative species), but overall mass conservation is maintained, i.e. $S_n + S_+ + S_- \equiv 0$. The three fluids are assumed to have a common flow speed, ν , and kinetic temperature, T.

As the core contracts, from R_0 to R, its composition evolves. This chemical evolution is followed by means of

$$\frac{1}{n}\frac{\mathrm{d}n}{\mathrm{d}R} = \frac{N}{n\dot{R}} - \frac{2}{R} \tag{14}$$

where n(R) is the number density of the species and N(R) is its rate of (chemical) formation per unit volume. Over 200 species, comprising gas- and solid-phase atomic and molecular species and grains, participate in a set of over 3000 chemical reactions, which change the composition and degree of ionization of the medium, notably by the freeze-out of neutral species (including, where relevant, nuclear-spin variants and deuterated forms) on to the surfaces of grains.

The first-order differential equations representing the dynamical and physico-chemical processes were integrated by means of the DVODE algorithm for solving, in particular, "stiff" differential equations (Hindmarsh 1983). We allowed for the coagulation of grains during the collapse, following the description of this process by Flower et al. (2005) and using the measurements of Poppe & Blum (1997). Coagulation reduces the total surface area of the grains and hence the rate of adsorption of the neutral species on to the grains.

The physical parameters used for the two series of models—labeled "F06" and "reference"—of our study are summarized in Table 1. We adopted the initial distribution of the elements amongst the gas and solid phases summarized in Tables 2 and 3 (?)see also][[flower2005; the solid phase consists of grains with a refractory core and an ice mantle that increases in size during the collapse process, owing to freeze-out.

Table 2. Fractional elemental abundances, with respect to H nuclei, and their partitioning into volatiles (gas and grain mantles) and refractory (grain cores), and the corresponding levels of depletion (δ , in %) from the gas phase. Numbers in parentheses are powers of 10.

Element	Total	Vol	atile	Refractory	δ
		Gas	Mantles		
Н	1.0	1.0			0
He	1.00(-1)	1.00(-1)			0
\mathbf{C}	3.55(-4)	8.27(-5)	5.55(-5)	2.17(-4)	77
Ν	7.94(-5)	6.39(-5)	1.55(-5)		20
Ο	4.42(-4)	1.24(-4)	1.78(-4)	1.40(-4)	72
\mathbf{S}	1.86(-5)	6.00(-7)	1.82(-5)		98
Mg	3.70(-5)			3.70(-5)	100
Si	3.37(-5)			3.37(-5)	100
Fe	3.23(-5)	1.50(-9)		3.23(-5)	100

Table 3. Initial fractional abundances in the grain mantles, expressed relative to the total H nuclei density $n_{\rm H} = 10^4 \,{\rm cm}^{-3}$. Numbers in parentheses are powers of 10.

Species	Fractional abundance
H ₂ O	1.03(-4)
CO	8.27(-6)
$\rm CO_2$	1.34(-5)
CH_4	1.55(-6)
CH_3OH	1.86(-5)
H_2CO	6.20(-6)
HCOOH	7.24(-6)
NH_3	1.55(-5)
H_2S	1.80(-5)
OCS	2.07(-7)

2.2 A new chemical network

Since the Flower et al. (2006b) (hereafter F06) paper, there have been significant changes to the rate coefficients for chemical reactions, notably those determining ortho \leftrightarrow para inter-conversion, e.g. for $H_3^+ + H_2$ and isotopic variants (see below). In addition, new THz facilities have provided the abundances of spin isomers of several hydride molecules, such as H_2D^+ , which motivated a complete revision of the spin-separated astrochemical network of F06. In the process, the rates of cosmic-ray-induced photo-reactions, which are significant in establishing the steady-state abundances, have also been revised. We provide here a summary of the most salient features of the new University of Grenoble Alpes Astrochemical Network (UGAN), while full details, and the entire network, can be found in the Appendices.

2.2.1 New conversion rates for $H_3^+ + H_2$ and isotopic variants

An important addition to the reaction network is the exoergic proton–exchange reaction

$$\mathbf{oH}_3^+ + \mathbf{oH}_2 \longrightarrow \mathbf{pH}_3^+ + \mathbf{oH}_2 \tag{15}$$

which was excluded from the reaction set of F06 on the grounds that the change of proton spin orientation in the H_3^+ ion must be accompanied by $oH_3^+ + oH_2 \longrightarrow pH_3^+ + pH_2$, yielding para-H₂. However, both forms of H₂ can be represented by the combinations of the "spin-up" (α) and "spin-

down" (β) single-particle nuclear spin functions, namely $2^{-\frac{1}{2}}(\alpha_1\beta_2+\alpha_2\beta_1)$ and $2^{-\frac{1}{2}}(\alpha_1\beta_2-\alpha_2\beta_1)$ for the ortho and para H_2 respectively, where the subscripts 1 and 2 label the protons. It follows that a quantum-statistical calculation, such as that undertaken by Hugo et al. (2009), can give rise to non-zero rate coefficients for processes that would be excluded in a more simplistic approach. In fact, Hugo et al. obtained a rate coefficient for reaction (15) that is 4 times larger than for the reaction leading to pH_2 . As a consequence, the ortho: $para-H_3^+$ ratio calculated using their data may be expected to be lower than when reaction (15)is neglected, as in F06. This expectation is confirmed by the results of the steady-state calculations, as may be seen in Table 5: even though the ortho:para-H₂ ratio is lower, the ortho:para-H₃⁺ ratio is also lower than was calculated by $F06^{1}$.

For the important ortho⇔para inter-conversion reactions in the $H_3^+ + H_2$ system and isotopic variants, we replaced the ground-state-to-species kinetic rates, published by Hugo et al. (2009) and used extensively in the astrophysical community, by species-to-species rates. To do so, the state-to-state rate coefficients computed by Hugo et al. (2009) were averaged, adopting LTE level populations for temperatures up to 50 K. For each reaction, the (logarithm of the) resulting temperature-dependent rates were fitted by a modified Arrhenius law. While the modifications are small for the lightest species— H_2 , H_3^+ , and H_2D^+ —they become more important for the heavier, doubly- or triply-deuterated species. We note that our rates agree to within a factor of two with the species-to-species rates calculated by Sipilä et al. (2017) using a similar procedure. We also checked that our new rates correctly recover thermalized ortho-to-para ratios for H_3^+ and its deuterated analogs, at temperatures larger than ≈ 16 K (Le Bourlot 1991; Flower et al. 2006a). These new rates are provided in Tables D7–D10.

$2.2.2 \quad State-of-the-art, \ fully \ separated \ hydride \ chemistry$

Faure et al. (2013); Rist et al. (2013) and Le Gal et al. (2014) have revisited and revised the chemistry of nitrogen-bearing species, which now includes specifically the various nuclearspin states of the carbon, nitrogen, oxygen, and sulfur hydrides and their abundant deuterated forms. The nuclearspin state separation was performed using the permutation symmetry approach of Quack (1977). During this process, the rate coefficients of many bi-molecular reactions were updated, following a literature survey. Full details of the assumptions behind this new chemical network are provided in Appendices B and C. In Appendix D we specify the rate coefficients for these reactions that have been adopted in the present calculations, including the steady-state computations reported in columns 3 and 4 of Table 4.

2.2.3 Grain-surface processes

It should be noted that no explicit grain–surface reactions are included in the chemical network (except the formation of H_2 and isotopologues). The rates of adsorption of neutral

¹ Available at http://massey.dur.ac.uk/drf/protostellar/ chemistry_species

Table 4. Steady–state abundances, expressed relative to $n_{\rm H} = n({\rm H}) + 2n({\rm H}_2) = 10^4 \,{\rm cm}^{-3}$, as calculated using the chemical reaction set of Flower et al. (2006b) (F06) and our present, updated chemistry. Two values of the cosmic-ray ionization rate, ζ , and of the initial refractory grain core, $a_{\rm g}$, have been used, which are indicated. Where the nuclear–spin state is not specified (e.g. NH₂D), the fractional abundance is the sum of the abundances of the individual nuclear–spin states. Numbers in parentheses are powers of 10.

Species	$F06^{\$}$	Present			
	$\zeta = 1 imes 10^{-17} { m s}^{-1}$	1×10^{-17}	3×10^{-17}		
	$a_{\rm g} = 0.05 \mu{ m m}$	0.05	0.10		
Н	2.2(-05)	2.3(-05)	6.9(-05)		
pH_2	5.0(-01)	5.0(-01)	5.0(-01)		
oH_2	1.4(-03)	4.1(-04)	5.4(-04)		
Ν	1.2(-05)	5.3(-06)	8.4(-06)		
pNH_3	4.1(-08)	2.3(-09)	5.0(-09)		
oNH_3	1.4(-08)	1.2(-09)	2.7(-09)		
NH ₂ D	4.6(-09)	2.6(-09)	4.7(-09)		
NHD_2	2.1(-11)	6.6(-11)	1.0(-10)		
ND ₃	2.0(-14)	2.7(-13)	4.1(-13)		
CN	9.2(-09)	2.0(-09)	7.4(-09)		
HCN	1.1(-07)	1.6(-09)	2.8(-09)		
HNC	1.4(-07)	1.4(-09)	2.9(-09)		
N_2	2.6(-05)	2.9(-05)	2.8(-05)		
pH_3^+	7.4(-10)	1.5(-09)	4.1(-09)		
oH_3^+	1.1(-09)	5.5(-10)	1.8(-09)		
$_{0}H_{2}D^{+}$	2.0(-11)	9.6(-11)	2.7(-10)		
pH_2D^+	3.4(-12)	5.1(-11)	1.3(-10)		
$_{\mathrm{oHD}_{2}^{+}}$	1.4(-12)	2.2(-11)	5.9(-11)		
pHD_2^+	5.2(-13)	7.2(-12)	1.9(-11)		
oD_3^+	3.0(-14)	8.8(-13)	2.2(-12)		
mD_3^+	3.8(-14)	8.2(-13)	2.1(-12)		
pD_2^+	× ,	4.3(-14)	1.1(-13)		
N_2H^+	5.0(-10)	5.2(-10)	9.3(-10)		
N_2D^+	2.5(-12)	1.8(-11)	3.1(-11)		

§http://massey.dur.ac.uk/drf/protostellar/chemistry_species

Table 5. Top: steady-state ortho:para (and also m:p in the cases of D_3^+ and ND_3) abundance ratios for the species listed in Table 4. Also given are the corresponding thermalized ratios at 10 K and in the limit of high temperature. Bottom: abundances of the deuterated isotopologues of ammonia, relative to NH_3 . The abundances are sums over the contributions of the individual nuclear-spin states. Numbers in parentheses are powers of 10.

Species	Present		F06 [§]	Thermal	ized
	1×10^{-17}	3×10^{-17}	1×10^{-17}	$10 \mathrm{K}$	∞
H ₂	7.4(-4)	1.1(-3)	2.8(-3)	3.5(-7)	3
H_3^+	3.6(-1)	4.3(-1)	1.4	7.5(-2)	1
H_2D^+	1.8	2.1	5.8	1.9(-3)	3
HD_2^+	3.0	3.1	2.7	9.8(1)	2
D_3^+ (o:p)	20.9	19.5		4.1(2)	16
D_{3}^{+} (m:p)	19.2	19.3		1.8(3)	10
NH ₃	5.9(-1)	5.4(-1)	3.4(-1)	3.7	1
$\rm NH_2^{\circ}D$	1.7	1.7		2.9	3
NHD_2	2.1	2.1			2
ND_3 (o:p)	16.6	16.5			16
ND_3 (m:p)	10.8	10.7			10
NH ₃	1.0	1.0	1.0		
$\rm NH_2D$	3.3(-1)	2.2(-1)	8.3(-2)		
NHD_2	8.2(-3)	4.6(-3)	3.8(-4)		
ND ₃	4.3(-5)	1.9(-5)	3.6(-7)		

§http://massey.dur.ac.uk/drf/protostellar/chemistry_species

species were computed with allowance for the contribution of the grain mantle to the grain cross section, as described in appendix B of Walmsley et al. (2004). Our treatment of the thermal desorption of molecules, following cosmic ray impact, follows Section 5 of Flower et al. (1995). Ortho- and para-H₂ are assumed to form on grains in the statistical 3:1 ratio of their corresponding nuclear spin states, I = 1 and I = 0. On the other hand, an ortho-to-para equal to unity is assumed for all other species upon desorption. The desorption of molecules by the cosmic ray-induced ultraviolet radiation field (see Appendix A) is also included.

2.2.4 H_2 -driven non-LTE ortho:para ratios

The thermal equilibrium (LTE) ratio of the population densities of the lowest ortho and para states of H_3^+ is

$$\frac{n(J_K = 1_0)}{n(J_K = 1_1)} = \frac{4}{2} \exp\left(-\frac{32.9}{T}\right)$$

where 4 and 2 are the statistical weights of the ortho and para states, respectively, and 32.9 K is the energy of the lowest ortho state above that of the lowest para state. At a kinetic temperature T = 10 K, the LTE ortho:para-H₃⁺ ratio is 0.075; Tables 4 and 5 show that their populations are indeed strongly inverted (i.e. the population ratio exceeds its value in LTE). This inversion is a consequence of the dominance of ortho-H₂ in establishing the relative populations of the ortho- and para-H₃⁺ states and the inversion of the populations of the I = 1 and I = 0 states of ortho- and para-H₂, respectively, through the grain–formation process. Similarly strong deviations from LTE (thermalized) ratios are found for most species (Faure et al. 2013).

3 RESULTS AND DISCUSSION

The initial distribution of the elements is specified in Tables 2 and 3.

3.1 Steady-state composition

It is instructive to compare the initial (steady–state) abundances of species incorporated in the model with the values obtained by F06 for a cloud having a uniform density $(n_{\rm H}=10^4\,{\rm cm}^{-3})$ and kinetic temperature $(T=10~{\rm K})$. In these models, the cosmic-ray ionization rate of H₂ is $\zeta = 10^{-17}\,{\rm s}^{-1}$ and the initial radius of the refractory grain core is $a_{\rm g} = 0.05\mu{\rm m}$ (see Table 1).

As may be seen from a comparison of columns 2 and 3 of Table 4, the recent revisions to the chemistry have repercussions on the composition of the gas. The corresponding ortho:para ratios are listed in the upper part of Table 5. Faure et al. (2013) calculated, in steady state at T = 10 K, an ortho:para-H₂ ratio of 9×10^{-4} , for a model that is similar to that considered in Tables 4 and 5; their ortho:para-NH₃ ratio was 0.7. As might be expected, these values are closer to the present results than those of F06. In the lower part of Table 5 are the degrees of deuteration of ammonia, which are seen to be greater in the present calculations than in those of F06. This deuteration process is mediated by the deuterated forms of H₃⁺, which are produced in reactions of H₃⁺ with HD; these reactions were also studied by Hugo

Figure 3. Evolution of the fractional abundances of selected chemical species—expressed relative to $n_{\rm H}$ —in a cloud that is undergoing contraction in a free–fall collapse (four upper panels), and from our "Larson-Penston" model (four lower panels). In each case, the two left (right) panels focus on neutral (charged) species. The chemical network is described in Section 3.1 and Appendix D. Upper panels: models with $\zeta = 1 \times 10^{-17} \text{ s}^{-1}$, and an initial radius of the refractory grain core $a_{\rm g} = 0.05 \ \mu\text{m}$. Lower panels: initial parameters of the reference model of Table 1.

et al. (2009). It is the revisions to these rate coefficients that lead to higher abundances of the deuterated isotopologues of ammonia in the present study.

The significance of the steady-state fractional abundance of any given species depends on the associated equilibrium timescale, which can attain values in excess of 1 Myr under the conditions considered here. Although condensations may remain close to a quasi-static equilibrium for timescales as long as 500 kyr (Brünken et al. 2014), it is unlikely that the chemical composition of the cloud will evolve unperturbed over such long periods of time. Indeed, the timescale for free-fall collapse of the cloud is less than 1 Myr. It follows that the steady-state composition of the gas has limited relevance to observations of prestellar cores. Instead, the composition must be computed under conditions appropriate to collapse, as is described in the following Sections. Both our free-fall and Larson-Penston simulations assume an initial steady-state composition for the physical conditions of our reference model (see Table 1), except where otherwise specified.

3.2 Free-fall simulation

It is instructive to consider first the case of free–fall collapse, which provides a point of reference for subsequent models. In Fig. 3 are shown the variations with the collapsing cloud density, $n_{\rm H}$, of the fractional abundances of selected species, notably some of those containing nitrogen.

The variations of the fractional abundances with the

density of the medium that are seen in Fig. 3 are qualitatively similar to the results of Flower et al. (2005), who also considered a free–fall model. For the purpose of this comparison, we adopt the same values of the cosmic–ray ionization rate ($\zeta = 1 \times 10^{-17} \text{ s}^{-1}$) and the initial radius of the refractory grain core ($a_g = 0.05 \ \mu m$) as Flower et al. (2005). On the other hand, there are quantitative differences, notably for H_3^+ and its isotopologues, which relate to the revisions of the chemistry, as discussed in Section 3.1.

3.3 Larson-Penston simulation

At the onset of gravitational collapse, an envelope begins to form around a core that is initially the principal contributor to the total column densities of the molecular species. As the collapse proceeds, the core contracts according to Equ. (6) and its density increases from its initial value; the density profile of the envelope follows from Equ. (4). The envelope becomes increasingly important and, as we shall see, its contribution ultimately dominates the total column densities in part because the total mass of material advected into the envelope from the core during free–fall is greater than the residual mass of the core.

3.3.1 Fractional abundances

In Fig. 3 are shown the variations in the fractional abundances of selected neutral and charged species as functions of the current density, $n_{\rm H}$, of the core (and hence at the

Figure 4. Contributions, in our reference "Larson-Penston" collapse model (Table 1), of the core, N_{core} , and the envelope, N_{env} , to the total column density $N_{tot} = N_{core} + N_{env}$ of the ammonia molecule and its deuterated forms, as functions of the density of the core. The column densities are evaluated as described in Section 2. The LTE column densities in the starless core Ophiuchus/H-MM1 (Harju et al. 2017) are shown for comparison (see also Table 6.) Far right panel: the column density double-ratios, R_1 and R_2 , defined in Equs. (16) and (17).

current interface between the core and the envelope). As the density increases, atoms and molecules are adsorbed by the grains, whose radius (of the core and the ice mantle) increases from its initial value of 0.13 μ m as more ice is deposited. In these calculations, we assumed the same value, S = 1, of the "sticking coefficient"² for all adsorbing species. As is evident from Fig. 3, the depletion timescale is slightly longer in the L-P than in free–fall model, as a consequence of the following factors: in the L-P model, the contraction timescale is 4.8×10^5 yr, 10% longer than the free–fall time, and the value of ζ (and hence the cosmic–ray desorption rate) is three times larger; but, most significant, the initial radius of the grain core is smaller by a factor of 2 (and the total grain surface area correspondingly larger) in the free– fall than in the L-P model.

3.3.2 Total column densities

In order to illustrate the transition from the preponderance of the core to the preponderance of the envelope, we compare, in Fig. 4, the contributions of the core, $N_{\rm core}$, and the envelope, $N_{\rm env}$, to the column density of the ammonia molecule, NH₃, and its deuterated forms, NH₂D, NHD₂, ND₃. Column densities in the core and in the envelope are evaluated as described in Section 2. The total column densities deduced by Harju et al. (2017) from their observations of the starless core Ophiuchus/H-MM1 by assuming a single excitation temperature and statistical ortho:para ratios (see Table 6).

It is clear from Fig. 4 that the total column density comes to be dominated by the contribution of the envelope, as the core contracts and its density increases but its mass decreases. The composition of the envelope is not uniform, as may be seen from Fig. 3: in the vicinity of the core, adsorption on to the grains depletes the neutral species, which has consequences for the degree of ionization of the gas. Agreement, to better than a factor of 2, with the observed column

densities of the ammonia molecule and all of its deuterated forms is found at a density, $n_{\rm H}$, in the range $5 - 10 \times 10^5$ cm⁻³. Furthermore, since deriving mass, age, or size is not the chief objective of this work, no attempt was made to actually find the best fit to the data. This suggests that gas-phase processes can account for the deuteration of $\rm NH_3,$ without the necessity of invoking additional grain-surface reactions, as concluded by Le Gal et al. (2014). In any case, our gas-grain chemistry is dominated by the adsorption of neutral species in the course of gravitational collapse; desorption processes occur too slowly to affect significantly the gas-phase molecular abundances. On the other hand, if molecules were returned to the gas phase by a mechanism that is intrinsically faster than the cosmic ray-induced desorption processes considered here, the molecular column densities might become dependent on chemical reactions on the surfaces of grains. Furthermore, surface processes, and especially those possibly involved in spin conversion, are still poorly constrained (Turgeon et al. 2017), and the impact of such processes on the observed gas-phase ortho:para ratios is difficult to anticipate. Finally, we note that the agreement with the observations is obtained at densities for which the main contribution to the column density of ammonia and deuterated analogs comes from the free-falling core, before freeze-out begins to be dominant.

3.3.3 Column densities of spin isomers

Column densities of specific isomers of ammonia and its deuterated forms have been measured towards starless and prestellar cores (Daniel et al. 2016; Harju et al. 2017). Figure 5 shows the comparison with the column densities predicted by our reference isothermal collapse model (see Table 1). We note first that agreement to better than a factor 3 is obtained for all sources and species. In the case of H-MM1, the agreement is obtained at core densities in the range $0.3 - 1 \times 10^6 \text{ cm}^{-3}$, as compared with the value of $1.2 \times 10^6 \text{ cm}^{-3}$ derived from the dust emission (Harju et al. 2017). Similarly, in the case of Barnard B1, our model suggests core densities above approximately 10^6 cm^{-3} , consistent with the value of $3 \times 10^6 \text{ cm}^{-3}$ determined by Daniel

 $^{^2}$ The sticking coefficient S is not to be confused with the mass production rate in Equ. (13).

Figure 5. Column densities of ammonia and its deuterated forms, as predicted from our "Larson-Penston" collapse model (full lines) and from observations (hashed regions) of the I16293E, Barnard-B1, and H-MM1 prestellar cores (Daniel et al. 2016; Harju et al. 2017) (see Table 6). The initial parameters are those of Table 1.

et al. (2013). The observation that the core density is higher in B1 than in H-MM1 is correctly reproduced. However, Barnard B1 is likely to be at a more advanced stage of evolution than is described by our model (Gerin et al. 2015), and the agreement that we obtain suggests that ammonia is not tracing the innermost and densest regions. In addition, our calculations slightly under-produce $p-NH_3$ and o-NH₂D, which may indicate that gas-depletion through freeze-out is proceeding too rapidly in the model. Finally, in the case of the I16293E starless core, our model intercepts the observed ranges of column densities for o-NHD₂ and m–ND₃ at two densities, between approximately $10^{\acute{6}}$ and $10^7 \, {\rm cm}^{-3}$. Although the latter density may seem too high for this type of object, we note that it is close to the value of 1.4×10^7 cm⁻³ obtained from the dust-emission profiles (Bacmann et al. 2016). Overall, the level of agreement with the observations reported in Fig. 5 (and in Fig. 4) lends credence to the validity of the gas-phase chemical network.

Further support for our gas–phase network comes from the deuteration of ammonia, from NH_3 through to ND_3 . In the far right panel of Fig. 4, we have plotted the ratios

$$R_1 = \frac{\mathrm{NH}_2\mathrm{D}/\mathrm{NH}_3}{\mathrm{NH}_2/\mathrm{NH}_2\mathrm{D}} \tag{16}$$

and

$$R_2 = \frac{\text{NHD}_2/\text{NH}_2\text{D}}{\text{ND}_3/\text{NHD}_2} \tag{17}$$

Observationally, both ratios are close to 3, within their uncertainties (Daniel et al. 2016; Harju et al. 2017). If hydrogenation and deuteration were determined by statistics

only—as is presumably the case in ices—both these ratios would be exactly equal to 3. However, as Fig. 4 shows, ratios close to 3 can be produced by gas-phase chemistry at the core densities relevant to prestellar cores. It follows that ratios of 3 are not reliable indicators of deuteration taking place in ices, rather than in the gas-phase (Harju et al. 2017). We note also that these ratios evolve significantly from their steady-state values as the density increases.

Whilst our simulation of the Larson-Penston collapse enables us to include the contribution of the envelope to the column densities of the chemical species, the temporal evolution of the chemical composition of the envelope is not calculated explicitly; this approximation could lead to overestimating the contribution to the column densities of the outer regions of the envelope, owing to an underestimation of freeze-out. However, as freeze-out occurs least rapidly at the densities (lower than 10^5 cm^{-3}) prevailing in the outer envelope, and because the envelope contributes only marginally to the total column density until massive freeze-out in the core takes place, this approximation was verified to have negligible impact on our results.

3.3.4 Ortho-to-para ratios

In Fig. 6, we plot the spin-isomer abundance ratios of $\rm NH_3$ and $\rm H_3^+$ and of their deuterated analogues. The calculated $\rm H_3^+$ ortho:para ratio tends to approximately 0.7 as the core density increases. In the case of $\rm NH_3$, our assumption that the deuteration reactions proceed via long–lived intermediate complexes, in which complete scrambling of the nuclei occurs, leads to values of the ortho:para ratio of $\rm NH_2D$ and

Figure 6. Variation with the core density of the ratios of the total column densities of the various nuclear spin states of NH_3 (left) and H_3^+ (right), and of their respective deuterated analogs. For reference, the corresponding thermalized ratios at 10 K are given in Table 5.

NHD₂ of approximately 1.8 and 2.0-2.8, respectively, over the density range $10^5 \cdot 10^6 \text{ cm}^{-3}$ These values are consistent, within observational uncertainties, with the ratios measured in H-MM1 and listed in Table 6. The chemical model of Harju et al. (2017) predicts a similar ortho:para ratio for NH₂D, but a significantly larger one (in the range 3-5) for NHD₂. On the other hand, the observed ratios are also consistent with the statistical values of 3 and 2, respectively. Ortho:para ratios close to their statistical values were observed by Daniel et al. (2016) in Barnard B1b also.

Statistical ratios could indicate that direct gas-phase proton/deuteron hops or hydrogen/deuterium abstractioninstead of full scrambling of nuclei in an intermediate reaction complex—plays an important role in the deuteration process (Harju et al. 2017). Deuteration was indeed found to inhibit the permutation of protons in the H_5^+ ion (Lin & McCoy 2015) thus preventing the full scrambling scheme adopted in the Harju et al. and our networks. To investigate the origin of the different predictions for NHD₂ from our model and from Harju et al. (2017), we have tested the influence of the reaction $NH_3 + D_3^+ \longrightarrow NH_2D_2^+ + HD$ which eventually leads to NHD₂ upon dissociative recombination. This, and similar, reactions are not included in our network because we assume that single particle $(H, H^+, D \text{ or } D^+)$ hop is the dominant outcome of the complex forming reaction. This particular reaction results is an increase of the ortho:para ratio of NHD₂ by less than 10%. Although other similar reactions have not been included in our network, it appears unlikely that the factor of 1.5-2 difference between our results and those of Harju et al. (2017) arises only from these reactions. We also checked that the difference is not due to the new species-to-species inter-conversion rates (see Section 2.2.1). Alternatively, it could be related to differences in the raw, unfractionated and unseparated, chemical networks. Furthermore, we emphasize that the details of the nuclear spin selection rules in deuteration reactions such as $NH_3 + D_3^+$ are currently not known, and the observational error bars are too large to allow a distinction to be made between complete scrambling and particle hop.

Table 6. Column densities (or their \log_{10}) of ammonia and its deuterated forms towards three prestellar cores.

Source	Species	$\frac{N}{\mathrm{cm}^{-2}}$	o/p
$\mathrm{H} ext{-}\mathrm{MM1}^\dagger$	oNH ₃	$1.7{\pm}0.2{\times}10^{14}$	
	oNH_2D	$1.1{\pm}0.1{ imes}10^{14}$	$2.4{\pm}0.7$
	pNH_2D	$4.6{\pm}1.2{\times}10^{13}$	
	$_{\rm oNHD_2}$	$4.0{\pm}3.2{\times}10^{13}$	$1.5{\pm}1.2$
	$pNHD_2$	2.7×10^{13}	
	mND_3	$1.0{\pm}0.5{\times}10^{12}$	
$B1^{\$}$	pNH_3	$14.74{\pm}0.25$	
	oNH_2D	$14.73 {\pm} 0.10$	~ 3
	$oNHD_2$	$13.90 {\pm} 0.38$	
	mND_3	$12.71{\pm}0.20$	
$I16293E^{\$}$	oNH_2D	$14.54{\pm}0.10$	
	$_{ m oNHD}_2$	$13.82{\pm}0.15$	
	mND_3	$12.27{\pm}0.15$	

 † LTE column densities from Harju et al. (2017).

 \log_{10} values from Daniel et al. (2016).

3.3.5 Depletion and collapse timescales

There remains an underlying issue with the dynamical model: the flow velocity, u (Equ. 10), increases too rapidly as a function of the density of the gas, attaining approximately 1 km s⁻¹ when $n_{\rm H} = 10^6 \,{\rm cm}^{-3}$; such velocities exceed the limiting values, of the order of 0.1 km s⁻¹, that are deduced from the observed line profiles (?)cf.][]bergin2007 and are predicted by hydrodynamical calculations (Foster & Chevalier 1993; Lesaffre et al. 2005; Keto et al. 2015). We remark that the singular isothermal-sphere model of Shu (1977) also produces excessive values of the collapse velocity over a significant fraction of the cloud. As pointed out by Keto et al. (2015), it is the velocity towards the outer edge of the cloud that is responsible for the differences in the shape of the emergent spectral lines. Although the velocity at large radii in our model is probably too high, radiative-transfer calculations are needed to confirm this conclusion.

A consequence of reducing the collapse velocity, and hence extending the duration of the collapse, is to deplete molecules on to grains more rapidly, as a function of $n_{\rm H}$, resulting in molecular column densities that are lower than observed. This issue is unlikely to be resolved by slowing the freeze–out process, which would require improbably low sticking coefficients or high rates of grain coagulation. It seems more likely that molecules are returned to the gas phase at a rate which exceeds that of desorption by secondary photons (Appendix A) or as a consequence of heating by cosmic-ray impact (Leger et al. 1985), which are the only desorption processes presently incorporated in the model.

4 CONCLUDING REMARKS

We have studied the chemical composition of gas under the physical conditions that are believed to be appropriate to collapsing prestellar cores. A set of chemical reactions has been assembled that not only comprises the most recent determinations of the rates of gas-phase reactions but also discriminates between the various nuclear-spin states of H₂, H_3^+ , and the abundant carbon, nitrogen, oxygen, and sulfur hydrides and their deuterated forms. The composition of the

medium has been investigated under both steady-state conditions and during the initial stage of gravitational collapse, which ultimately leads to the formation of a low-mass star. The freeze-out of the gas on to grains and the coagulation of the grains themselves are taken into account.

We compared the computed values of the column densities of key molecular species, notably of $\rm NH_3$ and its deuterated forms, with the values observed in starless cores and found that the gas–phase chemistry alone yields satisfactory agreement between the model and the observations, without recourse to grain–surface reactions. Regarding the relative column densities of different nuclear-spin states of $\rm NH_3$ and its deuterated forms, we find that our full scrambling assumption for proton and deuteron exchange yields good agreement with the observations, in contrast with the proposition of Harju et al. (2017) that direct nucleus– or atom–exchange reactions dominate the deuteration process. However, accurate observational measurements are needed to disentangle between the two processes.

The dynamical model that we used derives from the studies of gravitational collapse by Larson (1969, 1972) and Penston (1969). The gravitationally collapsing core loses mass to the surrounding envelope at a rate that ensures that the density profile in envelope $\rho_{\rm env}(R_{\rm env}) \propto R_{\rm env}^{-2}$, where $R_{\rm env}$ is the radius; the total mass of the core and envelope is conserved. This simple model not only simulates the Larson–Penston density profile but also reproduces qualitatively their velocity profile. In order to test more quantitatively the kinematical aspects of the model, we are currently extending our study by computing the line profiles of key species such as CN and HCN and their isotopologues, including their hyperfine structure.

ACKNOWLEDGMENTS

The authors thank the anonymous referee for a careful reading and for useful and detailed comments which improved the quality of the paper. PH-B thanks the Institut Universitaire de France for its support. DRF acknowledges support from STFC (ST/L00075X/1), including provision of local computing resources. This work has been supported by the Agence Nationale de la Recherche (ANR-HYDRIDES), contract ANR-12-BS05-0011-01.

REFERENCES

- Aikawa Y., Wakelam V., Hersant F., Garrod R. T., Herbst E., 2012, ApJ, 760, 40
- Bacmann A., et al., 2016, A&A, 587, A26
- Bergin E. A., Tafalla M., 2007, ARA&A, 45, 339
- Bieler A., et al., 2015, Nature, 526, 678
- Brünken S., et al., 2014, Nature, 516, 219
- Calmonte U., et al., 2016, MNRAS, 462, S253
- Daniel F., et al., 2013, A&A, 560, A3
- Daniel F., et al., 2016, A&A, 592, A45
- Dislaire V., Hily-Blant P., Faure A., Maret S., Bacmann A., Pineau des Forêts G., 2012, A&A, 537, A20
- Faure A., Hily-Blant P., Le Gal R., Rist C., Pineau des Forêts G., 2013, ApJL, 770, L2
- Flower D. R., Pineau des Forets G., Walmsley C. M., 1995, A&A, 294, 815

- Flower D. R., Pineau des Forêts G., Walmsley C. M., 2006a, A&A, 449, 621
- Flower D. R., Pineau des Forêts G., Walmsley C. M., 2006b, A&A, 456, 215
- Flower D. R., Pineau des Forêts G., Walmsley C. M., 2007, A&A, 474, 923
- Foster P. N., Chevalier R. A., 1993, ApJ, 416, 303
- Gerin M., Pety J., Fuente A., Cernicharo J., Commerçon B., Marcelino N., 2015, A&A, 577, L2
- Gerlich D., 1990, JCP, 92, 2377
- Gredel R., Lepp S., Dalgarno A., Herbst E., 1989, ApJ, 347, 289
- Harju J., et al., 2017, A&A, 600, A61
- Heays A. N., Bosman A. D., van Dishoeck E. F., 2017, A&A, 602, A
105 $\,$
- Hindmarsh A. C., 1983, in Stepleman R. S., ed., , Scientific Computing. North-Holland Publishing Company, pp 55–64
- Hollenbach D., Kaufman M. J., Bergin E. A., Melnick G. J., 2009, ApJ, 690, 1497
- Honvault P., Jorfi M., González-Lezana T., Faure A., Pagani L., 2011, Physical Review Letters, 107, 023201
- Honvault P., Jorfi M., González-Lezana T., Faure A., Pagani L., 2012, Physical Review Letters, 108, 109903
- Hugo E., Asvany O., Schlemmer S., 2009, JCP, 130, 164302
- Keto E., Caselli P., Rawlings J., 2015, MNRAS, 446, 3731
- Larson R. B., 1969, MNRAS, 145, 271
- Larson R. B., 1972, MNRAS, 157, 121
- Le Bourlot J., 1991, A&A, 242, 235
- Le Gal R., Hily-Blant P., Faure A., Pineau des Forêts G., Rist C., Maret S., 2014, A&A, 562, A83
- Leger A., Jura M., Omont A., 1985, A&A, 144, 147
- Lesaffre P., Belloche A., Chièze J.-P., André P., 2005, A&A, 443, 961
- Lin Z., McCoy A. B., 2015, The Journal of Physical Chemistry A, 119, 12109
- Marquette J. B., Rebrion C., Rowe B. R., 1988, JCP, 89, 2041
- Maue A.-W., 1937, Annalen der Physik, 422, 555
- Oka T., 2004, Jour. Molec. Spec., 228, 635
- Penston M. V., 1969, MNRAS, 145, 457
- Poppe T., Blum J., 1997, Advances in Space Research, 20, 1595
- Quack M., 1977, Mol. Phys., 34, 477
- Rist C., Faure A., Hily-Blant P., Le Gal R., 2013, JPCA, 117, 9800
- Schmiedt H., Jensen P., Schlemmer S., 2016, JCP, 145, 074301
- Shen C. J., Greenberg J. M., Schutte W. A., van Dishoeck E. F., 2004, A&A, 415, 203
- Shu F. H., 1977, ApJ, 214, 488
- Sipilä O., Harju J., Caselli P., Schlemmer S., 2015, A&A, 581, A122
- Sipilä O., Harju J., Caselli P., 2017, A&A, 607, A26
- Spitzer L., 1978, Physical processes in the interstellar medium. New York Wiley-Interscience, 1978. 333 p.
- Turgeon P.-A., et al., 2017, Journal of Physical Chemistry A, 121, 1571
- Visser R., van Dishoeck E. F., Black J. H., 2009, A&A, 503, 323
- Visser R., Doty S. D., van Dishoeck E. F., 2011, A&A, 534, A132
- Walmsley C. M., Flower D. R., Pineau des Forêts G., 2004, A&A, 418, 1035
- Woodall J., Agúndez M., Markwick-Kemper A. J., Millar T. J., 2007, A&A, 466, 1197
- van Dishoeck E. F., Bergin E. A., Lis D. C., Lunine J. I., 2014, Protostars & Planets VI, pp 835–858

Flower D. R., Pineau des Forêts G., Walmsley C. M., 2005, A&A, 436, 933

APPENDIX A: COSMIC-RAY-INDUCED PHOTO-REACTIONS

As was discussed by Gredel et al. (1989), secondary electrons produced by cosmic-ray ionization of hydrogen can collisionally excite H_2 molecules in the gas, giving rise to ultraviolet photons in the subsequent radiative decay. Most of these photons are absorbed by dust, but some ionize atoms and dissociate or ionize molecules in the medium.

Equ. (5) of Gredel et al. (1989)—for the rate $R_{\rm M}$ per unit volume of ionization/dissociation of species M by the secondary photons—should read

$$R_{\rm M} = \zeta n_{\rm H_2} \frac{X({\rm M}) \int \sigma_{\rm M}(\nu) P(\nu) d\nu}{(1-\omega) X({\rm g}) \sigma_{\rm g} + \sum_{\rm M} X({\rm M}) \int \sigma_{\rm M}(\nu) P(\nu) d\nu}$$

where $\zeta n_{\rm H_2}$ is the rate per unit volume of production of the secondary electrons, and the ratio is the relative probability that a photon is absorbed by an atomic or molecular species, M, rather than the grains, g; $\boldsymbol{\omega}$ is the grain albedo, and $n_{\rm H}$ is the total number density of hydrogen nuclei. This equation may be rewritten

$$R_{\rm M} = \zeta \frac{X({\rm H}_2)n({\rm M}) \int \sigma_{\rm M}(v)P(v)dv}{(1-\omega)X({\rm g})\sigma_{\rm g} + \sum_{\rm M} X({\rm M}) \int \sigma_{\rm M}(v)P(v)dv}$$
(A1)

which becomes

$$R_{\rm M} \approx \zeta X({\rm H}_2) n({\rm M}) \frac{p_{\rm M}}{(1-\omega)}$$

in the limit in which absorption of the secondary photons by the dust dominates; $p_{\rm M}$ is a photo-ionization or -dissociation probability. The factor $X({\rm H}_2)$ in this expression was omitted by Gredel et al. (1989), as was recognized by Woodall et al. (2007; section 3.6) and Flower et al. (2007; Appendix A); $X({\rm H}_2) = 0.5$ in mainly molecular gas. We have used Equ. A1, together with the more recent determinations of the photo-ionization/dissociation probabilities, $p_{\rm M}$, of Heays et al. (2017) (Table 20), and adopted $\omega = 0.5$.

During the collapse, $X(g)\sigma_g$, where $\sigma_g = \pi a_g^2$ is the geometrical cross section of the grain, will tend to decrease, given that $X(g) \propto a_g^{-3}$ and that the grain radius, a_g , increases owing to coagulation. However, the fractional abundances X(M) also decrease, owing to freeze–out on to the grains.

The cosmic–ray–induced photons also desorb molecules M^* in the ice mantles, returning them to the gas phase. The rate of this process is given by

$$R_{\mathbf{M}}^* \approx \zeta X(\mathbf{H}_2) \frac{n(\mathbf{M}^*)}{\sum_{\mathbf{M}^*} n(\mathbf{M}^*)} n_{\mathbf{H}} \frac{\int Y(\mathbf{v}) P(\mathbf{v}) d\mathbf{v}}{(1-\boldsymbol{\omega})}$$
(A2)

where Y(v) is the desorption yield (probability of any molecule in the mantle being desorbed, per photon incident on the grain). Taking $\zeta = 1 \times 10^{-17} \text{ s}^{-1}$, $n_{\rm H} = 10^4 \text{ cm}^{-3}$, $Y(v) = 10^{-3}$, independent of v (Hollenbach et al. 2009), and estimating $\int P(v) dv \approx 0.4$ from fig. 1 of Gredel et al. (1989), yields a timescale (in yr) for this process

$$\frac{n(\mathrm{M}^*)}{R_{\mathrm{M}}^*} \approx 10^9$$

which is too long to be significant in the context of star formation. We note that Hollenbach et al. (2009) overestimate the rate of this process by about 2 orders of magnitude: they calculate the flux of the far–ultraviolet secondary photons, F_{FUV} , to be of the order of $10^5 \text{ cm}^{-2} \text{ s}^{-1}$, whereas

$$F_{\rm FUV} pprox \zeta rac{\int P(\mathbf{v}) d\mathbf{v}}{\langle n_{
m g} \sigma_{
m g}
angle / n_{
m H}}$$

and, taking $\zeta = 1 \times 10^{-17} \, {\rm s}^{-1}$ and $\langle n_{\rm g} \sigma_{\rm g} \rangle / n_{\rm H} = 2 \times 10^{-21} \, {\rm cm}^2$ from Gredel et al. (1989), as did Hollenbach et al., we obtain $F_{\rm FUV} \approx 2 \times 10^3 \, {\rm cm}^{-2} \, {\rm s}^{-1}$. We note that this value of $F_{\rm FUV}$ agrees with that derived from Fig. 4 of Shen et al. (2004; $E_0 = 400 \, {\rm MeV}$, corresponding to $\zeta = 3.1 \times 10^{-17} \, {\rm s}^{-1}$), when scaled to the same value of ζ . Hollenbach et al. (2009) appear to have been unaware of the work of Shen et al. (2004).

APPENDIX B: THE UGAN CHEMICAL NETWORK

The University of Grenoble Alpes Astrochemical Network (UGAN) is a significantly upgraded version of the gas-phase network of F06, which included reactions involving species containing H, D, He, C, N, O and S. F06 distinguished between the different nuclear-spin states of H_2 , H_2^+ , H_3^+ and their deuterated isotopologues, and between those of nitrogen hydrides. Nuclear-spin branching ratios were derived from simple statistical considerations (and conservation of the total nuclear spin) but without recourse to symmetry conservation. A first update of the F06 network consisted in a revision of nitrogen hydrides chemistry (excluding deuterated species) (Le Gal et al. 2014), with special attention to the most recent experimental results—in particular, for the conversion of N to N₂ through radical-radical reactions and for the dissociative recombination of the NH_n^+ (n=2-4) ions. The nuclear-spin selection rules were derived by the method of Oka (2004), as described in Rist et al. (2013) and Faure et al. (2013). These rules result from the conservation of the total nuclear-spin of identical nuclei and the conservation of their permutation symmetry (Quack 1977) or, alternatively, of their rotational symmetry (Oka 2004). Although conceptually different, the two methods are closely related and predict the same spin statistics when applied to multiple H nuclei (fermions). However, in the case of deuterium nuclei (bosons), the one-to-one correspondence between the nuclear-spin angular momentum and the permutation symmetry breaks down. A new method unifying the rotational and permutation symmetries was proposed recently (Schmiedt et al. 2016).

The present network extends the work of Le Gal et al. (2014) to the entire F06 chemical network in a systematic fashion for all hydrides containing C, N, O, and S atoms, and their deuterated forms. Nuclear–spin selection rules were derived from the permutation symmetry approach of Quack (1977), as explained below. Furthermore, many reaction rate coefficients were updated from a literature survey, including recommendations from the KIDA (KInetic Database for Astrochemistry³) data sheets.

After spin isomer separation on H and D, the complete new network contains 207 species—including grains (neutral and charged) and adsorbed species—and 3266 reactions (when including adsorption and desorption). The

³ http://kida.obs.u-bordeaux1.fr/

unseparated—or condensed—network contains 151 species and 1136 reactions. The list of chemical species and the corresponding chemistry files are provided in Appendix D.

B1 Nuclear-spin-state separation

In principle, all molecules with identical nuclei of non-zero spin in equivalent positions should be treated as distinct nuclear–spin isomers. However, distinguishing between nuclear–spin states leads to a large increase in the number of chemical reactions that have to be considered, especially when deuterated species are included. Therefore, we have restricted the spin–state separation to hydrides and their deuterated isotopologues, i.e. to molecules with a single heavy atom and two or more hydrogen or deuterium nuclei; this includes molecules like $\rm NH_2D_2^+$ but excludes species like $\rm C_3H_2.$

B1.1 Exothermic reactions

For strongly exothermic reactions, we assume (i) conservation of the total nuclear spin and (ii) full scrambling of hydrogen and/or deuterium nuclei in the intermediate or activated complex. In such reactions, we assume that the intermediate complex is highly energetic and decays statistically to the many rotational states of the products. To obtain the nuclear-spin branching ratios, the probabilities of forming an intermediate complex in a given nuclear-spin state are multiplied by the probabilities for this complex to decay towards the nuclear-spin states of the products. In the process, the conservation of the total nuclear spin and of the permutation symmetry of identical nuclei is taken into account. The results of these calculations are then summed. This procedure also requires the nuclear-spin-symmetry statistical weights for reactions involving many (here up to seven) identical particles (?)see Appendix C and [[sipila2015b. In practice, for a reaction involving identical hydrogen or deuterium nuclei,

$$R_i + R_j \to C_n \to P_k + P_l, \tag{B1}$$

where n = i + j = k + l is the total number of identical particles, one needs to determine the possible permutationsymmetry species for the reactants ($\Gamma_i \otimes \Gamma_j$, where \otimes denotes a direct product), of the intermediate complex (Γ_n) and of the products $(\Gamma_k \otimes \Gamma_l)$ in their respective permutationsymmetry groups $(S_i \otimes S_j, S_n \text{ and } S_k \otimes S_l)$. One also needs the correlation tables between the symmetry group of the complex and the symmetry subgroups representing the reactants and the products. These tables, or matrices, are obtained using group theory and provide the required induction and subduction statistical weights $W_{(\Gamma_i \otimes \Gamma_i \uparrow \Gamma_n)}$. The statistical weights are the number of independent states of symmetry Γ_n induced from the Γ_i and Γ_j symmetries of the reactants. We note that the induction and subduction statistical weights are equal according to the Frobenius reciprocity theorem (Quack 1977). The correlation tables are given in Appendix C (?)see also][[hugo2009, sipila2015b. From these tables, simplified expressions for the nuclear-spin branching

MNRAS 000, 1-?? (2017)

ratios can be derived which involve matrix products only:

$$P_{(\Gamma_i \otimes \Gamma_j \to \Gamma_k \otimes \Gamma_l)} = \frac{\sum_{\Gamma_n} W_{(\Gamma_i \otimes \Gamma_j \uparrow \Gamma_n)} \times W_{(\Gamma_k \otimes \Gamma_l \uparrow \Gamma_n)}}{(\sum_{\Gamma'_n} W_{(\Gamma_i \otimes \Gamma_j \uparrow \Gamma'_n)}) \times (\sum_{\Gamma'_k \Gamma'_l} W_{(\Gamma'_k \otimes \Gamma'_l \uparrow \Gamma_n)})}, \qquad (B2)$$

with $\sum_{\Gamma_k \Gamma_l} P_{(\Gamma_i \otimes \Gamma_j \to \Gamma_k \otimes \Gamma_l)} = 1^4$. Based on this formalism, we developed an automated FORTRAN routine, **spinstate.f90**, to calculate the branching ratios for reactions involving up to seven hydrogen (e.g. $CH_4 + H_3^+$) and six deuterium nuclei (e.g. $D_3^+ + ND_3$).

It should be noted that because hydrogen and deuterium nuclei are distinguishable, reactions involving both multiple hydrogen and multiple deuterium nuclei were divided into two parts, each with separate branching ratios that were combined (multiplied) afterwards. In addition, for exothermic reactions involving a hydride and a nonhydride—but "separable"—species whose nuclear–spin isomers are ignored (e.g. C_3H_2), we adopted the above procedure to compute the branching ratios. Where the nonhydride species is a reactant, we assume equal abundances of the nuclear–spin isomers of the non-hydride species, while, if it is a product, the associated nuclear–spin branching ratios are summed. Finally, for charge–exchange reactions, we assumed that the nuclear spin of each reactant isomer is conserved.

B1.2 Inter-conversion reactions

For inter-conversion reactions involving H_2 or D_2 (e.g. H^+ + para- $H_2 \leftrightarrow H^+$ + ortho- H_2), rate coefficients were taken from either specific calculations or measurements in the literature, or estimated on a case-by-case basis. Indeed, for such "nearly thermo-neutral" reactions, the previous approach no longer applies because the full scrambling hypothesis is not guaranteed as the intermediate complex has small excess energy, and only a small amount of this energy is available for the products (Rist et al. 2013). In this case, a stateto-state (rotationally resolved) analysis is required to derive the nuclear-spin branching ratios. We have adopted a number of recent theoretical results from the literature for the inter-conversion of H_2 and D_2 . We note that interconversion processes were neglected in reactions involving highly-exothermic channels (e.g. $NH_3^+ + H_2$) because the reactive channels (in this example, leading to $NH_{4}^{+} + H$) proceed much faster than the inter-conversion (?)see [[and references therein faure 2013. Specifically, for the reactions between all isotopic variants of H_3^+ and H_2 , we have employed the state-to-state rate coefficients calculated by Hugo et al. (2009). These rate coefficients were used to derive speciesto-species rate coefficients by assuming thermal population of the rotational levels within each nuclear-spin species; this supposes local thermal equilibrium (LTE), which should apply at densities above approximately 10^5 cm⁻³. An alternative would be to use ground-state-to-species rate coefficients, assuming that all isotopologues are in their ground

⁴ We note that the two sums in the denominator of Eq. (B2) can be expressed from dim(Γ) and $f(\Gamma)$, the dimension and frequency of the Γ permutation symmetry representation, as $f(\Gamma_i \otimes \Gamma_j) \times$ dim(Γ_i) × dim(Γ_j) and $f(\Gamma_k \otimes \Gamma_l) \times$ dim(Γ_k) × dim(Γ_l), respectively. rotational states. Intermediate situations are also possible, as discussed in the recent work of Sipilä et al. (2017). However, only the LTE situation allows us to track anomalies in nuclear–spin isomer ratios, i.e. departures from thermal equilibrium ratios.

For the inter-conversion reaction between H^+ and H_2 , we have employed state-to-state rate coefficients (Honvault et al. 2011, 2012), assuming that only the ground states of para-H₂ (j = 0) and ortho-H₂ (j = 1) are populated at low temperature. For the deuterated variant, $D^+ + D_2$, a statistical method was applied (Rist et al. 2013). This method inspired by the work of Gerlich (1990)—was found to yield satisfactory agreement (typically better than a factor of 2) with time-independent quantum calculations (Honvault et al. 2011). The same statistical method was applied to the inter-conversion reactions between HCO⁺ and H₂ and DCO⁺ and D₂.

B1.3 Endothermic reactions and exothermic reactions with an activation barrier

For endothermic reactions or exothermic reactions with an activation barrier, our strategy was to include only those reactions whose activation energy is less than 1000 K. The spin–state separation of the original network of F06 was restricted to reactions that are significant at low temperatures (in practice, below 50 K). These reactions are generally of secondary importance; but we note the exception of $N^+ + H_2$, which is at the root of the ammonia chemistry. For this reaction, we adopted the rate coefficients of Dislaire et al. (2012), as did Le Gal et al. (2014). For the deuterated variant $N^+ + HD$, we used the experimental rate coefficient of Marquette et al. (1988).

B2 Condensed network

An unseparated or "condensed" network, where the distinction between nuclear–spin states is removed, is also provided for applications where ortho:para ratios are not required. In doing so, some prescriptions are necessary for a number of reactions whose rate coefficients depend on the ortho:para ratio(s) of the reactant(s). A good example is $N^+ + H_2$ (?)see][]dislaire2012. In such case, the KIDA value—when validated by experts—is generally adopted by default. For the deuterated variants of $H_3^+ + H_2$, we adopt representative values of the rate coefficients at low temperature (~ 10 K), based on a close inspection of the individual nuclear-spin reactions.

APPENDIX C: NUCLEAR SPIN SYMMETRY INDUCTION AND SUBDUCTION MATRICES

We recall the pure nuclear spin symmetry induction (and subduction) statistical weights matrices for several hydrogen systems and for several deuterium systems used in the chemistry network. These matrices give the total number of nuclear spin states allowed from permutation symmetry conservation in reactions involving n > 1 identical nuclei. We denote the induction weight $W_{\Gamma_i \otimes \Gamma_j \uparrow \Gamma_{n=i+j}}$, the number of "complex" spin states in a symmetry species Γ_n formed from two reactants respectively in the symmetry species Γ_i

Table	C1.	Pure	permutation	symmetry	induction	/subduction
statisti	cal w	eights	$W_{\Gamma_n \otimes \Gamma_1 \uparrow \Gamma_{n+1}} =$	$W_{\Gamma_{n+1}\downarrow\Gamma_n\otimes\Gamma_1}$	for $H_n + I$	$H \longrightarrow H_{n+1}$.

H + H	\rightarrow	H ₂ (Hugo	et al.	2009)	
		А	В			Total
A A		3	1			4
Total		3	1			$4 = 2^2$
$H_2 + H$	\rightarrow	H ₃ (Hugo	et al.	2009)	
		\mathbf{A}_{1}	Е			Total
A A		4	2			6
B A		0	2			2
Total		4	4			$8 = 2^{3}$
$H_3 + H$	\rightarrow	H4 (Hugo	et al.	2009)	
		A_1	Е	\mathbf{F}_{1}		Total
A ₁ A		5	0	3		8
E A		0	2	6		8
Total		5	2	9		$16 = 2^4$
$H_4 + H$	\rightarrow	H5 (this w	vork)		
		\mathbf{A}_{1}	G_1	${\rm H}_1$		Total
A ₁ A		6	4	0		10
E A		0	0	4		4
F_1 A		0	12	6		18
Total		6	16	10		$32 = 2^{3}$
$H_5 + H$	\rightarrow	H ₆ (this w	vork)		
		A_1	H ₁	H_4	L_1	Total
A ₁ A		7	5	0	0	12
G ₁ A		0	20	0	12	32
H_1 A		0	0	5	15	20
Total		7	25	5	27	$64 = 2^6$
$H_6 + H$	\rightarrow	H ₇ (this w	vork)		
-		A ₁	I	X	Y	Total
A ₁ A		8	6	0	0	14
H_1 A		0	30	0	20	50
H ₄ A		Õ	0	10	Ũ	10
L ₁ A		0	0	18	36	54
Total		8	36	28	56	$128 = 2^7$

and Γ_j . The corresponding subduction weight $W_{\Gamma_{n=i+j}\downarrow\Gamma_i\otimes\Gamma_j}$ gives the number of allowed products spin states respectively in the symmetry species Γ_i and Γ_j from the decay of a complex in the symmetry species Γ_n . The reciprocity Froebenius theorem shows that $W_{\Gamma_{n=i+j}\downarrow\Gamma_i\otimes\Gamma_j} = W_{\Gamma_i\otimes\Gamma_i\uparrow\Gamma_{n=i+j}}$.

C1 Multi Hydrogen systems

See Tables C1 to C3.

C2 Multi Deuterium systems

See Tables C4 and C5.

$\mathrm{H}_2 + \mathrm{H}_2$	\rightarrow	H4 (Hugo	et al.	2009)	
		A_1	Е	\mathbf{F}_1		Total
A A		5	1	3		9
A B		0	0	3		3
в А		0	0	3		3
в в		0	1	0		1
Total		5	2	9		$16 = 2^4$
$\mathrm{H}_3 + \mathrm{H}_2$	\rightarrow	H ₅ (Hugo	et al.	2009)	
		\mathbf{A}_{1}	G_1	${\rm H}_1$		Total
A ₁ A		6	4	2		12
A_1 B		0	4	0		4
E A		0	8	4		12
E B		0	0	4		4
Total		6	16	10		$32 = 2^5$
$\mathrm{H}_4 + \mathrm{H}_2$	\rightarrow	H ₆ (Sipilä	et al.	2015)	
		A_1	H_{1}	${\rm H}_4$	L_4	Total
A ₁ A		7	5	0	3	15
A_1 B		0	5	0	0	5
E A		0	0	0	6	6
E B		0	0	2	0	2
F_1 A		0	15	3	9	27
F_1 B		0	0	0	9	9
Total		7	25	5	27	$64 = 2^4$
$H_5 + H_2$	\rightarrow	H ₇ ((this w	vork)		
		A_1	Ι	Х	Y	Total
A ₁ A		8	6	0	4	18
A_1 B		0	6	0	0	6
G_1 A		0	24	8	16	48
G ₁ B		0	0	0	16	16
H ₁ A		0	0	10	20	30
H_1 B		0	0	10	0	10
Total		8	36	28	56	$128 = 2^7$

Table C2. Pure permutation symmetry induction/subduction statistical weights $W_{\Gamma_n \otimes \Gamma_2 \uparrow \Gamma_{n+2}} = W_{\Gamma_{n+2} \downarrow \Gamma_n \otimes \Gamma_2}$ for $H_n + H_2 \longrightarrow H_{n+2}$.

$H_3 + H_3$	\rightarrow	${\rm H}_6$ (Sipilä et al. 2015)					
		A_1	\mathbf{H}_{1}	${\rm H}_4$	L_1	Total	
A ₁ A ₁		7	5	1	3	16	
$A_1 = E$		0	10	0	6	16	
$E = A_1$		0	10	0	6	16	
E E		0	0	4	12	16	
Total		7	25	5	27	$64 = 2^{6}$	
$H_4 + H_3$	\rightarrow	H ₇ (Sipilä	et al.	2015))	
$H_4 + H_3$	\rightarrow	H ₇ (A ₁	Sipilä H ₁	et al. H ₄	2015)L ₁	Total	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ \hline \\ A_1 & A_1 \end{array}$	\rightarrow	H ₇ (A ₁ 7	Sipilä H ₁ 5	et al. H ₄ 0	2015) L ₁ 3	Total	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ A_1 & A_1 \\ A_1 & E \end{array}$	\rightarrow	H ₇ (A ₁ 7 0	Sipilä H ₁ 5 5	et al. H ₄ 0 0	2015) L ₁ 3 0	Total 15 5	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ A_1 & A_1 \\ A_1 & E \\ E & A_1 \end{array}$	→ 	H ₇ (A ₁ 7 0 0	Sipilä H ₁ 5 5 0	et al. H ₄ 0 0 0	2015) L ₁ 3 0 6	Total 15 5 6	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ \hline \\ A_1 & A_1 \\ E & A_1 \\ E & E \end{array}$	→ 	H_7 (A ₁ 7 0 0 0 0	Sipilä H ₁ 5 5 0 0	et al. H ₄ 0 0 0 2	2015) L ₁ 3 0 6 0	Total 15 5 6 2	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ \hline \\ A_1 & A_1 \\ E & A_1 \\ E & E \\ F_1 & A_1 \end{array}$	→ 	H_7 (A1 7 0 0 0 0 0	Sipilä H ₁ 5 5 0 0 15	et al. H ₄ 0 0 2 3	$ \begin{array}{c} 2015)\\ L_1\\ 3\\ 0\\ 6\\ 0\\ 9 \end{array} $	Total 15 5 6 2 27	
$\begin{array}{c} H_4 + H_3 \\ \hline \\ \hline \\ A_1 & A_1 \\ E & A_1 \\ E & E \\ F_1 & A_1 \\ F_1 & E \end{array}$	→	H_7 (A1 7 0 0 0 0 0 0 0	Sipilä H ₁ 5 0 0 15 0	et al. H ₄ 0 0 0 2 3 0	$\begin{array}{c} 2015)\\ L_1\\ 3\\ 0\\ 6\\ 0\\ 9\\ 9\\ 9\end{array}$	Total 15 5 6 2 27 9	

D + D	\rightarrow	D_2 (Hugo	et al.	2009)		
		А	В				Total
A A		6	3				9
Total		6	3				$9 = 3^2$
$D_2 + D$	\rightarrow	D3 (Hugo	et al.	2009)		
		\mathbf{A}_{1}	A_2	Е			Total
A A		10	0	8			18
в А		0	1	8			9
Total		4	4				$27 = 3^3$
$D_3 + D$	\rightarrow	D4 (Hugo	et al.	2009)		
		\mathbf{A}_{1}	Е	\mathbf{F}_{1}	\mathbf{F}_2		Total
A ₁ A		15	0	15	0		30
A ₂ A		0	0	0	3		3
E A		0	12	30	6		48
Total		15	12	45	9		$81 = 3^4$
$D_4 + D$	\rightarrow	\mathbf{D}_5 ((this w	vork)			
		\mathbf{A}_{1}	\mathbf{G}_1	\mathbf{H}_{1}	${\rm H}_2$	Ι	Total
A ₁ A		21	24	0	0	0	45
E A		0	0	30	6	0	36
F_1 A		0	72	45	0	18	135
F_2 A		0	0	0	9	18	27
Total		21	96	75	15	36	$243 = 3^5$

and D_2 , which occur on dust surfaces, are computed as bimolecular reactions using a rate coefficient which is not given by the modified Arrhenius law, but which is computed internally from the density and the grain parameters. In the following Tables, the species noted γ represents a photon (not to be confused with the exo/endothermicity), CRP are

APPENDIX D: THE UGAN REACTION RATE COEFFICIENTS

In this section, we provide our separated University of Grenoble Alpes Astrochemical Network (UGAN). Our convention for the names of the isotopologues follows Maue's rule (Maue 1937), namely that ortho species—noted with prefix o—have the largest statistical weight, and para species—with prefix p—have the smallest statistical weight. Species with intermediate degeneracy have prefix m, l, etc... in increasing order. Furthermore, for species that are separable with respect to both hydrogen and deuterium—such as NH₂D₂—the isomers are indicated with one letter for each nucleus. In such instances, two letters are used with the previous convention applying equally to H and D, e.g. ooNH₂D₂.

In the following Tables, the rate coefficients are given in the traditional form of a modified Arrhenius law,

$$k(T) = \alpha (T/300)^{\beta} \exp(-\gamma/T) \quad \text{cm}^3 \text{s}^{-1}$$

Note however that the reactions of formation of H_2 , HD,

 $\begin{array}{l} \textbf{Table C5. Pure permutation symmetry induction/subduction} \\ \text{statistical weights } W_{\Gamma_n\otimes\Gamma_2\uparrow\Gamma_{n+2}} = W_{\Gamma_{n+2}\downarrow\Gamma_n\otimes\Gamma_2} \text{ for } \mathrm{D_n} + \mathrm{D_2} \longrightarrow \mathrm{D_{n+2}} \\ \text{and } W_{\Gamma_n\otimes\Gamma_3\uparrow\Gamma_{n+3}} = W_{\Gamma_{n+3}\downarrow\Gamma_n\otimes\Gamma_3} \text{ for for } \mathrm{D_n} + \mathrm{D_3} \longrightarrow \mathrm{D_{n+3}}. \end{array}$

D_2	$+ D_2$	D_4 (Hugo	et al. 2	2009)	
		A_1	Е	\mathbf{F}_{1}	\mathbf{F}_2	Total
А	А	15	6	15	0	18
Α	В	0	0	15	3	18
В	Α	0	0	15	3	9
В	В	0	6	0	3	9
То	otal	15	12	45	9	$81 = 3^4$

$D_3 + D_2$ D_5 (Hugo et al. 2					2009)		
		A_1	G_1	\mathbf{H}_{1}	H_{2}	Ι	Total
A_1	А	21	24	15	0	0	60
A_1	А	0	24	0	0	6	30
A_2	Α	0	0	0	0	6	6
A_2	В	0	0	0	3	0	3
Ε	Α	0	48	30	6	12	96
Ε	Α	0	0	30	6	12	48
Total		21	96	75	15	36	$243 = 3^5$

D ₄ -	$\vdash D_2$	D ₆ (D_6 (Sipilä et al. 2015)								
		A_1	H_{1}	${\rm H}_3$	${\rm H}_4$	L_1	${\rm M}_1$	\mathbf{S}	Total		
A_1	Α	28	35	0	0	27	0	0	90		
A_1	Α	0	35	0	0	0	10	0	45		
\mathbf{E}	А	0	0	2	0	54	0	16	72		
Е	Α	0	0	0	20	0	0	16	36		
\mathbf{F}_1	Α	0	105	0	30	81	30	24	270		
\mathbf{F}_{1}	В	0	0	0	0	81	30	24	135		
\mathbf{F}_2	Α	0	0	0	0	0	30	24	54		
\mathbf{F}_2	В	0	0	3	0	0	0	24	27		
Total		28	175	5	50	243	100	128	$729 = 3^6$		

D3 -	+ D3	D ₆ (D_6 (Sipilä et al. 2015)								
		A_1	H_{1}	${ m H}_3$	${\rm H}_4$	L_1	${\rm M}_1$	\mathbf{S}	Total		
A ₁	A_1	28	35	0	10	27	0	0	100		
A_1	A_1	0	0	0	0	0	10	0	10		
A_1	Ε	0	70	0	0	54	20	16	160		
A_2	A_1	0	0	0	0	0	10	0	10		
A_2	A_1	0	0	1	0	0	0	0	1		
A_2	Ε	0	0	0	0	0	0	0	16		
Ε	A_1	0	70	0	0	54	20	0	160		
\mathbf{E}	A_1	0	0	0	0	0	0	0	16		
\mathbf{E}	Ε	0	0	4	40	108	40	0	256		
To	tal	28	175	5	50	243	100	128	$729 = 3^{6}$		

primary cosmic-ray particles (essentially protons), and γ_2 are secondary photons.

1	Η	H_2	D	HD	D_2	He	Ο	OH
2	O_2	OD	H_2O	HDO	$\overline{D_2O}$	\mathbf{C}	CH	CH_2
3	CH_3	CH_4	$\bar{C_2}$	C_2H	$\bar{C_2H_2}$	C_3	C_3H	$C_3 \tilde{H}_2$
4	N	N_2	\overline{NH}	\overline{NH}_2	NH ₃	NĎ	NHD	\tilde{ND}_2
5	$\rm NH_2D$	$\overline{\rm NHD}_2$	ND_3	s	SH	H_2S	CO	NO
6	CN	SO	\mathbf{CS}^{\top}	HNC	HCN	CO_2	SO_2	OCS
7	H_2CO	CH ₃ OH	HCO_2H	H^+	D^+	$\mathrm{He^{+}}$	H_2^+	HD^+
8	D_2^+	H_3^+	H_2D^{+}	HD_2^+	D_3^+	O^+	$\overline{OH^+}$	H_2O^+
9	OD^+	O_2^+	HDO^+	$D_2 \bar{O}^+$	H_3O^+	H_2DO^+	HD_2O^+	$\overline{D_3O^+}$
10	C^+	$\overline{CH^+}$	CH_2^+	\overline{CH}_{3}^{+}	\widetilde{CH}_{4}^{+}	\overline{CH}_{5}^{+}	C_2^+	C_2H^+
11	$C_2H_2^+$	$C_2H_3^+$	C_3^+	$C_3 H^+$	$C_3\dot{H}_3^+$	$C_3 H_2^+$	N^{+}	NH^+
12	ND^+	N_2^+	N_2H^+	$\rm NH_2^+$	$\rm NH_4^+$	N_2D^+	$\rm NH_3^+$	$\rm NHD^+$
13	ND_2^+	NH_3D^+	NH_2D^+	NHD_2^+	ND_3^+	$\rm NH_2D_2^+$	NHD_3^+	ND_4^+
14	S^+	SH^{+}	SD^{+}	H_2S^+	H_3S^+	HCO^+	HCS^{+}	HCO_2^+
15	SO^+	CO^+	CS^+	$\overline{DCO^+}$	NO^+	HCN^+	C_2N^+	$HCNH^+$
16	HNO^+	$\rm CN^+$	HSO^+	$HOCS^+$	DCO_2^+	HSO_2^+	$H_2 NC^+$	Fe
17	Fe^+	Gr	Gr^-	Gr^+	CH_4^*	H_2O^*	O_2^*	CO^{*}
18	CO_2^*	N^*	NH_{3}^{*}	N_2^*	H_2S^*	OCS^{*}	Fe^{*}	HDO^*
19	$D_2 \bar{O}^*$	$\rm NH_2D^{*}$	NHD_2^*	$\overline{\mathrm{ND}}_3^*$	\overline{CH}_3OH^*	$\rm H_2 \rm CO^*$	$\mathrm{HCO}_{2}\mathrm{H}^{*}$	

Table D1. Species of our non-separated network (total: 151).

Notes:

Species labeled with '*' are species adsorbed in grain mantles.

Table D2. Separated species (total: 207).

1	Н	oH_2	pH_2	D	HD	oD_2	pD_2	He
2	0	OH	O_2	OD	oH_2O	pH_2O	HDO	oD_2O
3	pD_2O	С	\overline{CH}	oCH_2	pCH_2	oCH_3	pCH_3	\overline{mCH}_4
4	pCH_4	oCH_4	C_2	C_2H	C_2H_2	C_3	C_3H	C_3H_2
5	Ν	N_2	NH	oNH_2	pNH_2	oNH_3	pNH_3	ND
6	NHD	oND_2	pND_2	$\mathrm{oNH}_2\mathrm{D}$	pNH_2D	oNHD_2	pNHD_2	mND_3
7	pND_3	oND_3	\mathbf{S}	$_{\rm SH}$	oH_2S	pH_2S	CO	NO
8	SO	CN	\mathbf{CS}	HNC	HCN	CO_2	SO_2	OCS
9	H_2CO	CH ₃ OH	HCO_2H	Fe	H^+	D^+	He^+	oH_2^+
10	pH_2^+	HD^+	oD_2^+	pD_2^+	oH_2D^+	pH_2D^+	$_{0}H_{3}^{+}$	pH_3^+
11	$_{\rm oHD_2^+}$	pHD_2^+	mD_3^+	$^{\rm oD_3^+}$	pD_3^+	O+ .	O_{2}^{+} .	OH^+
12	oH_2O^+	pH_2O^+	OD^+	HDO ⁺	oD_2O^+	pD_2O^+	oH_3O^+	pH_3O^+
13	oH_2DO^+	pH_2DO^+	oHD_2O^+	pHD_2O^+	mD_3O^+	oD_3O^+	pD_3O^+	C^+
14	CH^+	oCH_2^+	pCH_2^+	C_2^+	C_2H^+	$C_2H_3^+$	C_3^+	C_3H^+
15	$_{\rm oCH_3^+}$	pCH_3^+	pCH_5^+	oCH_5^+	mCH_5^+	mCH_4^+	pCH_4^+	oCH_4^+
16	$C_2H_2^+$	$C_3H_3^+$	$C_3H_2^+$	N ⁺	N_2^+	ND ⁺	NH ⁺	N_2H^+
17	N_2D^+	oNH_2^+	pNH_2^+	mNH_4^+	oNH_4^+	pNH_4^+	oNH_3^+	pNH_3^+
18	NHD ⁺	oND_2^+	pND_2^+	oNH ₃ D ⁺	pNH_3D^+	$_{0}NH_{2}D^{+}$	pNH_2D^+	$_{\rm oNHD_2^+}$
19	$pNHD_2^+$	mND_3^+	oND_3^+	pND_3^+	$\mathrm{ooNH}_2\mathrm{D}_2^+$	$poNH_2D_2^+$	$opNH_2D_2^+$	$ppNH_2D_2^+$
20	mNHD_3^+	$_{ m oNHD}^+_3$	$pNHD_3^+$	IND_4^+	oND_4^+	pND_4^+	mND_4^+	S^+
21	SH^+	SD^+	oH_2S^+	pH_2S^+	oH_3S^+	pH_3S^+	HCO^+	HCO_2^+
22	SO^+	CO^+	CS^+	NO^+	CN^+	HCS^+	DCO^+	$\rm HCN^+$
23	C_2N^+	$HCNH^+$	HNO^+	HSO^+	$HOCS^+$	DCO_2^+	HSO_2^+	H_2NC^+
24	Fe^+	Gr	Gr^-	Gr^+	CH_4^*	H_2O^*	O_2^*	CO^*
25	CO_2^*	N^*	NH_{3}^{*}	N_2^*	H_2S^*	OCS^*	Fe^{*}	HDO *
26	$D_2 O^*$	$\rm NH_2D^{*}$	$\widetilde{\mathrm{NHD}}_2^*$	$\overline{\mathrm{ND}}_3^*$	$\overline{CH}_{3}OH^{*}$	$\rm H_2 \rm CO^*$	$\mathrm{HCO}_{2}\mathrm{H}^{*}$	

Notes:

o: ortho; m:meta; p:para; The statistical weights are such that p < m < l < o, i.e. IND_4^+ has a statistical weight larger than that of mND_4^+ and smaller than oND_4^+ ;

 $poNH_2D_2$: the first letter, p, refers to D nuclei symmetry, and the second, o, refers to symmetry of the H nuclei wavefunction. Species labeled with '*' are species adsorbed in grain mantles.

#	Reac	tants	Produc	Products		α cm ³ s ⁻¹	β	γ K
1	Н	Н	Ha			1.0e+00		
2	Н	D	нĎ			1.0e + 00		
3	D	D	D_2			9.9e-01		
4	Н	CRP	нŦ	e^{-}		4.6e-01	0.00	0.0
5	D	CRP	D^+	e^{-}		4.6e-01	0.00	0.0
6	He	CRP	He^+	e^{-}		5.0e-01	0.00	0.0
7	H_2	CRP	Н	Н		1.0e-01	0.00	0.0
8	$\tilde{H_2}$	CRP	H^+	н	e^{-}	2.3e-02	0.00	0.0
9	H_2	CRP	H_2^+	e^{-}		9.8e-01	0.00	0.0
10	НĎ	CRP	нŦ	D	e^{-}	2.0e-02	0.00	0.0
11	HD	CRP	D^+	н	e^{-}	2.0e-02	0.00	0.0
12	HD	CRP	н	D		1.5e + 00	0.00	0.0
13	HD	CRP	HD^+	e^{-}		9.6e-01	0.00	0.0
14	D_2	CRP	D^+	D	e^-	4.0e-02	0.00	0.0
15	$\overline{D_2}$	CRP	D	D		1.5e+00	0.00	0.0
16	D_2	CRP	D_2^+	e^{-}		9.6e-01	0.00	0.0
17	нĨ	H_2^+	H ₂	H^+		6.4e-10	0.00	0.0
18	Н	H_2^{+}	н [‡]	H ₂		2.1e-09	0.00	20000.0
19	н	HD^+	нŦ	нĎ		6.4e-10	0.00	0.0
20	Н	$_{\rm HD^+}$	H_2^+	D		1.0e-09	0.00	154.0

Table D3. Sample of the "condensed" version of the UGAN chemical network (total: 1136 reactions).

Table D4. Sample of the "separated" version of the UGAN chemical network (total: 3266 reactions split into 43 tables).

#	React	ants	Produ	cts		α cm ³ s ⁻¹	β	γ K
1	Н	Н	oH ₂			7.5e-01		
2	Н	Н	pH_2			2.5e-01		
3	Η	D	HD			1.0e+00		
4	D	D	oD_2			6.6e-01		
5	D	D	pD_2			3.3e-01	0.50	0.0
6	Η	CRP	H^+	e^{-}		4.6e-01	0.00	0.0
7	D	CRP	D^+	e^{-}		4.6e-01	0.00	0.0
8	He	CRP	$\mathrm{He^{+}}$	e^{-}		5.0e-01	0.00	0.0
9	oH_2	CRP	Η	Η		1.0e-01	0.00	0.0
10	pH_2	CRP	Η	Η		1.0e-01	0.00	0.0
11	$_{0H_{2}}$	CRP	H^+	Η	e^{-}	2.3e-02	0.00	0.0
12	pH_2	CRP	H^+	Η	e^{-}	2.3e-02	0.00	0.0
13	oH_2	CRP	oH_2^+	e^{-}		9.8e-01	0.00	0.0
14	pH_2	CRP	pH_2^+	e^{-}		9.8e-01	0.00	0.0
15	HD	CRP	H^+	D	e^{-}	2.0e-02	0.00	0.0
16	HD	CRP	D^+	Η	e^{-}	2.0e-02	0.00	0.0
17	HD	CRP	Н	D		1.5e+00	0.00	0.0
18	HD	CRP	HD^+	e^{-}		9.6e-01	0.00	0.0
19	oD_2	CRP	D^+	D	e^{-}	4.0e-02	0.00	0.0
20	pD_2	CRP	D^+	D	e^{-}	4.0e-02	0.00	0.0

Table D5. The "condensed" version of the UGAN chemical network (total: 1136 reactions split into 15 Tables).

#	Reac	tants	Product	s		α	β	γ
1	Н	Н	H_2			1.0e+00		
2	н	D	НĎ			1.0e+00		
3	D	D	D_2			9.9e-01		
4	Н	CRP	H+	e		4.6e-01	0.00	0.0
5 6	D Ho	CRP	D' Hot	е 0		4.6e-01 5.0e.01	0.00	0.0
7	Ho	CRP	Н	Н		1.0e-01	0.00	0.0
8	H_2^2	CRP	$^{\rm H^+}$	н	e^{-}	2.3e-02	0.00	0.0
9	$\tilde{H_2}$	CRP	H_2^+	e^{-}		9.8e-01	0.00	0.0
10	HD	CRP	H^+	D	e^-	2.0e-02	0.00	0.0
11	HD	CRP	D+	H	e^-	2.0e-02	0.00	0.0
12	HD	CRP	нр+	р_		9.6e-01	0.00	0.0
14	D_2	CRP	D^+	D	e^{-}	4.0e-02	0.00	0.0
15	$\tilde{D_2}$	CRP	D	D		1.5e+00	0.00	0.0
16	D_2	CRP	D_2^+	e		9.6e-01	0.00	0.0
17	Н	H_2^+	H ₂	H+		6.4e-10	0.00	0.0
18	H	H_3'	H_2' H_+	H_2		2.1e-09	0.00	20000.0
20	н	HD+	н+	D		1.0e-09	0.00	154.0
21	н	HD^+	H_2D^+	γ		1.2e-17	1.80	-20.0
22	н	D^+	нŦ	D		1.0e-09	0.00	0.0
23	н	D^+	HD^+	γ		3.9e-19	1.80	-20.0
24	H	H_2D^+	H_3^+	D		1.0e-09	0.00	597.8
25	H	$^{HD_2}_{D^+}$	H_2D^+	D		1.0e-09	0.00	549.8
20 27	п Н	D_2 D ⁺	п	и+		6.4e-10	0.00	430.0
28	н	D_2^+	HD_2^+	D		1.0e-09	0.00	642.3
29	H ₂	He^{-3}	H^{+2}	H	He	3.3e-15	0.00	0.0
30	$\tilde{H_2}$	$_{\rm He^+}$	H_2^+	He		9.6e-15	0.00	0.0
31	H_2	H^+	Н	H_2^+		6.4e-10	0.00	21300.0
32	H_2	H_2^+	H_3^+	H		2.1e-09	0.00	0.0
33	H ₂	HD^+	H_2D^+	H		1.1e-09	0.00	0.0
34 35	н ₂ Н.	D^+	н ₃ н+	и Н		1.1e-09 2.1e-09	0.00	0.0
36	H ₂	D_2^+	$H_{a}D^{+}$	D		1.1e-09	0.00	0.0
37	H_2^2	D_2^{\ddagger}	HD_2^+	н		1.1e-09	0.00	0.0
38	НĎ	He ⁺	н+-	D	He	5.5e-14	-0.24	0.0
39	HD	He^+	D^+	H	He	5.5e-14	-0.24	0.0
40	HD HD	н [,] u+	р, п.р+	н ₂ ц		1.0e-09	0.00	464.0
41	HD	H_{2}^{112}	H_{2}^{+}	D		1.1e-09	0.00	0.0
43	HD	HD^+	$H_{2}D^{+}$	D		1.1e-09	0.00	0.0
44	HD	HD^+	\tilde{HD}_2^+	н		1.1e-09	0.00	0.0
45	HD	D+	H^+	D_2		1.0e-09	0.00	0.0
46	HD	D_2^+	HD_2^+	D		1.1e-09	0.00	0.0
47	HD D	D_2' H^\pm	D_3	н ч		1.1e-09	0.00	0.0 41.0
49	D	H^+	$^{\rm HD^+}$	γ		3.9e-19	1.80	-20.0
50	D	H_2^+	H_2	$_{\rm D}^{\prime}$		6.4e-10	0.00	0.0
51	D	$H_2^{\tilde{+}}$	$\bar{H_2D^+}$	γ		7.0e-18	1.80	-20.0
52	D	H_2^+	HD^+	Н		1.0e-09	0.00	0.0
53	D	H_3^+	$H_{2}D^{+}$	Н		1.0e-09	0.00	0.0
54 55	D	HD^+	D_2	H		1.0e-09	0.00	0.0
56	D	H-D+	HD ⁺	н		1.0e-09	0.00	0.0
57	D	HD_{2}^{+}	D_2^+	н		1.0e-09	0.00	0.0
58	D	D_2^+	D_2	D^+		6.4e-10	0.00	0.0
59	D_2	$\tilde{He^+}$	DŦ	D	He	1.1e-13	-0.24	0.0
60	D_2	He ⁺	D_2^+	He		2.5e-14	0.00	0.0
61 60	D_2	H ⁺	D^{+}	HD		2.1e-09	0.00	405.0
62 63	D_2	н ₂ н+	H_2D^+	D н		1.1e-09	0.00	0.0
64	D_2 D_2	$^{112}_{HD^+}$	HD_2^+	D		1.1e-09	0.00	0.0
65	-2 D ₂	HD^+	D_3^+	Н		1.1e-09	0.00	0.0
66	$\tilde{D_2}$	D_2^+	D_3^+	D		2.1e-09	0.00	0.0
67	Fe	H^+	Fe^+	Н		7.4e-09	0.00	0.0
68	Fe	H_3^+	Fe ⁺	H_2	H	4.9e-09	0.00	0.0
69 70	Fe	н ₂ D⊤ нр+	Fe ⁺	н ₂ D	и н	4.9e-09	0.00	0.0
70	Fe	HD^{\pm}	Fe+	D ₂ НП	D	1.0e-09 3.3e-09	0.00	0.0
72	Fe	D_{2}^{+}	Fe ⁺	D _o	D	4.9e-09	0.00	0.0
73	$^{\rm H^+}$	e_	Н	γŹ		3.6e-12	-0.75	0.0
74	H_2^+	e^-	Η	н		2.5e-07	-0.50	0.0

Table D5 – continued (part 2)

React	tants	Product	s			α	β	γ	
75	н+	e ⁻	н	v			2 20 07	-0.40	0.0
76	$^{12}_{HD^{+}}$	e_	¹¹ 2 Н	, D			2.20-07 9.0e-00	-0.40	0.0
77	D^+	e ⁻	D	γ			3.6e-12	-0.75	0.0
78	$_{\rm He}^+$	e ⁻	He	γ			4.5e-12	-0.67	0.0
79	H_2^+	γ_2	H^+	Н			6.1e + 02	0.00	0.0
80	НĮ	Gr^{-}	\mathbf{Gr}	Н			1.6e-06	0.50	0.0
81	H_3^+	Gr^-	\mathbf{Gr}	H_2	Η		4.6e-07	0.50	0.0
82	H_{3}^{+}	Gr^-	\mathbf{Gr}	Н	н	Η	4.6e-07	0.50	0.0
83	He^+	Gr^{-}	Gr	He			8.0e-07	0.50	0.0
84	H+ **+	Gr	Gr^+	H			1.6e-06	0.50	0.0
85	H3 11	Gr	Gr ⁺	н ₂	H		4.6e-07	0.50	0.0
86	н ₃ ц ₆ +	Gr	Gr^+	H Ho	н	н	4.6e-07	0.50	0.0
88	D+	Gr ⁻	Gr	D			1.1e-06	0.50	0.0
89	$H_{2}D^{+}$	Gr ⁻	Gr	H ₂	D		1.3e-07	0.50	0.0
90	$\tilde{H_2D^+}$	Gr^-	\mathbf{Gr}	НĎ	н		2.7e-07	0.50	0.0
91	$\bar{H_2D^+}$	Gr^-	\mathbf{Gr}	D	Η	Η	4.0e-07	0.50	0.0
92	D^+	\mathbf{Gr}	Gr^+	D			1.1e-06	0.50	0.0
93	H_2D^+	Gr	Gr^+	H_2	D		1.3e-07	0.50	0.0
94	H_2D^+	Gr	Gr^+	HD	H	TT	2.7e-07	0.50	0.0
95	$H_2 D^+$	Gr Cr ⁻	Gr	U UU	п	п	4.0e-07	0.50	0.0
90	HD^+	Gr ⁻	Gr	D	н		1.20.07	0.50	0.0
91	HD^+	Gr ⁻	Gr	D2	Б	н	3.6e-07	0.50	0.0
99	HD_2^+	Gr	Gr ⁺	HD	D	11	2.4e-07	0.50	0.0
100	HD_{2}^{+}	Gr	Gr ⁺	Da	н		1.2e-07	0.50	0.0
101	HD_{+}^{+}	Gr	Gr^+	- 2 D	D	н	3.6e-07	0.50	0.0
102	D_2^+	Gr^{-}	Gr	Da	D		3.3e-07	0.50	0.0
103	D_3^+	$\rm Gr^-$	\mathbf{Gr}	D	D	D	3.3e-07	0.50	0.0
104	D_3^+	\mathbf{Gr}	Gr^+	D_{2}	D		3.3e-07	0.50	0.0
105	D_3^+	\mathbf{Gr}	Gr^+	D	D	D	3.3e-07	0.50	0.0
106	o	CRP	O^+	e			2.8e+00	0.00	0.0
107	0	OH	O_2	Н			4.0e-11	0.00	0.0
108	0+	H ₂	OH^+	Н			1.2e-09	0.00	0.0
109	0	н u+	H^+	О Ц			6.0e-10	0.00	0.0
110	0	н+	он+	н			1.50.00	0.00	227.0
112	0	н ₂ н ⁺	OH+	H _a			1.5e-05 8.0e-10	-0.16	1.4
112	õ	H ³	H _o O ⁺	н			3.4e-10	-0.16	1.4
114	õ	$H_{2}D^{+}$	OH^+	HD			5.3e-10	0.00	0.0
115	0	$\tilde{H_2D^+}$	OD^+	H_2			2.7e-10	0.00	0.0
116	0	HD_2^+	OH^+	D_2			2.7e-10	0.00	0.0
117	0	HD_2^+	OD^+	HD			5.3e-10	0.00	0.0
118	Ο	D_3^+	OD^+	D_2			8.0e-10	0.00	0.0
119	O_2	He ⁺	O+	Ο	He		1.0e-09	0.00	0.0
120	O_2	H^+	O_2^+	H			1.2e-09	0.00	0.0
121	OH	He'	OH '	He u	ц		5.5e-10 5.5e 10	0.00	0.0
122	OH	H+	OH+	н	me		2 1e-09	0.00	0.0
124	OH	н+ Н+	H	OH+			7.6e-10	0.00	0.0
125	OH	H_2^2	$H_{0}^{2}O^{+}$	Ha			1.3e-09	0.00	0.0
126	OH	H_2D^+	$\tilde{H_2O^+}$	НĎ			8.7e-10	0.00	0.0
127	OH	H_2D^+	$H\overline{D}O^+$	H_2			4.3e-10	0.00	0.0
128	OH	HD_2^+	H_2O^+	D_2			4.3e-10	0.00	0.0
129	OH	HD_2^+	HDO+	HD			8.7e-10	0.00	0.0
130	OH	D_3^+	HDO+	D_2			1.3e-09	0.00	0.0
131	OD	He^+	O^+	He	17		5.5e-10	0.00	0.0
132		нет н+	O^+	и Н	не		0.0e-10 0.1c.00	0.00	0.0
133	OD	н+	HDO+	H _a			2.1e-09 1.3e-00	0.00	0.0
135	OD	$H_{a}D^{+}$	HDO+	$^{12}_{HD}$			8.7e-10	0.00	0.0
136	OD	$H_2^2 D^+$	$D_{2}O^{+}$	H_2			4.3e-10	0.00	0.0
137	OD	\tilde{HD}_{2}^{+}	$\tilde{HDO^+}$	$\tilde{D_2}$			4.3e-10	0.00	0.0
138	OD	$HD_2^{\tilde{+}}$	D_2O^+	НD			8.7e-10	0.00	0.0
139	OD	D_3^+	D_2O^+	D_2			1.3e-10	0.00	0.0
140	H_2O	He^+	OH^+	н	$_{\rm He}$		2.3e-10	-0.94	0.0
141	H_2O	He^+	H_2O^+	He			4.9e-11	-0.94	0.0
142	H ₂ O	He^+ u^+	H⊤ u	OH U O+	He		1.6e-10	-0.94	0.0
143	н ₂ 0 н о	н н+	н н	н ₂ 0т н о+			8.∠e-09	0.00	0.0
144 145	п ₂ 0 н о	п ₂ н+	п ₂ н о+	н20'			3.40.00	0.00	0.0
146	н ₂ 0 Н_О	н ² н ⁺	н ₃ 0+	н.			4 30-00	0.00	0.0
147	H ₂ O	$H_{2}D^{+}$	H_3O^+	HD			2.9e-09	0.00	0.0
148	H ₂ O	HD_2^+	H_2DO^+	HD			2.9e-09	0.00	0.0

Table D5 – continued (part 3)

Reac	tants	Product	s			α	β	γ	
149	H _a O	HD ⁺	H ₂ O ⁺	Da			1.4e-09	0.00	0.0
150	H ₂ O	D_2^+	$H_{3}DO^{+}$	-2 D ₂			4.3e-09	0.00	0.0
151	H ₂ O	$H_2^{\circ}D^+$	$H_2^{2}DO^+$	H_2^2			1.4e-09	0.00	0.0
152	нīо	\tilde{He}^+	$\tilde{OD^+}$	нĨ	He		2.3e-10	-0.94	0.0
153	HDO	He^+	HDO+	He			4.9e-11	-0.94	0.0
154	HDO	He ⁺	H+	OD	He		1.6e-10	-0.94	0.0
155	HDO	H+ 11 ⁺	HDO^+	H			8.2e-09	0.00	0.0
156	HDO	H_3	H_2DO^+	H_2			4.3e-09	0.00	0.0
157	HDO	H_2D^+	$H_{2}DO^{+}$	H_			2.9e-09 1.4e-09	0.00	0.0
159	HDO	HD_{0}^{+}	$HD_{2}O^{+}$	HD			2.9e-09	0.00	0.0
160	HDO	HD_2^{4}	$H_{2}DO^{+}$	D_{2}			1.4e-09	0.00	0.0
161	HDO	D_3^+	$\tilde{HD}_{2}O^{+}$	D_2			4.3e-09	0.00	0.0
162	D_2O	$_{\rm He}^{\rm o}+$	OD [‡]	D	He		2.3e-10	-0.94	0.0
163	D_2O	He^+	$D_{2}O^{+}$	He			4.9e-11	-0.94	0.0
164	D ₂ O	He^+	D^+	OD	He		1.6e-10	-0.94	0.0
165	D_2O	н+ 11 ⁺	$D_2 O^+$	H			8.2e-09	0.00	0.0
167	D_2O	п ₃ н. р+	HD_2O^+	п ₂ нр			4.3e-09 2.9e-09	0.00	0.0
168	D_2O D_2O	H_0D^+	D_2O^+	Ho			1.4e-09	0.00	0.0
169	D_2O	D_{2}^{+}	$D_{2}O^{+}$	D_2			4.3e-09	0.00	0.0
170	D_2O	HD_2^+	D_3O^+	НĎ			2.9e-09	0.00	0.0
171	$\tilde{D_2O}$	HD_2^{\mp}	HD_2O^+	D_2			1.4e-09	0.00	0.0
172	OH ⁺	H_2	H_2O^+	н			1.0e-09	0.00	0.0
173	OH+	HD	HDO+	H			5.1e-10	0.00	0.0
174	OH^+	HD	H_2O^+	D			5.1e-10	0.00	0.0
175	OD^+	н ₂ нр	$D O^+$	н			1.0e-09 5.1e-10	0.00	0.0
170	OD ⁺	HD	HDO^+	D			5.1e-10 5.1e-10	0.00	0.0
178	OD^+	D_2	D_2O^+	D			1.1e-09	0.00	0.0
179	H_2O^+	$\bar{H_2}$	H ₃ O ⁺	Η			8.3e-10	0.00	0.0
180	H_2O^+	HD	H_2DO^+	H			4.2e-10	0.00	0.0
181	H_2O^+	HD	$H_{3}O^{+}$	D			4.2e-10	0.00	0.0
182	HDO+	н ₂ нр	H_2DO^+	н н			8.3e-10 4.2o.10	0.00	0.0
184	HDO ⁺	HD	$H_{0}DO^{+}$	D			4.2e-10	0.00	0.0
185	HDO^+	D_2	HD_2O^+	D			8.3e-10	0.00	0.0
186	D_2O^+	$\bar{D_2}$	$D_3 \tilde{O}^+$	D			8.3e-10	0.00	0.0
187	D_2O^+	H_2	HD_2O^+	H			8.3e-10	0.00	0.0
188	D_2O^+	HD	HD_2O^+	D			4.2e-10	0.00	0.0
189	D_2O^+	HD Fo	D ₃ O ⁺	Н	п		4.2e-10	0.00	0.0
190	0^{+}	Fe	Fe ⁺	0-	11		1.1e-09	0.00	0.0
192	O^2_+	e ⁻	0	γ			3.4e-12	-0.64	0.0
193	O_2^+	e^{-}	0	ò			2.0e-07	-0.70	0.0
194	OH^+	e^{-}	0	Н			3.7e-08	-0.50	0.0
195	H_2O^+	e^-	OH	Н			7.8e-08	-0.50	0.0
196	$H_{2}O^{+}$	e	0	H_2			3.4e-08	-0.50	0.0
197	H ₂ O+	e 	0	H U	H U		1.5e-07	-0.50	0.0
198	$H_{3}O^{+}$	e	H ₂ O	н	11		2.0e-07 1 1e-07	-0.50	0.0
200	H ₃ O ⁺	e_	OH	н,			6.0e-08	-0.50	0.0
201	H_3O^+	e^{-}	H_2	н ²	0		5.6e-09	-0.50	0.0
202	OD^+	e^-	0	D			3.7e-08	-0.50	0.0
203	HDO^+	e	OD	H			3.1e-08	-0.50	0.0
204	HDO^+	е 0	ОН	D D			1.5e-08	-0.50	0.0
205 206	HDO+	е е ⁻	0	Н	D		1.0e-08 8.9e-08	-0.50	0.0
207	$D_{2}O^{+}$	e_	OD	D	Þ		7.8e-08	-0.50	0.0
208	$D_2^2O^+$	e ⁻	0	D_2			3.4e-08	-0.50	0.0
209	$\tilde{D_2O^+}$	e^-	0	D	D		1.5e-07	-0.50	0.0
210	H_2DO^+	e^-	OD	Н	Н		8.6e-08	-0.50	0.0
211	H_2DO^+	e	OH	D	Н		1.7e-07	-0.50	0.0
212	н ₂ DO+	e e	н ₂ 0 нро	н			3.0e-08 7.2e-08	-0.50	0.0
213	H_2DO^+	e_	OD	H _a			2.0e-08	-0.50	0.0
215	H_2DO^+	e-	OH	HD			4.0e-08	-0.50	0.0
216	$\tilde{H_2DO^+}$	e^{-}	HD	Н	0		3.7e-09	-0.50	0.0
217	H_2DO^+	e^-	H_2	D	Ο		1.9e-09	-0.50	0.0
218	HD_2O^+	e	OH	D	D		8.6e-08	-0.50	0.0
219	$HD_{2}O^{+}$	e e		Ч	н		1.7e-07 3.6e.09	-0.50	0.0
220	HD_2O^+	e ⁻	HDO	D			7.2e-08	-0.50	0.0
222	$HD_2^2O^+$	e ⁻	OH	D_2			2.0e-08	-0.50	0.0

Table D5 - continued (part 4)

React	tants	Products	5			α	β	γ	
223	HD-0+	e ⁻	OD	НD			4.0e-08	-0.50	0.0
223	HD_2O^+	e e	HD	D	0		4.0e-08 3.7e-09	-0.50	0.0
225	$HD_2^2O^+$	e ⁻	D_2	н	0		1.9e-09	-0.50	0.0
226	$D_3 \tilde{O}^+$	e^-	OD	D	D		2.6e-07	-0.50	0.0
227	$D_{3}O^{+}$	e	D_2O	D			1.1e-07	-0.50	0.0
228	D_3O^+	e	OD D	D ₂	0		6.0e-08	-0.50	0.0
229	D ₃ O · ОН	е %	O_2	н	0		$4.7e \pm 02$	-0.50	0.0
231	OH ⁺	72 Yo	Õ+	н			8.6e+00	0.00	0.0
232	H ₂ O	12	OH	н			1.0e+03	0.00	0.0
233	H ₂ O	γ2	H_2O^+	e^-			2.3e+01	0.00	0.0
234	O_2	Y2	0	О			7.8e+02	0.00	0.0
235	O_2	Y2	O_2^+	e ⁻			2.8e+01	0.00	0.0
236	U_2	12 C 1	C_{r}^{+}	U H O	п		7.0e+01	0.00	0.0
238	$H_{3}O^{+}$	Gr^-	Gr	H_2O H_2O	H		3.7e-07	0.50	0.0
239	0	Н.,	OH	H			1.5e-13	2.80	2980.0
240	O_2	нĨ	OH	0			1.6e-09	-0.90	8750.0
241	OH	Н	0	H_2			7.0e-14	2.80	1950.0
242	OH	H ₂	H ₂ O	H			9.5e-13	2.00	1490.0
243	н ₂ 0 ч о+	H U	и о+	н ₂ ц			5.2e-12 6.1e-10	1.90	9265.0
244 245	C^+	Н	CH^+	ν ¹¹ 2			7.0e-17	0.00	20300.0
246	\tilde{C}^+	Ha	CH_2^+	γ			2.0e-16	-1.30	23.0
247	C^+	\tilde{CH}	C_2^+	н			3.8e-10	0.00	0.0
248	C^+	CH	$C\tilde{H}^+$	С			3.8e-10	0.00	0.0
249	C^+	CH_2	CH_2^+	\mathbf{C}			5.2e-10	0.00	0.0
250	C+	CH_2	C_2H^+	Н			5.2e-10	0.00	0.0
251	C^+	CH ₄	$C_2H_2^+$	Н ₂			3.3e-10	0.00	0.0
252	C^+	CH ₄	C_2H_3	H			9.8e-10	0.00	0.0
253	C ⁺	С ₂ н Сн	С ₃ С н+	н			1.0e-09	0.00	0.0
254	C+	$C_2 m_2$ Fe	Fe^+	C			2.2e-09 2.6e-09	0.00	0.0
256	CH^+	н	C^+	H ₂			1.5e-10	0.00	0.0
257	CH^+	H_2	CH_2^+	нĨ			1.2e-09	0.00	0.0
258	CH_2^+	H_2	CH_3^+	Н			7.0e-10	0.00	0.0
259	CH_3^+	H_2	CH_5^+	γ			3.8e-16	-2.30	21.5
260	CH_4^+	Н	CH_3^+	H_2			2.0e-10	0.00	0.0
261	CH_4^+	H_2	CH_5^+	H			4.0e-11	0.00	0.0
262	C_2^+	H ₂	C_2H^+	H			1.4e-09	0.00	0.0
263	$C_2 H^+$	H ₂	$C_2 H_2^{+}$	H			1.7e-09	0.00	0.0
264	С и+	н ₂ ц	C_3H^+	H			3.0e-10 2.0e-12	1.00	0.0
205	C SIL	CBP	C_{3}^{+}	r e ⁻			$1.8e \pm 00$	0.00	0.0
267	č	Н	CH	γ			1.0e-17	0.00	0.0
268	С	H_2^+	CH^+	H			2.4e-09	0.00	0.0
269	С	H_3^+	CH^+	H_2			2.0e-09	0.00	0.0
270	CH	н	С	H_2			1.2e-10	0.26	0.0
271	CH	He ⁺	C^+	H	He		1.1e-09	0.00	0.0
272	CH	H+ 11+	H	CH^+			1.9e-09	0.00	0.0
213	СН	п ₂ н+	C^{H^+}	Сн' Ч			7 10 10	0.00	0.0
275	CH	H_{2}^{112}	CH^+_2	H _a			1 20-00	0.00	0.0
276	CH	3 H ₂ D+	CH_{2}^{+}	-12 HD			1.2e-09	0,00	0.0
277	CH	HD_2^+	CH_2^+	D_{2}			1.2e-09	0.00	0.0
278	CH_2	нź	CH	H_2^2			2.2e-10	0.00	0.0
279	CH_2	He^+	C^+	$\tilde{H_2}$	He		7.5e-10	0.00	0.0
280	CH ₂	He^+	CH^+	H	He		7.5e-10	0.00	0.0
281	CH ₂	H⊤ 11+	CH^+	H_2			1.4e-09	0.00	0.0
282	CH2	н' u+	н Сч ⁺	CH_2			1.4e-09	0.00	0.0
283 284	CH.	п ₂ н+	Сп ₃ Н.	п Сн ⁺			1.0e-09	0.00	0.0
204 285	CH _c	H_{2}^{112}	CH^+	Сп ₂ На			1.0e-09	0.00	0.0
286	CH ₂	113 H ₂ D+	CH^+	2 HD			1.7e-09	0.00	0.0
287	CH ₂	HD_2^{-}	CH^{+}	D_{2}			1.7e-09	0.00	0.0
288	CH_3^2	He [≠]	сн ⁴	H_2^2	He		9.0e-10	0.00	0.0
289	CH ₃	He^+	CH_2^+	нĨ	He		9.0e-10	0.00	0.0
290	CH_3	H^+	Н	CH_3^+			3.4e-09	0.00	0.0
291	CH_3	H_{3}^{+}	CH_4^+	H_2			2.1e-09	0.00	0.0
292	CH ₃	H_2D^+	CH_{4}^{+}	HD			2.1e-09	0.00	0.0
293	CH ₃	HD_2^{+}	CH_4^{+}	D_2	TT.		2.1e-09	0.00	0.0
294	CH ₄	не⊤ Не+	CH ⁺	Сн ₃ н	не म	Ho	4.0e-10 2.6e-10	0.00	0.0
295	CH.	He+	CH ⁺	112 H	н Не	ne	2.0e-10 8.5e-10	0.00	0.0
	~4		~ **2	2			0.00-10	5.50	0.0

Table D5 – continued (part 5)

		Duaduata				~	P	~ ~ ~	
React	ants	Products				α	р	γ	
297	CH_4	He^+	CH_3^+	Н	He		8.0e-11	0.00	0.0
298	CH_4	He ⁺	CH_4^+	He			1.6e-11	0.00	0.0
299	CH ₄	H⊤ 11+	CH ₃	H_2			2.3e-09	0.00	0.0
300	CH4	н, u+	н сч+	сн ₄ и			1.5e-09	0.00	0.0
302	CH	п ₃ н р+	CH ⁺	п ₂ нр			1.9e-09	0.00	0.0
302	CH	HD^{+}	CH^+	D			1.96-09	0.00	0.0
304	C	$H_{2}D^{+}$	CH_{5}^{+}	$^{L_2}_{HD}$			2.0e-09	0.00	0.0
305	С	HD_{2}^{+}	CH^+	D_{2}			2.0e-09	0.00	0.0
306	C_{2}	H^{+}	C_2^+	н			3.1e-09	0.00	0.0
307	$\bar{C_2H}$	He^+	C^{\mp}	CH	He		5.1e-10	0.00	0.0
308	C_2H	He^+	CH^+	С	He		5.1e-10	0.00	0.0
309	C_2H	He ⁺	C_2^+	Н	He		5.1e-10	0.00	0.0
310	C ₂ H	H+ 11+	C_2^{+}	H_2			1.5e-09	0.00	0.0
210	С11	п' 11 ⁺	$C_2 \Pi^+$	п			1.5e-09	0.00	0.0
312	С н	п ₃ н р+	$C_2 H_2^+$	п ₂ нр			1.7e-09	0.00	0.0
314	C-H	HD^+	$C_2 H_2^+$	D-			1.7e-09	0.00	0.0
315	C ₂ H	He ⁺	C_{2}^{+}	н Н	He		2.0e-09	0.00	0.0
316	C ₂ H	н÷ н+	C_2^+	H ₂	110		2.0e-09	0.00	0.0
317	C ₃ H	H^+	C_3H^+	н ²			2.0e-09	0.00	0.0
318	C ₃ H	H_3^+	$C_3H_2^+$	H_2			2.0e-09	0.00	0.0
319	C_3H	H_2D^+	$C_3H_2^+$	HD			2.0e-09	0.00	0.0
320	C_3H	HD_2^+	$C_3H_2^+$	D_2			2.0e-09	0.00	0.0
321	C_2H_2	He^+	CH^+	CH	He		7.7e-10	0.00	0.0
322	C_2H_2	He^+	C_2^{\top}	H_2	He		1.6e-09	0.00	0.0
323	C ₂ H ₂	He '	C_2H^+	H II-	Не		8.7e-10	0.00	0.0
324	С ₂ н ₂ С.Н.	не н+	$C_2 H_2^+$	пе Н-			2.4e-10 2.0e-09	0.00	0.0
326	C ₂ H ₂	н+	C_2H^+	н Н			2.0e-09	0.00	0.0
327	C ₂ H ₂	н+ Н	$C_0H_2^+$	Но			2.9e-09	0.00	0.0
328	C_2H_2	$H_{2}D^{+}$	$C_{2}H_{2}^{+}$	HD			2.9e-09	0.00	0.0
329	$\tilde{C_{2}H_{2}}$	HD_{2}^{+}	$\tilde{C_{2}H_{3}^{+}}$	D_{2}			2.9e-09	0.00	0.0
330	$\tilde{C_3H_2}$	H^+	С ₃ ́Н [∔]	$\tilde{H_2}$			2.0e-09	0.00	0.0
331	C_3H_2	H^+	$C_3H_2^+$	Н			2.0e-09	0.00	0.0
332	C_3H_2	He ⁺	C_3H^+	Н	He		1.0e-09	0.00	0.0
333	C_3H_2	He^+	C_3^+	H_2	He		1.0e-09	0.00	0.0
334	C ₃ H ₂	H_3	$C_3H_3^+$	H_2			2.0e-09	0.00	0.0
335	C ₃ H ₂	H_2D'	C_3H_3	HD D			2.0e-09	0.00	0.0
337	$C_{3}^{+}C_{2}^{+}$	пD ₂	C ₃ n ₃	υ ₂ γ			2.0e-09 4 4e-12	-0.61	0.0
338	CH^+	e ⁻	C	'H			1.5e-07	-0.42	0.0
339	CH_2^+	e ⁻	С	H_{2}			1.2e-07	-0.50	0.0
340	$CH_2^{\overline{+}}$	e ⁻	CH	нĨ			1.2e-07	-0.50	0.0
341	CH_3^+	e^-	С	H_2	н		3.0e-07	-0.30	0.0
342	CH_3^+	e ⁻	CH	Η	Η		1.6e-07	-0.30	0.0
343	CH_3^+	e ⁻	CH	H_2			1.4e-07	-0.30	0.0
344	CH_3^+	e^-	CH_2	Н			4.0e-07	-0.30	0.0
345	CH_4^+	e ⁻	CH_3	Η			3.0e-07	-0.50	0.0
346	CH_4^+	e	CH ₂	H	H		3.0e-07	-0.50	0.0
347	CH_5'	e -	CH	н ₂	H ₂		8.7e-08	-0.30	0.0
348	CH_5^+	е 0	CH CH	п ₂ н	п		0.7e-08	-0.30	0.0
350	CH^{\pm}	e_	CH.	н Н			8.7e-08	-0.30	0.0
351	C_2^+	e ⁻	C 114	C			3.0e-07	-0.50	0.0
352	$\tilde{C}_{2}^{2}H^{+}$	e-	Č,	Ĥ			1.4e-07	-0.50	0.0
353	$\tilde{C_2}H^+$	e^{-}	$C\hat{\tilde{H}}$	С			1.4e-07	-0.50	0.0
354	$C_2H_2^+$	e^-	C_2H	Н			1.5e-07	-0.50	0.0
355	$C_{2}H_{2}^{+}$	e^-	CH	CH			1.5e-07	-0.50	0.0
356	$C_{2}H_{3}^{+}$	e^-	C_2H	H_2			1.4e-07	-0.50	0.0
357	$C_2H_3^+$	e ⁻	CH ₂	CH			1.4e-07	-0.50	0.0
358	$C_2H_3^+$	e_	C_2H_2	Н			3.0e-08	-0.50	0.0
359	С ₃ С <u>и</u> +	е 0	C_2	CH			3.0e-07	-0.50	0.0
361	$C_3 H^+$	е е ⁻	C ₂ C ₂ H	C			1.5e-07	-0.50	0.0
362	$C_3H_2^+$	e_	C_2H	H			1.5e-07	-0.50	0.0
363	C ₂ H ⁺	e ⁻	C ₂ H	CH			1.5e-07	-0.50	0.0
364	$C_3H_2^2$	e^{-}	$C_{3}H_{3}$	Н			1.5e-07	-0.50	0.0
365	$C_3H_3^2$	e ⁻	$C_2 H_2$	CH			1.5e-07	-0.50	0.0
366	сँँ	γ_2	C^{\mp} $$	e^-			2.6e+02	0.00	0.0
367	CH	γ_2	C	Н			1.1e+03	0.00	0.0
368	CH	Y2	CH^{+}	е ⁻ ц			5.8e + 02	0.00	0.0
370	CH_2 CH_2	12 γ ₂	СН	H ₂			2.3e+02 2.8e+02	0.00	0.0
	- '3	14	-	2					

Table D5 – continued (part 6)

Reac	tants	Produc	ts			α	β	γ	
371	CHa	γ ₂	CH_{2}^{+}	e-			3.8e + 02	0.00	0.0
372	CH ₄	12 12	CH ₃	Н			1.5e + 03	0.00	0.0
373	CH_4	γ ₂	CH_4^+	e^{-}			2.2e + 01	0.00	0.0
374	CH^{+}	γ2	С	H^+			2.2e + 02	0.00	0.0
375	CH_2^+	γ2	CH^+	Н			8.9e+01	0.00	0.0
376	CH_4^+	γ2	CH_3^+	Н			2.7e+01	0.00	0.0
377	C_2	γ_2	C	\mathbf{C}			1.8e+02	0.00	0.0
378	C ₂	γ2	C_2^+	e_			2.5e+02	0.00	0.0
380	C ₂ H	72 20	C ² H	п ц			$1.1e \pm 0.03$ $3.5e \pm 0.03$	0.00	0.0
381	C ₂ H ₂	72 25	C_2H^+	e ⁻			$3.8e \pm 02$	0.00	0.0
382	C_2	12 12	C_2	C			6.9e + 02	0.00	0.0
383	С ₃ Н	γ_2	$\tilde{C_3}$	Н			3.0e + 03	0.00	0.0
384	C_3H_2	γ2	C_3H	Н			3.4e+03	0.00	0.0
385	C^+	Gr	Gr^+	C			4.6e-07	0.50	0.0
386 387	C '	Gr H	Gr CH	С			4.6e-07	0.50	0.0
388	CH	H ₂	CHa	н			2.4e-10	0.00	1760.0
389	CH ₂	H ₂	CH ₃	н			5.2e-11	0.17	6400.0
390	CH ₃	$\tilde{H_2}$	CH_4	Н			3.0e-10	0.00	5460.0
391	C_2	H_2	C_2H	Н			1.6e-10	0.00	1419.0
392	C_2H	H_2	C_2H_2	Н			1.1e-11	0.00	950.0
393	CH ₃	H U	CH ₂	н ₂ ч			5.2e-11 2.0a 10	0.17	5600.0 6560.0
394	C^{H_4}	H _a	CH^{+}	H ¹¹ 2			1.5e-10	0.00	4640.0
396	CH ₂ ⁺	H	CH ⁺	Ha			1.2e-09	0.00	2700.0
397	CH_3^{4}	Н	CH_2^+	H ₂			7.0e-10	0.00	10560.0
398	CH_3^+	H_2	$CH_4^{\tilde{+}}$	нĨ			2.0e-10	0.00	32500.0
399	CH_5^+	Н	CH_4^+	H_2			4.0e-11	0.00	2200.0
400	C_2^+	H_2	H+	C_2H			1.5e-09	0.00	1260.0
401	$C_2H_2^+$	H_2	$C_2H_3^+$	Н			5.0e-10	0.00	800.0
402	C_3H^+	н ₂	C_3H_2	H			1.0e-09	0.00	500.0
403	C ₃ H ₂ N	н ₂ Свр	С ₃ н ₃ N+	н 0 ⁻			1.0e-10 2 10±00	0.00	2000.0
405	N	NH	N _o	н			5.0e-11	0.10	0.0
406	Ν	NH ₂	N_2^2	Н	Н		1.2e-10	0.00	0.0
407	N ⁺	H_2	NH ⁺	Н			4.2e-10	0.00	41.9
408	N+	HD	ND^+	Н			4.2e-10	0.00	0.0
409	N_2	H ₂	N_2H^{\top}	H			2.0e-09	0.24	0.0
410	NH ⁺	п ₂ н	H^{+}	п N			1.5e-09 2.2o 10	0.00	0.0
412	NH ⁺	н2 Н	$^{113}_{N^+}$	H _o			6.5e-10	0.00	0.0
413	N_2H^+	NH ₃	NH_4^+	N_2^2			2.3e-09	0.00	0.0
414	$\tilde{N_2H^+}$	D	$N_2 \tilde{D}^+$	нĨ			1.0e-09	0.00	0.0
415	NH_2^+	H_2	NH_3^+	Н			2.7e-10	0.00	0.0
416	NH_3^+	H_2	NH_4^+	Н			2.4e-12	0.00	0.0
417	ND ⁺	H ₂	$^{\rm NHD^+}$	H			1.3e-09	0.00	0.0
418	ND ⁺	$^{11}_{HD}$	$^{11}_{2}D^+$ NHD ⁺	D			6.3e-10	0.00	0.0
420	ND ⁺	HD	ND_2^+	н			6.3e-10	0.00	0.0
421	N_2D^+	Н	$N_2 \hat{H}^+$	D			1.0e-09	0.00	170.0
422	N_2D^+	NH_3	NH_3D^+	N_2			2.3e-09	0.00	0.0
423	NHD ⁺	H ₂	MH_2D^+	H			2.7e-10	0.00	0.0
424	NHD ⁺	HD UD	NH_2D^+	D ц			1.3e-10 1.2o 10	0.00	0.0
426	ND ⁺	H.	$\frac{1112}{\text{NHD}^{+}}$	Н			2.7e-10	0.00	0.0
427	ND ⁺	HD	NHD ⁺	D			1.3e-10	0.00	0.0
428	ND_2^{4}	HD	ND_3^+	Н			1.3e-10	0.00	0.0
429	$NH_2^{-}D^+$	H_2	NH_3D^+	н			2.4e-12	0.00	0.0
430	NH_2D^+	HD	NH_3D^+	D			1.2e-12	0.00	0.0
431	MH_2D^+	HD	$\rm NH_2D_2^+$	Н			1.2e-12	0.00	0.0
432	NHD ⁺	н ₂ ир	$MH_2D_2^+$	H D			2.4e-12	0.00	0.0
433	MHD_2^+	нр Нр	NHD^+	н			1.2e-12 1.2e-12	0.00	0.0
435	ND_2^+	H ₂	NHD ³	н			2.4e-12	0.00	0.0
436	ND_3^3	HD	NHD_3^{-3}	D			1.2e-12	0.00	0.0
437	ND_3^+	HD	ND_4^+	Н			1.2e-12	0.00	0.0
438	Ν	H_3^+	$\rm NH_2^+$	Н			0.0e+00	0.00	0.0
439	N ₂	H_3^+	N_2H^+	H_2			1.3e-09	0.00	0.0
440	NH NH	Не⊤ µ+	NT NH+	Н Ч	He		1.1e-09	0.00	0.0
442	NH	H_{e}^{+}	NH ⁺	He			1.3e-09	0.00	0.0
443	NH ₂	He^+	NH ⁺	2 Н	He		8.0e-10	0.00	0.0
444	$\overline{NH_2}$	$_{\rm He}^+$	N^+	H_2	He		8.0e-10	0.00	0.0

Table D5 - continued (part 7)

React	tants	Products	5			α	β	γ	
445	NH	н+	н	NH ⁺			2 96-09	0.00	0.0
446	NH _o	н+ Н+	NH ⁺	H _o			1.8e-09	0.00	0.0
447	NH _o	He^+	NH ⁺	He			2.6e-10	0.00	0.0
448	NH ₂	He^+	NH ³	Н	He		1.8e-09	0.00	0.0
449	NH ₃	$_{\rm He}^+$	NH ⁴	H_2	He		1.8e-10	0.00	0.0
450	NH ₃	H^+	Н	\tilde{NH}_3^+			5.2e-09	0.00	0.0
451	NH ₃	H_3^+	NH_4^+	H_2			9.1e-09	0.00	0.0
452	NH	H_2D^+	NH_2^+	HD			8.7e-10	0.00	0.0
453	NH	H_2D^+	NHD+	H_2			4.3e-10	0.00	0.0
454	NH	HD_2^+	NH_2^+	D_2			4.3e-10	0.00	0.0
455	NH	HD_2^+	NHD ⁺	HD			8.7e-10	0.00	0.0
456	NH	D_3	NHD+	D_2			1.3e-09	0.00	0.0
457	NH ₂	H_2D^+	NH_3^+	HD			1.2e-09	0.00	0.0
458	NH2	H_2D'	NH_2D'	н ₂			6.0e-10	0.00	0.0
459	NH2	HD_2	NH3 NHD+	D ₂ ир			0.0e-10	0.00	0.0
400	NH2	D^+	$NH D^+$	П			1.2e-09	0.00	0.0
462	NH2	ы н р+	NH^{+}	HD			6.1e-09	0.00	0.0
463	NH _o	$H_{0}D^{+}$	$NH_{4}D^{+}$	Ho			3.0e-09	0.00	0.0
464	NHo	HD_{+}^{+}	NH ⁺	D _o			3.0e-09	0.00	0.0
465	NH ₂	HD_2^{4}	$\rm NH_2D^+$	HD			6.1e-09	0.00	0.0
466	NH ₃	D_3^+	$NH_{3}D^{+}$	D_{2}			9.1e-09	0.00	0.0
467	ND	H_3^+	NHD ⁺	H_2			1.3e-09	0.00	0.0
468	ND	H_2D^+	$_{\rm NHD^+}$	НĎ			8.7e-10	0.00	0.0
469	ND	H_2D^+	ND_2^+	H_2			4.3e-10	0.00	0.0
470	ND	HD_2^+	NHD ⁺	D_2			4.3e-10	0.00	0.0
471	ND	HD_2^+	ND_2^+	HD			8.7e-10	0.00	0.0
472	ND	D_3^+	ND_2^+	D_2			1.3e-09	0.00	0.0
473	NHD	H_3^+	NH_2D^+	H_2			1.8e-09	0.00	0.0
474	NHD	H_2D^+	MH_2D^+	HD			1.2e-09	0.00	0.0
475	NHD	H_2D^+	$^{\rm NHD}_2^+$	H ₂			6.0e-10	0.00	0.0
476	NHD	HD_2'	NH_2D^+				6.0e-10	0.00	0.0
477	NHD	$^{HD_2}_{D^+}$	NHD ₂	HD			1.2e-09	0.00	0.0
478	NHD	D_3	NHD ₂ NUD ⁺	D ₂			1.8e-09	0.00	0.0
479	ND2	п ₃ и р+	$^{\rm NHD}_2$	п ₂ ир			1.8e-09	0.00	0.0
480	ND2	п ₂ D+	ND^+	н			6.0o.10	0.00	0.0
481	ND ₂	HD^{+}	NHD ⁺	D			6.0e-10	0.00	0.0
483	ND-	HD_{+}^{+}	ND^+	HD			1.2e-09	0.00	0.0
484	ND ₂	D_{2}^{+}	ND ⁺	Da			1.8e-09	0.00	0.0
485	NH ₂ D	H^+	NH ₂ D ⁺	H ²			5.2e-09	0.00	0.0
486	NH ₂ D	H_3^+	$NH_{3}D^{+}$	H ₂			9.1e-09	0.00	0.0
487	$NH_2^{T}D$	H_2D^+	NH_3D^+	НĎ			6.1e-09	0.00	0.0
488	$\rm NH_2D$	H_2D^+	$\rm NH_2D_2^+$	H_2			3.0e-09	0.00	0.0
489	$\rm NH_2D$	HD_2^+	NH_3D^+	D_2			3.0e-09	0.00	0.0
490	$\rm NH_2D$	HD_2^+	$NH_2D_2^+$	HD			6.1e-09	0.00	0.0
491	$\rm NH_2D$	D_3^+	$NH_2D_2^+$	D_2			9.1e-09	0.00	0.0
492	NHD_2	H^+	NHD_2^+	Η			5.2e-09	0.00	0.0
493	NHD_2	H_3^+	$NH_2D_2^+$	H_2			9.1e-09	0.00	0.0
494	NHD_2	H_2D^+	$\rm NH_2D_2^+$	HD			6.1e-09	0.00	0.0
495	NHD ₂	H_2D^+	NHD_3^+	H_2			3.0e-09	0.00	0.0
496	NHD ₂	HD_2^{+}	$NH_2D_2^{\top}$	D_2			3.0e-09	0.00	0.0
497	NHD ₂	HD_2^+	$^{\rm NHD_3^+}$	HD			6.1e-09	0.00	0.0
498	NHD ₂	D_{3}	NHD3 ND+	D_2			9.1e-09	0.00	0.0
499 E00	ND3	н' u+		н v			0.1-00	0.00	0.0
500	ND3	н ₃ и ъ+	$_{\rm NHD}^+$	н ₂ ир			9.1e-09	0.00	0.0
501	ND ND	п ₂ D' н р+	ND^+	н Ц			0.1e-09	0.00	0.0
502	ND3	$n_2 D^+$	NHD^+	п ₂ D			3.0e-09	0.00	0.0
504	ND3	HD^+	ND^+	D ₂ нр			6 10 00	0.00	0.0
504	ND-	D^+_2	ND ⁴	D-			0.1e-09	0.00	0.0
506	No No	$H_{3}D^{+}$	N_0H^+	$\frac{-2}{HD}$			8.7e-10	0.00	0.0
507	N_2^2	$H_2^2 D^+$	$N_2^2 D^+$	H_2			4.3e-10	0.00	0.0
508	$\tilde{N_2}$	\tilde{HD}_{2}^{+}	$\tilde{N_2}H^+$	$\tilde{D_2}$			4.3e-10	0.00	0.0
509	N ₂	$HD_2^{\tilde{+}}$	$\tilde{N_2D^+}$	нĎ			8.7e-10	0.00	0.0
510	N ₂	D_3^+	N_2D^+	D_2			1.3e-09	0.00	0.0
511	N ⁺ .	e	Ν	γ			3.8e-12	-0.62	0.0
512	NH ⁺	e ⁻	Ν	Н			2.0e-07	-0.50	0.0
513	NH_2^+	e^-	NH	Н			1.2e-07	-0.50	0.0
514	NH_2^+	e^-	N	H_2			1.2e-08	-0.50	0.0
515	NH_2	e	N	H	H		1.7e-07	-0.50	0.0
516	NH3 NH ⁺	e -	NH2	H			1.5e-07	-0.50	0.0
017 519	NH ⁺	е 0	NH	п н	п		1.0e-07	-0.50	0.0
010	1111	C	1110	110			1.36-00	-0.00	0.0

Table D5-continued (part 8)

React	tants	Prod	ucts			α β	γ	
519	NH_4^+	e-	NH ₂	Н	Н	1.2e-07	-0.60	0.0
520	NH_4^4	e^{-}	NH ₂	н		8.0e-07	-0.60	0.0
521	N_2^+	e^{-}	N	Ν		3.6e-08	-0.42	0.0
522	N_2H^+	e^-	N_2	н		2.8e-07	-0.74	0.0
523	N_2H^+	e^-	NH	N		2.1e-08	-0.74	0.0
524	ND ⁺	e_	N	D	D	2.0e-07	-0.50	0.0
526	NHD ⁺	е 0	NH	п	D	1.5e-07 7.5e-08	-0.50	0.0
520	NHD ⁺	e ⁻	ND	Н		7.5e-08	-0.50	0.0
528	ND_2^+	e^{-}	ND	D		1.5e-07	-0.50	0.0
529	ND_2^{\mp}	e^{-}	Ν	D	D	1.5e-07	-0.50	0.0
530	NH_2D^+	e^-	NH_2	D		1.0e-07	-0.50	0.0
531	NH_2D^+	e^{-}	NHD	Н		2.0e-07	-0.50	0.0
532	$^{\rm NHD}_2$	e ⁻	ND_2	H		1.0e-07	-0.50	0.0
533	NHD ₂ ND ⁺	e 	NHD	D		2.0e-07	-0.50	0.0
534 535	NH ₃ NH ₂ D ⁺	е е ⁻	ND ₂ NH-	и П		3.0e-07 2.5e-07	-0.50	0.0
536	NH ₂ D ⁺	e ⁻	NHD	H ₂		2.5e-07 2.5e-07	-0.50	0.0
537	$NH_3^3D^+$	e-	NH ₃	D^2		1.9e-07	-0.50	0.0
538	NH_3D^+	e^{-}	$NH_2^{\circ}D$	н		5.7e-07	-0.50	0.0
539	$NH_2D_2^+$	e^-	$\rm NH_2$	D_2		8.5e-08	-0.50	0.0
540	$NH_2D_2^+$	e^-	NHD	HD		3.4e-07	-0.50	0.0
541	$\rm NH_2D_2^+$	e^-	ND_2	H_2		8.5e-08	-0.50	0.0
542	$\rm NH_2D_2^+$	e	NH ₂ D	D		3.8e-07	-0.50	0.0
543	$NH_2D_2^+$	e	NHD ₂	Н		3.8e-07	-0.50	0.0
544 545	NHD3 NHD+	е -	NHD ND	D ₂ пр		2.5e-07	-0.50	0.0
545 546	$_{\rm NHD}^+$	е 	ND2	пD Н		2.5e-07	-0.50	0.0
547	NHD ⁺	e 	NHD-	D		1.9e-07 5 7e-07	-0.50	0.0
548	ND ⁺	e_	ND ₂	Da		5.1e-07	-0.50	0.0
549	ND_4^+	e ⁻	ND ₂	D D		7.6e-07	-0.50	0.0
550	N_2D^+	e-	N ₂	D		2.8e-07	-0.74	0.0
551	$\tilde{N_2D^+}$	e^{-}	NĎ	Ν		2.1e-08	-0.74	0.0
552	$_{\rm NH^+}$	γ_2	N^+	Н		2.2e+01	0.00	0.0
553	N ₂	γ ₂	N	N		3.9e+01	0.00	0.0
554 555	NH	γ ₂ %	N NH ⁺	н 0		3.7e+02 7.1e+00	0.00	0.0
556	NHo	72 Y2	NH	н		7.2e+02	0.00	0.0
557	NH ₂	γ ₂	NH_2^+	e^{-}		1.4e+02	0.00	0.0
558	NH3	γ ₂	NH	H_2		1.1e + 03	0.00	0.0
559	NH ₃	γ_2	NH_3^+	e^-		2.2e+02	0.00	0.0
560	ND	γ2	N	D		3.7e + 02	0.00	0.0
561	ND	γ_2	ND+	e ⁻		7.1e+00	0.00	0.0
562 563	NHD	γ ₂	NH	D н		3.6e+02	0.00	0.0
564	NHD	72 Vo	NHD ⁺	e_		1.4e+02	0.00	0.0
565	ND ₂	12	ND	D		7.2e + 02	0.00	0.0
566	ND_2	γ_2	ND_2^+	e^{-}		1.4e+02	0.00	0.0
567	NH_2D	γ_2	NH	HD		4.5e+02	0.00	0.0
568	$\rm NH_2D$	γ2	ND	H_2		2.2e+02	0.00	0.0
569 570	NH ₂ D	γ_2	NHD	Н		2.9e+02	0.00	0.0
570	NH ₂ D	1/2 1/5	NH_2D^+	р е_		1.4e+02 2.2e±02	0.00	0.0
572	NHD ₂	12 Y2	ND	HD		4.5e+02	0.00	0.0
573	NHD_2^2	γ_2	NH	D_2		2.2e + 02	0.00	0.0
574	NHD_2	γ_2	NHD	D		2.9e+02	0.00	0.0
575	NHD_2	γ2	$^{\rm ND_2}$ $^{\perp}$	Н		1.4e+02	0.00	0.0
576	NHD ₂	γ2	NHD_2^+	e ⁻		2.2e+02	0.00	0.0
577 578	ND ₃ ND	γ ₂ γ ₂	ND ND	D_2		6.7e+02	0.00	0.0
579	ND-	72 Vo	ND [±]	ь е ⁻		4.3e+02	0.00	0.0
580	NH ⁺	72 Gr	Gr^+	NH.	н	3.8e-07	0.50	0.0
581	NH_4^+	Gr^{-}	Gr	NH ₂	н	3.8e-07	0.50	0.0
582	$N_2 H^4$ +	\mathbf{Gr}	Gr^+	N_2^{3}	Н	1.0e-07	0.50	0.0
583	N_2H^+	\mathbf{Gr}	Gr^+	ΝĤ	Ν	1.9e-07	0.50	0.0
584	N_2H^+	Gr^-	Gr	N_2	Н	1.0e-07	0.50	0.0
585	N_2H^+	Gr^{-}	Gr	NH	N	1.9e-07	0.50	0.0
586 597	N ₂ D ⁺	Gr Gr [_]	Gr	N2 N	U D	3.0e-07	0.50	0.0
588	N N	H_	NH	H ¹ 2	D	3.0e-07 8.7e-10	0.50	14600.0
589	NH	H.,	NH.	н		5.2e-12	0.79	6700.0
590	NH	н	N	H_2		8.7e-10	0.50	2400.0
591	NH_2	H_2	$\rm NH_3$	н		6.2e-11	0.50	6300.0
592	NH_2	Н	NH	H_2		5.2e-12	0.79	2200.0

Table D5 - continued (part 9)

D		D- 1 -					D		
React	ants	Product	ь			α	р	γ	
593	NH ₃	Н	NH2	H_2			6.2e-11	0.50	5700.0
594	NH_2^+	Η	NH ⁺	H_2			1.3e-09	0.00	24000.0
595	NH_3^+	Н	NH_2^+	H_2			2.2e-10	0.00	12800.0
596	NH_4^+	Н	NH_3^+	H_2			1.0e-09	0.00	11000.0
597	NH_4^+	N_2	N_2H^+	NH_3			2.3e-09	0.00	44000.0
598	N_2H^+	Н	N_2^+	H_2			2.1e-09	0.00	30300.0
599	N_2H^+	H_2	H_3^+	N_2			1.8e-09	0.00	8300.0
600	\mathbf{S}	H^+	S^+	Н			1.0e-15	0.00	0.0
601	S	H_3^+	SH^+	H_2			2.6e-09	0.00	0.0
602	SH	H	S	H ₂			2.5e-11	0.00	0.0
603	SH	He^+	S^+	H	He		1.7e-09	0.00	0.0
604	SH	H ⁺	SH⊤ c+	H			1.6e-09	0.00	0.0
605	SH	н ' +	S'	н ₂			1.6e-09	0.00	0.0
606	SH	H3+	H ₂ S	H ₂			1.9e-09	0.00	0.0
607	H ₂ S	He '	5 ' CII+	H ₂	не		3.6e-09	0.00	0.0
608	H ₂ S	He '	SH '	H H C+	Не		4.8e-10	0.00	0.0
610	н ₂ 5 ц с	не u+	не	н ₂ 5 ' ц с+			3.1e-10 7.6e.00	0.00	0.0
611	п ₂ 5 це	ц+	н с+	п ₂ 5 ' ц			3 7 00	0.00	0.0
619	п ₂ 5 s+	п _з Бо	п ₃ 5 ' Fc+	п ₂ 5			5.7e-09	0.00	0.0
612	su+	ге ц	re' c+	э ц			1.00-10	0.00	0.0
614	su+	л Н	ы. н.с+	п ₂ v			1.1e-10 1.0o.15	0.00	0.0
615	SH ⁺	5 S	s+	/ SH			0.7o.10	0.00	0.0
616	SH+	H-S	H-S+	S			5.0-10	0.00	0.0
617	SH+	Fe	Fe ⁺	SH			1 60-00	0.00	0.0
618	H _a S ⁺	н	SH ⁺	H-			2.0e-10	0.00	0.0
619	H_0S^+	S	H _o S	s+			1.1e-09	0,00	0.0
620	$H_2^{2\sim}$ +	SH	$H_{2}^{2}S$	$_{\rm SH^+}$			5.0e-10	0.00	0.0
621	$H_{2}^{2}S^{+}$	Fe	H ₂ S	Fe^+			1.8e-09	0.00	0.0
622	$H_{2}S^{+}$	н	$\tilde{H_{3}S^{+}}$	Ha			6.0e-11	0.00	0.0
623	ട്	$H_{2}D^{+}$	$S\tilde{H}^+$	НĎ			1.7e-09	0.00	0.0
624	S	$\tilde{H_2D^+}$	SD^+	H ₂			8.7e-10	0.00	0.0
625	S	HD_{2}^{+}	$_{\rm SH^+}$	$\tilde{D_2}$			8.7e-10	0.00	0.0
626	S	HD_{2}^{+}	SD^+	НĎ			1.7e-09	0.00	0.0
627	S	D_2^+	SD^+	Da			2.6e-09	0.00	0.0
628	SH	$H_{2}^{3}D^{+}$	$H_{2}S^{+}$	HD^{2}			1.9e-09	0.00	0.0
629	SH	HD_{2}^{+}	$H_{2}S^{+}$	D_{2}			1.9e-09	0.00	0.0
630	H ₂ S	$H_{a}\tilde{D}^{+}$	H ₂ S ⁺	нĎ			3.7e-09	0.00	0.0
631	H _s ² S	HD_{0}^{+}	н°s+	Da			3.7e-09	0.00	0.0
632	sŦ	Gr^2	Gr^{3+}	s			2.8e-07	0.50	0.0
633	$^{\rm S^+}$	Gr^-	\mathbf{Gr}	S			2.8e-07	0.50	0.0
634	H_3S^+	\mathbf{Gr}	Gr^+	H_2S	Н		2.7e-07	0.50	0.0
635	H_3S^+	Gr^-	\mathbf{Gr}	$\tilde{H_2S}$	Н		2.7 e-07	0.50	0.0
636	sť	e^{-}	S	γ			3.9e-12	-0.63	0.0
637	$_{\rm SH^+}$	e^{-}	S	Н			2.0e-07	-0.50	0.0
638	H_2S^+	e ⁻	$_{\rm SH}$	Н			1.5e-07	-0.50	0.0
639	H_2S^+	e^-	\mathbf{S}	Н	Н		1.5e-07	-0.50	0.0
640	H_2S^+	e ⁻	H_2S	γ			1.1e-10	-0.70	0.0
641	H_3S^+	e ⁻	H_2S	Н			3.0e-07	-0.50	0.0
642	H_3S^+	e ⁻	SH	H_2			1.0e-07	-0.50	0.0
643	SD^+	e ⁻	S	D			2.0e-07	-0.50	0.0
644	S	γ_2	S ⁺	e ⁻			8.0e+02	0.00	0.0
645	SH	γ2	S_{aut}	Н			1.1e+03	0.00	0.0
646 647	SH	γ ₂	SHT	e			3.4e + 01	0.00	0.0
047 649	н ₂ 5 ц с	γ ₂	5н u с+	н °_			3.4e+03	0.00	0.0
640	п ₂ 5 5н+	12	s+	е Н			$0.2e \pm 0.2$	0.00	0.0
049 650	SU,	72 H	SH	п			4.0e+02	0.00	0.0
651	SH	н2 Н	нс	н			6.4o.12	0.13	8050 0
652	H-S	н Н	5H	н.			6.6e 11	0.09	1350.0
653	s+	H _a	SH ⁺	н2 Н			2 20-10	0.00	9860.0
654	\tilde{s}_{H^+}	2 Ho	H _a S ⁺	Н			1.9e-10	0,00	8500.0
655	SH ⁺	H ₂ S	H ₂ S ⁺	SH			5.0e-10	0.00	1000.0
656	$H_{2}S^{+}$	H_2^2	$H_{2}^{2}S^{+}$	Н			1.4e-11	0.00	2300.0
657	0	\tilde{CH}	нсо+	e^{-}			2.4e-14	0.50	0.0
658	0	CH	CO	Н			6.6e-11	0.00	0.0
659	0	CH.	CO	н	н		1.0e-10	0.00	0.0
660	0	CH_2	CO	H_2			4.0e-11	0.00	0.0
661	0	CH ₃	CO	$\tilde{H_2}$	н		1.8e-10	0.50	0.0
662	0	C_2	CO	С			2.0e-10	-0.12	0.0
663	0	C_2H	CO	CH			1.0e-10	0.00	250.0
664	0	C_3	CO	C_2			5.0e-11	0.50	0.0
665	0	C_3H	C_2H	CO			5.0e-11	0.50	0.0
666	0	C_3H_2	C_2H_2	CO			5.0e-11	0.50	0.0

Table D5 – continued (part 10)

React	tants	Products				α β	γ	
667	0	NH	NO	н		6 6e-11	0.00	0.0
668	0	NH	NH	ОН		7 0e-12	-0.10	0.0
669	õ	CN	CO	N		5.0e-11	0.00	0.0
670	õ	HNC	CO	NH		2.0e-10	0.50	200.0
671	õ	SH	OH	S		1.7e-11	0.67	256.0 956.0
672	õ	SH	SO	н		1.6e-10	0.00	0.0
673	õ	CS	CO	S		2.6e-10	0.00	760.0
674	0	CH_{2}^{+}	HCO+	Ho		3.1e-10	0.00	0.0
675	õ	CH ⁺	н+	CO		1.3e-11	0.00	0.0
676	õ	CH ⁺	н о+	CH		2 2e-10	0.00	0.0
677	õ	HCO^+	нсо+	0		1.0e-09	0.00	0.0
678	õ	SH ⁺	so+	H^2		2.9e-10	0.00	0.0
679	õ	SH ⁺	\tilde{s}^+	OH		2.9e-10	0.00	0.0
680	õ	H _o S ⁺	$\tilde{s}H^+$	OH		3.1e-10	0.00	0.0
681	Ō	$H_{a}^{2}S^{+}$	so+	H _o		3.1e-10	0.00	0.0
682	0	\tilde{HCS}^+	HCO^+	s		1.0e-09	0.00	0.0
683	С	OH	CO	н		3.1e-11	-0.36	0.0
684	С	0 ₂	CO	0		3.3e-11	0.50	0.0
685	С	NĤ	CN	Н		1.2e-10	0.00	0.0
686	С	NH_2	HCN	Н		3.0e-11	-0.20	-6.0
687	\mathbf{C}	NH_2	HNC	н		3.0e-11	-0.20	-6.0
688	\mathbf{C}	NO	CN	Ο		6.0e-11	-0.16	0.0
689	\mathbf{C}	NO	CO	Ν		9.0e-11	-0.16	0.0
690	\mathbf{C}	SH	\mathbf{CS}	Н		2.0e-11	0.00	0.0
691	С	SO	CO	S		7.2e-11	0.00	0.0
692	С	SO	CS	0		1.7e-10	0.00	0.0
693	C	H_3O^+	HCO+	H ₂		1.0e-11	0.00	0.0
694	С	HCO ⁺	CHT	CO		1.1e-09	0.00	0.0
695	С	O_2	COT	0		5.2e-11	0.00	0.0
696	С	O_2^+	C+	O_2		5.2e-11	0.00	0.0
697	C	SH ⁺	CS ⁺	H		9.9e-10	0.00	0.0
698	C	H_2S'	HCS -	H		1.0e-09	0.00	0.0
699 700	c	H_2DO^+	DCO+	н ₂		1.0e-11	0.00	0.0
700	C	D_20^+	DCO ⁺	пр		1.0e-11	0.00	0.0
701	N	CH	CN	D ₂ н		1.0e-11	0.00	0.0
702	N	CN	N	C		8 80 11	0.41	0.0
703	N	NO	No.	0		7 3e-11	0.42	12.7
705	N	CH	HCN	н		5.0e-11	0.17	0.0
706	Ν	CH ₂	HNC	н		3.0e-11	0.17	0.0
707	Ν	CH_2^2	HCN	H_{2}		1.3e-11	0.50	0.0
708	Ν	он	NO	нĨ		5.0e-11	0.00	6.0
709	Ν	O_2^+	NO ⁺	0		7.8e-11	0.00	0.0
710	Ν	\tilde{CH}_{2}^{+}	HCN^+	Н		9.4e-10	0.00	0.0
711	Ν	$C_2 \tilde{H}^+$	$C_2 N^+$	н		8.3e-10	0.00	0.0
712	Ν	\tilde{CH}_{3}^{+}	$\bar{HCN^+}$	H.		6.7e-11	0.00	0.0
713	Ν	CH_2^{4}	$HCNH^+$	н		6.7e-11	0.00	0.0
714	Ν	$C_2 H_2^+$	CH^+	HCN		2.5e-11	0.00	0.0
715	Ν	số ź	NO	S		1.7e-11	0.50	750.0
716	S	CH	\mathbf{CS}	н		1.1e-12	0.00	0.0
717	S	OH	SO	Н		1.0e-10	0.00	100.0
718	\mathbf{S}	O_2	SO	0		5.2e-12	0.00	265.0
719	S	CH^+	s+	CH		4.7e-10	0.00	0.0
720	S	CH^+	SH^+	\mathbf{C}		4.7e-10	0.00	0.0
721	S	CH^+	CS^+	Н		4.7e-10	0.00	0.0
722	S	CH_3^+	HCS^+	H_2		1.4e-09	0.00	0.0
723	S	CH_5^+	SH ⁺	CH_4		1.3e-09	0.00	0.0
724	\mathbf{S}	HCO+	SH^+	CO		3.3e-10	0.00	0.0
725	S	O_2^+	SO^+	0		5.4e-10	0.00	0.0
726	S	O_2^+	s+	O_2		5.4e-10	0.00	0.0
727	S	HNO+	SH^+	NO		1.1e-09	0.00	0.0
728	S	N_2H^+	SH ⁺	N_2		1.1e-09	0.00	0.0
729	CO	He ⁺	C^+	0	He	1.5e-09	0.00	0.0
730	SO	He ⁺	0+	S	He	8.3e-10	0.00	0.0
731	SO	He ^T	ST N+	0	He	8.3e-10	0.00	0.0
732	NO	He'	0 ⁺	N	не	1.4e-09	0.00	0.0
133 724	CN	He+	C+	N	He	2.2e-10 8.8o 10	0.00	0.0
734	CN	He+	N ⁺	C	Но	8 8c 10	0.00	0.0
736	CS	He ⁺	C^+	s	He	1.3e-09	0.00	0.0
737	CS	He^+	\tilde{s}^+	$\tilde{\mathbf{C}}$	He	1.3e-09	0.00	0.0
738	N ₂	$_{\rm He^+}$	N^+	N	He	7.9e-10	0.00	0.0
739	N ₂	He^+	N_2^+	He		4.1e-10	0.00	0.0
740	HĈN	$_{\rm He^+}$	$\tilde{CN^+}$	Н	He	1.5e-09	0.00	0.0

Table D5 – continued (part 11)

React	tants	Products				α	в	ν	
744	ILON	11000000		N	77	u	P	1	0.0
741	HCN	He⊤ ⊔_+	CH [⊤] C ⁺	N	He U-		6.2e-10	0.00	0.0
742	HCN	He '	C ⁺	NH	He		7.8e-10	0.00	0.0
743	HNC	пе · но+	CN ⁺	н	пе Но		2.5e-10 1.6e.09	0.00	0.0
745	HNC	He+	C ⁺	NH	He		1.6e-09	0.00	0.0
746	CO-	He ⁺	CO^+	0	He		7.7e-10	0.00	0.0
747	CO_2	He ⁺	O^+	čo	He		1.8e-10	0.00	0.0
748	CO ₂	He^+	\tilde{c}^+	0.	He		4.0e-11	0.00	0.0
749	SO ₂	He^+	s^+	02	He		8.6e-10	0.00	0.0
750	SO_	He^+	SO^+	o	He		3.4e-09	0.00	0.0
751	OCS	$_{\rm He}^+$	CS^+	0	He		7.6e-10	0.00	0.0
752	OCS	He^+	s^+	CO	He		7.6e-10	0.00	0.0
753	OCS	He^+	CO^+	S	He		7.6e-10	0.00	0.0
754	OCS	He^+	O+	CS	He		7.6e-11	0.00	0.0
755	CH	SH ⁺	CH_2^+	S			5.8e-10	0.00	0.0
756	H_2O	CH_5^+	H_3O^+	CH_4			3.7e-09	0.00	0.0
757	H_2O	$C_{2}H_{2}^{+}$	H_3O^+	C_2H			2.2e-10	0.00	0.0
758	H_2O	$C_2H_3^+$	H_3O^+	C_2H_2			1.1e-09	0.00	0.0
759	H_2O	C_3H^+	HCO+	C_2H_2			2.5e-10	0.00	0.0
760	H_2O	$C_{3}H^{+}$	$C_2H_3^+$	CO			2.0e-10	0.00	0.0
761	H ₂ O	NH_3^+	NH_4^+	ОН			2.5e-10	0.00	0.0
762	H_2O	N_2H^{+}	H_3O^+	N ₂			2.6e-09	0.00	0.0
763	H ₂ O	HNO ⁺	H_3O^+	NO			2.3e-09	0.00	0.0
765	H ₂ O	us+	H ₃ O+	5 CU			6.3e-10 8 1o 10	0.00	0.0
766	11 ₂ 0 NЦ	п ₂ 5 - сц+	11 ₃ 0 ·	NU ⁺			5.2e.10	0.00	0.0
767	NH3	SH+	NH ⁺	s s			0.5e-10 0.8e 10	0.00	0.0
768	NH3	ы с+	NH ⁺	SH			1.40.09	0.00	0.0
760	NH3	п ₂ 5+ н s+	H S	NH ⁺			3 40 10	0.00	0.0
770	NH NH	н ₂ 5 н s+	NH ⁺	H S			1.9e-09	0.00	0.0
771	NH NH	50±	NH ⁺	50			1.3e-09	0.00	0.0
772	NH NH	0+	NH ⁺	0			2.0e-09	0.00	0.0
773	CO	OH OH	CO	H H			4.4e-13	-1.15	390.0
774	CO	H ⁺	HCO^+	Н			2.2e-09	0.00	0.0
775	CO	H+	CO^+	Ho			6.4e-10	0.00	0.0
776	CO	H_2^+	HCO ⁺	H ₂			1.7e-09	0.00	0.0
777	CO	CH_{5}^{+}	HCO^+	\tilde{CH}_{4}			9.9e-10	0.00	0.0
778	CO	$H_{2}D^{+}$	HCO^+	HD			1.1e-09	0.00	0.0
779	CO	$\tilde{H_2D^+}$	DCO^+	H_2			5.7e-10	0.00	0.0
780	CO	HD_2^+	HCO^+	D_2			5.7e-10	0.00	0.0
781	CO	HD_2^+	DCO^+	HD			1.1e-09	0.00	0.0
782	CO	D_3^+	DCO^+	D_2			1.7e-09	0.00	0.0
783	SO	OH	SO_2	Н			2.0e-10	-0.17	0.0
784	SO	H^+	SO ⁺	Н			3.2e-09	0.00	0.0
785	SO	H_3^+	HSO ⁺	H ₂			1.9e-09	0.00	0.0
786	SO	CH ⁺	OH T	CS			1.0e-09	0.00	0.0
181	50	CH +	SH '	00			1.0e-09	0.00	0.0
780	50	UCO^+	HOCS -	н ₂ со			9.5e-10 7.5-10	0.00	0.0
700	NO	CH	HCN	0			1.3e-10	0.00	0.0
791	NO	н+	NO ⁺	н			1.2e-11 1.9e-09	0.00	0.0
792	NO	н+	HNO ⁺	H-			1.1e-09	0.00	0.0
793	NO	H_{CO}^{3}	HNO ⁺	CO _c			1.0e-10	0.00	0.0
794	NO	O_{2}^{+}	NO ⁺	0.			4.4e-10	0.00	0.0
795	NO	$_{\rm SH^+}$	NO ⁺	SH			3.3e-10	0.00	0.0
796	NO	H_2S^+	NO ⁺	H_2S			3.7e-10	0.00	0.0
797	NO	$\tilde{H_2D^+}$	HNO^+	НĎ			7.3e-10	0.00	0.0
798	NO	HD_2^+	HNO^+	D_2			$3.7e{-}10$	0.00	0.0
799	CN	NH ₃	NH ₂	HCN			2.8e-11	-0.85	0.0
800	CN	H_{3}^{+}	HCN^+	H_2			1.0e-09	0.00	0.0
801	CN	H_{3}^{+}	$HCNH^+$	Н			1.0e-09	0.00	0.0
802	CN	н ₃ 0+	HCNH ⁺	OH			4.5e-09	0.00	0.0
803	CN	H_2D^+	$HCNH^+$	D			1.0e-09	0.00	0.0
804	CN	H_2D^{\top}	HCN ⁺	HD			1.0e-09	0.00	0.0
806 806	CS	ОН	CO	л SH			1.7e-10 3.0c.11	0.00	0.0
807 807	CS	и+	CS ⁺	эп Н			3.0e-11 4.9e-00	0.00	0.0
808	CS	н+	HCS ⁺	H _a			2.96-00	0.00	0.0
809	CS	$^{113}_{H_{2}D^{+}}$	HCS ⁺	HD			2.9e-09	0.00	0.0
810	CS	HD_{2}^{+}	HCS ⁺	Da			2.9e-09	0.00	0.0
811	SO	$H_2 D^2 +$	HSO+	HD^2			1.9e-09	0.00	0.0
812	SO	\tilde{HD}_{2}^{+}	$_{\rm HSO^+}$	D_2			1.9e-09	0.00	0.0
813	HCN	H^+	$\rm HCN^+$	нĨ			1.1e-08	0.00	0.0
814	HCN	H_3^+	$\rm HCNH^+$	H_2			9.5e-09	0.00	0.0

Table D5 – continued (part 12)

Reac	tants	Products			α	β	γ	
815	HCN	H _e O ⁺	HCNH ⁺	HaO		4 5e-09	0.00	0.0
816	HCN	$H_{a}S^{+}$	HCNH ⁺	H ₂ S		1.9e-09	0.00	0.0
817	HCN	нсо+	$HCNH^+$	сô		3.7e-09	0.00	0.0
818	HCN	H_2D^+	$\rm HCNH^+$	HD		9.5e-09	0.00	0.0
819	HNC	нĨ	HCN	Н		1.0e-15	0.00	0.0
820	HNC	H^+	H^+	HCN		1.0e-09	0.00	0.0
821	HNC	H_3^+	HCNH ⁺	H_2		9.5e-09	0.00	0.0
822	HNC	H_2D^+	HCNH ⁺	HD		9.5e-09	0.00	0.0
823	HNC	$H_{3}O^{+}$	HCNH+	H_2O		4.5e-09	0.00	0.0
824	HNC	HCO+	HCNH+	CO		3.7e-09	0.00	0.0
825	HNC	CH_5^+	$C_2H_3^{+}$	NH ₃		1.0e-09	0.00	0.0
826	CO_2	H ⁺	HCO+	0		4.2e-09	0.00	0.0
827	CO_2	H_3	HCO ₂	H_2		2.0e-09	0.00	0.0
828	CO_2	H_2D^+	HCO ₂	HD		1.3e-09	0.00	0.0
829	CO_2	H_2D^+	DCO_{2}^{+}	H_2		6.7e-10	0.00	0.0
830	CO_2	HD_2	HCO ₂	D_2		6.7e-10	0.00	0.0
831	CO_2	HD_2	DCO_2	HD		1.3e-09	0.00	0.0
832	CO_2	D_3	DCO_2	D_2		2.0e-09	0.00	0.0
833	CO_2	N ₂ D+	DCO_{2}^{+}	N_2		1.4e-09	0.00	0.0
834	SO_2	H_3	HSO ₂	H_2		1.3e-09	0.00	0.0
835	SO_2	H_2D^+	HSO ₂	HD		1.3e-09	0.00	0.0
836	SO_2	HD_2	HSO_2^+	D_2		1.3e-09	0.00	0.0
837	ocs	H+ +	SH+	CO		5.9e-09	0.00	0.0
838	ocs	H ₃	HOCS+	H ₂		1.9e-09	0.00	0.0
839	UCS	HCO+	HOCS	CO		1.1e-09	0.00	0.0
840	H25 SU	$H_{3}O^{+}$	н ₃ 5 - ц с+	H_2O		1.9e-09 8.2c 10	0.00	0.0
842	CS	HCO+	H_{2S}^{+}	CO		1 20-09	0.00	0.0
843	H _a S	HCO ⁺	H _o S ⁺	CO		1.2c=00	0.00	0.0
844	H ₂ S	0^{+}_{2}	H _a S ⁺	0.		1.0c=09	0.00	0.0
845	H-S	NH ⁺	NH ⁺	SH		6.0e-10	0.00	0.0
846	OCS	$H_{-}D^{+}$	$HOCS^+$	HD		1.9e-09	0.00	0.0
847	OCS	HD^+	HOCS ⁺	Da		1.9e-09	0.00	0.0
848	s	N _o D ⁺	SD ⁺	No.		1.1e-09	0.00	0.0
849	H ₂ O	$N_{2}^{2}D^{+}$	H ₂ DO+	N ₂ ²		2.6e-09	0.00	0.0
850	сõ	N_2D^+	DCO+	N_2		8.8e-10	0.00	0.0
851	C^+	sĨ	s^+	сĨ		5.5e-12	0.86	681.0
852	C^+	OH	CO^+	Н		8.0e-10	0.00	0.0
853	C^+	OH	H^+	$_{\rm CO}$		8.0e-10	0.00	0.0
854	C^+	H_2O	HCO+	Н		2.4e-09	-0.63	0.0
855	C+	0 ₂	0+	CO		5.1e-10	0.00	0.0
856	C+	O_2	CO+	0		3.1e-10	0.00	0.0
857	C^+	CO_2	CO^+	CO		1.1e-09	0.00	0.0
858	C+	NH	UCN ⁺	H		7.8e-10	0.00	0.0
860	C+	NH2	NUL ⁺	п		1.1e-09	0.00	0.0
861	C^+	NH3	H NC+	н		5.5e-10 7.8o 10	0.00	0.0
862	C^+	NH3	H_2NO^+	н		7.80.10	0.00	0.0
863	C^+	NH ₃	HCN ⁺	н.		2 1e-10	0.00	0.0
864	\tilde{c}^+	HCN	C _o N ⁺	H		3.4e-09	0.00	0.0
865	C^+	HNC	$C_2^2 N^+$	Н		3.4e-09	0.00	0.0
866	C^+	NO	$\hat{NO^+}$	\mathbf{C}		3.4e-09	0.00	0.0
867	C^+	NO	N^+	CO		9.0e-10	0.00	0.0
868	C^+	SH	CS^+	Н		1.1e-09	0.00	0.0
869	C^+	H_2S	HCS^+	Н		1.3e-09	0.00	0.0
870	C^+	H_2S	H_2S^+	\mathbf{C}		4.2e-10	0.00	0.0
871	C^+	SO	S ⁺	CO		2.6e-10	0.00	0.0
872	C+	SO	CS ⁺	0		2.6e-10	0.00	0.0
873	C^+	SO	SO ⁺	С		2.6e-10	0.00	0.0
874	C+	50	80 ⁺	S		2.be-10	0.00	0.0
010 876	C+	CS^{SO_2}	CS ⁺	C		⊿.əe-09 1.6e.00	0.00	700.0
877	C^+	005	CS^+	CO		1.60.09	0.00	0.0
878	C+	003	CO^+	D		8.0e-10	0.00	0.0
879	\tilde{c}^+	OD	D^+	co		8.0e-10	0.00	0.0
880	C^+	HDO	DCO+	H		1.2e-09	-0.63	0.0
881	C^+	HDO	HCO+	D		1.2e-09	-0.63	0.0
882	C^+	D_2O	DCO^+	D		2.4e-09	-0.63	0.0
883	N^+	$\tilde{O_2}$	O_{2}^{+}	Ν		2.8e-10	0.00	0.0
884	N^+	$\tilde{O_2}$	NÕ+	0		2.4e-10	0.00	0.0
885	N^+	O_2	O^+	NO		3.3e-11	0.00	0.0
886	N+	CO	CO^+	Ν		8.3e-10	0.00	0.0
887	N ⁺	CO	NO ⁺	\mathbf{C}		1.5e-10	0.00	0.0
888	N^+	NO	NO ⁺	Ν		4.5e-10	0.00	0.0

Table D5 – continued (part 13)

React	tants	Product	s		α	β	γ	
889	N ⁺	NO	N_2^+	0		7.9e-11	0.00	0.0
890	s^+	CH	cs^+	Н		6.2e-10	0.00	0.0
891	s^+	CH ₂	HCS^+	Н		1.0e-11	0.00	0.0
892	s^+	OH	SO^+	Η		6.1e-10	0.00	0.0
893	S^+	NO	NO ⁺	S		3.2e-10	0.00	0.0
894	s^+	NH ₃	NH_3^+	\mathbf{S}		1.6e-09	0.00	0.0
895	s+	O_2	so+	0		2.3e-11	0.00	0.0
896	s+	$\rm NH_2D$	NH_2D^+	\mathbf{S}		1.6e-09	0.00	0.0
897	S ⁺	NHD_2	$^{\rm NHD_2^+}$	S		1.6e-09	0.00	0.0
898	S^+	ND ₃	ND_3^{+}	S		1.6e-09	0.00	0.0
899	CO+	H ₂	HCO T	H		1.3e-09	0.00	0.0
900	01	H	H ⁺	CO		7.5e-10	0.00	0.0
901	HCO+	CH	CH ₂	CO		6.3e-10	0.00	0.0
902	HCO+	CH ₂	CH_3	CO		8.6e-10	0.00	0.0
903	HCO ⁺	п ₂ 0	$H_{3}O^{+}$	ц ц		2.5e-09	0.00	0.0
904	HCO ⁺	СЛ	$C U^{\pm}$	п		1.0e-09	0.00	0.0
905	HCO ⁺	С1	$C_2 H_2$	CO		1.8e-10	0.00	0.0
900	HCO ⁺	C 11	$C_2 H_3$	CO		1.4e-09	0.00	0.0
907	HCO ⁺	С ч	$C_{3}\pi_{2}$	CO		1.4e-09	0.00	0.0
908	HCO ⁺	NH	NH ⁺	CO		6.40.10	0.00	0.0
909	HCO ⁺	NH	NH ⁺	CO		0.4e-10 8 0o 10	0.00	0.0
011	HCO ⁺	NH2	NU ⁺	CO		1.00.00	0.00	0.0
911	HCO ⁺	Fe	Fe^+	CO	н	1.96-09	0.00	0.0
912	HCO ⁺	CO	HCO+	CO	11	1.0e-09	0.00	0.0
914	HCO ⁺	CH.	CH ⁺	CO_2		7.8e-10	0.00	0.0
915	H-0 ⁺	CH CH	CH ⁺	H-O		6.8e-10	0.00	0.0
916	H ₃ O ⁺	CHa	CH ⁺	H ₂ O		9.4e-10	0.00	0.0
917	H ₋ O ⁺	C-H	$C_{-}H^{+}$	H-O		2.0e-09	0.00	0.0
918	H ₋ O ⁺	C-H-	$C_{-}H^{+}$	H-O		3.0e-09	0.00	0.0
919	H ₂ O ⁺	NH _o	NH ⁺	H_O		2.2e-09	0.00	0.0
920	CN ⁺	H _a	HCN^+	H ² O		1.0e-09	0.00	0.0
921	HCN^+	H_2^2	$HCNH^+$	Н		9.8e-10	0.00	0.0
922	$HCNH^+$	\tilde{CH}	CH_2^+	HCN		3.1e-10	0.00	0.0
923	$HCNH^+$	CH	CH_2^{+}	HNC		3.1e-10	0.00	0.0
924	$HCNH^+$	CH_2	$CH_3^{\overline{+}}$	HCN		4.3e-10	0.00	0.0
925	$HCNH^+$	CH_2	CH_3^+	HNC		4.3e-10	0.00	0.0
926	$HCNH^+$	NH_2	NH_3^+	HCN		4.5e-10	0.00	0.0
927	$HCNH^+$	NH_2	NH_3^+	HNC		4.5e-10	0.00	0.0
928	$HCNH^+$	NH ₃	NH_4^+	HCN		1.1e-09	0.00	0.0
929	$HCNH^+$	NH ₃	NH_4^+	HNC		1.1e-09	0.00	0.0
930	HCNH ⁺	H_2S	H_3S^+	HCN		1.7e-10	0.00	0.0
931	HCNH ⁺	H_2S	H_3S^+	HNC		1.7e-10	0.00	0.0
932	N_2H^+	CO	HCO^+	N_2		8.8e-10	0.00	0.0
933	N_2H^+	CO_2	HCO_2	N ₂		1.4e-09	0.00	0.0
934	N_2H^+	NO	HNO ⁺	N ₂		3.4e-10	0.00	0.0
935	NO^+	NH ₃ Fo	N ₂ H ' Fo [±]	C_2H_2		1.9e-09	0.00	0.0
930	HNO ⁺	C	CH+	NO		1.0e-09	0.00	0.0
938	HNO ⁺	co	HCO^+	NO		1.0e-10	0.00	0.0
939	HNO+	CO	HCO ⁺	NÖ		1.0e-10	0.00	0.0
940	HNO ⁺	OH	н,0 [≠]	NO		6.2e-10	0.00	0.0
941	SO^+	Fe	$\tilde{Fe^+}$	SO		1.6e-09	0.00	0.0
942	CS^+	H_2	HCS^+	Н		4.8e-10	0.00	0.0
943	HCO+	\mathbf{Gr}	Gr^+	CO	Н	3.0e-07	0.50	0.0
944	HCS ⁺	Gr	Gr^+	CS	H	2.4e-07	0.50	0.0
945	HCO+	Gr ⁻	Gr	CO	H	3.0e-07	0.50	0.0
946	HCS ⁺	Gr	Gr	CS	Н	2.4e-07	0.50	0.0
947	чсо+	е °-	CO	U U		1.0e-07	-0.46	0.0
940	HCO ⁺	е 0	CO	п		2.4e-07	-0.69	0.0
949	HCO^{\pm}	e 	CO_2	04		1.20.07	-0.50	0.0
950	CN^+	e e ⁻	C	N		1.2e-07 1.8e-07	-0.50	0.0
952	$C_{2}N^{+}$	e_	\tilde{C}_{α}	N		1.0e-07	-0.50	0.0
953	C_2N^+	e_	CN	C		2.0e-07	-0.50	0.0
954	HCN+	e ⁻	CN	Н		1.5e-07	-0.50	0.0
955	$\rm HCN^+$	e^{-}	CH	Ν		1.5e-07	-0.50	0.0
956	$\rm HCNH^+$	e^-	HCN	Н		9.6e-08	-0.65	0.0
957	$\rm HCNH^+$	e^-	HNC	Н		9.6e-08	-0.65	0.0
958	HCNH+	e^-	$_{\rm CN}$	Η	Н	9.1e-08	-0.65	0.0
959	H_2NC^+	e ⁻	HNC	Н		1.8e-07	-0.50	0.0
960	H_2NC^+	e	CN	H	Н	1.8e-08	-0.50	0.0
961	NO ⁺	e _	N	U U		4.3e-07	-0.37	0.0
962	HNO^{+}	е	NO	н		3.0e-07	-0.50	0.0

Table D5 – continued (part 14)

Reacta	ints	Products	5			α β	γ	
963	CS^+	e ⁻	С	S		2.0e-07	-0.50	0.0
964	HCS ⁺	e_	CS	н		7.0e-07	-0.50	0.0
965	so+	e ⁻	s	0		2.0e-07	-0.50	0.0
966	HSO+	e ⁻	so	Ĥ		2.0e-07	-0.50	0.0
967	HSO_{2}^{+}	e ⁻	SO	н	0	1.0e-07	-0.50	0.0
968	HSO ⁺	e ⁻	SO	ОН	-	1.0e-07	-0.50	0.0
969	HOCS ⁺	e ⁻	OH	CS		2.0e-07	-0.50	0.0
970	HOCS ⁺	e_	OCS	н		2.0e-07	-0.50	0.0
971	Fe^+	e ⁻	Fe	γ		3.7e-12	-0.65	0.0
972	DCO+	e^{-}	CO	Ď		2.4e-07	-0.69	0.0
973	DCO_{2}^{+}	e^{-}	COa	D		2.2e-07	-0.50	0.0
974	$DCO^{\frac{2}{2}}$	e ⁻	CO^2	OD		1.2e-07	-0.50	0.0
975	CO	- 75	CO	0		$6.0e \pm 02$	0.00	0.0
976	co	72 75	č	õ		$4.6e \pm 01$	0.00	0.0
977	CO	72 Yo	CO^+	e ⁻		1.4e + 01	0.00	0.0
978	H ₂ CO	n.	CO	H_{2}		1.3e + 03	0.00	0.0
979	CH ₃ OH	12	CH ₃	О́Н		1.6e + 03	0.00	0.0
980	HCO+	12	co+	Н		3.3e + 00	0.00	0.0
981	CO^+	γ2	C^+	0		7.7e + 01	0.00	0.0
982	CN	Y2	С	Ν		4.5e + 02	0.00	0.0
983	CN	Y2	CN^+	e^-		8.3e + 00	0.00	0.0
984	HCN	γ2	CN	Н		2.0e+03	0.00	0.0
985	HCN	γ_2	HCN^+	e^-		1.4e+00	0.00	0.0
986	HNC	Y2	CN	Η		2.0e+03	0.00	0.0
987	NO	γ2	Ν	0		3.0e+02	0.00	0.0
988	NO	γ2	NO ⁺	e_		2.4e+02	0.00	0.0
989	SO	γ_2	S	0		5.5e + 03	0.00	0.0
990	SO	Y2	SO ⁺	e_		4.5e + 02	0.00	0.0
991	CS	γ2	S	С		1.9e+03	0.00	0.0
992	CS	γ_2	CS^{+}	e_		2.0e+01	0.00	0.0
993	ocs	γ_2	CO	S		5.2e + 03	0.00	0.0
994	SO_2	γ ₂	SO	0		2.7e+03	0.00	0.0
995	0	NH ₃	NH ₂	N		2.5e-12	0.00	3020.0
996	0	NU NU ⁺	O_2	IN N		7.5e-13	1.00	16000.0
997	0	N ₂ H '	OH '	N ₂		1.4e-10	0.00	1400.0
998	0	п ₂ 5	SI	Оп		1.4e-11 6.6c 12	0.00	1920.0
1000	0	50	5	O_2		0.0e-15	0.00	2760.0
1000	0	OCS	50	CO^2		2.6e-11	0.40	2250.0
1001	C	SH	CH	s		1.2e-11	0.58	5880.0
1002	N	0-	NO	õ		3.3e-12	1.00	3150.0
1004	N	С н+	CH ⁺	HNC		2 5e-11	0.00	2600.0
1004	S	CH	SH	C		1.7e-11	0.50	4000.0
1006	S	H _o O ⁺	SH ⁺	H _a O		3 2e-10	0.00	4930.0
1007	он	NH _o	NHo	H _o O		3.5e-12	0.00	925.0
1008	OH	NH	NH	H ₂ O		2.5e-10	0.00	3400.0
1009	OH	H _o S	SH	H _o O		6.1e-12	0.00	80.0
1010	ОН	sŦ	$_{\rm SH^+}$	0		2.9e-10	0.00	8820.0
1011	OH	$_{\rm SH^+}$	H_2S^+	0		3.1e-10	0.00	7500.0
1012	OH	$_{\rm SH^+}$	$H_{2}O^{+}$	S		4.3e-10	0.00	9200.0
1013	CO	Н	OĤ	С		1.1e-10	0.50	77700.0
1014	CO	NH_2^+	HCO^+	NH		6.4e-10	0.00	6100.0
1015	CO	N+ ²	C^+	NO		9.0e-10	0.00	15400.0
1016	CO	SH	OCS	н		5.9e-14	1.12	8330.0
1017	$_{\rm CN}$	H ₂	HCN	н		5.7e-13	2.45	1130.0
1018	CN	H^{+}	CN^+	Н		2.1e-09	0.00	6150.0
1019	HCN	CH_5^+	$C_2H_3^+$	NH ₃		1.0e-09	0.00	5120.0
1020	HCN	H^+	H ₊	HNC		1.0e-09	0.00	7850.0
1021	HNC	O_2	CO_2	NH		2.0e-11	0.50	2000.0
1022	SO	Н	OH	\mathbf{S}		5.9e-10	-0.31	11100.0
1023	SO	O_2	SO_2	0		1.4e-12	0.00	2820.0
1024	SO_2	Н	SO	OH		9.3e-09	-0.74	14700.0
1025	OCS	Н	SH	CO		1.7e-11	0.00	2000.0
1026	HCO ⁺	H	CO^+	H_2		1.3e-09	0.00	24500.0
1027	HCO+	CH_3	CH_4^+	CO		1.4e-09	0.00	9060.0
1028	HCO+	CH_4	CH_5^+	CO		9.9e-10	0.00	4920.0
1029	HCO+	O_2	HCO_2^+	0		1.0e-09	0.00	1450.0
1030	HCO+	CO_2	HCO_2^+	$_{\rm CO}$		1.0e-09	0.00	5000.0
1031	HCO+	N_2	N_2H^+	$_{\rm CO}$		8.8e-10	0.00	11200.0
1032	HCO_2^+	Н	HCO^+	OH		1.0e-09	0.00	7500.0
1033	HCO_2^+	N_2	N_2H^+	CO_2		1.4e-09	0.00	6400.0
1034	H_3O^+	C_2H	$C_2H_2^+$	H_2O		2.2e-10	0.00	4100.0
1035	H ₃ O+	C_2H_2	$C_2H_3^+$	H_2O		1.0e-09	0.00	7330.0
1036	HCN ⁺	н	CN^+	H_2		1.0e-09	0.00	15800.0

Table D5 – continued (part 15)

Reacta	ints	Produ	cts			α	β	γ	
1037	HCNH ⁺	Н	HCN^+	Ha			9.8e-10	0.00	34400.0
1038	$HCNH^+$	H ₂ O	$H_{3}O^{+}$	HČN			4.5e-09	0.00	2460.0
1039	$HCNH^+$	H_2O	H_3O^+	HNC			4.5e-09	0.00	10300.0
1040	SO^+	нĨ	sŤ	OH			6.1e-10	0.00	11380.0
1041	H_3^+	HD	H_2D^+	H_2			1.7e-09	0.00	0.0
1042	H_3^+	D_2	HD_2^+	H_2			8.0e-10	0.00	0.0
1043	H_3^+	D_2	H_2D^+	HD			8.0e-10	0.00	0.0
1044	H_2D^+	H_2	H_3^+	HD			9.4e-11	-0.79	154.6
1045	H_2D^+	HD	\tilde{HD}_{2}^{+}	H_2			1.3e-09	0.00	0.0
1046	H_2D^+	HD	H_{3}^{+}	$\bar{D_2}$			1.1e-11	-0.49	106.9
1047	H_2D^+	D_2	D_3^+	$\tilde{H_2}$			3.0e-10	-0.00	0.0
1048	H_2D^+	$\bar{D_2}$	HD_2^+	нĎ			1.0e-09	0.00	-0.0
1049	\tilde{HD}_{2}^{+}	$\tilde{H_2}$	$H_2 \tilde{D}^+$	HD			3.3e-10	-0.55	144.3
1050	HD_2^{\mp}	$\tilde{H_2}$	H_3^{+}	D_2			3.5e-11	-0.82	249.9
1051	HD_2^{\mp}	нD	H_2D^+	$\overline{D_2}$			6.8e-11	-0.27	113.0
1052	$HD_2^{\overline{+}}$	HD	$D_3^{\tilde{+}}$	$\tilde{H_2}$			6.3e-10	0.00	0.0
1053	$HD_2^{\overline{+}}$	D_2	D_3^+	нD			1.0e-09	0.00	0.0
1054	D_3^+	$\bar{H_2}$	H_2D^+	D_2			1.5e-10	-0.85	315.3
1055	D_3^+	$\tilde{H_2}$	\tilde{HD}_{2}^{+}	НD			9.2e-10	-0.59	197.8
1056	D_3^+	HD	HD_2^+	D_2			4.2e-10	-0.85	259.0
1057	H_3^+	e^{-}	H ₂	Н			2.3e-08	-0.52	0.0
1058	H_3^+	e^{-}	н	Н	Н		4.4e-08	-0.52	0.0
1059	H_2D^+	e^-	Η	Η	D		5.6e-07	0.44	-2.8
1060	H_2D^+	e^-	HD	Η			1.3e-07	0.44	-2.8
1061	H_2D^+	e ⁻	H_2	D			5.2e-09	0.44	-2.8
1062	HD_2^+	e ⁻	D	D	Η		9.4e-08	0.66	-12.5
1063	HD_2^+	e ⁻	HD	D			1.2e-08	0.66	-12.5
1064	HD_2^+	e ⁻	D_2	Η			1.1e-08	0.66	-12.5
1065	D_2^+	e^-	D	D			2.3e-08	-0.69	0.0
1066	D_3^+	e^-	D	D	D		2.2e-08	-0.73	0.0
1067	D_3^+	e^-	D_2	D			1.3e-08	-0.73	0.0
1068	\mathbf{Gr}	γ2	Gr^+	e^-			6.3e + 07	0.00	0.0
1069	Gr^-	γ2	\mathbf{Gr}	e ⁻			4.2e + 08	0.00	0.0
1070	Gr	e^-	Gr^-	γ			6.9e-05	0.50	0.0
1071	Gr^+	e ⁻	Gr	γ			6.9e-05	0.50	0.0
1072	F'e	γ_2	Fe^+	e_			4.8e + 02	0.00	0.0

Table D6. The separated version of the UGAN chemical network (total: 3266 reactions split into 43 Tables).

#	React	ants	Products			α	β	γ
1	Н	Н	oHa			7.5e-01		
2	н	Н	pH ₂			2.5e-01		
3	н	D	HD			1.0e+00		
4	D	D	oD_2			6.6e-01		
5	D	D	pD_2			3.3e-01		
6	Н	CRP	H+	e^{-}		4.6e-01	0.00	0.0
7	D	CRP	D^+	e		4.6e-01	0.00	0.0
8	He	CRP	He	e		5.0e-01	0.00	0.0
10	oH ₂	CRP	н ц	н		1.0e-01	0.00	0.0
11	oH-	CRP	н+	н	e ⁻	2.3e-02	0.00	0.0
12	pH ₂	CRP	H+	Н	e ⁻	2.3e-02	0.00	0.0
13	oH ₂	CRP	$_{\rm oH_2^+}$	e ⁻		9.8e-01	0.00	0.0
14	pH ₂	CRP	pH ₂ ⁺	e ⁻		9.8e-01	0.00	0.0
15	HD	CRP	H^{+2}	D	e^{-}	2.0e-02	0.00	0.0
16	HD	CRP	D^+	н	e^{-}	2.0e-02	0.00	0.0
17	HD	CRP	Н	D		1.5e+00	0.00	0.0
18	HD	CRP	HD^+	e^{-}		9.6e-01	0.00	0.0
19	oD_2	CRP	D^+	D	e	4.0e-02	0.00	0.0
20	pD_2	CRP	D+	D	е	4.0e-02	0.00	0.0
21	0D2	CRP	D	D		1.5e+00	0.00	0.0
22	$_{oD}$	CPP	•D ⁺	D		1.50+00	0.00	0.0
23	$^{\text{oD}_2}$	CPP	D_2^+	e 		9.00-01	0.00	0.0
24	рD ₂ ц	ou+	pD ₂	е u+		9.0e-01 6.4a 10	0.00	0.0
20	н	$_{\rm pH^+}^{\rm on_2}$	DH2	и+		6.4e-10	0.00	0.0
20	н	HD^+	H^{+}	HD		6.4e-10	0.00	0.0
28	н	HD ⁺	oH _o D ⁺	γ		9.0e-18	1.80	-20.0
29	Н	HD^+	$_{\rm pH_2^2D^+}$, γ		3.0e-18	1.80	-20.0
30	н	D^+	H^+	D		1.0e-09	0.00	0.0
31	Η	D^+	HD^+	γ		3.9e-19	1.80	-20.0
32	Η	$_{oD_2^+}$	HD^+	D		1.0e-09	0.00	430.0
33	Н	pD_2^+	HD^+	D		1.0e-09	0.00	430.0
34	Н	$_{oD_2^+}$	oD_2	H^+		6.4e-10	0.00	0.0
35	н	pD_2^+	pD_2	H^+		6.4e-10	0.00	0.0
36	$_{oH_2}$	He^+	H^+	Н	He	3.3e-15	0.00	0.0
37	$_{\rm pH_2}$	He ⁺	H+ 	Η	He	3.3e-15	0.00	0.0
38	$_{oH_2}$	He ⁺	$^{\mathrm{oH}_2}$	He		9.6e-15	0.00	0.0
39	$_{\rm pH_2}$	He ⁺	$_{\rm pH_2}$	He		9.6e-15	0.00	0.0
40	$_{oH_2}$	H+	$^{\rm oH_2}$	H		6.4e-10	0.00	21300.0
41	$_{\rm pH_2}$	H⊤ +	$_{\rm pH_2}$	H		6.4e-10	0.00	21300.0
42	oH ₂	$^{\rm oH_2^+}$	$_{3}^{OH_3}$	H		1.4e-09	0.00	0.0
43	oH ₂	$^{\rm oH_2^+}$	$_{\rm pH_3}$	H		7.0e-10	0.00	0.0
44	oH ₂	$_{\rm pH_2}^{\rm pH_2}$	oH ₃	H		7.0e-10	0.00	0.0
45	oH ₂	$_{11}^{\text{pH}_2}$	$_{\rm pH_3}$	H		1.4e-09	0.00	0.0
46	pH ₂	OH_2	$_{\rm oH_3}$	H		7.0e-10	0.00	0.0
47	pH ₂	OH_2	$_{\rm pH_3}$	H		1.4e-09	0.00	0.0
48	pH ₂	$_{\rm HD^+}^{\rm pH_2^-}$	$_{\rm oH}^{\rm pH_{3}}$	H U		2.1e-09 8 7a 10	0.00	0.0
49 50	oH	нD+	$_{\rm pH}^{\rm OH_2D^+}$	п н		8.7e-10 1.7e-10	0.00	0.0
51	DH ₂	HD+	$_{\rm oH_2D^+}$	Н		5.3e-10	0.00	0.0
52	pH ₂	HD^+	$_{\rm pH_2D^+}$	н		5.3e-10	0.00	0.0
53	oH ₂	HD^+	oH ⁺	D		7.0e-10	0.00	0.0
54	oH2	HD^+	$_{\rm pH_2^+}$	D		3.5e-10	0.00	0.0
55	pH_{2}	HD^+	$_{\rm pH_3^+}$	D		1.1e-09	0.00	0.0
56	oH ₂	D^+	H^+	HD		2.1e-09	0.00	0.0
57	$_{\rm pH_2}$	D^+	H^+	HD		2.1e-09	0.00	0.0
58	$_{oH_2}$	$_{oD_2^+}$	$_{oH_2D^+}$	D		1.1e-09	0.00	0.0
59	$_{oH_2}$	pD_2^+	$_{oH_2D^+}$	D		1.1e-09	0.00	0.0
60	pH_2	$_{\rm oD_2^+}$	$_{pH_2D^+}$	D		1.1e-09	0.00	0.0
61	pH_2	pD_2^+	$_{pH_2D^+}$	D		1.1e-09	0.00	0.0
62	$_{0}H_{2}$	$_{oD_2^+}$	$_{\rm oHD_2^+}$	Н		1.1e-09	0.00	0.0
63	$_{0}H_{2}$	pD_2^+	$_{\rm pHD_2^+}$	Н		1.1e-09	0.00	0.0
64	pH_2	oD_2^+	$_{\rm oHD}^+_2$	н		1.1e-09	0.00	0.0
65	pH_2	pD_2^+	$_{\rm pHD_2^+}$	н		1.1e-09	0.00	0.0
66	HD	He^+	H^+	D	He	5.5e-14	-0.24	0.0
67	HD	He^+	D+ .	н	He	5.5e-14	-0.24	0.0
68	HD	$^{\rm oH_2^+}$	$_{oH_2D^+}$	Н		8.7e-10	0.00	0.0
69	HD	$_{0}H_{2}^{+}$	$_{\rm pH_2D^+}$	Н		1.7e-10	0.00	0.0
70	HD	pH_2^+	$_{oH_2D^+}$	Н		5.3e-10	0.00	0.0
71	HD	$_{\rm pH_2^+}$	$_{\rm pH_2D^+}$	H		5.3e-10	0.00	0.0
72	HD	$^{\mathrm{oH}_{2}^{+}}$	$^{\rm oH_3^{-}}$	D		7.0e-10	0.00	0.0
73	HD	$_{0H_{2}^{+}}$	$_{pH_{3}^{+}}$	D		3.5e-10	0.00	0.0
74	HD	pH_2^+	$_{\rm pH_3^+}$	D		1.1e-09	0.00	0.0

Table D6 – continued (part 2)

#	Reacta	nts	Products			α	в	γ
75	IID	110+	-11 D+	D		7.0= 10	P	
75 76	HD HD	HD^+	$_{\rm pH_2D^+}$	D		7.9e-10 2.6e-10	0.00	0.0
77	HD	HD^+	$_{\rm oHD_2^+}^{\rm pH_2D}$	Н		7.0e-10	0.00	0.0
78	HD	HD^+	$_{\rm pHD_2^{\uparrow}}$	Н		3.5e-10	0.00	0.0
79	HD	D^+	oD ₂	H^+		6.7e-10	0.00	0.0
80	HD	D+	pD_2	H+		3.3e-10	0.00	0.0
81	HD	$^{oD_2}_{-D^+}$	$_{-11D^{+}}^{OHD_{2}^{+}}$	D		8.2e-10	0.00	0.0
83	нD НD	D_2^{-1}	$_{\rm oHD^+}$	D		2.3e-10 4.7e-10	0.00	0.0
84	HD	pD_2 pD_2^+	$_{\rm pHD_2^+}$	D		5.8e-10	0.00	0.0
85	HD	$_{\rm oD_2^+}$	mD_2^+	Н		5.8e-10	0.00	0.0
86	HD	$_{0}D_{2}^{+}$	$_{0}D_{3}^{+}$	н		4.7e-10	0.00	0.0
87	HD	pD_2^+	pD_3^+	Η		1.2e-10	0.00	0.0
88	HD	pD_2^+	$^{oD_3^+}$	Н		9.3e-10	0.00	0.0
89	D	Н⊤ u+	D⊥ nD+	H		1.0e-09	0.00	41.0
90 91	D	0H ⁺	oH-	D^+		6.4e-10	0.00	-20.0
92	D	$_{\rm pH_2}^+$	pH ₂	D^+		6.4e-10	0.00	0.0
93	D	$_{\rm oH_2^+}$	$_{\rm oH_2D^+}$	γ		7.0e-18	1.80	-20.0
94	D	$_{\rm pH_2^+}$	$_{\rm pH_2D^+}$	γ		7.0e-18	1.80	-20.0
95	D	$_{0}H_{2}^{+}$	HD^+	Η		1.0e-09	0.00	0.0
96	D	$_{pH_{2}^{+}}$	HD+	н		1.0e-09	0.00	0.0
97	D	$_{3}^{\text{oH}_{3}^{+}}$	$^{oH_2D^+}$	Н		1.0e-09	0.00	0.0
98	D	pH ₃	oH ₂ D ⁺	H		5.0e-10	0.00	0.0
100	D	рн ₃ нр+	$_{oD}^{pH_2D}$	н ц		5.0e-10 6.7o.10	0.00	0.0
100	D	HD+	$^{0D_2}_{pD_2^+}$	Н		3.3e-10	0.00	0.0
102	D	HD+	D^{+2}	HD		6.4e-10	0.00	0.0
103	D	$_{oH_2D^+}$	$_{\rm oHD_2^+}$	Н		6.7e-10	0.00	0.0
104	D	$_{oH_2D^+}$	$_{\rm pHD_2^+}$	Η		3.3e-10	0.00	0.0
105	D	$_{\rm pH_2D^+}$	$_{\rm oHD_2^+}$	Н		6.7e-10	0.00	0.0
106	D	$_{\mathrm{pH_2D^+}}$	$_{pHD_{2}^{+}}$	Н		3.3e-10	0.00	0.0
107	D	$_{-11D}^{oHD_2^+}$	mD_3	H		5.6e-10	0.00	0.0
108	D	$_{\rm pHD^+}$	$_{\rm pD^+}$	п н		4.4e-10	0.00	0.0
110	D	$_{\rm pHD_2}^{\rm pHD_2}$	$_{0}D_{2}^{+}$	Н		8.9e-10	0.00	0.0
111	D	$_{\rm oD_2^+}$	$_{oD_{2}}$	D^+		6.4e-10	0.00	0.0
112	D	pD_2^{2+}	pD_2^2	D^+		6.4e-10	0.00	0.0
113	oD_2	He^{\mp}	D^+	D	He	1.1e-13	-0.24	0.0
114	pD_2	He ⁺	D+	D	He	1.1e-13	-0.24	0.0
115	oD ₂	He ⁺	oD ₂	He		2.5e-14	0.00	0.0
116	$_{\rm oD_2}$	не н+	D^+	не HD		2.5e-14 2.1e-09	0.00	405.0
118	pD_2	$^{\rm H^+}$	D^+	HD		2.1e-09	0.00	405.0
119	$_{oD_2}$	$_{\rm oH_2^+}$	$_{oH_2}D^+$	D		1.1e-09	0.00	0.0
120	pD_2	$_{\rm oH_2^+}$	$_{oH_2D^+}$	D		1.1e-09	0.00	0.0
121	oD_2	$_{pH_{2}^{+}}$	$_{\rm pH_2D^+}$	D		1.1e-09	0.00	0.0
122	pD_2	$_{pH_{2}^{+}}$	$_{pH_2D^+}$	D		1.1e-09	0.00	0.0
123	oD_2	$^{\mathrm{oH}_2^+}$	$^{\rm oHD_2}$	Н		1.1e-09	0.00	0.0
124	pD_2	$_{-11}^{\text{oH}_2^{\perp}}$	$_{-UD}^{pHD_2^{\prime}}$	H		1.1e-09	0.00	0.0
125	D_2	$_{\rm pH_2}^{\rm pn_2}$	$_{\rm pHD^+}$	п Н		1.1e-09	0.00	0.0
120	$_{\rm oD_2}$	HD^+	oHD ₂ ⁺	D		8.2e-10	0.00	0.0
128	oD_2	HD^+	$_{\rm pHD_2^2}$	D		2.3e-10	0.00	0.0
129	pD_2	HD^+	$_{\mathrm{oHD}_{2}^{\tilde{+}}}$	D		4.7e-10	0.00	0.0
130	pD_2	HD^+	$_{\rm pHD_2^+}$	D		5.8e-10	0.00	0.0
131	oD_2	HD+	mD_3^+	н		5.8e-10	0.00	0.0
132	oD_2	HD^+	$^{oD_3^+}$	Н		4.7e-10	0.00	0.0
133	pD_2	HD ⁺	$_{pD_{3}}$	H		1.2e-10	0.00	0.0
134	pD_2 pD_2	nD^+	$^{0D_3}_{mD_3^+}$	п		9.3e-10 1.2e-09	0.00	0.0
136	$_{\rm oD_2}$	$_{\rm oD_2^+}$	$_{oD_{2}^{+}}$	D		9.3e-10	0.00	0.0
137	oD_2	pD_2^{4}	$^{nD_3^+}$	D		5.8e-10	0.00	0.0
138	$_{oD_2}$	$pD_2^{\tilde{+}}$	pD_3^{+}	D		1.2e-10	0.00	0.0
139	oD_2	pD_2^+	$_{oD_{3}}^{+}$	D		1.4e-09	0.00	0.0
140	pD_2	$^{oD_2^+}$	$^{mD_3^+}$	D		5.8e-10	0.00	0.0
141	pD_2	$^{oD_2^+}$	pD_3^{+}	D		1.2e-10	0.00	0.0
142	pD_2	$^{oD_2}_{PD^+}$	$_{\rm pD^+}$	D D		1.4e-09	0.00	0.0
143	рD ₂ рD.	$_{\rm pD_2}^{\rm pD_2}$	$_{0}D_{3}^{+}$	D		2.3e-10 1.9e_00	0.00	0.0
145	Fe^{D_2}	$^{PD_2}_{H^+}$	Fe^+	Н		7.4e-09	0.00	0.0
146	Fe	$_{0H_{3}^{+}}$	oH_2	н	$_{\rm Fe}^+$	4.9e-09	0.00	0.0
147	Fe	$_{pH_{3}^{+}}$	$_{\rm oH_2}$	Н	$_{\rm Fe}^+$	2.5e-09	0.00	0.0
148	Fe	$_{pH_{3}}^{+}$	$_{\rm pH_2}$	Н	$_{\rm Fe}^+$	2.5e-09	0.00	0.0
Table D6 – continued (part 3)

#	Reactants	s	Produ	icts			α	β	γ
149	Fe	oHoD+	oHa	Fe^+	D		4.9e-09	0.00	0.0
150	Fe	$_{\rm pH_2D^+}$	pH_2	Fe^+	D		4.9e-09	0.00	0.0
151	Fe	$_{\rm oHD_2^+}$	$^{\circ}D_{2}$	Fe^+	н		1.6e-09	0.00	0.0
152	Fe	$_{\rm pHD_2}^{\mp}$	pD_2	Fe^+	н		1.6e-09	0.00	0.0
153	Fe	$_{\mathrm{oHD}_{2}^{\mp}}$	HD	D	Fe^+		3.3e-09	0.00	0.0
154	Fe	$_{\rm pHD_2^+}$	HD	D	Fe^+		3.3e-09	0.00	0.0
155	Fe	mD_3^+	oD_2	D	Fe^+		4.9e-09	0.00	0.0
156	Fe	pD_3^+	pD_2	D	Fe^+		4.9e-09	0.00	0.0
157	Fe	oD_3^+	$^{oD}2$	D	Fe^+		2.5e-09	0.00	0.0
158	Fe	$^{oD_3^+}$	pD_2	D	Fe^+		2.5e-09	0.00	0.0
159	н т+	e	H	γ			3.6e-12	-0.75	0.0
160	OH_2	е 	н	H II			2.5e-07	-0.50	0.0
162	pn_2	e 0 ⁻	п оЧ	п			2.5e-07	-0.50	0.0
163	$_{\rm pH^+}$	e	DH2	r v			2.2e-07	-0.40	0.0
164	$^{\text{pm}_2}_{\text{HD}^+}$	e ⁻	н Н	D			9.0e-09	-0.50	0.0
165	D^+	e ⁻	D	γ			3.6e-12	-0.75	0.0
166	He^+	e^-	He	γ			4.5e-12	-0.67	0.0
167	$_{\rm oH_2^+}$	Y2	H^+	Η			6.1e + 02	0.00	0.0
168	$_{\rm pH_2^+}$	Y2	H^+	н			6.1e + 02	0.00	0.0
169	H^+	Gr^-	\mathbf{Gr}	Η			1.6e-06	0.50	0.0
170	$^{\mathrm{oH}_{3}^{+}}$	Gr^{-}	oH ₂	H	Gr		4.6e-07	0.50	0.0
171	$_{11+}^{pH_3}$	Gr ⁻	oH ₂	H	Gr		2.3e-07	0.50	0.0
172	pH ₃	Gr	$_{11}^{\text{pH}_2}$	H	Gr	G	2.3e-07	0.50	0.0
173	$_{-11}^{OH_3}$	Gr Cr=	н	н	H TT	Gr	4.6e-07	0.50	0.0
174	рп ₃ н _е +	Gr Gr ⁻	п Gr	п Не	п	Gr	4.0e-07	0.50	0.0
176	H^+	Gr	Gr^+	Н			1.6e-06	0.50	0.0
177	$_{\rm oH_3^+}$	\mathbf{Gr}	oH ₂	н	Gr^+		4.6e-07	0.50	0.0
178	$_{\rm pH_3^+}$	\mathbf{Gr}	oH.	Н	Gr^+		2.3e-07	0.50	0.0
179	$_{\rm pH_3^+}$	\mathbf{Gr}	$_{\rm pH_2}$	Н	Gr^+		2.3e-07	0.50	0.0
180	$_{0H_{3}^{+}}$	\mathbf{Gr}	н	Н	Η	Gr^+	4.6e-07	0.50	0.0
181	$_{\rm pH_3^+}$	\mathbf{Gr}	Н	Η	Η	Gr^+	4.6e-07	0.50	0.0
182	He ⁺	Gr	Gr^+	He			8.0e-07	0.50	0.0
183	D⊤ -U D+	Gr ⁻	Gr	D C=	D		1.1e-06	0.50	0.0
184	$_{\rm DH_2D^+}$	Gr Gr ⁻	oH ₂	Gr	D		1.3e-07	0.50	0.0
186	$_{\rm oH_2D^+}$	Gr^-	$^{\text{pm}_2}_{\text{HD}}$	Н	Gr		2.7e-07	0.50	0.0
187	$_{\rm pH_2^2D^+}$	Gr^{-}	HD	н	\mathbf{Gr}		2.7e-07	0.50	0.0
188	$_{0H_{2}D^{+}}$	Gr^-	Н	Н	\mathbf{Gr}	D	4.0e-07	0.50	0.0
189	$_{pH_2D^+}$	Gr^-	Н	Η	\mathbf{Gr}	D	4.0e-07	0.50	0.0
190	D^+	Gr	Gr^+	D a +	Б		1.1e-06	0.50	0.0
191	$_{\rm pH}^{\rm oH_2D^+}$	Gr	oH ₂	Gr^+	D		1.3e-07	0.50	0.0
192	$_{\rm oH_2D^+}$	Gr	$^{\text{pll}_2}_{\text{HD}}$	Н	Gr^+		2.7e-07	0.50	0.0
194	$_{\rm pH_2D^+}$	Gr	HD	н	Gr^+		2.7e-07	0.50	0.0
195	$_{0H_{2}D^{+}}$	\mathbf{Gr}	Н	Н	Gr^+	D	4.0e-07	0.50	0.0
196	$_{\rm pH_2D^+}$	\mathbf{Gr}	Η	Н	Gr^+	D	4.0e-07	0.50	0.0
197	$_{\rm oHD_2^+}$	Gr^-	HD	D	\mathbf{Gr}		2.4e-07	0.50	0.0
198	$_{\rm pHD_2^+}$	Gr^-	HD	D	Gr		2.4e-07	0.50	0.0
199	$^{\rm oHD_2^+}$	Gr ⁻	oD ₂	Gr	H		1.2e-07	0.50	0.0
200	$_{o}^{\text{HD}_{2}^{+}}$	Gr Cr ⁻	pD_2	Gr	н С-	ч	1.2e-07	0.50	0.0
201	$_{\rm DHD}^{-1}$	Gr^{-}	л П	р	Gr	н	3.0e-07	0.50	0.0
202	oHD ⁺	Gr	HD	D	Gr^+		2.4e-07	0.50	0.0
204	pHD ⁺	Gr	HD	D	Gr^+		2.4e-07	0.50	0.0
205	oHD ₂	Gr	oD ₂	Gr^+	н		1.2e-07	0.50	0.0
206	$_{\rm pHD_2^+}$	\mathbf{Gr}	pD_{2}^{2}	Gr^+	н		1.2e-07	0.50	0.0
207	$_{\rm oHD_2^{\tilde{+}}}$	\mathbf{Gr}	D	D	Gr^+	Н	3.6e-07	0.50	0.0
208	$_{\rm pHD_2}^{\mp}$	\mathbf{Gr}	D	D	Gr^+	н	3.6e-07	0.50	0.0
209	mD_3^+	Gr^-	$^{oD}2$	D	\mathbf{Gr}		3.3e-07	0.50	0.0
210	pD_3^+	Gr^-	pD_2	D	Gr		3.3e-07	0.50	0.0
211	$_{0}D_{3}^{+}$	Gr^-	oD_2	D	Gr		1.6e-07	0.50	0.0
212	$^{oD_{3_{\perp}}^+}$	Gr^{-}	pD_2	D	Gr		1.6e-07	0.50	0.0
213	$^{mD_3^+}$	Gr^-	D	D	D	Gr	3.3e-07	0.50	0.0
214	pD_3^+	Gr ⁻	D	D	D	Gr	3.3e-07	0.50	0.0
215	$_{mD^{+}}^{oD_{3}^{+}}$	Gr	с D	D	D С-+	Gr	3.3e-07	0.50	0.0
216	mD_3	Gr	$^{oD}_2$	D	Gr+		3.3e-U7 3.3c 07	0.50	0.0
217 218	$_{\rm pD_3}^{\rm pD_3}$	Gr	$_{0}^{PD_{2}}$	Б	Gr ⁺		5.5e-07	0.50	0.0
210	$_{0}D_{-}^{3}$	Gr	$_{\rm pD}^{\rm OD_2}$	D	Gr ⁺		1.6e-07	0.50	0.0
220	$^{\rm mD_3^+}$	Gr	$^{PD_2}_{D}$	D	D	Gr^+	3.3e-07	0.50	0.0
221	$_{\rm pD_2^+}$	Gr	D	D	D	Gr^+	3.3e-07	0.50	0.0
222	$_{oD_3^+}$	\mathbf{Gr}	D	D	D	Gr^+	3.3e-07	0.50	0.0

Table D6 - continued (part 4)

#	Reac	tants	Products			α	β	γ
223	0	CRP	O+	e ⁻		2.8e + 00	0.00	0.0
224	0	ОН	0,	Н		4.0e-11	0.00	0.0
225	O^+	$_{oH_2}$	$O\tilde{H}^+$	Н		1.2e-09	0.00	0.0
226	0+	$_{\rm pH_2}$	OH+	Н		1.2e-09	0.00	0.0
227	O^+	н	H^+	0		6.0e-10	0.00	0.0
228	0	H+ 	0+	Н		6.0e-10	0.00	227.0
229	0	$^{\rm oH}_2^+$	OH ⁺	Н		1.5e-09	0.00	0.0
230	0	$_{\mathrm{pH}_{2}^{+}}$	OH^+	н		1.5e-09	0.00	0.0
231	0	oH ₃	oH ₂	OH+		8.0e-10	-0.16	1.4
232	0	pH ₃	oH ₂	OHT		4.0e-10	-0.16	1.4
233	0	pH ₃	pH ₂	OH		4.0e-10	-0.16	1.4
234	0	oH ₃	он ₂ 0+	H		3.4e-10	-0.16	1.4
235	0	pH ₃	он ₂ 0 -	H		1.7e-10	-0.16	1.4
230	0	pH3	OH_2O	н		1.7e-10 5.2o 10	-0.16	1.4
238	0	$_{\rm DH_2D^+}$	OH+	HD		5.3e-10	0.00	0.0
239	ŏ	$_{\rm oH_2D^+}$	oHa	OD^+		2.7e-10	0.00	0.0
240	0	$_{pH_{2}D^{+}}$	$_{\rm pH_2}^2$	OD^+		2.7e-10	0.00	0.0
241	0	$_{\rm oHD_2^+}$	oD ₂	OH^+		2.7e-10	0.00	0.0
242	0	$_{\rm pHD_2^{\hat{+}}}$	pD_2	OH^+		2.7e-10	0.00	0.0
243	0	$_{\mathrm{oHD}_{2}^{\widetilde{+}}}$	OD^+	HD		5.3e-10	0.00	0.0
244	0	$_{\rm pHD_2^+}$	OD^+	HD		5.3e-10	0.00	0.0
245	0	mD_3^+	oD_2	OD^+		8.0e-10	0.00	0.0
246	0	pD_3^{\neq}	pD_2	OD^+		8.0e-10	0.00	0.0
247	0	$_{oD_{3}^{+}}$	oD_2	OD^+		4.0e-10	0.00	0.0
248	0	$_{0}D_{3}^{+}$	pD_2	OD^+		4.0e-10	0.00	0.0
249	O_2	He^+	0+	0	He	1.0e-09	0.00	0.0
250	O_2	H^+	O_{2}^{+}	Н		1.2e-09	0.00	0.0
251	OH	He^+	OH^+	He		5.5e-10	0.00	0.0
252	OH	He⊤ 11+	O_{\perp}	H	He	5.5e-10	0.00	0.0
203 0=4	OH	н о ^{р+}	OH'	н 011 ⁺		2.1e-09	0.00	0.0
254	OH	он ₂	он ₂	OH -		7.6-10	0.00	0.0
200 25€	OH	рп ₂ он ⁺	рп ₂	OH '		(.be-10	0.00	0.0
200 257	OU	оп ₃ он+	он ₂ 0+	оп ₂		9.86-10	0.00	0.0
207	ОЧ	оп ₃	0	рн ₂		1.6e-10	0.00	0.0
200	ОЧ	он ₃	$_{\rm out} O^+$	он ₂		1.0e-10	0.00	0.0
209	ОН	$_{\rm pH_3}^{\rm pH_3}$	oH 0 ⁺	DH2		4.9e-10 3 3o 10	0.00	0.0
200	ОН	$_{\rm pH_3}^{\rm pH_3}$	$_{\rm pH}^{\rm O+}$	oH		3.3e-10	0.00	0.0
262	ОН	$_{\rm pH3}^{\rm pH3}$	$_{\rm pH_2O^+}$	DH2		1.6e-10	0.00	0.0
263	OH	oH _o D ⁺	$_{\rm oH_2O^+}$	$^{P12}_{HD}$		7.2e-10	0.00	0.0
264	OH	$_{\rm oH_2D^+}$	$_{\rm pH_2O^+}$	HD		1.4e-10	0.00	0.0
265	OH	$_{\rm pH_2D^+}$	oH2O+	HD		4.3e-10	0.00	0.0
266	OH	$_{\rm pH_2^{-}D^+}$	$_{\rm pH_2^{-}O^+}$	HD		4.3e-10	0.00	0.0
267	OH	$_{oH_2D^+}$	$_{oH_2}$	HDO^+		3.6e-10	0.00	0.0
268	OH	$_{oH_2D^+}$	$_{\rm pH_2}$	HDO+		7.2e-11	0.00	0.0
269	OH	pH2D+	oH ₂	HDO+		2.2e-10	0.00	0.0
270	OH	pH_2D^+	pH ₂	HDO^+		2.2e-10	0.00	0.0
271	OH	$^{\text{oHD}_2^+}$	oD ₂	oH ₂ O ⁺		3.2e-10	0.00	0.0
272	OH	$_{-UD}^{+}$	рD ₂	$_{-11}^{OT}$		3.2e-10	0.00	0.0
273	OT	онD ₂ '	002 - D	рн ₂ О⊤		1.1e-10	0.00	0.0
274	OT	$_{-UD}^{+}$	pD_2	рн ₂ О⊤ ПЪ		1.1e-10	0.00	0.0
275	OT	онD ₂ '	HDO+	нD		8.7e-10	0.00	0.0
276	OH	$_{mD^{+}}^{pHD_{2}}$	HDU⊤ ¤D	HD HDO+		8.7e-10	0.00	0.0
211	OH	mD_3^+	D_2			1.3e-U9	0.00	0.0
270	OU	$_{oD^{+}}$	pD_2	HDO+		1.3e-U9 6 5c 10	0.00	0.0
219	Ou	$_{oD_3}^{OD_3}$	D_2	HDO+		0.5e-10	0.00	0.0
281	00	He^+	OD^+	He		5.5e-10	0.00	0.0
282	OD	He^+	O^+	D	He	5.5e-10	0.00	0.0
283	OD	н+	OD+	– H		2.1e-09	0.00	0.0
284	OD	$_{\rm oH_3^+}$	oH ₂	HDO^+		1.3e-09	0.00	0.0
285	OD	$_{\rm pH_3^+}$	oH2	HDO^+		6.5e-10	0.00	0.0
286	OD	$_{\rm pH_3^+}$	pH_2	HDO^+		6.5e-10	0.00	0.0
287	OD	$_{oH_{2}D^{+}}$	HDO+	HD		8.7e-10	0.00	0.0
288	OD	$_{\rm pH_2D^+}$	HDO^+	HD		8.7e-10	0.00	0.0
289	OD	$_{0}H_{2}D^{+}$	$_{o}D_{2}O^{+}$	$_{0}$ oH $_{2}$		2.9e-10	0.00	0.0
290	OD	oH ₂ D ⁺	pD2O+	oH ₂		1.4e-10	0.00	0.0
291	OD	$_{\rm pH_2D^+}$	$^{oD_2O^+}$	pH ₂		2.9e-10	0.00	0.0
292	OD	$_{-UD}^{+}$	pD ₂ O⊤ -₽	$_{\rm HDO^+}^{\rm pH_2}$		1.4e-10	0.00	0.0
293		онD ₂ '	оD ₂	HDO ⁺		3.4e-10	0.00	0.0
294 20⊭		опD ₂ ънъ+	pD_2	нро+		9.06-11	0.00	0.0
290 206	00	$_{\rm pHD}^{+}$	D_2	HDO+		1.9e-10 2.4o 10	0.00	0.0
290	00	pnD_2	pD_2	прог		2.4e-10	0.00	0.0

Table D6 – continued (part 5)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00 0.000 0.094 0.094 0.094 0.094	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.094 -0.944 -0.94	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.94 -0.94 -0.94	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.94 -0.94 -0.94	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.94\\ -0.94\\ -0.94\\ -0.94\end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.94\\ -0.94\\ -0.94\\ -0.94\end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 -0.94 -0.94 -0.94 -0.94	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ -0.94\\ -0.94\\ -0.94\\ -0.94\\ -0.94\end{array}$	0.0 0.0 0.0 0.0 0.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 -0.94 -0.94 -0.94 -0.94	0.0 0.0 0.0 0.0 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 -0.94 -0.94 -0.94 -0.94	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 -0.94 -0.94 -0.94 -0.94	$0.0 \\ 0.0 \\ 0.0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.94 -0.94 -0.94 -0.94	0.0
$313 \text{ oH}_2\text{O} \text{ He}^+ \text{ oH}_2\text{O}^+ \text{ He} $ 4.9e-11	-0.94 -0.94	0.0
4	-0.94	0.0
$314 \text{ pH}_2^{-}\text{O} \text{ He}^+ \text{ pH}_2^{-}\text{O}^+ \text{ He} $ 4.9e-11		0.0
$315 \text{ oH}_2\text{O} \text{ He}^+ \text{ H}^+ \text{ OH} \text{ He} 1.6\text{e}\text{-}10$	-0.94	0.0
$316 \text{ pH}_2\text{O} \text{ He}^+ \text{ H}^+ \text{ OH} \text{ He} 1.6\text{e}-10$	-0.94	0.0
317 OH_2O H^+ OH_2O^+ H 8.2e-09	0.00	0.0
$\mu_2 \cup \mu_2 \cup \mu_1 \cup \mu_2 $	0.00	0.0
$320 \text{ oH}_{2}\text{O} \text{ pH}_{2}^{+} \text{ oH}_{2} \text{ pH}_{2}\text{O}^{+} 30000$	0.00	0.0
$321 \text{ pH}_2\text{O} \text{ oH}_2^+ \text{ pH}_2 \text{ oH}_2^- \text{ oH}_2\text{O}^+ 39e-09$	0.00	0.0
$322 \text{ pH}_2\text{O} \text{ pH}_2^+ \text{ pH}_2 \text{ pH}_2\text{O}^+ 3.9\text{e}-09$	0.00	0.0
$323 \text{ oH}_2\text{O} \text{ oH}_2^+ \text{ oH}_3\text{O}^+ \text{ H} 2.3\text{e-}09$	0.00	0.0
$324 \text{ oH}_2^2 \text{O} \text{ oH}_2^+ \text{ pH}_3^- \text{O}^+ \text{ H} $ 1.1e-09	0.00	0.0
$325 \text{ oH}_2^{-}\text{O} \text{ pH}_2^+ \text{ oH}_3^{-}\text{O}^+ \text{ H} $ 1.1e-09	0.00	0.0
$326 \text{ oH}_2\text{O} \text{ pH}_2^+ \text{ pH}_3\text{O}^+ \text{ H} 2.3\text{e-}09$	0.00	0.0
$327 \text{ pH}_2\text{O} \text{ oH}_2^+ \text{ oH}_3\text{O}^+ \text{ H} $ 1.1e-09	0.00	0.0
$328 \text{ pH}_2\text{O} \text{ oH}_2^+ \text{ pH}_3\text{O}^+ \text{ H} 2.3\text{e-}09$	0.00	0.0
$329 \text{ pH}_2\text{O} \text{ pH}_2^+ \text{ pH}_3\text{O}^+ \text{ H} 3.4\text{e-}09$	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0
$331 ext{ oH}_2 ext{ oH}_3 ext{ oH}_3 ext{ oH}_3 ext{ oH}_3 ext{ oH}_3 ext{ oH}_2 ext{ 3.6e-10}$	0.00	0.0
332 OH_2O OH_3 PH_3O^+ OH_2 $1.0e-09$	0.00	0.0
$333 \text{ pH}_2 O \text{ pH}_3 O^+ \text{ pH}_2 2.3e^{-10}$	0.00	0.0
$335 \text{ pH}_2\text{O} \text{ oH}_3^+ \text{ oH}_2\text{O}^+ \text{ pH}_2 $ 1.1e-09	0.00	0.0
$336 \text{ pH}_2\text{O} \text{ oH}_2^+ \text{ pH}_2\text{O}^+ \text{ oH}_2 $ 2.1e-09	0.00	0.0
$337 \text{ oH}_2\text{O} \text{ pH}_3^+ \text{ oH}_3\text{O}^+ \text{ oH}_2$ 1.0e-09	0.00	0.0
$338 \text{ oH}_2^{-}\text{O} \text{ pH}_3^+ \text{ oH}_3^{-}\text{O}^+ \text{ pH}_2^-$ 7.2e-10	0.00	0.0
$339 \text{ oH}_2 \text{O} \text{ pH}_3^+ \text{ pH}_3 \text{O}^+ \text{ oH}_2 $ 2.0e-09	0.00	0.0
$340 \text{ oH}_2\text{O} \text{ pH}_3^+ \text{ pH}_3\text{O}^+ \text{ pH}_2 $ 5.7e-10	0.00	0.0
$341 \text{ pH}_2\text{O} \text{ pH}_3^+ \text{ oH}_3\text{O}^+ \text{ oH}_2 $ 8.6e-10	0.00	0.0
$342 \text{ pH}_2\text{O} \text{ pH}_3^+ \text{ pH}_3\text{O}^+ \text{ oH}_2 $ 1.7e-09	0.00	0.0
$343 ext{ pH}_2 ext{ O } ext{ pH}_3^+ ext{ pH}_3 ext{ O}^+ ext{ pH}_2 ext{ 1.7e-09}$	0.00	0.0
$344 \text{ on}_2 \cup \text{ on}_2 \cup \text{ on}_3 \cup \text{ HD}$ 1.9e-09 345 $\text{oH}_2 \cup \text{oH}_2 \cup \text{H}_2 \cup \text{H}_3 \cup \text{H}_2 \cup \text{H}_2 \cup \text{H}_3 \cup \text{H}_2 \cup \text{H}_3 \cup \text{H}$	0.00	0.0
$346 \text{ oH}_2\text{O} \text{ pH}_2\text{D}^+ \text{ oH}_2\text{O}^+ \text{ HD} $ 9.0e-10 9.6e-10	0.00	0.0
$347 \text{ oH}_2^2\text{O} \text{ pH}_2^2\text{D}^+ \text{ pH}_3^2\text{O}^+ \text{ HD} $ 1.9e-09	0.00	0.0
$348 \text{pH}_2\text{O} \text{oH}_2\text{D}^+ \text{oH}_3\text{O}^+ \text{HD} 9.6\text{e-}10$	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0
$350 \text{pH}_2\text{O} \text{pH}_2\text{D}^+ \text{pH}_3\text{O}^+ \text{HD} \qquad 2.9\text{e-}09$	0.00	0.0
$351 \text{ OH}_2 \cup \text{OH}_2 \cup OH_2 \cup \text{OH}_2 \cup \text{OH}_2 \cup \text{OH}_2 \cup \text{OH}_2 \cup OH_2 \cup OH_2 $	0.00	0.0
$352 \text{ on}_2 \text{ on}$	0.00	0.0
$354 \text{ oH}_2\text{O} \text{ pHD}_2^+ \text{ pH}_2\text{DO}^+ \text{ HD} $ $4.86-10$	0.00	0.0
$355 \text{ pH}_2\text{O} \text{ oHD}_2^+ \text{ oH}_2\text{DO}^+ \text{ HD} $ $1.46-10$	0.00	0.0
$356 \text{ pH}_2\text{O} \text{ pHD}_2^+ \text{ oH}_2\text{O}^+ \text{ HD} $ 1.4e-09	0.00	0.0
$357 \text{ pH}_2\text{O} \text{ oHD}_2^+ \text{ pH}_2\text{DO}^+ \text{ HD} $ 1.4e-09	0.00	0.0
$358 \text{ pH}_2^{-}\text{O} \text{ pHD}_2^{+} \text{ pH}_2^{-}\text{DO}^{+} \text{ HD}$ 1.4e-09	0.00	0.0
$359 \text{ oH}_2\text{O} \text{ oHD}_2^+ \text{ oD}_2 \text{ oH}_3\text{O}^+ 9.5\text{e-}10$	0.00	0.0
$360 \text{ oH}_2\text{O} \text{ pHD}_2^+ \text{ pD}_2 \text{ oH}_3\text{O}^+ 9.5\text{e}\text{-}10$	0.00	0.0
$361 \mathrm{oH_2O} \mathrm{oHD_2^+} \mathrm{oD_2} \qquad \mathrm{pH_3O^+} \qquad 4.8\mathrm{e}\text{-}10$	0.00	0.0
$362 \text{ oH}_2\text{O} \text{ pHD}_2^+ \text{ pD}_2 \text{ pH}_3\text{O}^+ 4.8\text{e}\text{-}10$	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0
$304 \text{ pH}_2 \cup \text{ pH}_2 \text{ pL}_2 \text{ pH}_3 \cup \text{pH}_3 \cup \text{pH}$	0.00	0.0
$300 \text{ oH}_2 \text{ mD}_3 \text{ oD}_2 \text{ oH}_2 \text{ DU}' 4.3e-09$	0.00	0.0
$367 \text{ oH}_2\text{O} \text{oD}_2^+$ $367 \text{ oH}_2\text{O} \text{oD}_2^+$ $367 \text{ oH}_2\text{O} \text{oD}_2^+$ 31200 oH_2^-	0.00	0.0
$368 \text{ oH}_2\text{O} \text{ oD}_3^+ \text{ pD}_2 \text{ oH}_2\text{DO}^+ 21e-09$	0.00	0.0
$369 \text{ pH}_2\text{O} \text{ mD}_3^+ \text{ oD}_2 \text{ pH}_2\text{DO}^+ 4.3\text{e-}09$	0.00	0.0
$370 \text{ pH}_2^{-}\text{O} \text{ pD}_3^{+} \text{ pD}_2^{-} \text{ pH}_2^{-}\text{DO}^{+} 4.3\text{e-}09$	0.00	0.0

Table D6 – continued (part 6)

#	Reactan	its	Products			α	β	γ
371	$_{\rm pH_2O}$	$_{oD_3^+}$	oD ₂	pH2DO+		2.1e-09	0.00	0.0
372	$_{\rm pH_2^{-}O}$	$_{0}D_{3}^{+}$	pD_2	$_{\rm pH_2^{-}DO^+}$		2.1e-09	0.00	0.0
373	oH ₂ O	oH ₂ D ⁺	oH ₂ DO ⁺	oH ₂		1.0e-09	0.00	0.0
374 375	он ₂ О	oH ₂ D ⁺	он ₂ DO ⁺ рн DO ⁺	рн ₂ он		1.6e-10	0.00	0.0
376	он ₂ О оН ₂ О	$_{\rm oH_2D^+}$	$_{\rm pH_2DO^+}$	он ₂ рНа		7.9e-11	0.00	0.0
377	oH ₂ O	$_{\rm pH_2D^+}$	$_{\rm oH_2DO^+}$	oH ₂		4.8e-10	0.00	0.0
378	$_{0}H_{2}^{2}O$	$_{\rm pH_2^2D^+}$	$_{0H_{2}DO^{+}}$	$_{\rm pH_2}^2$		4.8e-10	0.00	0.0
379	$_{0}H_{2}O$	pH_2D^+	$_{\rm pH_2DO^+}$	$_{\rm oH_2}$		4.8e-10	0.00	0.0
380	$_{\rm pH_2O}$	oH ₂ D+	_{oH2} DO+	oH ₂		4.8e-10	0.00	0.0
381	pH ₂ O	$^{oH_2D^+}$	$_{\rm oH_2DO^+}$	pH ₂		4.8e-10	0.00	0.0
383	рн ₂ 0 рН ₂ 0	$_{\rm pH_2D^+}$	$_{\rm oH_2DO^+}$	oH ₂		4.8e-10 7.2e-10	0.00	0.0
384	pH ₂ O pH ₂ O	$_{\rm pH_2D^+}$	$_{\rm pH_2DO}^{\rm DO+}$	pH ₂		7.2e-10	0.00	0.0
385	HDO	He [⊥]	OD ⁺	H	He	2.3e-10	-0.94	0.0
386	HDO	He^+	HDO^+	He		4.9e-11	-0.94	0.0
387	HDO	He ⁺	H+	OD	He	1.6e-10	-0.94	0.0
388	HDO	H+ 	HDO^+	н		8.2e-09	0.00	0.0
389	HDO	OH_3	$_{0H_{2}DO^{+}}$	oH ₂		3.2e-09	0.00	0.0
390	HDO	он ₃	$_{\rm pH}^{\rm OH_2DO^+}$	рн ₂		5.4e-10	0.00	0.0
391	HDO	$_{\rm pH^{+}}^{\rm 011_{3}}$	$_{\rm oH-DO^+}$	oH-		1.6e-09	0.00	0.0
393	HDO	$_{\rm pH_{2}^{+}}$	oH ₂ DO ⁺	pH _o		1.1e-09	0.00	0.0
394	HDO	$_{\rm pH_2^+}$	$_{\rm pH_2DO^+}$	oH ₂		1.1e-09	0.00	0.0
395	HDO	$_{\rm pH_3^+}$	$_{\rm pH_2DO^+}$	$_{\rm pH_2}$		5.4e-10	0.00	0.0
396	HDO	$_{oH_2D^+}$	$_{\rm oH_2^2DO^+}$	HD		2.4e-09	0.00	0.0
397	HDO	$_{oH_2D^+}$	$_{\rm pH_2DO^+}$	HD		4.8e-10	0.00	0.0
398	HDO	$^{pH_2D^+}$	$_{0H_{2}DO^{+}}$	HD		1.4e-09	0.00	0.0
399	HDO	$_{\rm oH}^{\rm pH_2D^+}$	$_{\rm pH_2DO^+}$	HD		1.4e-09 7.0c 10	0.00	0.0
400	HDO	$_{\rm oH_2D^+}$	$_{\rm pHD_2O^+}$	oH ₂		4.0e-10	0.00	0.0
402	HDO	$_{\rm oH_2D^+}$	oHD ₂ O ⁺	pH ₂		1.6e-10	0.00	0.0
403	HDO	$_{oH_{2}D^{+}}$	$_{\rm pHD_2O^+}$	$_{\rm pH_2}$		7.9e-11	0.00	0.0
404	HDO	$_{pH_2D^+}$	oHD ₂ O ⁺	$_{oH_2}$		4.8e-10	0.00	0.0
405	HDO	$_{\rm pH_2D^+}$	$_{\rm pHD_2O^+}$	oH ₂		2.4e-10	0.00	0.0
406	HDO	$_{pH_2D^+}$	$_{\rm oHD}^{\rm O+}$	pH ₂		4.8e-10	0.00	0.0
407	HDO	$_{\rm oHD^+}$	$_{\rm oHD_2O^+}$	рп ₂ нр		2.4e-10 2.2e-09	0.00	0.0
409	HDO	oHD ₂	$_{\rm pHD_2O^+}$	HD		6.4e-10	0.00	0.0
410	HDO	$_{\rm pHD_2^+}$	oHD ₂ O ⁺	HD		1.3e-09	0.00	0.0
411	HDO	$_{\rm pHD_2^+}$	$_{\rm pHD_2O^+}$	HD		1.6e-09	0.00	0.0
412	HDO	$_{\mathrm{oHD}_2^{\widetilde{+}}}$	$_{\rm oD_2}$	$_{\rm oH_2DO^+}$		8.3e-10	0.00	0.0
413	HDO	$_{\rm oHD_2^+}$	pD_2	$_{oH_2DO^+}$		2.4e-10	0.00	0.0
414	HDO	$_{\rm pHD_2^+}$	oD_2	$_{oH_2DO^+}$		4.8e-10	0.00	0.0
415	HDO	$_{\rm pHD_2^+}$	pD_2	$_{oH_2DO^+}$		6.0e-10	0.00	0.0
416	HDO	$^{\text{oHD}_2^+}$	oD ₂	$_{\rm pH_2DO^+}$		2.8e-10	0.00	0.0
417	HDO	$^{\rm oHD_2^+}$	pD_2	$_{\rm pH_2DO^+}$		7.9e-11	0.00	0.0
418	HDO	$_{\rm HD_2^+}$	oD ₂	$_{\rm pH_2DO^+}$		1.6e-10	0.00	0.0
419	HDO	$_{mD^+}^{pHD_2}$	$_{\rm o}^{\rm pD_2}$	pH ₂ DO		2.0e-10	0.00	0.0
420	HDO	$^{\text{mD}_3}_{\text{mD}^+}$	$_{\rm oHD}^{\rm OP}$	оD ₂ рD-		2.9e-09 7.2e-10	0.00	0.0
422	HDO	mD_{a}^{+}	$_{\rm pHD_{2}O^{+}}$	oD ₂		7.2e-10	0.00	0.0
423	HDO	pD_{3}^{+}	oHD,0+	pD_{2}^{2}		1.4e-09	0.00	0.0
424	HDO	pD_3^{\downarrow}	$_{\rm pHD_2O^+}$	$^{\rm oD_2}$		1.4e-09	0.00	0.0
425	HDO	$_{\rm pD_3^{\downarrow}}$	$_{\rm pHD_2^{-}O^+}$	pD_2		1.4e-09	0.00	0.0
426	HDO	$_{\rm oD_3^+}$	$_{\rm oHD_2O^+}$	oD_2		1.4e-09	0.00	0.0
427	HDO	$_{0}D_{3}^{+}$	$_{\rm oHD_2O^+}$	pD_2		1.1e-09	0.00	0.0
428	HDO	$^{oD_3^+}$	$_{\rm pHD_2O^+}$	$^{oD}2$		1.1e-09	0.00	0.0
429	HDO	$^{oD_3^+}$	$_{\rm pHD_2O^+}$	pD_2		7.2e-10	0.00	0.0
430 421	$_{\rm pD}^{\rm OU}$	He –	0D+	D D	He He	2.3e-10 2.3o 10	-0.94	0.0
432	$_{\rm oD_2O}$	He ⁺	$_{0}D_{0}O^{+}$	He	116	4.9e-11	-0.94	0.0
433	pD,0	$_{\rm He}^+$	$_{pD_{2}O^{+}}$	He		4.9e-11	-0.94	0.0
434	$_{0}D_{2}^{2}O$	$_{\rm He^+}$	D^+	OD	He	1.6e-10	-0.94	0.0
435	pD_2O	He^+	D+ .	OD	He	1.6e-10	-0.94	0.0
436	oD ₂ O	H^+	$^{oD_2O^+}$	H		8.2e-09	0.00	0.0
437	pD_2O	н' 	pD_2O^+	H o ^T		8.2e-09	0.00	0.0
438 430	$D_2 O$	он ₃ он ⁺	$_{\rm pHD}^{\rm OUD}$	он ₂		4.3e-09	0.00	0.0
440	$_{0}D_{2}O$	$_{\rm pH^{+}}^{\rm ou}$	$_{\rm oHD}^{\rm PILD}_{2}O^+$	oH-		2 10-00	0.00	0.0
441	$_{\rm pD_2O}$	$_{\rm pH_{2}^{+}}^{\rm PH_{3}^{+}}$	$_{\rm pHD_2O^+}$	oH ₂		2.1e-09	0.00	0.0
442	oD ₂ O	$_{\rm pH_2^+}$	oHD ₂ O ⁺	pH ₂		2.1e-09	0.00	0.0
443	pD ₂ O	$_{\rm pH_3^4}$	pHD ₂ O ⁺	pH ₂		2.1e-09	0.00	0.0
444	$_{0}D_{2}^{2}O$	$_{\rm oH_2D^+}$	$_{\rm oHD_2^2O^+}$	HD		2.2e-09	0.00	0.0

Table D6 - continued (part 7)

	Boactar	ate	Products		a	в	~ ~
<i>\</i>			i iouucus			P	
445	oD ₂ O	$^{\rm oH_2D^+}$	$_{\rm pHD_2O^+}$	HD	6.4e-10	0.00	0.0
446	pD_2O	$^{\rm oH}{}_{2}D^+$	$_{\rm pHD}^{\rm oHD_2O^+}$	HD UD	1.3e-09	0.00	0.0
447	$_{0}D_{2}O$	$_{\rm pH_2D^+}$	$_{\rm oHD_2O^+}$	HD	2.2e-09	0.00	0.0
449	$_{0}D_{2}O$	$_{\rm pH_2D^+}$	$_{\rm pHD_{2}O^{+}}$	HD	6.4e-10	0.00	0.0
450	$pD_{2}O$	$_{\rm pH_2D}^{\rm pH_2D}$	$_{\rm oHD_2O^+}$	HD	1.3e-09	0.00	0.0
451	pD_2O	$_{\rm pH_2D^+}$	$_{\rm pHD_2^2O^+}$	HD	1.6e-09	0.00	0.0
452	$_{0}D_{2}O$	$_{\rm oH_2D^+}$	mD_3O^+	$_{oH_2}$	7.9e-10	0.00	0.0
453	$_{o}D_{2}O$	$_{oH_2D^+}$	$_{0}D_{3}O^{+}$	$_{oH_2}$	6.4e-10	0.00	0.0
454	pD_2O	$_{oH_2D^+}$	pD_3O^+	$^{\mathrm{oH}_2}$	1.6e-10	0.00	0.0
455	pD_2O	$^{\text{oH}_2\text{D}^+}$	oD ₃ O ⁺	oH ₂	1.3e-09	0.00	0.0
450	$^{0}D_{2}O$	$_{\rm pH_2D^+}$	mD_3O_1	pH ₂	7.9e-10 6.4o 10	0.00	0.0
458	$_{\rm pD_2O}$	$_{\rm pH_2D^+}$	$_{\rm pD_{2}O^{+}}$	pH ₂	1.6e-10	0.00	0.0
459	$pD_{2}^{2}O$	$_{\rm pH_2D^+}$	$_{\rm oD_3O^+}$	$_{\rm pH_2}^2$	1.3e-09	0.00	0.0
460	$_{0}D_{2}O$	mD_3^+	mD_3O^+	oD2	2.1e-09	0.00	0.0
461	$_{0}D_{2}O$	mD_3^+	mD_3O^+	pD_2	4.3e-10	0.00	0.0
462	oD ₂ O	mD_3^+	oD ₃ O+	oD ₂	1.3e-09	0.00	0.0
463	$_{o}D_{2}O$	mD_3^+	$_{o}D_{3}O^{+}$	pD_2	4.3e-10	0.00	0.0
464	pD_2O	mD_3^+	mD_3O^+	oD_2	8.6e-10	0.00	0.0
465	pD_2O	mD_3^+	mD_3O^+	pD_2	1.0e-09	0.00	0.0
466	pD_2O	mD_3^+	$_{pD_{3}O^{+}}$	$^{oD}2$	1.4e-10	0.00	0.0
467	pD_2O	mD_3^+	oD ₃ O+	$^{oD}2$	2.0e-09	0.00	0.0
468	pD ₂ O	$^{mD_3^+}$	oD ₃ O+	pD_2	2.9e-10	0.00	0.0
469	oD ₂ O	pD_3^+	mD ₃ O+	pD_2	7.2e-10	0.00	0.0
470	oD ₂ O	pD_3^+	pD ₃ O+	oD ₂	7.2e-10	0.00	0.0
471	oD ₂ O	pD_3^+	$^{\rm oD}_3O^+$	oD ₂	1.4e-09	0.00	0.0
472	^{oD} 20	pD_3	oD ₃ O+	pD ₂	1.4e-09	0.00	0.0
473	pD ₂ O	$_{-D^{+}}^{pD_{3}^{+}}$	$_{\rm pD_3O^+}$	pD ₂	8.6e-10	0.00	0.0
474	pD_2O	$_{-D^+}^{pD_3}$	$^{0}D_{3}O^{+}$	oD ₂	1.7e-09	0.00	0.0
475	pD_2O	$_{2}D^{\pm}$	$^{0}D_{3}O^{+}$	$_{\rm pD}_2$	1.7e-09 8 1o 10	0.00	0.0
470	$_{0}D_{2}O$	$_{0D_{3}}^{OD_{3}}$	$mD_{3}O^{+}$	DD2	6 3e-10	0.00	0.0
478	$_{0}D_{2}O$	$_{0D_{3}}^{OD_{3}}$	$_{\rm nD}^{\rm 30^+}$	$_{oD}^{pD_2}$	9.0e-11	0.00	0.0
479	$_{0}D_{2}O$	$_{0}D_{3}^{+}$	pD_3O^+	DD-	5.0e-11 5.4e-11	0.00	0.0
480	oD_0	$_{0}D_{+}^{+}$	$_{0}D_{2}O^{+}$	oD ₂	1.9e-09	0.00	0.0
481	oD _o O	$_{oD_{a}^{+}}$	$_{oD_{a}O^{+}}$	pD _o	8.2e-10	0.00	0.0
482	$pD_{0}^{2}O$	$_{\rm oD_2^+}$	$mD_{2}O^{+}$	oD ₂	5.4e-10	0.00	0.0
483	$pD_{2}O$	$_{\rm oD_2^+}$	$mD_{2}O^{+}$	pD_{2}^{2}	1.8e-10	0.00	0.0
484	pD_2O	$_{oD_{3}^{+}}$	pD_3O^+	$_{\rm oD_2}$	1.8e-10	0.00	0.0
485	pD_2O	$_{0}D_{3}^{+}$	pD_3O^+	pD_2	1.1e-10	0.00	0.0
486	pD_2O	$_{oD_{3}^{+}}$	oD ₃ O+	$_{oD_2}$	1.6e-09	0.00	0.0
487	pD_2O	$_{\rm oD_3^+}$	$_{o}D_{3}O^{+}$	pD_2	1.6e-09	0.00	0.0
488	oD_2O	$_{\rm oHD_2^+}$	mD_3O^+	HD	1.6e-09	0.00	0.0
489	$_{o}D_{2}O$	$_{\rm oHD_2^+}$	$_{o}D_{3}O^{+}$	HD	1.3e-09	0.00	0.0
490	oD_2O	$_{\rm pHD_2^+}$	mD_3O^+	HD	8.0e-10	0.00	0.0
491	$_{o}D_{2}O$	$_{\rm pHD_2^+}$	$_{pD_{3}O^{+}}$	HD	1.6e-10	0.00	0.0
492	$_{o}D_{2}O$	$_{\rm pHD_2^+}$	oD ₃ O ⁺	HD	1.9e-09	0.00	0.0
493	pD_2O	$^{\mathrm{oHD}_{2}^{+}}$	mD_3O^+	HD	8.0e-10	0.00	0.0
494	pD_2O	$^{\rm oHD}_2$	pD ₃ O ⁺	HD	1.6e-10	0.00	0.0
495	pD ₂ O	$^{\text{oHD}_2^+}$	οD ³ O+	HD	1.9e-09	0.00	0.0
496	pD_2O	$_{-UD}^{pHD_2^{\prime}}$	pD ₃ O ⁺	HD	3.2e-10	0.00	0.0
497	pD_2O	рнD ₂ онр+	оµ30,	нD	2.be-09	0.00	0.0
490	$_{0}D_{2}O$	$_{\rm oHD}^+$	$_{\rm oHD}_{2}O^+$	$_{\rm nD}^{\rm OD_2}$	9.1e-10 2.0o 10	0.00	0.0
-199 500	$_{0}D_{2}O$	$_{\rm oHD}^+$	$_{\rm pHD_{-}O^{+}}$	$_{\rm oD}_2$	2.0e-10 2.0e-10	0.00	0.0
501	$_{0}D_{2}O$	oHD ⁺	$_{\rm pHD_2O^+}$	$_{\rm pD_2}$	1 200-10	0.00	0.0
502	oD_0	pHD ⁺	$_{\rm oHD_2O}^{\rm PHD_2O}$	oDo	4.0e-10	0.00	0.0
503	oD ₂ O	$_{\rm pHD_2^+}$	$_{\rm oHD_2O^+}$	pD_{2}	4.8e-10	0.00	0.0
504	oD ₂ O	$_{\rm pHD_2^+}$	$_{\rm pHD_{2}O^{+}}$	$_{\rm oD_2}$	4.8e-10	0.00	0.0
505	oD ₂ O	$_{\rm pHD_2^+}$	pHD ₂ O ⁺	pD_{2}^{2}	7.9e-11	0.00	0.0
506	$pD_2^{-}O$	$_{\mathrm{oHD}_{2}^{\tilde{+}}}$	$_{\rm oHD_2O^+}$	$_{\rm oD_2}$	4.0e-10	0.00	0.0
507	pD_2O	$_{\mathrm{oHD}_{2}^{\widetilde{+}}}$	$_{\rm oHD_2O^+}$	pD_2	4.8e-10	0.00	0.0
508	pD_2O	$_{\mathrm{oHD}_{2}^{\widetilde{+}}}$	$_{\rm pHD_2O^+}$	$_{oD_2}$	4.8e-10	0.00	0.0
509	pD_2O	$_{\mathrm{oHD}_{2}^{\overline{+}}}$	$_{\rm pHD_2O^+}$	pD_2	7.9e-11	0.00	0.0
510	$_{\rm pD_2O}$	$_{\rm pHD_2^+}$	$_{\mathrm{oHD}_{2}\mathrm{O}^{+}}$	oD_2	4.8e-10	0.00	0.0
511	pD_2O	$_{\rm pHD_2^+}$	$_{\rm oHD_2O^+}$	pD_2	1.6e-10	0.00	0.0
512	$\mathrm{pD}_2\mathrm{O}$	$_{\rm pHD_2^+}$	$_{\rm pHD_2O^+}$	oD_2	1.6e-10	0.00	0.0
513	pD_2O	$_{\rm pHD_2^+}$	$_{\rm pHD_2O^+}$	pD_2	6.4e-10	0.00	0.0
514	OH^+	oH ₂	$^{\rm oH}_2O^+$	H	8.4e-10	0.00	0.0
515 516	OH+	oH ₂	pH ₂ O⊤	н н	1.7e-10 5 1o 10	0.00	0.0
510	он+	pH ₂	$_{\rm pH_2O^+}$	H	5.1e-10	0.00	0.0
518	OH+	$^{P12}_{HD}$	HDO^+	Н	5.1e-10	0.00	0.0
-			-				-

Table D6 – continued (part 8)

							0	
#	Reactants		Products			α	β	γ
519	OH^+	HD	$_{\rm oH_2O^+}$	D		3.8e-10	0.00	0.0
520	OH^+	HD	$_{\rm pH_2O^+}$	D		1.3e-10	0.00	0.0
521	OD^+	oH_2	HDO^+	Η		1.0e-09	0.00	0.0
522	OD^+	$_{\rm pH_2}$	HDO+	Η		1.0e-09	0.00	0.0
523	OD^+	HD	$_{o}D_{2}O^{+}$	Η		3.4e-10	0.00	0.0
524	OD^+	HD	pD_2O^+	Н		1.7e-10	0.00	0.0
525	OD+	HD	HDO+	D		5.1e-10	0.00	0.0
526	OD+	$^{oD}2$	$_{0}D_{2}O^{+}$	D		8.6e-10	0.00	0.0
527	OD+	$^{oD}2$	pD_2O^+	D		2.4e-10	0.00	0.0
528	OD+	pD_2	$^{o}D_{2}O^{+}$	D		4.9e-10	0.00	0.0
529	OD+	pD_2	pD_2O^+	D		6.1e-10	0.00	0.0
530	$_{0H_2O^+}$	oH ₂	$_{\rm oH_3O^+}$	H		5.5e-10	0.00	0.0
531	oH ₂ O ⁺	^{oH} 2	$_{\rm pH_3O^+}$	H		2.8e-10	0.00	0.0
532	oH ₂ O ⁺	PH2	oH ₃ O ⁺	H		2.8e-10	0.00	0.0
533	-110^{+}	рп ₂	$_{-11}^{\text{ph}_{3}\text{O}^{+}}$	п		5.5e-10	0.00	0.0
525	pH_2O^+	оп ₂	$_{0}^{0}$	п u		2.8e-10	0.00	0.0
526	pH_2O^+	оп ₂	$_{\rm pH_3O^+}$	п u		5.3e-10	0.00	0.0
537	$_{\rm oH}$ O ⁺	рп ₂ нр	$_{\rm oH}$ DO ⁺	н		3.5e-10	0.00	0.0
538	oH_0+	нр	$_{\rm pH}^{\rm DO^+}$	н		6.9e-10	0.00	0.0
539	$_{\rm pH_2O^+}$	HD	$_{\rm oH-DO^+}$	н		2 1e-10	0.00	0.0
540	$_{\rm pH_2O^+}$	HD	$_{\rm pH}$ DO ⁺	н		2.1e-10 2.1e-10	0.00	0.0
541	$_{\rm oH_2O^+}$	HD	$_{\rm oH_2O^+}$	D		2.1e-10 2.8e-10	0.00	0.0
542	$_{\rm oH_2O^+}$	HD	$_{\rm pH_{2}O^{+}}$	D		1 4e-10	0.00	0.0
543	$_{\rm pH_2O^+}$	HD	$_{\rm pH_{2}O^{+}}$	D		4.2e-10	0.00	0.0
544	HDO^+	oHa	oH _o DO ⁺	H		6.9e-10	0.00	0.0
545	HDO+	oH ₂	$_{\rm pH_{2}DO^{+}}$	н		1.4e-10	0.00	0.0
546	HDO+	pH_{2}^{2}	$_{\rm oH_2DO^+}$	н		4.2e-10	0.00	0.0
547	HDO+	pH ₂	$_{\rm pH_{2}^{2}DO^{+}}$	н		4.2e-10	0.00	0.0
548	HDO^+	HD	oHD ₂ O ⁺	н		2.8e-10	0.00	0.0
549	HDO^+	HD	$_{\rm pHD_2O^+}$	н		1.4e-10	0.00	0.0
550	HDO^+	HD	$_{\rm oH_2}\tilde{\rm DO^+}$	D		$3.1e{-}10$	0.00	0.0
551	HDO^+	HD	pH_2DO^+	D		1.0e-10	0.00	0.0
552	HDO^+	oD_2	$_{0}H\tilde{D}_{2}O^{+}$	D		6.5e-10	0.00	0.0
553	HDO^+	oD_2	$_{\rm pHD_2O^+}$	D		1.8e-10	0.00	0.0
554	HDO ⁺	pD_2	$_{\rm oHD_2O^+}$	D		3.7e-10	0.00	0.0
555	HDO+	pD_2	$_{\rm pHD_2O^+}$	D		4.6e-10	0.00	0.0
556	$_{o}D_{2}O^{+}$	$^{oD}2$	mD_3O^+	D		4.6e-10	0.00	0.0
557	$_{o}D_{2}O^{+}$	oD_2	oD ₃ O ⁺	D		3.7e-10	0.00	0.0
558	$_{0}D_{2}O^{+}$	pD_2	mD_3O^+	D		2.3e-10	0.00	0.0
559	^{oD} 2 ^{O+}	pD_2	pD_3O^+	D		4.6e-11	0.00	0.0
560	$^{\text{oD}}{}_{2}^{\text{O}}$	pD_2	°D ³ O [⊥]	D		5.5e-10	0.00	0.0
561	$^{pD_2O^+}$	oD ₂	$^{mD_3O^+}$	D		2.3e-10	0.00	0.0
562	$^{pD_2O^+}$	oD ₂	$^{pD_3O^+}$	D		4.6e-11	0.00	0.0
563	$^{pD_2O^+}$	oD ₂	°D30+	D		5.5e-10	0.00	0.0
504	$_{-D}^{pD_2O^+}$	PD2	$_{-D}^{pD_{3}O^{+}}$	D		9.2e-11 7.4-10	0.00	0.0
202 E66	$_{\rm pD_2O^+}$	pD_2	$_{-110}^{0}$	D		7.4e-10	0.00	0.0
567	$^{0}D_{2}O^{+}$	on2	$_{\rm pHD}^{\rm OHD_2O^+}$	п u		8.3e-10	0.00	0.0
568	$_{\rm pD_2O^+}$	DH2	$_{\rm oHD}^{\rm 2O^+}$	н		8.3e-10	0.00	0.0
569	$_{\rm pD_2O^+}$	pH ₂	$_{\rm pHD_2O^+}$	н		8 3e-10	0.00	0.0
570	$_{\rm oD_oO^+}$	HD	oHD _c O ⁺	D		3.2e-10	0.00	0.0
571	$_{0}D_{0}O^{+}$	HD	pHD _o O ⁺	D		9.2e-11	0.00	0.0
572	$_{\rm pD_2O^+}$	HD	oHD ₂ O ⁺	D		1.8e-10	0.00	0.0
573	pD_2O^+	HD	$_{\rm pHD_2O^+}$	D		2.3e-10	0.00	0.0
574	oD_0+	HD	mD_3O^+	н		2.3e-10	0.00	0.0
575	₀ D ₂ O+	HD	oD ₃ O+	н		1.8e-10	0.00	0.0
576	pD_2O^+	HD	pD_3O^+	Η		4.6e-11	0.00	0.0
577	pD_2O^+	HD	$_{0}D_{3}O^{+}$	Η		3.7e-10	0.00	0.0
578	_{oH₃O⁺}	Fe	$_{0}H_{2}O$	Η	Fe^+	3.1e-09	0.00	0.0
579	$_{\rm pH_3O^+}$	Fe	$_{0}H_{2}O$	Η	Fe^+	1.6e-09	0.00	0.0
580	$_{\rm pH_3O^+}$	Fe	$_{\rm pH_2O}$	Η	Fe^+	1.6e-09	0.00	0.0
581	O_2^+	Fe	Fe^+	O_2		1.1e-09	0.00	0.0
582	0+	e^-	0	γ		3.4e-12	-0.64	0.0
583	O_2^+	e^-	0	Ο		2.0e-07	-0.70	0.0
584	OH ⁺	e^-	0	н		3.7e-08	-0.50	0.0
585	$_{0}H_{2}O^{+}$	e^-	OH	Н		7.8e-08	-0.50	0.0
586	pH ₂ O ⁺	e	OH	Н		7.8e-08	-0.50	0.0
587	oH ₂ O ⁺	e	oH ₂	0		3.4e-08	-0.50	0.0
588	pH_2O^+	e	pH ₂	0	0	3.4e-08	-0.50	0.0
589	он ₂ О⊤	е 	H	H	0	1.5e-07	-0.50	0.0
590 501	рн ₂ 0'	е е	п	н u	о ц	1.5e-07	-0.50	0.0
591	оп ₃ 0 '	е 	Оп	п u	п u	2.0e-07 2.6c.07	-0.50	0.0
592	P1130 -	e	011	п	11	⊿.0e-07	-0.50	0.0

Table D6 – continued (part 9)

#	Reactants		Products			α	β	γ
593	$_{\rm oH_2O^+}$	e^{-}	oH ₂ O	Н		1.1e-07	-0.50	0.0
594	$_{\rm pH_3O^+}$	e^{-}	oH ₂ O	н		5.4e-08	-0.50	0.0
595	pH ₃ O ⁺	e^{-}	$_{\rm pH_2^{-}O}$	н		5.4e-08	-0.50	0.0
596	oH ₃ O+	e^{-}	oH_2	OH		6.0e-08	-0.50	0.0
597	pH ₃ O ⁺	e^-	$_{oH_2}$	OH		3.0e-08	-0.50	0.0
598	$_{\rm pH_3O^+}$	e	$_{\rm pH_2}^{\rm pH_2}$	OH	0	3.0e-08	-0.50	0.0
599 600	oH ₃ O ⁺	е 0	он ₂	н ц	0	5.6e-09	-0.50	0.0
601	$_{\rm pH_{2}O^{+}}$	e	DH-	н	0	2.86-09	-0.50	0.0
602	OD ⁺	e ⁻	0	D	0	3.7e-08	-0.50	0.0
603	HDO ⁺	e^{-}	OD	н		3.1e-08	-0.50	0.0
604	HDO^+	e^{-}	OH	D		1.5e-08	-0.50	0.0
605	HDO+	e^-	0	HD		1.5e-08	-0.50	0.0
606	HDO+	e^{-}	0	H	D	8.9e-08	-0.50	0.0
607	$^{0}D_{2}O^{+}$	e_	OD	D		7.8e-08	-0.50	0.0
608	$_{\rm pD_2O^+}$	е 0	oD	0		7.8e-08	-0.50	0.0
610	$_{\rm pD_2O^+}$	e	D_2	0		3.4e-08	-0.50	0.0
611	$_{oD_{2}O^{+}}$	e-	D D	D	0	1.5e-07	-0.50	0.0
612	$pD_2^2O^+$	e^{-}	D	D	0	1.5e-07	-0.50	0.0
613	$_{\rm oH_2DO^+}$	e^{-}	Н	н	OD	8.6e-08	-0.50	0.0
614	$_{\rm pH_2DO^+}$	e^-	Н	н	OD	8.6e-08	-0.50	0.0
615	$_{oH_2DO^+}$	e^{-}	OH	н	D	1.7e-07	-0.50	0.0
616	$_{\rm pH_2DO^+}$	e	ОН	H	D	1.7e-07	-0.50	0.0
619	$_{\rm pH}^{\rm oH_2DO^+}$	е 	oH ₂ O	D		3.6e-08	-0.50	0.0
619	$_{\rm oH_2DO^+}$	е е ⁻	HDO	н		7 2e-08	-0.50	0.0
620	$_{\rm pH_2DO^+}$	e ⁻	HDO	н		7.2e-08	-0.50	0.0
621	oH ₂ DO ⁺	e ⁻	oH ₂	OD		2.0e-08	-0.50	0.0
622	$_{\rm pH_2^{2}DO^{+}}$	e^{-}	$_{\rm pH_2}$	OD		2.0e-08	-0.50	0.0
623	$_{\rm oH_2DO^+}$	e^-	OH	HD		4.0e-08	-0.50	0.0
624	$_{\rm pH_2DO^+}$	e^-	OH	HD		4.0e-08	-0.50	0.0
625	$_{0}H_{2}DO^{+}$	e	HD	H	0	3.7e-09	-0.50	0.0
626	$_{\rm pH_2DO^+}$	e_	HD - U	H	0	3.7e-09	-0.50	0.0
628	$_{\rm DH_2DO^+}$	е е ⁻	DH-	D	0	1.9e-09	-0.50	0.0
629	oHD _o O ⁺	e ⁻	D	D	он	8.6e-08	-0.50	0.0
630	$_{\rm pHD_2^2O^+}$	e^{-}	D	D	ОН	8.6e-08	-0.50	0.0
631	oHD2O+	e^{-}	OD	D	н	1.7e-07	-0.50	0.0
632	$_{\rm pHD_2O^+}$	e^-	OD	D	Н	1.7e-07	-0.50	0.0
633	oHD ₂ O ⁺	e^{-}	oD ₂ O	Н		3.6e-08	-0.50	0.0
634	$_{\rm pHD_2O^+}$	e_	pD_2O	H		3.6e-08	-0.50	0.0
635 636	$_{\rm pHD}^{\rm oHD_2O^+}$	е 0	HDO	D		7.2e-08 7.2e-08	-0.50	0.0
637	$_{\rm oHD_2O^+}$	e_	oDo	ОН		2.0e-08	-0.50	0.0
638	$_{\rm pHD_2O^+}$	e-	pD_2	OH		2.0e-08	-0.50	0.0
639	oHD ₂ O+	e^{-}	OD	HD		4.0e-08	-0.50	0.0
640	$_{\rm pHD_2O^+}$	e^{-}	OD	HD		4.0e-08	-0.50	0.0
641	oHD ₂ O ⁺	e^{-}	HD	D	О	3.7e-09	-0.50	0.0
642	pHD ₂ O ⁺	e^{-}	HD	D	0	3.7e-09	-0.50	0.0
643	$^{\text{oHD}_2\text{O}^+}$	e	oD_2	H	0	1.9e-09	-0.50	0.0
644 645	$^{\text{pHD}_2\text{O}^+}$	е 0	pD_2	п	D	1.9e-09 2.6e.07	-0.50	0.0
646	$_{\rm nD_3O^+}$	e	OD	D	D	2.6e-07	-0.50	0.0
647	$_{\rm oD_2O^+}$	e ⁻	OD	D	D	2.6e-07	-0.50	0.0
648	$mD_{3}O^{+}$	e^{-}	oD ₂ O	D		1.1e-07	-0.50	0.0
649	pD ₃ O+	e^{-}	pD_2O	D		1.1e-07	-0.50	0.0
650	$_{o}D_{3}O^{+}$	e^-	$_{o}D_{2}O$	D		5.4e-08	-0.50	0.0
651	oD ₃ O ⁺	e^{-}	$_{\rm pD_2O}$	D		5.4e-08	-0.50	0.0
652	$^{mD_3O^+}$	e	oD ₂	OD		6.0e-08	-0.50	0.0
654	$_{\rm aD}^{\rm pD_3O^+}$	е 0	pD_2	OD		0.0e-08	-0.50	0.0
655	$_{0}D_{3}O^{+}$	e e	$^{\rm 0D_2}$	OD		3.0e-08	-0.50	0.0
656	$mD_{2}O^{+}$	e ⁻	oD ₂	D	0	5.6e-09	-0.50	0.0
657	pD ₃ O+	e^{-}	pD_2^2	D	0	5.6e-09	-0.50	0.0
658	$_{\rm oD_3O^+}$	e^{-}	$_{oD_2}$	D	Ο	2.8e-09	-0.50	0.0
659	$_{0}D_{3}O^{+}$	e^{-}	pD_2	D	0	2.8e-09	-0.50	0.0
660	OH	γ_2	0	Н		4.7e + 02	0.00	0.0
661	OH+	γ2	01	H		8.6e + 00	0.00	0.0
662	oH ₂ O	Y2	ОН	H U		1.0e + 03 1.0e + 03	0.00	0.0
664	$_{\rm oH_2O}$	12 16	oH- O ⁺	н е [—]		$2.3e \pm 01$	0.00	0.0
665	pH ₂ O	12 25	$_{\rm pH_2O^+}$	e ⁻		2.3e+01	0.00	0.0
666	0 ₂	12	0	0		7.8e + 02	0.00	0.0

Table D6 – continued (part 10)

#	Reactants		Products			α	β	γ
667	0,	γ ₅	02	e ⁻		2.8e+01	0.00	0.0
668	O_{2}^{+}	12 12	0 ⁺	0		7.0e+01	0.00	0.0
669	$_{0}\dot{H}_{3}O^{+}$	Gr	$_{\rm oH_2O}$	н	Gr^+	3.7e-07	0.50	0.0
670	$_{pH_{3}O^{+}}$	\mathbf{Gr}	$_{0}H_{2}O$	Н	Gr^+	1.8e-07	0.50	0.0
671	$_{\rm pH_3O^+}$	Gr	pH ₂ O	H	Gr^+	1.8e-07	0.50	0.0
672	он ₃ 0+	Gr Cr ⁻	oH ₂ O	H U	Gr	3.7e-07	0.50	0.0
674	$_{\rm pH_3O^+}$	Gr^-	DH ₂ O	H	Gr	1.8e-07	0.50	0.0
675	C^+	Н	CH^{+}	γ		7.0e-17	0.00	0.0
676	C^+	oH_2	$_{\rm oCH_2^+}$	γ		2.0e-16	-1.30	23.0
677	C^+	pH_2	pCH_2^+	γ		2.0e-16	-1.30	23.0
678	C+	CH	C_2^+	Н		3.8e-10	0.00	0.0
679	C^+	CH	CH ⁺	C		3.8e-10	0.00	0.0
681	C+	DCH2	$_{\rm pCH}^{0CH_2}$	C		5.2e-10	0.00	0.0
682	C+	$_{oCH_{2}}$	$C_{2}H^{+}$	н		5.2e-10 5.2e-10	0.00	0.0
683	C^+	pCH_2	$\tilde{C_2}H^+$	Н		5.2e-10	0.00	0.0
684	C^+	mCH_4	$C_{2}H_{3}^{+}$	н		9.8e-10	0.00	0.0
685	C^+	pCH_4	$C_{2}H_{3}^{+}$	Η		9.8e-10	0.00	0.0
686	C+	oCH ₄	$C_{2}H_{3}^{+}$	Н		9.8e-10	0.00	0.0
687	C^+	C ₂ H	C_3^{+}	H		1.0e-09	0.00	0.0
689	C+	С ₂ п ₂ Fe	С ₃ п' Fe ⁺	С		2.2e-09 2.6e-09	0.00	0.0
690	$_{\rm CH^+}$	Н	oH ₂	C^+		1.1e-10	0.00	0.0
691	CH^+	Н	pH_2	C^+		3.7e-11	0.00	0.0
692	CH^+	oH_2	$_{\rm oCH_2^+}$	н		1.0e-09	0.00	0.0
693	CH^+	oH_2	pCH_2^+	Н		2.0e-10	0.00	0.0
694	CH^+	$_{\rm pH_2}$	$^{\circ CH_2^+}$	Н		6.0e-10	0.00	0.0
695 606	CH ⁺	рН ₂	$_{\rm pCH_2^+}$	H		6.0e-10	0.00	0.0
696 697	$_{\rm oCH_2}^{\rm oCH_2}$	он ₂	DCH ₃	н ч		4.7e-10 2.3o 10	0.00	0.0
698	$_{\rm oCH^+}$	DH-	$_{\rm oCH^+}$	н		2.3e-10 2.3e-10	0.00	0.0
699	oCH ₂ ⁺	pH ₂	pCH ₂ ⁺	н		4.7e-10	0.00	0.0
700	pCH_2^{4}	oH ₂	oCH ₃ ⁺	н		2.3e-10	0.00	0.0
701	pCH_2^{\uparrow}	$_{0H_{2}}$	pCH_3^+	н		4.7e-10	0.00	0.0
702	pCH_2^+	pH_2	pCH_3^+	н		7.0e-10	0.00	0.0
703	$_{0}CH_{3}^{+}$	$_{0}$ oH $_{2}$	$_{pCH_{5}^{+}}$	γ		1.9e-16	-2.30	21.5
704	$_{\rm oCH_3^+}$	oH ₂	$_{\rm oCH_5^+}$	γ		1.3e-16	-2.30	21.5
705	oCH ₃	oH ₂	mCH_5^+	γ		6.3e-17	-2.30	21.5
706	oCH ₃	pH ₂	oCH ₅	Ŷ		3.8e-16	-2.30	21.5
707	$_{\rm pCH_3}^{\rm pCH_3}$	oH	mCH^+	r v		2.5e-10 1.3e-16	-2.30	21.5
709	$_{\rm pCH_3}^{\rm pCH_3}$	pH ₂	mCH ⁺	γ		3.8e-16	-2.30	21.5
710	mCH_4^+	H	oCH ⁺	oH ₂		1.4e-10	0.00	0.0
711	mCH_4^+	Н	oCH ⁺ ₃	$_{\rm pH_2}$		2.0e-11	0.00	0.0
712	mCH_4^{\uparrow}	Н	$_{\rm pCH_3^+}$	$_{\rm oH_2}$		4.0e-11	0.00	0.0
713	$_{\rm pCH_4^+}$	Н	$_{0CH_{3}^{+}}$	$_{oH_2}$		4.0e-11	0.00	0.0
714	pCH_4^+	Н	pCH_3^+	$_{oH_2}$		8.0e-11	0.00	0.0
715	pCH_4^+	H	pCH_3^+	$_{\rm pH_2}$		8.0e-11	0.00	0.0
716	$_{-CU}^{\circ CH_4^+}$	H	oCH ₃	он ₂		4.7e-11	0.00	0.0
718	$_{\rm oCH^+}$	п н	DCH ₃	рн ₂		0.3e-11	0.00	0.0
719	$_{\rm oCH^+}$	н	$_{\rm pCH_3^+}$	DH ₂		2.7e-11	0.00	0.0
720	mCH_4^+	oH.	pCH ⁺	H H		2.1e-11	0.00	0.0
721	mCH_{4}^{4}	$_{\rm oH_2^2}$	$_{\rm oCH_5^+}$	Н		1.4e-11	0.00	0.0
722	mCH_4^{+}	$_{0H_{2}}$	mCH_5^+	н		4.4e-12	0.00	0.0
723	mCH_4^+	pH_2	pCH_5^+	Η		8.0e-12	0.00	0.0
724	mCH_4^+	$_{\rm pH_2}$	$_{\circ CH_{5}^{+}}$	н		3.2e-11	0.00	0.0
725	pCH_4^+	oH ₂	$_{\rm oCH_5^+}$	H		1.8e-11	0.00	0.0
726	pCH_4^+	oH ₂	mCH_5^+	H		2.2e-11	0.00	0.0
727	$_{\rm oCH^+}$	рн ₂ оН	mCH ₅	н Н		4.0e-11	0.00	0.0
729	$_{\rm oCH^+}$	oH ₂	oCH ⁺	Н		4.4e-12 2.4e-11	0.00	0.0
730	$_{\rm oCH^+_4}$	oH ₂	mCH^+	н		1.2e-11	0.00	0.0
731	$_{\rm oCH_4^+}$	$_{\rm pH_2}^2$	$_{\rm oCH_{g}^{+}}$	Н		1.8e-11	0.00	0.0
732	$_{\rm oCH_4^4}$	$_{\rm pH_2}^{-2}$	mCH_5° +	Н		2.2e-11	0.00	0.0
733	C_2^+	$_{0H_{2}}$	C_2H^+	Н		1.4e-09	0.00	0.0
734	C_2^+	$_{\rm pH_2}$	C_2H^+	Н		1.4e-09	0.00	0.0
735	C_2H^+	$_{oH_2}$	$C_2H_2^+$	Η		1.7e-09	0.00	0.0
736	C_2H^+	pH ₂	$C_2H_2^+$	H		1.7e-09	0.00	0.0
737	C_3^+	oH ₂	C_3H^+	H		3.0e-10	0.00	0.0
738	С и+	рн ₂	С ₃ нт С ^{ц+}	H V		3.0e-10	0.00	0.0
740	C_3H^+	DH	$C_3 H_3^+$	r Y		3.0e-13	-1.00	0.0
. 10	~3**	£2	~3**3	1		0.00-10	1.00	0.0

Table D6 – continued (part 11)

#	Reactar	nts	Product	s		α	β	γ
741	С	CRP	C^+	e^{-}		1.8e + 00	0.00	0.0
742	С	Н	CH	γ		1.0e-17	0.00	0.0
743	С	$_{0H_{2}^{+}}$	CH^+	Н		2.4e-09	0.00	0.0
744	С	$_{pH_2^+}$	CH^+	H		2.4e-09	0.00	0.0
745	C	oH ₃	oH ₂	CH^+		2.0e-09	0.00	0.0
746	C	рН ₃ 	он ₂	CH ⁺		1.0e-09	0.00	0.0
747	CH	рп ₃ Н	oH ₂	С		9.3e-11	0.00 0.26	0.0
749	CH	Н	pH ₂	č		3.1e-11	0.26	0.0
750	CH	He^+	C^+	Н	He	1.1e-09	0.00	0.0
751	CH	H+	Н	CH ⁺		1.9e-09	0.00	0.0
752	CH	OH_2	oH ₂	CH^+		7.1e-10	0.00	0.0
753	CH	$_{-11}^{pH_2}$	$_{-CII}^{\text{pH}_2}$	CHT		7.1e-10	0.00	0.0
754	СН	$_{\rm oH^+}^{\rm on_2}$	$_{\rm pCH^+}$	п Н		1.2e-10	0.00	0.0
756	CH	$_{\rm pH_2^+}$	oCH ⁺	н		3.6e-10	0.00	0.0
757	СН	$_{\rm pH_2^+}$	pCH_2^{+}	н		3.6e-10	0.00	0.0
758	CH	$_{0}H_{3}^{\tilde{+}}$	$_{oCH_2}^{\tilde{+}}$	oH_2		9.0e-10	0.00	0.0
759	CH	$_{0}H_{3}^{+}$	$_{oCH_2}^{\uparrow}$	$_{\rm pH_2}$		1.5e-10	0.00	0.0
760	CH	$_{0}H_{3}^{+}$	pCH_2^+	$_{oH_2}$		1.5e-10	0.00	0.0
761	CH	$_{pH_{3}^{+}}$	$_{0}^{OCH_{2}^{+}}$	$_{0}H_{2}$		4.5e-10	0.00	0.0
762	CH	$_{11}^{\text{pH}_3}$	$^{\circ CH_2^+}$	pH ₂		3.0e-10	0.00	0.0
763	CH	рН ₃ 	$_{-CU}^{pCH_2}$	он ₂		3.0e-10	0.00	0.0
765	СН	рп ₃ он D+	$_{\rm oCH^+}$	рп ₂ нр		1.5e-10	0.00	0.0
766	CH	$_{0}H_{2}D^{+}$	$_{\rm pCH_2^+}$	HD		2.0e-10	0.00	0.0
767	СН	$_{\rm pH_2D^+}$	oCH ₂ ⁺	HD		6.0e-10	0.00	0.0
768	СН	$_{\rm pH_2D^+}$	pCH_2^{+}	HD		6.0e-10	0.00	0.0
769	CH	$_{\rm oHD_2^+}$	oD ₂	$_{oCH_2}^+$		9.0e-10	0.00	0.0
770	CH	$_{\rm pHD_2^+}$	pD_2	$_{0CH_{2}}^{+}$		9.0e-10	0.00	0.0
771	CH	$_{\rm oHD_2^+}$	oD_2	pCH_2^+		3.0e-10	0.00	0.0
772	CH	$_{\rm pHD_2^+}$	pD_2	pCH_2^+		3.0e-10	0.00	0.0
773	oCH ₂	H U	oH ₂	CH		1.8e-10 2.7e 11	0.00	0.0
775	DCH ₂	H	oH _o	CH		1.1e-10	0.00	0.0
776	pCH_2^2	Н	pH_2^2	CH		1.1e-10	0.00	0.0
777	oCH_2	He^+	$_{0H_{2}}$	C^+	He	7.5e-10	0.00	0.0
778	pCH ₂	He^+	$_{\text{pH}_2}^{\text{pH}_2}$	C^+	He	7.5e-10	0.00	0.0
779	oCH ₂	He ' He+	CH ⁺	H H	He He	7.5e-10 7.5e-10	0.00	0.0
781	oCH ₂	H^+	oH ₂	$_{\rm CH^+}$	110	1.2e-09	0.00	0.0
782	$_{\rm oCH_2}^2$	H^+	$_{\rm pH_2}^2$	CH^+		2.3e-10	0.00	0.0
783	pCH_2	H^+	$_{0H_{2}}$	CH^+		7.0e-10	0.00	0.0
784	pCH ₂	H^+	$_{\text{pH}_2}$	CH^+		7.0e-10	0.00	0.0
785	oCH ₂	H 11+	$_{-CU}^{\circ CH_2^+}$	H		1.4e-09	0.00	0.0
787	oCH	oH ⁺	$_{\rm oCH^+}$	п Н		1.4e-09 6.7e-10	0.00	0.0
788	oCH ₂	$_{\rm oH_2^+}$	$_{\rm pCH_{2}^{+}}$	H		3.3e-10	0.00	0.0
789	oCH ₂	$_{\rm pH_2^+}$	oCH ⁺	н		3.3e-10	0.00	0.0
790	$_{\rm oCH_2}^2$	$_{\rm pH_2^+}$	$_{\rm pCH_3^+}$	н		6.7e-10	0.00	0.0
791	pCH_2	$_{\mathrm{oH}_{2}^{\tilde{+}}}$	$_{0}CH_{3}^{+}$	н		3.3e-10	0.00	0.0
792	pCH_2	$_{0}H_{2}^{+}$	pCH_3^+	н		6.7e-10	0.00	0.0
793	pCH_2	$_{pH_{2}^{+}}$	$_{\rm pCH_3^+}$	Н		1.0e-09	0.00	0.0
794	oCH ₂	$^{\text{oH}_2^+}$	oH ₂	$_{\rm oCH_2^+}$		1.0e-09	0.00	0.0
795	oCH ₂	$_{\rm pH_2}^{\rm H_2}$	oH ₂	pCH_2^+		1.0e-09	0.00	0.0
796 707	$p \cap H_2$ $p \cap H_2$	$_{\rm pH^+}^{\rm on_2}$	рн ₂ рН	$_{\rm pCH^+}$		1.0e-09	0.00	0.0
798	oCH	oH ⁺	oCH ⁺	oH_		1.0e-09	0.00	0.0
799	oCH _a	$_{\rm oH_2^+}$	oCH ⁺	pH ₂		1.4e-10	0.00	0.0
800	oCH ₂	$_{\rm oH_3^+}$	pCH_3^+	oH ₂		4.0e-10	0.00	0.0
801	$_{\rm oCH_2}$	$_{0H_{3}^{+}}$	pCH_3^+	pH_2		1.1e-10	0.00	0.0
802	pCH_2	$_{0}H_{3}^{+}$	$_{0}CH_{3}^{+}$	$_{\rm oH_2}$		4.2e-10	0.00	0.0
803	pCH_2	$_{0}H_{3}^{+}$	$_{\rm oCH_3^+}$	$_{\rm pH_2}$		4.2e-10	0.00	0.0
804	pCH ₂	$_{0H_{3}^{+}}$	$_{\rm pCH_3^+}$	^{oH} ₂		8.5e-10	0.00	0.0
805	oCH ₂	pH_3^+	$_{\circ CH_{3}^{+}}$	oH ₂		4.0e-10	0.00	0.0
805 807	оСH ₂	рн ₃ ън+	$_{\rm pCH_3^+}$	pH ₂ 아닌		2.8e-10 7.0o 10	0.00	0.0
808	oCH-	pH ⁺	pCH [±]	DH2		2.3e-10	0.00	0.0
809	pCH ₂	$_{\rm pH_2^+}$	$_{\rm oCH_2^+}$	oH ₂		3.4e-10	0.00	0.0
810	pCH ₂	$_{\rm pH_3^+}$	$_{\rm pCH_2^+}$	$_{\rm oH_2}^2$		6.8e-10	0.00	0.0
811	pCH_2	$_{\rm pH_3^+}$	$_{\rm pCH_3^+}$	$_{\rm pH_2}$		6.8e-10	0.00	0.0
812	$_{\rm oCH_2}$	$_{oH_2D^+}$	$_{0}CH_{3}^{+}$	HD		1.1e-09	0.00	0.0
813	oCH_2	$_{0}$ M $_{2}$ D $^{+}$	$_{pCH_3^+}$	HD		5.7e-10	0.00	0.0
814	oCH_2	$_{\rm pH_2D^+}$	$_{\rm oCH_3^+}$	HD		5.7e-10	0.00	0.0

Table D6 – continued (part 12)

#	Reactant	ts	Products			α	β	γ
815	oCHa	pH ₂ D ⁺	pCH_2^+	HD		1.1e-09	0.00	0.0
816	pCH ₂	oH ₂ D ⁺	oCH ⁺	HD		5.7e-10	0.00	0.0
817	pCH ₂	$_{oH_{2}D^{+}}$	$_{\rm pCH_3^+}$	HD		1.1e-09	0.00	0.0
818	pCH_2	$_{\rm pH_2D^+}$	pCH_3^+	HD		1.7e-09	0.00	0.0
819	oCH ₂	$_{0}H\tilde{D}_{2}^{+}$	oD ₂	$_{\rm oCH_3^+}$		1.1e-09	0.00	0.0
820	$_{oCH_2}$	$_{\rm pHD_2^+}$	pD_2	$_{\rm oCH_3^+}$		1.1e-09	0.00	0.0
821	oCH_2	$_{\rm oHD_2^+}$	oD_2	pCH_3^+		5.7e-10	0.00	0.0
822	oCH_2	$_{\rm pHD_2^+}$	pD_2	$_{\rm pCH_3^+}$		5.7e-10	0.00	0.0
823	pCH_2	$_{\rm oHD_2^+}$	oD_2	pCH_3^+		1.7e-09	0.00	0.0
824	pCH_2	$_{\rm pHD_2^+}$	pD_2	pCH_3^+		1.7e-09	0.00	0.0
825	oCH ₃	He⊤ u_+	оН ₂	CH^+	He	9.0e-10	0.00	0.0
820	pCH ₃	не+ Не+	он ₂ рН-	CH ⁺	не Не	4.5e-10 4.5e-10	0.00	0.0
828	oCH _a	He ⁺	$_{\rm oCH^+}^{\rm pm_2}$	н	Не	9.0e-10	0.00	0.0
829	pCH.	He^+	oCH ⁺	Н	He	4.5e-10	0.00	0.0
830	pCH ₃	$_{\rm He^+}$	pCH_2^{2+}	Н	He	4.5e-10	0.00	0.0
831	oCH ₃	H^+	oCH ²	Н		3.4e-09	0.00	0.0
832	pCH ₃	H^+	pCH_3^+	Н		3.4e-09	0.00	0.0
833	oCH ₃	$_{\rm oH_3^+}$	mCH_4^+	oH_2		1.1e-09	0.00	0.0
834	oCH ₃	$_{\rm oH_3^+}$	mCH_4^+	pH_2		1.3e-10	0.00	0.0
835	oCH_3	$_{0}H_{3}^{+}$	pCH_4^+	oH_2		8.7e-11	0.00	0.0
836	$_{oCH_3}$	$_{0}H_{3}^{+}$	pCH_4^+	$_{\rm pH_2}$		5.2e-11	0.00	0.0
837	oCH_3	$_{0}H_{3}^{+}$	$_{\rm oCH_4^+}$	oH_2		6.0e-10	0.00	0.0
838	oCH ₃	$_{0}H_{3}^{+}$	oCH_4^+	pH_2		1.3e-10	0.00	0.0
839	oCH ₃	$_{PH_{3}^{+}}$	mCH_4^+	$^{\mathrm{oH}_2}$		3.5e-10	0.00	0.0
840	oCH ₃	pH ₃	mCH_4^+	pH ₂		2.6e-10	0.00	0.0
841	oCH ₃	pH ₃	pCH_4^+	oH ₂		1.7e-10	0.00	0.0
842	oCH ₃	рн ₃	$_{\circ CH_{4}}^{\circ CH_{4}}$	oH ₂		1.1e-09	0.00	0.0
843 844	DCH ₃	рп ₃ он+	mCH^+	рп ₂		2.0e-10 3.5e 10	0.00	0.0
844 845	pCH ₃	он ₃	mCH^+	DH2		2.6e-10	0.00	0.0
846	pCH ₃	oH ⁺	$_{\rm pCH^+}$	oH-		1.7e-10	0.00	0.0
847	pCH ₃	$_{\rm oH_{\circ}^+}$	$_{\rm oCH^+_4}$	oH ₂		1.1e-09	0.00	0.0
848	pCH ₂	$_{\rm oH_2^+}$	oCH ⁴	pH _o		2.6e-10	0.00	0.0
849	pCH ₂	$_{\rm pH_2^+}$	mCH_4^4	oH ₂		1.7e-10	0.00	0.0
850	pCH ₃	$_{\rm pH_3^+}$	pCH_4^{\ddagger}	oH2		3.5e-10	0.00	0.0
851	pCH_3	$_{\rm pH_3^+}$	pCH_4^+	$_{\rm pH_2}$		2.1e-10	0.00	0.0
852	pCH_3	$_{\rm pH_3^+}$	$_{\rm oCH_4^+}$	oH_2		8.4e-10	0.00	0.0
853	pCH_3	$_{\rm pH_3^+}$	$_{\rm oCH_4^+}$	pH_2		5.3e-10	0.00	0.0
854	$_{oCH_3}$	$_{oH_2D^+}$	mCH_4^+	HD		1.2e-09	0.00	0.0
855	oCH ₃	$_{oH_2D^+}$	pCH_4^+	HD		1.4e-10	0.00	0.0
856	oCH ₃	oH ₂ D+	$_{\rm oCH_4^+}$	HD		7.4e-10	0.00	0.0
857	oCH ₃	pH_2D^+	mCH_4^+	HD		5.3e-10	0.00	0.0
858	oCH ₃	pH ₂ D⊤	$_{OUI}^+$	HD		1.6e-09	0.00	0.0
859	PCH ₃	он ₂ D+	mCH_4	HD		3.5e-10	0.00	0.0
861	рСн ₃ рСН	он ₂ D+	$_{\rm oCH^+}$	нD НD		2.8e-10 1.5e.00	0.00	0.0
862	pCH ₃	$_{\rm DH}^{\rm DH}$ D ⁺	$_{\rm pCH^+}$	HD		1.5e-05 8.4e-10	0.00	0.0
863	pCH ₃	$_{\rm pH_2D^+}$	$_{\rm oCH^+}$	HD		1.3e-09	0.00	0.0
864	oCH _o	$_{\rm oHD^+}$	oD ₂	mCH ⁺		1.3e-09	0.00	0.0
865	oCH ₂	$_{\rm pHD_2^+}$	pD_{2}^{2}	mCH ⁴		1.3e-09	0.00	0.0
866	oCH ₂	oHD2	$^{\circ}$ $^{\circ}$ $^{\circ}$	oCH ⁴ / ₄		7.9e-10	0.00	0.0
867	oCH ₃	$_{\rm pHD_2^{\tilde{+}}}$	pD_2	$_{\rm oCH_4^+}$		7.9e-10	0.00	0.0
868	pCH_3	$_{\mathrm{oHD}_{2}^{\overline{+}}}$	oD_2	$_{\rm pCH_4^+}$		5.3e-10	0.00	0.0
869	pCH_3	$_{\rm pHD_2^+}$	pD_2	$_{\rm pCH_4^+}$		5.3e-10	0.00	0.0
870	pCH_3	$_{\rm oHD_2^+}$	oD_2	$_{\rm oCH_4^+}$		1.6e-09	0.00	0.0
871	pCH_3	$_{\rm pHD_2^+}$	pD_2	$_{\rm oCH_4^+}$		1.6e-09	0.00	0.0
872	mCH ₄	He^+	oCH ₃	H^+	He	4.0e-10	0.00	0.0
873	pCH ₄	He' Ho+	pCH ₃	н' u+	He Uo	4.0e-10	0.00	0.0
875	oCH.	He+	DCH ₃	н+	He	2 7e-10	0.00	0.0
876	mCH4	He ⁺	oCH ⁺	oHa	He	8.5e-10	0.00	0.0
877	pCH₄	$_{\rm He}^+$	oCH ⁺	oH ₂	He	4.2e-10	0.00	0.0
878	$_{\rm pCH_4}$	$_{\rm He}^+$	pCH_2^{\uparrow}	pH_2	He	4.2e-10	0.00	0.0
879	oCH_4	$_{\rm He}^+$	$_{oCH_2}^{\tilde{+}}$	$_{\rm oH_2}$	He	2.8e-10	0.00	0.0
880	$_{\rm oCH_4}$	$_{\rm He^+}$	$_{oCH_2^+}$	pH_2	He	2.8e-10	0.00	0.0
881	oCH_4	He^+	pCH_2^+	oH_2	He	2.8e-10	0.00	0.0
882	mCH_4	He^+	$_{\rm oCH_{3}^+}$	Н	He	8.0e-11	0.00	0.0
883	pCH_4	He ⁺	pCH_3^+	Н	He	8.0e-11	0.00	0.0
884	oCH_4	He ⁺	$_{\rm oCH_3^+}$	Н	He	2.7e-11	0.00	0.0
885	oCH ₄	He ⁺	pCH_3^+	H	He	5.3e-11	0.00	0.0
886	mCH ₄	He⊤ II.+	mCH_4^+	He		1.6e-11	0.00	0.0
887	pCH ₄	He⊤ U_+	pCH_4^+	не		1.6e-11	0.00	0.0
000	och ₄	пе'	oOH_4	пе		1.0e-11	0.00	0.0

Table D6 – continued (part 13)

#	Reactan	ts	Products	3		α	β	γ
889	mCH_4	H^+	oCH ₃ ⁺	oH ₂		1.6e-09	0.00	0.0
890	mCH_4	H^+	$_{0CH_{3}^{+}}$	$_{\rm pH_2}$		2.3e-10	0.00	0.0
891	mCH_4	H^+	$_{pCH_{3}^{+}}$	$_{0}$ oH $_{2}$		4.6e-10	0.00	0.0
892	pCH_4	H+	$_{\rm oCH_3^+}$	$^{\mathrm{oH}_2}$		4.6e-10	0.00	0.0
893	pCH ₄	H+ 11+	pCH_3^+	oH ₂		9.1e-10	0.00	0.0
894	pCH ₄	H⊤ u+	$_{\rm pCH_3^+}$	pH ₂		9.1e-10 5.2o 10	0.00	0.0
895 896	oCH ₄	н+	oCH ₃	он ₂ рН-		3.3e-10 3.8e-10	0.00	0.0
897	oCH ₄	H^+	$_{\rm pCH_2^+}$	oH _o		1.1e-09	0.00	0.0
898	$_{\rm oCH_4}^4$	H^+	$_{\rm pCH_3^+}$	$_{\rm pH_2}^2$		3.0e-10	0.00	0.0
899	mCH_4	$^{\rm H^+}$	mCH_4^+	Η		1.5e-09	0.00	0.0
900	pCH_4	$^{\rm H+}$	pCH_4^+	Н		1.5e-09	0.00	0.0
901	oCH_4	H^+	$_{\rm oCH_4^+}$	Н		1.5e-09	0.00	0.0
902	mCH_4	$_{3}^{\text{oH}_{3}^{+}}$	pCH_5^+	$_{oH_2}$		8.8e-10	0.00	0.0
903	mCH ₄	$^{\rm oH_3^+}$	pCH_5^+	pH ₂		9.5e-11	0.00	0.0
904	mCH ₄	oH ₃	oCH ₅	oH ₂		5.4e-10	0.00	0.0
905	mCH	он ₃ он ⁺	mCH^+	oH		2.0e-10	0.00	0.0
907	mCH ₄	0H3 0H2	mCH ⁺	DHo		6.8e-11	0.00	0.0
908	pCH ₄	$_{\rm oH_2^+}$	pCH_5^+	oH ₂		1.4e-10	0.00	0.0
909	$_{\rm pCH_4}$	$_{\rm oH_3^+}$	$_{\rm oCH_5^+}$	$_{\rm oH_2}$		5.4e-10	0.00	0.0
910	pCH_4	$_{0}H_{3}^{+}$	$_{\rm oCH_5^+}$	$_{\rm pH_2}$		5.4e-10	0.00	0.0
911	pCH_4	$_{0}H_{3}^{+}$	mCH_5^+	$_{oH_2}$		6.8e-10	0.00	0.0
912	oCH_4	$_{3}^{\text{oH}_{3}^{+}}$	pCH_5^+	$_{oH_2}$		2.0e-10	0.00	0.0
913	oCH ₄	$^{\rm oH_3^+}$	pCH_5^+	pH ₂		1.6e-10	0.00	0.0
914	oCH ₄	он ₃ - 11 [±]	oCH ₅	он ₂		9.0e-10	0.00	0.0
915	oCH	он ₃ он ⁺	mCH^+	рн ₂ он		1.8e-10 3.4e-10	0.00	0.0
917	oCH ₄	0H3 0H2	mCH ⁺	pH _o		1.1e-10	0.00	0.0
918	mCH ₄	$_{\rm pH_3^+}$	pCH_5^+	oH ₂		2.4e-10	0.00	0.0
919	mCH ₄	$_{\rm pH_3^+}$	$_{\rm pCH_5^+}$	$_{\rm pH_2}$		1.9e-10	0.00	0.0
920	mCH_4	$_{\rm pH_3^+}$	$_{\rm oCH_5^+}$	$_{oH_2}$		9.8e-10	0.00	0.0
921	mCH_4	$_{pH_{3}^{+}}$	$_{\rm oCH_5^+}$	$_{\rm pH_2}$		2.2e-10	0.00	0.0
922	mCH_4	$_{pH_{3}^{+}}$	mCH_5^+	$_{oH_2}$		2.7e-10	0.00	0.0
923	pCH ₄	$_{\rm pH_3^+}$	oCH ₅	oH ₂		5.4e-10	0.00	0.0
924	pCH ₄	pH ₃	mCH_5^+	oH ₂		6.8e-10	0.00	0.0
923	pCH_4	$_{\rm pH_3}^{\rm pn_3}$	$_{\rm pCH^+}$	рп ₂ оН-		6.2e-11	0.00	0.0
927	oCH₄	$_{\rm pH_2^+}^{\rm pH_3}$	$_{\rm oCH_{f}^{+}}$	oH ₂		5.4e-10	0.00	0.0
928	oCH_4	$_{\rm pH_3^+}$	$_{\rm oCH_5^+}$	$_{\rm pH_2}$		2.5e-10	0.00	0.0
929	oCH ₄	$_{\rm pH_3^+}$	mCH_5^+	$_{\rm oH_2}$		6.8e-10	0.00	0.0
930	oCH_4	$_{\rm pH_3^+}$	mCH_5^+	$_{\rm pH_2}$		3.7e-10	0.00	0.0
931	mCH_4	$_{oH_2D^+}$	pCH_5^+	HD		1.0e-09	0.00	0.0
932	mCH ₄	$^{\rm oH_2D^+}$	$_{\rm oCH_5^+}$	HD		6.8e-10	0.00	0.0
933	mCH ₄	$^{oH_2D^+}$	mCH ₅	HD		2.1e-10	0.00	0.0
934 035	mCH	рн ₂ D - ън D+	$_{\rm oCH}^+$	HD HD		3.8e-10	0.00	0.0
936	DCH.	$_{\rm oH_2D^+}$	oCH ⁺	HD		8.4e-10	0.00	0.0
937	pCH ₄ pCH₄	$_{oH_2D}^{oH_2D}$	mCH_{F}^{+}	HD		1.1e-09	0.00	0.0
938	pCH_4	$_{\rm pH_2D^+}$	mCH_5^+	HD		1.9e-09	0.00	0.0
939	$_{\rm oCH_4}$	$_{\rm oH_2D^+}$	$_{pCH_{5}^{+}}$	HD		2.1e-10	0.00	0.0
940	oCH_4	$_{0}H_{2}D^{+}$	$_{\rm oCH_5^+}$	HD		1.1e-09	0.00	0.0
941	oCH_4	$_{oH_2D^+}$	mCH_5^+	HD		5.6e-10	0.00	0.0
942	oCH ₄	$_{\rm pH_2D^+}$	$_{\rm oCH_5^+}$	HD		8.4e-10	0.00	0.0
943	oCH ₄	рн ₂ D⊤ ₀нр+	mCH ₅	HD PCH ⁺		1.1e-09	0.00	0.0
944 945	mCH	$_{\rm pHD}^+$	υD ₂ pD-	$_{\rm pCH_5}^+$		1.1e-09 1 1e.00	0.00	0.0
946	mCH.	$_{\rm oHD_2}^{\rm PHD_2}$	$_{\rm oD_2}$	oCH ⁺		7.6e-10	0.00	0.0
947	mCH₄	$_{\rm pHD_2}^+$	pD_{2}	$_{\rm oCH_{\epsilon}^{+}}$		7.6e-10	0.00	0.0
948	pCH_4^4	$_{\rm oHD_2^+}$	$_{\rm oD_2}$	mCH_5^+		1.9e-09	0.00	0.0
949	pCH_4	$_{\rm pHD_2^{\tilde{+}}}$	pD_2	mCH_5^+		1.9e-09	0.00	0.0
950	oCH_4	$_{\rm oHD_2^+}$	oD_2	$_{\rm oCH_5^+}$		1.3e-09	0.00	0.0
951	oCH_4	$_{\rm pHD_2^+}$	pD_2	$_{\rm oCH_5^+}$		1.3e-09	0.00	0.0
952	oCH ₄	$^{\mathrm{oHD}_2^+}$	oD ₂	mCH_5^+		6.3e-10	0.00	0.0
953 054	$_{\rm oCH_4}$	$_{oH}^{PHD_{2}^{+}}$	$_{CH^+}^{pD_2}$	mCH_5^+		6.3e-10 2.0c.00	0.00	0.0
954 955	č	$_{\rm pH_cD^+}$	CH+	HD		∠.0e-09 2.0e-09	0.00	0.0
956	č	oHD ⁺	oD.	CH^+		2.0e-09	0.00	0.0
957	С	$_{\rm pHD_2^4}$	pD_2	$_{\rm CH^+}$		2.0e-09	0.00	0.0
958	C_2	$_{\rm H^+}$ $$	C_2^+	н		3.1e-09	0.00	0.0
959	C_2H	He^+	C^+	CH	He	5.1e-10	0.00	0.0
960	C_2H	He^+	CH^+	C	He	5.1e-10	0.00	0.0
961	C ₂ H	He^+	C_2	H C ⁺	He	5.1e-10	0.00	0.0
962	O_2H	п	oH ₂	\cup_2		1.1e-09	0.00	0.0

Table D6 – continued (part 14)

#	Reactan	ts	Product	s		α	β	γ	
963	C-H	H+	рН.	C^+		3 7e-10	0.00	0.0	
964	C ₀ H	н+	CoH ⁺	H H		1.5e-09	0.00	0.0	
965	C-H	oH-D+	C-H ⁺	нр		1.00 00 1.7e-09	0.00	0.0	
966	C ₂ H	$_{\rm pH_2D^+}$	C ₂ H ₂ ⁺	HD		1.7e-09	0.00	0.0	
967	CoH	oHD ⁺	oDo	C _o H ⁺		1.7e-09	0.00	0.0	
968	C ₂ H	$_{\rm pHD_2^{+}}$	pD_{2}^{2}	$C_{2}H_{2}^{+}$		1.7e-09	0.00	0.0	
969	C ₂ H	He^+	C_2^+	H	He	2.0e-09	0.00	0.0	
970	C ₂ H	H^+	oHa	C_2^+		1.5e-09	0.00	0.0	
971	C ₂ H	H^+	pH ₂	C^+		5.0e-10	0.00	0.0	
972	C,H	H^+	$C_2 H^+$	H		2.0e-09	0.00	0.0	
973	С ₃ Н	$_{oH_{2}D^{+}}$	$C_{3}H_{2}^{+}$	HD		2.0e-09	0.00	0.0	
974	C ₃ H	$_{\rm pH_2D^+}$	$C_3H_2^{\mp}$	HD		2.0e-09	0.00	0.0	
975	C_3H	$_{\rm oHD_2^+}$	oD ₂	$C_3H_2^+$		2.0e-09	0.00	0.0	
976	$\tilde{C_3}H$	$_{\rm pHD_2^+}$	pD_2	$C_3H_2^+$		2.0e-09	0.00	0.0	
977	C_2H_2	He^+	CH^+	CH	He	7.7e-10	0.00	0.0	
978	C_2H_2	He^+	C_2H^+	Н	He	8.7e-10	0.00	0.0	
979	C_2H_2	He^+	$C_2H_2^+$	He		2.4e-10	0.00	0.0	
980	C_2H_2	H^+	C_2H_2	Н		2.0e-09	0.00	0.0	
981	C_3H_2	H^{+}	C_3H_2	H		2.0e-09	0.00	0.0	
982	$C_{3}H_{2}$	не '	C3H⊤ C	н v	не	1.0e-09	0.00	0.0	
983	CH+	е е	C	у Н		4.4e-12 1 5e 07	-0.01	0.0	
085	oCH ⁺	e ⁻	oH	C		1.00-07	-0.42	0.0	
986	$_{\rm pCH^+}$	e_	он ₂ рН-	č		1.2e-07	-0.50	0.0	
987	$_{\rm oCH^{\pm}}$	e_	CH	н		1.2e-07	-0.50	0.0	
988	$_{\rm pCH^+}^2$	e-	CH	Н		1.2e-07	-0.50	0.0	
989	oCH ⁺	e-	oHa	Н	С	3.0e-07	-0.30	0.0	
990	$_{\rm pCH_{2}^{+}}$	e ⁻	oH ₂	Н	C	1.5e-07	-0.30	0.0	
991	pCH ⁺	e^{-}	$_{\rm pH_2}$	н	С	1.5e-07	-0.30	0.0	
992	oCH ⁺	e^{-}	CH	н	н	1.6e-07	-0.30	0.0	
993	$_{\rm pCH_3^+}$	e	CH	Н	н	1.6e-07	-0.30	0.0	
994	$_{\circ CH_{3}^{+}}$	e^-	$_{0}H_{2}$	CH		1.4e-07	-0.30	0.0	
995	$_{\rm pCH_3^+}$	e ⁻	$_{\rm oH_2}$	CH		7.0e-08	-0.30	0.0	
996	$_{\rm pCH_3^+}$	e^-	$_{\rm pH_2}$	CH		7.0e-08	-0.30	0.0	
997	$_{\rm oCH_3^+}$	e ⁻	oCH_2	Н		4.0e-07	-0.30	0.0	
998	pCH_3^+	e ⁻	oCH_2	Н		2.0e-07	-0.30	0.0	
999	pCH_3^+	e^-	pCH_2	Н		2.0e-07	-0.30	0.0	
1000	mCH_4^+	e	oCH ₃	H		3.0e-07	-0.50	0.0	
1001	pCH_4^+	e .	pCH ₃	H		3.0e-07	-0.50	0.0	
1002	$-CU^+$	е 	-CII	H		1.0e-07	-0.50	0.0	
1003	DCH^+	е е ⁻	роп ₃	oH		2.0e-07 8.75.08	-0.30	0.0	
1004	$_{\rm oCH^+}$	e	oCH	oH		2 2e-08	-0.30	0.0	
1006	oCH [±]	e-	oCH_	DH		2.2e-08	-0,30	0.0	
1007	oCH ⁺	e-	pCH _a	oH.		4.4e-08	-0.30	0.0	
1008	mCH^+	e ⁻	oCH.	oHa		1.8e-08	-0.30	0.0	
1009	mCH+	e^{-}	pCH.	oH ₂		3.5e-08	-0.30	0.0	
1010	mCH+	e^{-}	pCH.	$_{\rm pH_2}^2$		3.5e-08	-0.30	0.0	
1011	pCH_5^{+}	e^{-}	mCH₄	Η		8.7e-08	-0.30	0.0	
1012	oCH ⁺	e^-	mCH ⁴	н		2.2e-08	-0.30	0.0	
1013	$_{\rm oCH_5^+}$	e ⁻	oCH ₄	Н		6.6e-08	-0.30	0.0	
1014	mCH_5^+	e^-	pCH_4	Н		3.5e-08	-0.30	0.0	
1015	mCH_5^+	e ⁻	oCH_4	Н		5.3e-08	-0.30	0.0	
1016	C_2^+	e ⁻	С	\mathbf{C}		3.0e-07	-0.50	0.0	
1017	C_2H^+	e	C_2	Н		1.4e-07	-0.50	0.0	
1018	$C_{2}H^{+}$	e	CH	С		1.4e-07	-0.50	0.0	
1019	$C_2H_2^+$	e	C ₂ H	H		1.5e-07	-0.50	0.0	
1020	$C_2 H_2$	е 	CH	CH		1.5e-07	-0.50	0.0	
1021	$C_2 H_3$	е -	С ₂ н ₂	п		3.Ue-U8	-0.50	0.0	
1022	С ₃ С-н+	е е	C_2	CH		3.00-07	-0.50	0.0	
1040	С ₃ н+	e_	C_2 C ₂ H	C		1.5e-07	-0.50	0.0	
1024	$C_{0}H_{2}^{+}$	e_	C ₂ H	н		1.5e-07	-0,50	0.0	
$1024 \\ 1025$	·····	~	C ₂ H	CH		1.5e-07	-0.50	0.0	
$1024 \\ 1025 \\ 1026$	$C_3H_2^+$	e	- 2			1.50.07	0.50	0.0	
1024 1025 1026 1027	$C_{3}H_{2}^{+}$ $C_{3}H_{2}^{+}$ $C_{3}H_{2}^{+}$	e ⁻	C ₂ H ₂	н		1.00-07	-0.30	0.0	
1024 1025 1026 1027 1028	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{2}^{+}$	e e ⁻	C_3H_2 C_2H_2	н СН		1.5e-07 1.5e-07	-0.50	0.0	
1024 1025 1026 1027 1028 1029	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C	е е ⁻ р 2	$\substack{\mathrm{C_3H_2}\\\mathrm{C_2H_2}\\\mathrm{C^+}}$	H CH e ⁻		1.5e-07 2.6e+02	-0.50 -0.50 0.00	0.0	
$1024 \\1025 \\1026 \\1027 \\1028 \\1029 \\1030$	$C_{3}H_{2}^{2}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C CH	e e ⁻ ½ ½	$C_{3}H_{2}$ $C_{2}H_{2}$ C^{+} C	н СН е ⁻ Н		1.5e-07 2.6e+02 1.1e+03	-0.50 -0.50 0.00 0.00	$0.0 \\ 0.0 \\ 0.0 \\ 0.0$	
$1024 \\1025 \\1026 \\1027 \\1028 \\1029 \\1030 \\1031$	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C CH CH CH	e e 12 12 12 12 12	$\substack{ \substack{\mathrm{C_3H_2}\\\mathrm{C_2H_2}\\\mathrm{C}^+\\\mathrm{C}\\\mathrm{CH}^+ }$	н СН е ⁻ Н е ⁻		$1.5e-07 \\ 1.5e-07 \\ 2.6e+02 \\ 1.1e+03 \\ 5.8e+02$	-0.50 -0.50 0.00 0.00 0.00	0.0 0.0 0.0 0.0	
1024 1025 1026 1027 1028 1029 1030 1031 1032	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C CH CH CH OCH_{2} OCH_{2}	e ⁻ e ⁻ ½ ½ ½	$\begin{array}{c} \mathrm{C_3H_2}\\ \mathrm{C_2H_2}\\ \mathrm{C^+}\\ \mathrm{C}\\ \mathrm{CH^+}\\ \mathrm{oH_2}\\ \mathrm{\cdots}\\ \mathrm{\cdots}\end{array}$	н СН е ⁻ Н С		1.5e-07 1.5e-07 2.6e+02 1.1e+03 5.8e+02 2.9e+02 2.9e+02	-0.50 -0.50 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1024	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C CH CH OCH_{2} pCH_{2} oCH_{2}	e ⁻ e ⁻ b b b b b	$\begin{array}{c} C_{3}H_{2}\\ C_{2}H_{2}\\ C^{+}\\ C\\ CH^{+}\\ oH_{2}\\ pH_{2}\\ cH \end{array}$	н СН е ⁻ Н е ⁻ С С		1.5e-07 $1.5e-07$ $2.6e+02$ $1.1e+03$ $5.8e+02$ $2.9e+02$ $2.9e+02$ $2.8e+02$	$ \begin{array}{c} -0.50 \\ -0.50 \\ 0.00 \\$	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
$1024 \\ 1025 \\ 1026 \\ 1027 \\ 1028 \\ 1029 \\ 1030 \\ 1031 \\ 1032 \\ 1033 \\ 1034 \\ 1035 \\ 1035 \\ 1024 \\ 1025 \\ $	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C CH CH OCH_{2} pCH_{2} oCH_{3} pCH_{-}	e ⁻ e ⁻ ກ ກ ກ ກ ກ ກ ກ ກ	$\begin{array}{c} C_{3}H_{2}\\ C_{2}H_{2}\\ C^{+}\\ C\\ CH^{+}\\ oH_{2}\\ pH_{2}\\ oH_{2}\\ oH_{2} \end{array}$	н СН е ⁻ Н с С С С С С С Н		1.5e-07 $2.6e+02$ $1.1e+03$ $5.8e+02$ $2.9e+02$ $2.9e+02$ $2.8e+02$ $1.4e+02$	$\begin{array}{c} -0.30\\ -0.50\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	
$1024 \\ 1025 \\ 1026 \\ 1027 \\ 1028 \\ 1029 \\ 1030 \\ 1031 \\ 1032 \\ 1033 \\ 1034 \\ 1035 \\ 1036 \\ 1036 \\ 1036 \\ 1036 \\ 1025 \\ 1036 \\ 1026 \\ 1025 \\ 1036 \\ 1026 \\ 1025 \\ 1026 \\ $	$C_{3}H_{2}^{+}$ $C_{3}H_{3}^{+}$ $C_{3}H_{3}^{+}$ C C C C C C C C	e e '2 '2 '2 '2 '2 '2 '2 '2 '2 '2	$\begin{array}{c} \mathrm{C_3H_2}\\ \mathrm{C_2H_2}\\ \mathrm{C^+}\\ \mathrm{C}\\ \mathrm{CH^+}\\ \mathrm{oH_2}\\ \mathrm{pH_2}\\ \mathrm{oH_2}\\ \mathrm{oH_2}\\ \mathrm{pH_2}\\ \mathrm{oH_2}\\ \mathrm{pH_2} \end{array}$	н СН е ⁻ Н е ⁻ С С С С С С Н С Н С Н		$\begin{array}{c} 1.5e{-}07\\ 1.5e{-}07\\ 2.6e{+}02\\ 1.1e{+}03\\ 5.8e{+}02\\ 2.9e{+}02\\ 2.9e{+}02\\ 2.8e{+}02\\ 1.4e{+}02\\ 1.4e{+}02\\ \end{array}$	$\begin{array}{c} -0.30\\ -0.50\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	

Table D6 – continued (part 15)

#	Reactan	ts	Product	s		α	β	γ
1037	oCHa	25	$_{\rm oCH_{o}^{+}}$	e^{-}		3.8e + 02	0.00	0.0
1038	DCH.	72 Ya	DCH ⁺	e ⁻		3.8e + 02	0.00	0.0
1039	mCH4	72 Vo	oCH _o	н		1.5e+03	0.00	0.0
1040	pCH ₄	12 Y2	pCH ₂	Н		1.5e + 03	0.00	0.0
1041	oCH ₄	γ <u>2</u>	oCH ₃	Н		5.0e + 02	0.00	0.0
1042	$_{\rm oCH}_{4}^{+}$	γ2	pCH ₃	н		1.0e+03	0.00	0.0
1043	mCH_{4}	12	mCH_4^+	e^{-}		2.2e + 01	0.00	0.0
1044	pCH₄	Y	$_{\rm pCH_4^+}$	e^{-}		2.2e + 01	0.00	0.0
1045	oCH ₄	Y	$_{\rm oCH_4^+}$	e^{-}		2.2e + 01	0.00	0.0
1046	CH^{+}	12	C	H^+		2.2e + 02	0.00	0.0
1047	$_{\rm oCH_2^+}$	Y2	CH^+	Н		8.9e + 01	0.00	0.0
1048	pCH_2^+	γ2	CH^+	н		8.9e + 01	0.00	0.0
1049	mCH_4^+	Y2	oCH_3^+	Н		2.7e + 01	0.00	0.0
1050	pCH_4^+	γ2	pCH_3^+	Н		2.7e + 01	0.00	0.0
1051	$_{oCH_4^+}$	γ2	$_{\circ CH_3^+}$	н		9.0e + 00	0.00	0.0
1052	$_{oCH_4^+}$	γ2	pCH_3^+	н		1.8e + 01	0.00	0.0
1053	C_2	γ2	С	\mathbf{C}		1.8e + 02	0.00	0.0
1054	C_2	γ2	C_2^+	e^-		2.5e+02	0.00	0.0
1055	C_2H	γ2	C_2	Η		1.1e+03	0.00	0.0
1056	C_2H_2	γ2	C_2H	Η		3.5e + 03	0.00	0.0
1057	C_2H_2	γ2	$C_2H_2^+$	e ⁻		3.8e + 02	0.00	0.0
1058	C ₃	Y2	C_2	С		6.9e + 03	0.00	0.0
1059	C ₃ H	Y2	C ₃	H		3.0e+03	0.00	0.0
1061	$C_{3}^{H_{2}}$	72 Cr	C_3^H	п		3.4e+03	0.00	0.0
1062	C ⁺	Gr ⁻	Gr	C		4.00-07 4.6e 07	0.50	0.0
1063	C^+	mCH	С. н+	0H		3 30-10	0.00	0.0
1064	\tilde{c}^+	DCH	C-H ⁺	0H2		1.6e-10	0.00	0.0
1065	\tilde{c}^+	pCH	$C_{-}H^{+}$	DH		1.6e-10	0.00	0.0
1066	C^+	oCH	C_{1}^{2}	oH		2 2e-10	0.00	0.0
1067	C ⁺	oCH	C_{2}^{112}	DH2		1 1e-10	0.00	0.0
1068	Сн	$_{\rm oH^+}$	C_{1}^{2}	oH		1.5e-09	0.00	0.0
1069	C H	он ³	C_{1}^{2}	DH		2 1e-10	0.00	0.0
1070	C H	лн ⁺	C_{1}^{2}	oH		1 1e-09	0.00	0.0
1070	C H	ри ₃ ън+	C_{2}^{112}	DH2		6.4e-10	0.00	0.0
1072	C H	oH ⁺	C_{1}^{2}	oH		1 7e-09	0.00	0.0
1072	C H	он ³	C_{3}^{112}	DH2		2.5e-10	0.00	0.0
1073	C H	лн ⁺	C_{3}^{112}	oH		1 3e-09	0.00	0.0
1074	Сн	риз ън ⁺	С н ⁺	DH		7.5e-10	0.00	0.0
1076	с н+	oH	С н ⁺	н н		1.0e-09	0.00	500.0
1077	С н+	DH2	C_{3}^{112}	н		1.0e-09	0.00	500.0
1078	N N	CRP	N^{+}	e_		$2.1e \pm 00$	0.00	0.0
1079	N	NH	No	Ĥ		5.0e-11	0.10	0.0
1080	Ν	oNH ₂	н ²	н	N_{2}	1.2e-10	0.00	0.0
1081	Ν	pNH_2	Н	Н	N_2	1.2e-10	0.00	0.0
1082	N^+	HD	ND^+	н	2	4.2e-10	0.00	0.0
1083	N_2^+	oH_2	N_2H^+	Η		2.0e-09	0.24	0.0
1084	N_2^+	pH_2	N_2H^+	Η		2.0e-09	0.24	0.0
1085	$_{\rm NH^+}$	oH_2	$_{\rm oNH_2^+}$	Η		1.1e-09	0.00	0.0
1086	$_{\rm NH^+}$	$_{oH_2}$	$_{\rm pNH_2^+}$	Η		2.1e-10	0.00	0.0
1087	$_{\rm NH^+}$	$_{\rm pH_2}$	$_{\rm oNH_2^+}$	Η		6.4e-10	0.00	0.0
1088	$_{\rm NH^+}$	pH_2	$_{\rm pNH_2^+}$	Η		6.4e-10	0.00	0.0
1089	$_{\rm NH^+}$	$_{oH_2}$	$_{0}H_{3}^{+}$	Ν		1.5e-10	0.00	0.0
1090	$_{\rm NH^+}$	$_{0}$ oH $_{2}$	$_{\rm pH_3^+}$	Ν		7.5e-11	0.00	0.0
1091	$_{\rm NH^+}$	$_{\rm pH_2}$	$_{pH_3^+}$	N		2.2e-10	0.00	0.0
1092	NH ⁺	Н	$_{oH_2}$	N^+		4.9e-10	0.00	0.0
1093	NH ⁺	Н	$_{pH_2}$	N^+		1.6e-10	0.00	0.0
1094	N_2H^+	$_{o}NH_{3}$	mNH_4^+	N_2		1.4e-09	0.00	0.0
1095	N_2H^+	$_{0}$ NH $_{3}$	$_{0}NH_{4}^{+}$	N_2		8.6e-10	0.00	0.0
1096	N_2H^+	$_{pNH_3}$	$_{\rm pNH_4^+}$	N_2		5.7e-10	0.00	0.0
1097	N_2H^+	pNH ₃	$_{\rm oNH_4^+}$	N ₂		1.7e-09	0.00	0.0
1098	N_2H^+	D	N_2D^+	Н		1.0e-09	0.00	0.0
1100		он ₂	oNH3	H		1.8e-10	0.00	0.0
1100		он ₂	pinH ₃	н		9.0e-11	0.00	0.0
1101		рн ₂	onH3	н		9.0e-11	0.00	0.0
1102	$_{-NII}^{ONH_2^{\prime}}$	рн ₂	pNH ₃	н		1.8e-10	0.00	0.0
1103	$_{\rm pNH_2^+}$	он ₂	onn3	n T		9.0e-11	0.00	0.0
1104	$_{\rm pNH_2^+}$	оп ₂	$_{\rm pNH_3^+}$	п		1.8e-10 9.7-10	0.00	0.0
1105	$_{\rm pNH_2^+}$	рн ₂	pinH ₃ NII+	н		2.7e-10	0.00	0.0
1105	onn ₃	он ₂	mnH_4	n T		1.4e-12	0.00	0.0
1107	onH3	оп ₂	$_{oNU}^{pNH_4}$	п		1.00-13	0.00	0.0
1108	oNu+	оп ₂ ъН	mNu+	л Н		0.40-13 6 0o 12	0.00	0.0
1110	oNU ⁺	рп ₂	$_{oNU}^{mNH_4}$	л Ч		0.00-13	0.00	0.0
1110	onu ³	^{рп} 2	unn ₄	п		1.0e-12	0.00	0.0

Table D6 – continued (part 16)

#	Reactants		Products		α	β	γ
1111	pNH ⁺	oHa	mNH ⁺	Н	4.0e-13	0.00	0.0
1112	pNH ⁺	oH ₂	$_{\rm pNH_4^+}$	Н	3.2e-13	0.00	0.0
1113	$_{\rm pNH_3^+}$	$_{0H_{2}}$	$_{\rm oNH_4^{\pm}}$	Н	1.7e-12	0.00	0.0
1114	$_{\rm pNH_3^+}$	pH_2	$_{\rm pNH_4^+}$	Η	9.6e-13	0.00	0.0
1115	$_{\rm pNH_3^+}$	pH_2	$_{\rm oNH_4^+}$	Η	1.4e-12	0.00	0.0
1116	ND ⁺	oH ₂	NHD ⁺	H	1.3e-09	0.00	0.0
1117	ND ⁺	pH ₂	NHD '	H N	1.3e-09 2.2e-10	0.00	0.0
1110	ND ⁺	DH ₂	$_{\rm pH_2D^+}$	N	2.2e-10 2.2e-10	0.00	0.0
1120	ND^+	HD	NHD ⁺	D	6.3e-10	0.00	0.0
1121	ND^+	HD	$_{\rm oND_2^+}$	Н	4.2e-10	0.00	0.0
1122	ND ⁺	HD	$_{\rm pND_2^+}$	Η	2.1e-10	0.00	0.0
1123	N_2D^+	Н	N_2H^+	D	1.0e-09	0.00	170.0
1124	N_2D^+	oNH ₃	oNH ₃ D⊤	N ₂	2.3e-09	0.00	0.0
1125	N_2D^+ NHD ⁺	oH _o	$_{0}NH_{0}D^{+}$	H ¹ 2	2.3e-09 2.2e-10	0.00	0.0
1127	NHD ⁺	oH ₂	$_{\rm pNH_2D^+}$	Н	4.5e-11	0.00	0.0
1128	$\rm NHD^+$	$_{\rm pH_2}$	$_{\rm oNH_2D^+}$	Η	1.3e-10	0.00	0.0
1129	NHD+	$_{\rm pH_2}$	$_{\rm pNH_2D^+}$	Η	1.3e-10	0.00	0.0
1130	NHD ⁺	HD	$_{\rm oNH_2D^+}$	D	1.0e-10	0.00	0.0
1131	NHD ⁺	нD НD	$_{oNHD}^{+}$	р н	3.4e-11 9.0e.11	0.00	0.0
1132	NHD ⁺	HD	DNHD ⁺	H	9.0e-11 4 5e-11	0.00	0.0
1134	oND ⁺	oHa	oNHD ⁺	н	2.7e-10	0.00	0.0
1135	pND ⁺	oH ₂	pNHD ⁺	н	2.7e-10	0.00	0.0
1136	oND ₂	pH_2^2	oNHD2	Н	2.7e-10	0.00	0.0
1137	pND_2^{1}	$_{\rm pH_2}$	$_{\rm pNHD_2^+}$	н	2.7e-10	0.00	0.0
1138	$_{\mathrm{oND}_{2}^{\tilde{+}}}$	HD	$_{ m oNHD}_2^{ m \tilde{+}}$	D	1.0e-10	0.00	0.0
1139	$_{oND_2}^{+}$	HD	$_{\rm pNHD_2^+}$	D	3.0e-11	0.00	0.0
1140	$_{\rm pND_2^+}$	HD	$_{\rm oNHD_2^+}$	D	6.0e-11	0.00	0.0
1141	$_{\rm pND_2^+}$	HD	$_{\rm pNHD_2^+}$	D	7.5e-11	0.00	0.0
1142	oND ₂	HD	mND_3	H	7.5e-11	0.00	0.0
1143	oND ₂	HD	oND3	H	6.0e-11	0.00	0.0
1144	PND ₂	HD	pND ₃	H	1.5e-11	0.00	0.0
1145	$_{\rm oNH-D^+}$	oH-	oNH ₂ D ⁺	H	1.2e-10 1.6e-12	0.00	0.0
1147	$_{\rm oNH_2D^+}$	oH ₂	$_{\rm pNH_3D^+}$	Н	8.0e-13	0.00	0.0
1148	$_{\rm oNH_2D^+}$	pH_2	_{oNH₃D⁺}	Н	8.0e-13	0.00	0.0
1149	$_{\rm oNH_2D^+}$	pH_2	$_{\rm pNH_3D^+}$	Η	1.6e-12	0.00	0.0
1150	$_{\rm pNH_2D^+}$	$_{oH_2}$	oNH ₃ D ⁺	Н	8.0e-13	0.00	0.0
1151	$_{\rm pNH_2D^+}$	оН ₂	$_{-NU}^{PNH_3D^+}$	H	1.6e-12	0.00	0.0
1152	$_{0}NH_{2}D^{+}$	$^{\rm pm_2}_{\rm HD}$	$_{0}NH_{2}D^{+}$	D	2.4e-12 8.0e-13	0.00	0.0
1154	$_{\rm oNH_2D^+}$	HD	$_{\rm pNH_3D^+}$	D	4.0e-13	0.00	0.0
1155	$_{\rm pNH_2D^+}$	HD	$_{\rm pNH_3D^+}$	D	1.2e-12	0.00	0.0
1156	$_{o}NH_{2}D^{+}$	HD	$_{00}NH_2D_2^+$	Η	6.7e-13	0.00	0.0
1157	$_{oNH_2D^+}$	HD	$_{poNH_2D_2^+}$	Η	3.3e-13	0.00	0.0
1158	$_{oNH_2D^+}$	HD	$_{\rm opNH_2D_2^+}$	Н	1.3e-13	0.00	0.0
1159	$_{0}NH_{2}D^{+}$	HD	$ppNH_2D_2$	H	6.7e-14	0.00	0.0
1160	$_{\rm PNH_2D^+}$	HD	$_{-NU}^{OONH_2D_2}$	H	4.0e-13	0.00	0.0
1162	$_{\rm pNH}^{\rm pNH}$ D ⁺	нD НD	$_{\rm opNH} D^+$	п ц	2.0e-13	0.00	0.0
1163	$_{\rm pNH_2D^+}$	HD	$_{\rm DDNH_2D_2}^{\rm DDNH_2D_2}$	н	2.0e-13	0.00	0.0
1164	oNHD ⁺	oHa	ooNH _a D ⁺	н	2.0e-12	0.00	0.0
1165	$_{\rm pNHD_2^+}$	oH ₂	$_{\rm poNH_2D_2^+}$	Н	2.0e-12	0.00	0.0
1166	$_{\rm oNHD_2^{\hat{+}}}$	$_{\rm oH_2}$	$_{\rm opNH_2D_2^+}$	Н	4.0e-13	0.00	0.0
1167	$_{\rm pNHD_2^+}$	oH ₂	$_{\rm ppNH_2D_2^+}$	Η	4.0e-13	0.00	0.0
1168	$_{\rm oNHD_2^+}$	pH_2	$_{00}NH_2D_2^+$	Η	1.2e-12	0.00	0.0
1169	$_{\rm pNHD_2^+}$	$_{\rm pH_2}$	$_{poNH_2D_2^+}$	Η	1.2e-12	0.00	0.0
1170	$_{0NHD_{2}^{+}}$	$_{\rm pH_2}$	$^{\text{opNH}}_{2}\text{D}_{2}^{+}$	H	1.2e-12	0.00	0.0
1171	pNHD ₂	pH ₂	$_{\text{ppNH}_2\text{D}_2^+}$	H	1.2e-12	0.00	0.0
1172	oNHD ₂	HD	$OONH_2D_2$	D	7.0e-13	0.00	0.0
1174	$_{\rm DNHD}^{-1}$	нр	$_{00}NH D^+$	D	2.0e-13	0.00	0.0
1175	$_{\rm pNHD}^{\rm PNHD}_2$	нр	$_{\rm poNH} D^+$	D	4.0e-13 5.0e-13	0.00	0.0
1176	oNHD ⁺	HD	opNH _a D ⁺	D	2.3e-13	0.00	0.0
1177	oNHD	HD	ppNH _a D ⁺	D	6.7e-14	0.00	0.0
1178	$_{\rm pNHD_2^4}$	HD	$_{\rm opNH_2D_2^+}$	D	1.3e-13	0.00	0.0
1179	$_{\rm pNHD_2}^{\mp}$	HD	$ppNH_2D_2^+$	D	1.7e-13	0.00	0.0
1180	$_{ m oNHD}_2^{ m \tilde{+}}$	HD	$_{\rm mNHD_3^+}$	Н	6.7e-13	0.00	0.0
1181	$_{\rm oNHD}^+_2$	HD	$_{\rm oNHD}^+_3$	Н	5.3e-13	0.00	0.0
1182	$_{\rm pNHD_2^+}$	HD	$_{\rm pNHD_3^+}$	Н	1.3e-13	0.00	0.0
1183	$_{\rm pNHD_2^+}$	HD	$_{0}NHD_{3_{\perp}}^{+}$	Н	1.1e-12	0.00	0.0
1184	mND_3^{+}	oH_2	$mNHD_3^{+}$	н	2.4e-12	0.00	0.0

Table D6 – continued (part 17)

#	Reactan	ts	Products			α	β	γ
1105	-ND ⁺	- 11	-NUD+			9.4-19	, ,	,
1185	oND ⁺	oH ₂	pNHD ₃	H U		2.4e-12	0.00	0.0
1187	mND^+	DH	$_{\rm mNHD^+}$	п ц		2.4e-12 2.4e-12	0.00	0.0
1188	$_{\rm DND^+}$	pH ₂	DNHD ⁺	н		2.46-12	0.00	0.0
1189	oND ⁺	pH ₂	oNHD ⁺	н		2.4e-12 2.4e-12	0.00	0.0
1190	mND_{2}^{+}	HD	mNHD ⁺	D		8.0e-13	0.00	0.0
1191	mND_{2}^{+}	HD	oNHD ⁺	D		4.0e-13	0.00	0.0
1192	pND_2^+	HD	pNHD ²	D		4.0e-13	0.00	0.0
1193	$_{\rm pND_3^+}$	HD	oNHD ₃	D		8.0e-13	0.00	0.0
1194	$_{\rm oND_3^+}$	HD	$mNHD_3^+$	D		2.5e-13	0.00	0.0
1195	$_{\rm oND_3^+}$	HD	$_{\rm pNHD_3^+}$	D		5.0e-14	0.00	0.0
1196	$_{\rm oND_3^+}$	HD	$_{ m oNHD}^+_3$	D		9.0e-13	0.00	0.0
1197	mND_3^+	HD	IND_4^+	Н		6.0e-13	0.00	0.0
1198	mND_3^+	HD	$_{\rm oND_4^+}$	Н		6.0e-13	0.00	0.0
1199	pND_3^+	HD	$_{\rm pND_4^+}$	H		1.2e-12	0.00	0.0
1200	oND3	HD	mND_4	H		3.0e-13	0.00	0.0
1201	oND3	HD	oND4	H		7.5e-13	0.00	0.0
1202	ond ₃	нD -11 ⁺	$_{4}^{\text{pND}_{4}}$	H TT		1.5e-13	0.00	0.0
1203	IN N	$_{nu^+}^{OH_3}$	oNH ₂	H U		0.0e+00	0.00	0.0
1204	N	$_{\rm pH_3}$	DNH ⁺	н		0.0e+00	0.00	0.0
1200	No	0H ⁺	oH ₂	N _o H ⁺		1 3e-09	0.00	0.0
1200	N ₂	$_{\rm pH_2^+}$	oH ₂	$N_{2}H^{+}$		6.5e-10	0.00	0.0
1208	N_2^2	$_{\rm pH_2^+}$	pH_2^2	N_2H^+		6.5e-10	0.00	0.0
1209	NĤ	He^+	N+	н	He	1.1e-09	0.00	0.0
1210	NH	н+	NH ⁺	Н		2.1e-09	0.00	0.0
1211	NH	$_{0}H_{3}^{+}$	$_{2}^{\text{oNH}_{2}^{+}}$	$_{oH_2}$		9.8e-10	0.00	0.0
1212	NH	$_{0}H_{3}^{+}$	$_{0}NH_{2}^{+}$	pH_2		1.6e-10	0.00	0.0
1213	NH	$_{0H_{3}^{+}}$	$_{\text{pNH}_2^+}$	oH ₂		1.6e-10	0.00	0.0
1214	NH	$_{pH_3}$	oNH ₂	oH ₂		4.9e-10	0.00	0.0
1215	NH	$_{11}^{\text{pH}_3}$	oNH ₂	pH ₂		3.3e-10	0.00	0.0
1210	NH	pH ₃	$_{\rm pNH_2}^{\rm pNH_2}$	oH ₂		3.3e-10	0.00	0.0
1217	oNHa	He^+	$^{\text{pNII}_2}_{\text{NH}^+}$	н Н	He	8.0e-10	0.00	0.0
1210	pNH ₂	He^+	NH ⁺	Н	He	8.0e-10	0.00	0.0
1220	oNH ₂	$_{\rm He}^+$	oH_2	N^+	He	8.0e-10	0.00	0.0
1221	pNH_2	He^+	pH_2	N^+	He	8.0e-10	0.00	0.0
1222	$_{o}NH_{2}$	H^+	$_{0NH_2^+}$	Н		2.9e-09	0.00	0.0
1223	pNH_2	H^+	$_{\rm pNH_2^+}$	Н		2.9e-09	0.00	0.0
1224	$_{oNH_2}$	$_{0H_{3}^{+}}$	$_{\rm oNH_3^+}$	oH ₂		1.1e-09	0.00	0.0
1225	oNH ₂	$^{\rm oH_3^+}$	$_{\rm oNH_3^+}$	pH ₂		1.5e-10	0.00	0.0
1226	oNH ₂	oH ₃	pNH ₃	^{oH} 2		4.2e-10	0.00	0.0
1227	DNH2	oH ₃	$_{oNH}^{\text{pNH}_3}$	pH ₂		1.2e-10 4.5a 10	0.00	0.0
1220	pNH ₂	он ₃	oNH ⁺	DH2		4.5e-10	0.00	0.0
1223	pNH ₂	0H ⁺	DNH ⁺	оН-		9.0e-10	0.00	0.0
1231	oNH _o	pH ⁺	oNH ⁺	oH ₂		4.2e-10	0.00	0.0
1232	oNH ₂	$_{\rm pH_2^+}$	oNH ³	$_{\rm pH_2}^2$		3.0e-10	0.00	0.0
1233	oNH2	$_{\rm pH_3^+}$	$_{\rm pNH_3^+}$	oH ₂		8.4e-10	0.00	0.0
1234	$_{\rm oNH_2}$	$_{\rm pH_3^+}$	$_{\rm pNH_3^+}$	pH_2		2.4e-10	0.00	0.0
1235	pNH_2	$_{\rm pH_3^+}$	$_{\rm oNH_3^+}$	oH ₂		3.6e-10	0.00	0.0
1236	pNH_2	$_{pH_3^+}$	$_{\rm pNH_3^+}$	$_{0}H_{2}$		7.2e-10	0.00	0.0
1237	pNH_2	$_{pH_{3}^{+}}$	$_{\rm pNH_3^+}$	$_{\rm pH_2}$		7.2e-10	0.00	0.0
1238	oNH ₃	He^+	$_{0}^{\rm NH_3^+}$	He		2.6e-10	0.00	0.0
1239	pNH ₃	He ⁺	$_{\rm pNH_3^+}$	He		2.6e-10	0.00	0.0
1240	oNH ₃	He^+	oNH_2^+	H	He	1.8e-09	0.00	0.0
1241	pinh ₃	He⊤ u_+	oNH ₂	H U	He U-	8.8e-10	0.00	0.0
1242	oNH 0NH	пе – He+	oH-	л NH+	пе Не	0.8e-10 1.8o 10	0.00	0.0
1243	DNH ₃	He ⁺	oH ₂	NH ⁺	Не	8.8e-11	0.00	0.0
1245	pNH ₂	He^+	pH ₂	NH ⁺	He	8.8e-11	0.00	0.0
1246	oNH ₃	H^+	$_{\rm oNH_3}^{-1}$	Н		5.2e-09	0.00	0.0
1247	$_{\rm pNH_3}$	H^+	$_{\rm pNH_3^+}$	Н		5.2e-09	0.00	0.0
1248	oNH ₃	$_{\rm oH_3^+}$	mNH_4^+	oH_2		4.7e-09	0.00	0.0
1249	$_{0}$ NH $_{3}$	$_{0}H_{3}^{+}$	mNH_4^+	$_{\rm pH_2}$		5.7e-10	0.00	0.0
1250	$_{0}$ NH $_{3}$	$_{0}H_{3}^{+}$	$_{\rm pNH_4^+}$	$_{oH_2}$		3.8e-10	0.00	0.0
1251	oNH ₃	$_{0}H_{3}^{+}$	$_{\rm pNH_4^+}$	$_{\rm pH_2}$		2.3e-10	0.00	0.0
1252	oNH ₃	$^{\rm oH_3^+}$	$_{\rm oNH_4^+}$	oH ₂		2.6e-09	0.00	0.0
1253	oNH ₃	оН ₃ -11 ⁺	$_{4}^{\text{oNH}'}$	pH ₂		5.7e-10	0.00	0.0
1254	onH ₃	рн ₃	mNH_4	oH ₂		1.5e-09	0.00	0.0
1255	oNH3	рн ₃ ън+	$_{\rm DNH^+}$	рп ₂		1.1e-09 7.6o 10	0.00	0.0
1250	oNH	рн ³	oNH ⁺	oH-		4 6e-09	0.00	0.0
1258	oNH.	$_{\rm pH_{a}^{+}}$	$_{\rm oNH_4^+}$	pH ₂		1.1e-09	0.00	0.0
	3	- 3	4	• 2				-

Table D6 – continued (part 18)

#	Reacta	nts	Products		α	в	γ
1250	DNH		mNH ⁺	о ^ц	1.50.00	0.00	,
1209	pNH ₃	$^{011}_{3}$	mNH^+	DH2	1.5e-09	0.00	0.0
1200	pNH ₃	$^{011}_{3}$	$_{\rm DNH^+}$	oH	7.6e 10	0.00	0.0
1262	pNH ₃	$_{\rm oH^+}$	$_{\rm oNH^+}$	oH	4.6e-09	0.00	0.0
1262	pNH ₃	0H3 0H2	$_{\rm oNH^+}$	pH ₂	1.1e-09	0.00	0.0
1264	pNH _o	$_{\rm pH_{2}^{+}}$	mNH ⁺	oH _o	7.6e-10	0.00	0.0
1265	pNH _o	$_{\rm pH_{2}^{+}}$	pNH ⁺	oHo	1.5e-09	0.00	0.0
1266	pNH ₂	$_{\rm pH_2^+}$	pNH ⁴	pH	9.1e-10	0.00	0.0
1267	pNH ₂	$_{\rm pH_2^+}$	oNH ⁴	oH ₂	3.6e-09	0.00	0.0
1268	pNH ₂	$_{\rm pH_2^+}^{\rm r}$	oNH ⁴	pH ₂	2.3e-09	0.00	0.0
1269	NH	oH ₂ D ⁺	oNH ⁺	HD	7.2e-10	0.00	0.0
1270	NH	$_{oH_{2}D^{+}}$	$_{\rm pNH_2^+}$	HD	1.4e-10	0.00	0.0
1271	NH	pH_2D^+	$_{\rm oNH_2^{\overline{+}}}$	HD	4.3e-10	0.00	0.0
1272	NH	$_{\rm pH_2D^+}$	$_{\rm pNH_2^+}$	HD	4.3e-10	0.00	0.0
1273	NH	$_{oH_2D^+}$	oH_2	NHD ⁺	3.6e-10	0.00	0.0
1274	NH	$^{\rm oH_2D^+}$	pH ₂	NHD ⁺	7.2e-11	0.00	0.0
1275	NH	$_{\rm pH_2D^+}$	^{oH} ₂	NHD ⁺	2.2e-10	0.00	0.0
1276	NH	$_{\rm PH_2D'}$	pH ₂	NHD '	2.2e-10	0.00	0.0
1277	NH	$_{\rm HD_2^+}$	oD ₂	oNH ₂	3.2e-10	0.00	0.0
1278	NH	$_{\rm rup}^{\rm phD_2}$	pD_2	$-NII^{\pm}$	3.2e-10	0.00	0.0
1279	NII	$-11D^{\pm}$	0D ₂	$_{-NII}^{pNH_2}$	1.1e-10	0.00	0.0
1280	NH	$_{\rm oup}^{\rm phD_2}$	pD_2	рмп ₂ чр	1.1e-10 8 7a 10	0.00	0.0
1201	NU	$_{\rm pHD}^+$	NHD ⁺	IID	8.7e-10 8.7e 10	0.00	0.0
1282	NH	mD^+	oD	NHD ⁺	1 30 00	0.00	0.0
1284	NH	$_{\rm nD_3}^+$	D_2	NHD ⁺	1.3e-09	0.00	0.0
1285	NH	$_{0}D_{3}^{+}$	pD_2	NHD ⁺	6.5e-10	0.00	0.0
1286	NH	0D_3	D_2	NHD ⁺	6.5e-10	0.00	0.0
1287	oNHa	$_{\rm oH_2D^+}$	$_{\rm oNH^+}$	HD	8.0e-10	0.00	0.0
1288	oNH _o	oH ₂ D ⁺	DNH ⁺	HD	4.0e-10	0.00	0.0
1289	oNH ₂	$_{\rm pH_2D^+}$	oNH ⁺	HD	4.0e-10	0.00	0.0
1290	oNH ₂	$_{\rm pH_{2}D^{+}}$	pNH ⁺	HD	8.0e-10	0.00	0.0
1291	pNH_2^2	$_{\rm oH_2D^+}$	oNH ⁺	HD	4.0e-10	0.00	0.0
1292	pNH ₂	$_{\rm oH_2D^+}$	pNH ²	HD	8.0e-10	0.00	0.0
1293	pNH ₂	$_{pH_{2}D^{+}}$	$_{\rm pNH_3^+}$	HD	1.2e-09	0.00	0.0
1294	oNH ₂	$_{\rm oH_2D^+}$	$_{\rm oNH_2D^+}$	oH_2	4.3e-10	0.00	0.0
1295	$_{oNH_2}$	$_{oH_{2}D^{+}}$	$_{0}NH_{2}D^{+}$	$_{\rm pH_2}$	6.7e-11	0.00	0.0
1296	$_{o}NH_{2}$	$_{0}H_{2}D^{+}$	$_{\rm pNH_2D^+}$	oH_2	6.7e-11	0.00	0.0
1297	oNH ₂	$^{\rm oH_2D^+}$	$_{\rm pNH_2D^+}$	pH ₂	3.3e-11	0.00	0.0
1298	oNH ₂	$_{\rm pH_2D^+}$	$_{oNH_2D^+}$	oH ₂	2.0e-10 2.0e-10	0.00	0.0
1299	oNH	$_{\rm pH_2D^+}$	$_{\rm DNH}^{\rm ONH}$ D ⁺	oH	2.0e-10 2.0e-10	0.00	0.0
1301	pNH ₂	$_{\rm oH_2D^+}$	oNH ₂ D ⁺	oH ₂	2.0e-10	0.00	0.0
1302	pNH ₂	$_{\rm oH_2D^+}$	oNH ₂ D ⁺	pH ₂	2.0e-10	0.00	0.0
1303	pNH_2	$_{\rm oH_2D^+}$	$_{\rm pNH_2^2D^+}$	oH ₂	2.0e-10	0.00	0.0
1304	pNH_2	$_{\rm pH_2D^+}$	$_{\rm oNH_2D^+}$	oH_2	3.0e-10	0.00	0.0
1305	pNH_2	$_{\rm pH_2D^+}$	$_{\rm pNH_2D^+}$	$_{\rm pH_2}$	3.0e-10	0.00	0.0
1306	oNH_2	$_{\rm oHD_2^+}$	oD_2	$_{0}NH_{3}^{+}$	4.0e-10	0.00	0.0
1307	oNH_2	$_{\rm pHD_2^+}$	pD_2	$_{0}NH_{3}^{+}$	4.0e-10	0.00	0.0
1308	$_{o}NH_{2}$	$_{\rm oHD_2^+}$	oD_2	$_{\rm pNH_3^+}$	2.0e-10	0.00	0.0
1309	$_{o}NH_{2}$	$_{\rm pHD_2^+}$	pD_2	$_{\rm pNH_3^+}$	2.0e-10	0.00	0.0
1310	pNH_2	$^{\rm oHD_2^+}$	oD_2	$_{\rm pNH_3^+}$	6.0e-10	0.00	0.0
1311	pNH_2	$_{\rm pHD_2^+}$	pD_2	pNH ₃	6.0e-10	0.00	0.0
1312	oNH ₂	$^{\text{oHD}_2^+}$	$_{0NH_2D^+}$	HD	1.0e-09	0.00	0.0
1313	oNH ₂	$_{\rm pHD_2^+}$	$_{0NH_2D^+}$	HD	1.0e-09	0.00	0.0
1314	oNH ₂	$_{\rm HD_2^+}$	$_{\rm pNH_2D^+}$	HD	2.0e-10	0.00	0.0
1315	ONH ₂	$_{\rm HD_2}^{\rm pHD_2}$	$_{\rm NH_2D^+}$	HD	2.0e-10	0.00	0.0
1310	-NII	$_{-11D}^{+}$	$_{\rm 2}^{\rm ONH_2D^+}$	HD	6.0e-10	0.00	0.0
1317	-NII	$_{-11D}^{\text{phD}_2}$	$-NUD^+$		6.0e-10	0.00	0.0
1210	DNH2	$_{\rm pHD}^+$	$_{\rm D}^{\rm NH}$	пр	6.0e-10	0.00	0.0
1320	oNH	mD^+	$_{o}D$	ONH D ⁺	1.80.00	0.00	0.0
1320	oNH	$_{\rm nD_3}^+$	DD2	oNH D ⁺	1.8e-09	0.00	0.0
1322	oNH-	$_{\rm oD_{c}^{+}}$	$p \sim 2$ oD ₂	$_{0}NH_{-}D^{+}$	9 0e-10	0.00	0.0
1323	oNH	$^{3}_{oD_{a}^{+}}$	pD_{o}	oNH ₂ D ⁺	9.0e-10	0.00	0.0
1324	pNH ₂	$^{-23}_{mD_{2}^{+}}$	r = 2 oDo	pNH ₂ D ⁺	1.8e-09	0.00	0.0
1325	pNH ₂	$pD_2^{\frac{3}{+}}$	pD_{2}^{2}	PNH ₂ D ⁺	1.8e-09	0.00	0.0
1326	pNH ₂	$^{\circ}D_{2}^{+}$	$^{-2}$ oD ₂	PNH ₀ D ⁺	9.0e-10	0.00	0.0
1327	pNH ₂	oD ⁴	pD_{2}^{2}	pNH ₂ D ⁺	9.0e-10	0.00	0.0
1328	oNH ₂	oH ₂ D ⁺	mNH ⁺	HD 2	3.5e-09	0.00	0.0
1329	oNH ₂	oH2D+	pNH₄ [‡]	HD	4.0e-10	0.00	0.0
1330	oNH2	$_{\rm oH_2D^+}$	$_{\rm oNH_4}^{\ddagger}$	HD	2.1e-09	0.00	0.0
1331	oNH ₂	$_{pH_{2}D^{+}}$	mNH_{4}^{+}	HD	1.5e-09	0.00	0.0
1332	oNH	pH ₀ D ⁺	oNH [‡]	HD	4.5e-09	0.00	0.0

Table D6 – continued (part 19)

#	Reacta	nts	Products		α	β	γ
1000		II D±	+	UD	1.0.00	0.00	0.0
1333	pNH ₃	$_{0H_2D^{+}}$	mNH_4	HD	1.0e-09	0.00	0.0
1334	pNH_3	oH ₂ D+	$_{\rm pNH_4}$	HD	8.1e-10	0.00	0.0
1335	$_{\rm pNH_3}$	$_{oH_2D^+}$	$_{\rm oNH_4^+}$	HD	4.2e-09	0.00	0.0
1336	pNH_3	$_{\rm pH_2D^+}$	$_{\rm PNH_4^+}$	HD	2.4e-09	0.00	0.0
1337	$_{pNH_3}$	$_{pH_2D^+}$	$_{\rm oNH_4^+}$	HD	3.6e-09	0.00	0.0
1338	oNH_3	$_{oH_2D^+}$	$_{oNH_3D^+}$	oH_2	1.9e-09	0.00	0.0
1339	oNH ₃	$_{0}H_{2}D^{+}$	oNH ₃ D ⁺	pH_2	2.5e-10	0.00	0.0
1340	$_{o}NH_{3}$	$_{0}H_{2}D^{+}$	$_{\rm pNH_3D^+}$	oH_2	7.1e-10	0.00	0.0
1341	$_{oNH_3}$	$_{oH_2D^+}$	pNH ₃ D+	$_{\rm pH_2}$	2.0e-10	0.00	0.0
1342	oNH ₃	$_{\rm pH_2D^+}$	oNH ₃ D ⁺	oH ₂	7.6e-10	0.00	0.0
1343	oNH ₃	$^{pH_2D^+}$	oNH ₃ D⊤	$_{\rm pH_2}^{\rm pH_2}$	7.6e-10	0.00	0.0
1344	oNH ₃	$^{pH_2D^+}$	pNH ₃ D ⁺	oH ₂	1.5e-09	0.00	0.0
1345	pNH ₃	$^{OH_2D^+}$	$_{\rm oNH_3D^+}$	oH ₂	7.1e-10	0.00	0.0
1346	pNH ₃	OH_2D	$_{\rm ONH_3D^+}$	pH ₂	5.1e-10	0.00	0.0
1347	-NII	$_{-11}^{OH_2D^+}$	$_{-NII}^{PNH_3D^+}$	он ₂	1.4e-09	0.00	0.0
1348	-NII	$-11 D^+$	$_{-NII}^{DI}$	рн ₂	4.0e-10	0.00	0.0
1250	DNH3	$_{\rm pH_2D^+}$	$_{\rm DNH}^{\rm ONH}$	оп ₂	1.20.00	0.00	0.0
1251	DNH3	$_{\rm pH_2D^+}$	$_{\rm DNH}^{\rm pNH}$	оп ₂	1.2e-09	0.00	0.0
1250	-NII	$_{-110}^{p11}$	-D	m_2	1.2e-09	0.00	0.0
1352	NII 3	UD_2^+	0D ₂		1.9e-09	0.00	0.0
1353	onH ₃	$_{\rm phD_2}^{\rm phD_2}$	pD_2	mNH_4	1.9e-09	0.00	0.0
1354	onh ₃	oHD ₂	^{oD} 2	oNH ₄	1.1e-09	0.00	0.0
1355	oNH ₃	$_{\rm pHD_2^+}$	pD_2	oNH4	1.1e-09	0.00	0.0
1356	$_{pNH_3}$	$_{\rm oHD_2^+}$	oD_2	$_{\rm pNH_4^+}$	7.6e-10	0.00	0.0
1357	$_{pNH_3}$	$_{\rm pHD_2^+}$	pD_2	$_{\rm pNH_4^+}$	7.6e-10	0.00	0.0
1358	pNH_3	$_{\rm oHD_2^+}$	oD_2	$_{\rm oNH_4^+}$	2.3e-09	0.00	0.0
1359	pNH ₃	$_{\rm pHD_2^+}$	pD_2	$_{\rm oNH_4^+}$	2.3e-09	0.00	0.0
1360	oNH ₃	$_{\rm oHD_2^+}$	$_{\rm oNH_3D^+}$	HD	4.5e-09	0.00	0.0
1361	oNH2	$_{\rm pHD_2^{+}}$	oNH ₂ D ⁺	HD	4.5e-09	0.00	0.0
1362	oNH	oHD ⁴	DNH _a D ⁺	HD	1.5e-09	0.00	0.0
1363	oNH-	$_{\rm pHD}^+$	pNH ₋ D ⁺	HD	1.5e-09	0.00	0.0
1264	5NH	oup+	NH D ⁺	иD	1.50-00	0.00	0.0
1965	-NII	$-11D^{\pm}$	$-NII D^+$	IID	1.50-03	0.00	0.0
1303	NII NII	$_{\rm HD_2}^{\rm phD_2}$	MH_3D^+	пр	1.5e-09	0.00	0.0
1366	pNH ₃	oHD ₂	pNH ₃ D ⁺	HD	4.5e-09	0.00	0.0
1367	pNH_3	$_{\rm pHD_2}$	pNH ₃ D⊤	HD	4.5e-09	0.00	0.0
1368	$_{oNH_3}$	$^{mD_{3}^{+}}$	$^{oD}2$	oNH ₃ D ⁺	9.1e-09	0.00	0.0
1369	$_{o}NH_{3}$	pD_3^+	pD_2	oNH ₃ D ⁺	9.1e-09	0.00	0.0
1370	$_{oNH_3}$	$_{0}D_{3}^{+}$	oD_2	oNH ₃ D ⁺	4.6e-09	0.00	0.0
1371	oNH_3	$_{o}D_{3}^{+}$	pD_2	_{oNH₃D⁺}	4.6e-09	0.00	0.0
1372	pNH ₃	mD_3^+	oD_2	$_{\rm pNH_3D^+}$	9.1e-09	0.00	0.0
1373	pNH ₃	pD_3^+	pD_2	$_{\rm pNH_3D^+}$	9.1e-09	0.00	0.0
1374	pNH ₂	$_{\rm oD_2^+}$	oD ₂	$_{\rm pNH_2D^+}$	4.6e-09	0.00	0.0
1375	pNH ₂	$_{0}D_{2}^{+}$	pD_{2}	pNH ₂ D ⁺	4.6e-09	0.00	0.0
1376	ND	$_{\rm oH^+}$	oHa	NHD ⁺	1.3e-09	0.00	0.0
1377	ND	pH ⁺	oH-	NHD ⁺	6.5e-10	0.00	0.0
1378	ND	ри3 рн+	DH2	NHD ⁺	6 5e 10	0.00	0.0
1370	ND	oH D ⁺	$^{\text{pll}_2}_{\text{NHD}^+}$	HD	8 7e 10	0.00	0.0
1380	ND	$_{\rm pH}^{\rm OH_2D^+}$	NHD ⁺	HD	8.7e-10 8.7e-10	0.00	0.0
1201	ND	$_{o}$ $_{D}$ $_{D}$ $^{+}$	oND ⁺	oll oll	2.00.10	0.00	0.0
1201	ND	$-11 D^+$	$-ND^{\pm}$	-II	2.96-10	0.00	0.0
1382	ND	$^{OH_2D^+}$	pND_2	oH ₂	1.4e-10	0.00	0.0
1383	ND	рн ₂ D⊤	onD ₂	рн ₂	2.9e-10	0.00	0.0
1384	ND	$_{\text{pH}_2\text{D}^+}$	pND2	pH ₂	1.4e-10	0.00	0.0
1385	ND	$_{\rm oHD_2^+}$	oD ₂	NHD ⁺	3.4e-10	0.00	0.0
1386	ND	$_{\rm oHD_2^+}$	pD_2	NHD ⁺	9.6e-11	0.00	0.0
1387	ND	$_{\rm pHD_2^+}$	oD_2	NHD ⁺	1.9e-10	0.00	0.0
1388	ND	$_{\rm pHD_2^+}$	pD_2	$\rm NHD^+$	2.4e-10	0.00	0.0
1389	ND	$_{\rm oHD_2^+}$	$_{\rm oND_2^+}$	HD	6.7e-10	0.00	0.0
1390	ND	$_{\rm oHD_2^+}$	pND_2^+	HD	1.9e-10	0.00	0.0
1391	ND	$_{\rm pHD_2^+}$	$_{\rm oND_2^+}$	HD	3.9e-10	0.00	0.0
1392	ND	pHD ⁺	pND_{2}^{+}	HD	4.8e-10	0.00	0.0
1393	ND	$^{1}_{mD_{2}^{+2}}$	oND ⁴	oDo	8.7e-10	0.00	0.0
1394	ND	mD^+	oND ⁺	<u>2</u> рД-	2.2e-10	0.00	0.0
1305	ND	23 mD ⁺	pND ⁺	r = 2	2.20-10 2.20-10	0.00	0.0
1306	ND	23 DD+	oND ⁺	~~2 pD	4 20 10	0.00	0.0
1207	ND	ъD ⁺	DND ⁺	рь ₂	4.3e-10	0.00	0.0
1397	ND	pD_3^+		0D ₂	4.3e-10	0.00	0.0
1398	ND	pD_3^+		$^{\text{pD}_2}$	4.3e-10	0.00	0.0
1399	ND	oD3		oD2	4.3e-10	0.00	0.0
1400	ND	oD3	OND_2^{+}	pD_2	3.3e-10	0.00	0.0
1401	ND	$_{0}D_{3}^{+}$	$_{\rm pND_2^+}$	oD_2	3.3e-10	0.00	0.0
1402	ND	$_{o}D_{3}^{+}$	pND_2^+	pD_2	2.2e-10	0.00	0.0
1403	NHD	$_{\rm oH_3^+}$	$_{o}NH_{2}D^{+}$	oH ₂	1.4e-09	0.00	0.0
1404	NHD	$_{\rm oH_3}^{\uparrow}$	oNH ₂ D ⁺	$_{\rm pH_2}$	2.2e-10	0.00	0.0
1405	NHD	oH	pNH ₂ D ⁺	oH2	2.2e-10	0.00	0.0
1406	NHD	pH ²	oNH ₂ D ⁺	oH2	6.8e-10	0.00	0.0
		- 3	4	4			

Table D6 – continued (part 20)

#	Reactar	nts	Products		α	β	γ
1407	NHD	$_{\rm pH_2^+}$	oNH ₂ D ⁺	pHa	4.5e-10	0.00	0.0
1408	NHD	$_{\rm pH_3^+}$	$_{\rm pNH_2^2D^+}$	oH ₂	4.5e-10	0.00	0.0
1409	NHD	$_{\rm pH_3^+}$	$_{\rm pNH_2D^+}$	$_{\rm pH_2}$	2.2e-10	0.00	0.0
1410	NHD	$_{oH_2D^+}$	$_{\rm oNH_2D^+}$	HD	1.0e-09	0.00	0.0
1411	NHD	oH ₂ D ⁺	$_{\rm oNH}^{\rm pNH_2D^+}$	HD UD	2.0e-10	0.00	0.0
1412	NHD	$_{\rm pH_2D^+}$	$_{\rm DNH_2D^+}$	HD	6.0e-10	0.00	0.0
1414	NHD	oH ₂ D ⁺	oNHD ⁺	oHa	3.3e-10	0.00	0.0
1415	NHD	$_{\rm oH_2D^+}$	$_{\rm pNHD_2^+}$	oH2	1.7e-10	0.00	0.0
1416	NHD	$_{oH_2D^+}$	$_{\rm oNHD_2^+}$	$_{\rm pH_2}$	6.7e-11	0.00	0.0
1417	NHD	$_{oH_2D^+}$	$_{\rm pNHD_2^+}$	$_{\rm pH_2}$	3.3e-11	0.00	0.0
1418	NHD	pH ₂ D+	$_{0}$ NHD $_{2}^{+}$	oH ₂	2.0e-10	0.00	0.0
1419	NHD	pH ₂ D⊤ -U_D+	$_{\rm pNHD_2^+}$	он ₂ - И	1.0e-10	0.00	0.0
1420	NHD	$_{\rm pH_2D^+}$	$_{\rm pNHD}^+$	pH ₂	2.0e-10 1.0e-10	0.00	0.0
1422	NHD	$_{\rm oHD_2^+}$	oD ₂	oNH ₂ D ⁺	3.5e-10	0.00	0.0
1423	NHD	$_{\rm oHD_2^{4}}$	pD_2	oNH2D+	1.0e-10	0.00	0.0
1424	NHD	$_{\rm pHD_2^+}$	oD_2	$_{\rm oNH_2D^+}$	2.0e-10	0.00	0.0
1425	NHD	$_{\rm pHD_2^+}$	pD_2	$_{o}NH_{2}D^{+}$	2.5e-10	0.00	0.0
1426	NHD	$_{\rm oHD_2^+}$	oD_2	$_{\rm pNH_2D^+}$	1.2e-10	0.00	0.0
1427	NHD	$^{\rm oHD}_2$	pD_2	$_{\rm pNH_2D^+}$	3.3e-11	0.00	0.0
1428	NHD	$_{-11D}^{pHD_2^+}$	oD ₂	$_{\rm pNH_2D^+}$	6.7e-11	0.00	0.0
1429	NHD	$_{\rm oHD^+}$	$_{\rm oNHD}^+$	рин ₂ рч	0.3e-11 9.3e-10	0.00	0.0
1431	NHD	$_{\rm oHD_2}^+$	pNHD ₂ ⁺	HD	2.7e-10	0.00	0.0
1432	NHD	$_{\rm pHD_2^{2+}}$	oNHD2	HD	5.3e-10	0.00	0.0
1433	NHD	$_{\rm pHD_2^+}$	$_{\rm pNHD_2^+}$	HD	6.7e-10	0.00	0.0
1434	NHD	mD_3^+	$_{ m oNHD}_2^+$	oD_2	1.2e-09	0.00	0.0
1435	NHD	$^{mD_3^+}$	$_{0}NHD_{2}^{+}$	pD_2	3.0e-10	0.00	0.0
1436	NHD	$^{mD_3^+}$	$_{\rm pNHD_2^+}$	oD ₂	3.0e-10	0.00	0.0
1437	NHD	pD_3	$_{\rm oNHD_2^+}$	pD ₂	6.0e-10	0.00	0.0
1438	NHD	pD_3 pD^+	$_{\rm pNHD_2}^{\rm pNHD_2}$	oD ₂	6.0e-10	0.00	0.0
1433	NHD	$_{0}D_{2}^{+}$	$_{0}NHD_{2}^{+}$	pD_2 pD_2	6.0e-10	0.00	0.0
1441	NHD	$_{\rm oD_3^+}$	oNHD ₂	pD_2	4.5e-10	0.00	0.0
1442	NHD	$_{oD_3^+}$	$_{\rm pNHD_2^+}$	$^{\circ}D_2$	4.5e-10	0.00	0.0
1443	NHD	$_{0}D_{3}^{+}$	$_{\rm PNHD_2^+}$	pD_2	3.0e-10	0.00	0.0
1444	oND_2	$_{3}^{\text{oH}_{3}^{+}}$	$_{0}NHD_{2}^{+}$	oH ₂	1.8e-09	0.00	0.0
1445	pND ₂	oH ₃ 11 [±]	$_{\rm pNHD_2^+}$	oH ₂	1.8e-09	0.00	0.0
1440	DND2	рн ₃ ън ⁺	$_{\rm DNHD_2}^{\rm oNHD_2}$	он ₂	9.0e-10 9.0e-10	0.00	0.0
1448	oND ₂	$_{\rm pH_2^+}^{\rm pm_3}$	$_{\rm oNHD_2}^+$	pH ₂	9.0e-10 9.0e-10	0.00	0.0
1449	pND ₂	$_{\rm pH_3^+}$	$_{\rm pNHD_2^+}$	pH ₂	9.0e-10	0.00	0.0
1450	oND ₂	$_{\rm oH_2D^+}$	$_{\mathrm{o}\mathrm{NHD}_{2}^{\tilde{+}}}$	HD	9.3e-10	0.00	0.0
1451	oND_2	$_{oH_2D^+}$	$_{\rm PNHD_2^+}$	HD	2.7e-10	0.00	0.0
1452	pND_2	$_{oH_2D^+}$	$_{\rm oNHD_2^+}$	HD	5.3e-10	0.00	0.0
1453	pND ₂	$^{\rm oH_2D^+}$	$_{\rm pNHD_2^+}$	HD	6.7e-10	0.00	0.0
1454	oND ₂	рн ₂ D -	$_{\rm NHD_2^+}$	HD HD	9.3e-10	0.00	0.0
1455	DND ₂	$_{\rm pH_2D^+}$	$_{\rm oNHD}^+$	HD	2.7e-10 5.3e-10	0.00	0.0
1457	pND ₂	$_{\rm pH_2D^+}$	pNHD ₂	HD	6.7e-10	0.00	0.0
1458	oND ₂	$_{\rm oH_2D^+}$	$^{-}$ mND $_{3}^{+}$	oH_2	3.3e-10	0.00	0.0
1459	oND_2	$_{oH_2D^+}$	$_{\rm oND_3^+}$	oH ₂	2.7e-10	0.00	0.0
1460	pND_2	$_{oH_2D^+}$	$_{\rm pND_3^+}$	oH_2	6.7e-11	0.00	0.0
1461	pND_2	oH ₂ D ⁺	$_{\rm oND_3^+}$	oH ₂	5.3e-10	0.00	0.0
1462	oND ₂	$_{\rm pH_2D^+}$	mND_3	pH ₂	3.3e-10	0.00	0.0
1463	oND ₂	рн ₂ D -	$_{\rm ND_3^+}$	pH ₂	2.7e-10 6.7e-11	0.00	0.0
1465	pND_2 pND_2	$_{\rm pH_2D^+}$	$_{\rm oND_3^+}$	pH ₂	5.3e-10	0.00	0.0
1466	oND ₂	$_{\rm oHD_2^+}^{\rm pH_2D}$	oNHD ⁺	oD ₂	3.8e-10	0.00	0.0
1467	oND_2^2	$_{\rm oHD_2^{+}}$	$_{\rm oNHD_2^2}$	pD_2	8.3e-11	0.00	0.0
1468	$_{oND_2}$	$_{\mathrm{oHD}_{2}^{\widetilde{+}}}$	$_{\rm pNHD_2^+}$	oD ₂	8.3e-11	0.00	0.0
1469	oND_2	$_{\rm oHD_2^+}$	$_{pNHD_{2}^{+}}$	pD_2	5.0e-11	0.00	0.0
1470	oND_2	$_{\rm pHD_2^+}$	$_{\rm oNHD_2^+}$	oD ₂	1.7e-10	0.00	0.0
1471	oND ₂	$_{\rm pHD_2^+}$	$_{\text{oNHD}_2^+}$	pD ₂	2.0e-10	0.00	0.0
1472	oND ₂	$_{\rm pHD_2^+}$	pNHD ₂ pNHD ⁺	оD ₂	2.0e-10	0.00	0.0
1473	DND-	$_{\rm oHD}^+_2$	$_{\rm oNHD}^+$	pD_2	э.эе-11 1 7е-10	0.00	0.0
1475	pND ₂	$_{\rm oHD_2}^+$	oNHD ⁺	pD_{2}	2.0e-10	0.00	0.0
1476	$_{\rm pND_2}$	oHD	$_{\rm pNHD_2^+}$	oD ₂	2.0e-10	0.00	0.0
1477	pND_2	$_{\mathrm{oHD}_{2}}^{\ddagger}$	$pNHD_2^{4}$	$pD_2^{}$	3.3e-11	0.00	0.0
1478	pND_2	$_{\rm pHD_2^{\overline{+}}}$	$_{ m oNHD}_2^{ m \tilde{+}}$	oD_2	2.0e-10	0.00	0.0
1479	pND_2	$_{\rm pHD_2^+}$	$_{oNHD_2^+}$	pD_2	6.7e-11	0.00	0.0
1480	pND_2	$_{\rm pHD_2^+}$	$_{\rm pNHD_2^+}$	oD_2	6.7e-11	0.00	0.0

Table D6 – continued (part 21)

#	Reactant	s	Products		α	β	γ
1481	pND_2	$_{\rm pHD_2^+}$	$_{\rm pNHD_2^+}$	pD_2	2.7e-10	0.00	0.0
1482	oND_2	$_{\rm oHD_2^+}$	mND_3^+	HD	6.7e-10	0.00	0.0
1483	oND_2	$_{\rm oHD_2^+}$	$_{\rm oND_{3}^+}$	HD	5.3e-10	0.00	0.0
1484	oND_2	$_{\rm pHD_2^+}$	mND_3^+	HD	3.3e-10	0.00	0.0
1485	oND_2	$_{\rm pHD_2^+}$	$_{\rm pND_3^+}$	HD	6.7e-11	0.00	0.0
1486	oND_2	$_{\rm pHD_2^+}$	$_{\rm oND_3^+}$	HD	8.0e-10	0.00	0.0
1487	pND_2	$_{\rm oHD_2^+}$	mND_3^+	HD	3.3e-10	0.00	0.0
1488	pND_2	$_{\rm oHD_2^+}$	pND_3^+	HD	6.7e-11	0.00	0.0
1489	pND_2	$_{\rm oHD_2^+}$	$_{\rm oND_3^+}$	HD	8.0e-10	0.00	0.0
1490	pND ₂	$_{\rm pHD_2^+}$	pND_3^+	HD	1.3e-10	0.00	0.0
1491	pND ₂	$_{\rm pHD_2^+}$	oND ⁺	HD	1.1e-09	0.00	0.0
1492	oND	$^{\rm mD_2^+}$	mND_{2}^{+}	oDa	9.0e-10	0.00	0.0
1493	oND	mD_{+}^{3}	mND^{3}_{+}	pDo	1.8e-10	0.00	0.0
1494	oND	mD_{+}^{3}	oND ³	$^{1}_{0}D_{2}$	5.4e-10	0.00	0.0
1495	oND	mD_{+}^{3}	oND ³⁺	$_{\rm D}D_{\rm o}^2$	1.8e-10	0.00	0.0
1496	pND ₂	mD_{+}^{3}	mND ⁺	$^{1}_{0}D_{2}$	3.6e-10	0.00	0.0
1497	pND-	mD^+	mND ⁺	2 pD-	4 2e-10	0.00	0.0
1498	pND ₂	mD_3	DND ⁺	$_{\rm oD}^{\rm pD_2}$	6.0e-11	0.00	0.0
1400	pND ₂	mD^+	oND ⁺	•D	8.4e.10	0.00	0.0
1499	-ND	mD_3	$-ND^{+}$	-D	1.2-10	0.00	0.0
1500	pND ₂	$^{\text{mD}_3}$		pD_2	1.2e-10	0.00	0.0
1501	oND ₂	pD_3	mND_3	pD_2	3.0e-10	0.00	0.0
1502	OND ₂	pD_3	pinD3	оD ₂	3.0e-10	0.00	0.0
1503	OND ₂	pD_3^+	onD3	oD ₂	6.0e-10	0.00	0.0
1504	oND ₂	pD_3^{\downarrow}	oND3	pD_2	6.0e-10	0.00	0.0
1505	pND_2	pD_3	pND ₃	pD_2	3.6e-10	0.00	0.0
1506	pND_2	pD_3^{\top}	$_{\rm oND_3^+}$	$^{oD}2$	7.2e-10	0.00	0.0
1507	pND_2	pD_3^+	$_{\rm oND_3^+}$	pD_2	7.2e-10	0.00	0.0
1508	oND_2	$_{0}D_{3}^{+}$	mND_3^+	oD_2	3.4e-10	0.00	0.0
1509	oND_2	$_{0}D_{3}^{+}$	mND_3^+	pD_2	2.6e-10	0.00	0.0
1510	oND_2	$_{0}D_{3}^{+}$	pND_3^+	oD_2	3.7e-11	0.00	0.0
1511	oND_2	$_{\rm oD_3^+}$	$_{\rm pND_3^+}$	pD_2	2.2e-11	0.00	0.0
1512	oND_2	$_{oD_3^+}$	$_{\rm oND_3^+}$	oD_2	8.0e-10	0.00	0.0
1513	oND_2	$_{oD_3}^+$	$_{\rm oND_3^+}$	pD_2	3.4e-10	0.00	0.0
1514	pND_2	$_{0}D_{3}^{+}$	mND_3^+	oD_2	2.2e-10	0.00	0.0
1515	pND_2	$_{0}D_{3}^{+}$	mND_3^+	pD_2	7.5e-11	0.00	0.0
1516	$_{\rm pND_2}$	$_{0}D_{3}^{+}$	pND_3^+	$_{\rm oD_2}$	7.5e-11	0.00	0.0
1517	pND ₂	$_{oD_{2}^{+}}$	pND ⁺	pD_{2}^{2}	4.5e-11	0.00	0.0
1518	pND _o	$_{0}D_{+}^{3}$	oND	$^{1}_{0}D_{0}^{2}$	6.9e-10	0.00	0.0
1519	pND _o	$_{0}D_{+}^{3}$	oND	pD _o	6.9e-10	0.00	0.0
1520	oNH _o D	H+	oNH _o D ⁺	H I	5.2e-09	0.00	0.0
1521	pNH ₂ ² D	H^+	$_{\rm pNH_{2}^{2}D^{+}}$	н	5.2e-09	0.00	0.0
1522	oNH ₂ D	$_{\rm oH_2^+}$	oNH ₂ D ⁺	oHa	5.6e-09	0.00	0.0
1523	oNHoD	oH	oNH _o D ⁺	pH	7.6e-10	0.00	0.0
1524	oNH _o D	$_{\rm oH_{2}^{3+}}$	pNH _o D ⁺	oH	2.1e-09	0.00	0.0
1525	oNH ₂ D	oH+	pNH _o D ⁺	DH.	6.1e-10	0.00	0.0
1526	pNH ₂ D	oH ⁺	oNH ₂ D ⁺	oH-	2.3e-09	0.00	0.0
1527	pNH D	он ₃	oNH D ⁺	DH	2.3e-09	0.00	0.0
1528	DNH D	0113 0H ⁺	DNH D+	0H	4 60 00	0.00	0.0
1520	ONH D	он ₃	ONH D+	о ^н 2	9.100-09	0.00	0.0
1520		ри ₃	ONH D+	он ₂	2.1e-09	0.00	0.0
1530	oNH2D	pn_3	DNH D+	pri2	1.5e-09	0.00	0.0
1531	-NUL D	рп ₃ -11 ⁺	$_{-NII}^{D'}$	οH ₂	4.2e-09	0.00	0.0
1532	ONH2D	pH3	$p_{1}H_{3}D^{+}$	pH ₂	1.2e-09	0.00	0.0
1533	pNH ₂ D	pH ₃	onh ₃ D ⁺	oH ₂	1.8e-09	0.00	0.0
1534	pNH ₂ D	$_{3}^{\text{pH}_{3}}$	pNH ₃ D ⁺	oH ₂	3.6e-09	0.00	0.0
1535	pNH ₂ D	pH_3^-	pNH ₃ D ⁺	$_{\rm pH_2}$	3.6e-09	0.00	0.0
1536	oNH ₂ D	$^{\rm oH_2D^+}$	oNH ₃ D ⁺	HD	4.0e-09	0.00	0.0
1537	oNH ₂ D	$^{\rm oH_2D^+}$	$_{\rm pNH_3D^+}$	HD	2.0e-09	0.00	0.0
1538	onh ₂ D	$_{-11}^{pH_2D^+}$	ONH_3D^+	HD	2.0e-09	0.00	0.0
1539	onh ₂ D	$_{PH_2D^+}$	$_{\rm pNH_3D^+}$	HD	4.0e-09	0.00	0.0
1540	pNH ₂ D	$_{oH_2D^+}$	onh ₃ D ⁺	HD TD	2.0e-09	0.00	0.0
1541	рип ₂ D	$_{\rm DH}^{\rm OH_2D^+}$	$_{\rm DNH}^{\rm pNH}$ D ⁺	ЧЛ	4.0e-09 6.1-00	0.00	0.0
1542	ONU D	рп ₂ р+	$_{00NH}$ $^{+}$	о п	0.1e-09	0.00	0.0
1043	oNH2D	$_{o1}^{On_2D'}$	D_2	ori ₂	1.5e-09	0.00	0.0
1544		он ₂ D'	$poinH_2D_2$	οH ₂	7.3e-10	0.00	0.0
1545	ONH2D	OH_2D^+	OONH2D2	рн ₂	2.2e-10	0.00	0.0
1546	ONH ₂ D	$^{\text{oH}_2\text{D}^+}$	ponH ₂ D ₂	pH ₂	1.1e-10	0.00	0.0
1547	oNH ₂ D	oH ₂ D⊤	opNH ₂ D ₂	oH ₂	2.2e-10	0.00	0.0
1548	$_{0}$ NH $_{2}$ D	$_{0}H_{2}D^{+}$	$_{\mathrm{ppNH}_{2}\mathrm{D}_{2}^{+}}$	$_{oH_2}$	1.1e-10	0.00	0.0
1549	$_{0}$ NH $_{2}$ D	$_{0}H_{2}D^{+}$	$_{0}^{\text{opNH}}_{2}^{\text{D}_{2}^{+}}$	$_{\rm pH_2}$	1.1e-10	0.00	0.0
1550	$_{o}NH_{2}D$	$_{0}H_{2}D^{+}$	$_{\rm ppNH_2D_2^+}$	$_{\rm pH_2}$	5.6e-11	0.00	0.0
1551	$_{0}$ NH $_{2}$ D	$_{\rm pH_2D^+}$	$_{00}NH_2D_2^+$	$_{0}H_{2}$	6.7e-10	0.00	0.0
1552	$_{0}$ NH $_{2}$ D	$_{\rm pH_2D^+}$	$_{poNH_2}D_2^+$	$_{oH_2}$	3.4e-10	0.00	0.0
1553	$_{\rm oNH_2D}$	$_{\rm pH_2D^+}$	$_{00}NH_2D_2^{\mp}$	$_{\rm pH_2}$	6.7e-10	0.00	0.0
1554	$_{0}NH_{2}D$	$_{\rm pH_2D^+}$	$poNH_2D_2^+$	$_{\rm pH_2}$	3.4e-10	0.00	0.0

Table D6 – continued (part 22)

#	Reactants	5	Products		α	β	γ
1555	oNH D	pH D+	ODNH D ⁺	oH	6 70 10	0.00	0.0
1555	NIL D	$\mu_2 D^+$	$_{12}^{\text{OpNII}_2\text{D}_2}$	011 ₂	0.76-10	0.00	0.0
1556	ONH ₂ D	$_{\rm H_2D^+}$	$ppNH_2D_2$	он ₂	3.4e-10	0.00	0.0
1557	pNH ₂ D	oH ₂ D+	$_{2}^{\text{OONH}_2\text{D}_2^+}$	он ₂	6.7e-10	0.00	0.0
1558	pNH ₂ D	oH ₂ D+	$poNH_2D_2$	он ₂	3.4e-10	0.00	0.0
1559	$_{\text{pNH}_2}\text{D}$	$_{oH_2D^+}$	$00NH_2D_2^+$	$_{\rm pH_2}$	6.7e-10	0.00	0.0
1560	$_{\rm pNH_2D}$	$_{0}H_{2}D^{+}$	$poNH_2D_2^+$	pH_2	3.4e-10	0.00	0.0
1561	$_{\rm pNH_2D}$	$_{0}H_{2}D^{+}$	$opNH_2D_2^+$	oH ₂	6.7e-10	0.00	0.0
1562	$_{\rm pNH_2D}$	$_{oH_2D^+}$	$ppNH_2D_2^+$	oH ₂	3.4e-10	0.00	0.0
1563	$_{\rm pNH_2D}$	$_{\rm pH_2D^+}$	$_{00}NH_2D_2^+$	oH ₂	1.0e-09	0.00	0.0
1564	$_{\rm pNH_2D}$	$_{\rm pH_2D^+}$	$_{poNH_2D_2^+}$	oH ₂	5.1e-10	0.00	0.0
1565	pNH_2D	$_{\rm pH_2D^+}$	$_{\rm opNH_2D_2^+}$	pH_2	1.0e-09	0.00	0.0
1566	$_{\rm pNH_2D}$	$_{\rm pH_2D^+}$	$_{ppNH_2D_2^+}$	pH_2	5.1e-10	0.00	0.0
1567	$_{o}NH_{2}D$	$_{\rm oHD_2^+}$	oD_2	oNH ₃ D ⁺	1.6e-09	0.00	0.0
1568	$_{o}NH_{2}D$	$_{\rm oHD_2^+}$	pD_2	oNH ₃ D ⁺	4.5e-10	0.00	0.0
1569	$_{o}NH_{2}D$	$_{\rm pHD_2^+}$	oD_2	oNH ₃ D ⁺	9.0e-10	0.00	0.0
1570	$_{\rm oNH_2D}$	$_{\rm pHD_2^+}$	pD_2	oNH ₃ D+	1.1e-09	0.00	0.0
1571	oNH ₂ D	$_{\rm oHD_2^{\overline{+}}}$	oD ₂	pNH ₃ D ⁺	7.9e-10	0.00	0.0
1572	oNH2D	$_{\rm oHD_2^{+}}$	pD_2	pNH ₃ D ⁺	2.2e-10	0.00	0.0
1573	oNH ₂ D	$_{\rm pHD_2^{+}}$	$_{\rm oD_2}$	pNH ₂ D ⁺	4.5e-10	0.00	0.0
1574	oNH ₂ D	DHD	pDo	pNH ₂ D ⁺	5.6e-10	0.00	0.0
1575	pNH _o D	oHD ⁴	oD ₂	pNH _a D ⁺	2.4e-09	0.00	0.0
1576	pNH _o D	oHD ⁴	рDo	pNH _a D ⁺	6.7e-10	0.00	0.0
1577	pNH ₂ D	$_{\rm pHD_{2}^{+}}$	P = 2 OD_2	pNH _a D ⁺	1.3e-09	0.00	0.0
1578	pNH ₂ D	pHD ⁺	nD ₂	pNH _a D ⁺	1 7e-09	0.00	0.0
1579	oNH ₂ D	oHD ⁺	$_{00}^{P-2}$	HD	3.9e-09	0.00	0.0
1580	oNH _o D	$_{\rm oHD_{\odot}^+}$	poNH _o D ⁺	HD	1.1e-09	0.00	0.0
1581	oNH _o D	$_{\rm pHD_{2}^{+}}$	ooNH ₂ D ⁺	HD	2.2e-09	0.00	0.0
1582	oNH _o D	pHD ⁴	poNH ₂ D ⁺	HD	2.8e-09	0.00	0.0
1583	oNH _o D	oHD ⁺	opNH _o D ⁺	HD	7.9e-10	0.00	0.0
1584	oNH ₂ D	oHD ⁺	DDNH ₂ D ⁺	HD	2 2e-10	0.00	0.0
1585	oNH ₂ D	$_{\rm pHD_{2}^{+}}$	$opNH_2D_2^+$	HD	4.5e-10	0.00	0.0
1586	oNH ₂ D	$_{\rm pHD_{2}^{+}}$	DDNH ₂ D ⁺	HD	5.6e-10	0.00	0.0
1587	pNH ₂ D	oHD ⁺	$00 \text{NH}_2 D_2^+$	HD	2 4e-09	0.00	0.0
1588	pNH ₂ D	oHD ⁺	poNH ₂ D ⁺	HD	6.7e-10	0.00	0.0
1589	pNH ₂ D	$_{\rm pHD_{2}^{+}}$	ooNH ₂ D ⁺	HD	1.3e-09	0.00	0.0
1590	pNH ₂ D	$_{\rm pHD_{2}^{+}}$	poNH ₂ D ⁺	HD	1.7e-09	0.00	0.0
1591	pNH _o D	oHD ⁺	opNH _o D ⁺	HD	2.4e-09	0.00	0.0
1592	pNH _o D	$_{\rm oHD_{o}^{+}}$	DDNH ₂ D ⁺	HD	6.7e-10	0.00	0.0
1593	pNH _o D	$_{\rm pHD_{2}^{+}}$	opNH _o D ⁺	HD	1.3e-09	0.00	0.0
1594	pNH _o D	pHD ⁺	DDNH ₂ D ⁺	HD	1.7e-09	0.00	0.0
1595	oNH _o D	mD_{a}^{+}	ooNH ₂ D ⁺	oDo	6.1e-09	0.00	0.0
1596	oNH _o D	mD_{a}^{+}	ooNH _o D ⁺	DDo	1.5e-09	0.00	0.0
1597	oNH _o D	mD_{a}^{+}	poNH _o D ⁺	P = 2 OD_{0}	1.5e-09	0.00	0.0
1598	oNH _o D	pD+	ooNH ₂ D ⁺	pD _o	3.0e-09	0.00	0.0
1599	oNH ₂ D	$^{1}_{pD_{2}^{+}}$	poNH ₂ D ₂ ⁺	oD ₂	3.0e-09	0.00	0.0
1600	oNH _o D	pD_{a}^{+}	poNH _o D ⁺	DDo	3.0e-09	0.00	0.0
1601	oNH _o D	$^{1}_{0}D_{0}^{+}$	ooNH ₂ D ⁺	oD ₂	3.0e-09	0.00	0.0
1602	oNH _o D	$_{0}D_{+}^{3}$	ooNH ₂ D ⁺	pD _o	2.3e-09	0.00	0.0
1603	oNH _o D	$_{0}D_{0}^{+}$	poNH _o D ⁺	P = 2 OD_{0}	2.3e-09	0.00	0.0
1604	oNH ₂ D	$_{\rm oD^+}$	poNH ₂ D ⁺	DD2	1.5e-09	0.00	0.0
1605	pNH ₂ D	mD_{+}^{+}	opNH ₂ D ⁺	P = 2 0D2	6 1e-09	0.00	0.0
1606	pNH ₂ D	mD_{+}^{+}	opNH ₂ D ⁺	nDa	1.5e-09	0.00	0.0
1607	pNH _o D	mD^+	ppNH _a D ⁺	oD ₂	1.5e-09	0.00	0.0
1608	pNH _o D	$_{\rm pD_{2}^{+}}$	opNH _o D ⁺	DDo	3.0e-09	0.00	0.0
1609	pNH ₂ D	pD_3^+	DDNH ₂ D ⁺	pD ₂	3.0e-09	0.00	0.0
1610	pNH ₂ D	$^{r-3}_{pD_{2}^{+}}$	ppNH ₂ D ⁺	nDa	3.0e-09	0.00	0.0
1611	pNH ₂ D	$_{\rm oD^+}$	$opNH_2D_2^+$	pD ₂	3.0e-09	0.00	0.0
1612	pNH ₂ D	$_{\rm oD^+}$	opNH ₂ D ⁺	DD2	2.3e-09	0.00	0.0
1613	pNH ₂ D	$_{\rm oD^+}$	DDNH ₂ D ⁺	pD ₂	2.3e-09	0.00	0.0
1614	pNH ₂ D	$_{\rm oD^+}$	ppNH ₂ D ⁺	DD2	1.5e-09	0.00	0.0
1615	oNHDa	н+	oNHD ⁺	F-2 Н	5 2e-09	0.00	0.0
1616	pNHD _o	н+	pNHD ⁺	Н	5.2e-09	0.00	0.0
1617	oNHD ₂	$_{\rm oH_2^+}$	ooNH ₂ D ⁺	oHa	6.8e-09	0.00	0.0
1618	pNHD ₂	$_{\rm oH_2^+}$	poNH ₂ D ⁺	oHo	6.8e-09	0.00	0.0
1619	oNHD ₂	$_{\rm oH_2^+}$	ooNH ₂ D ⁺	pH_{2}^{2}	1.1e-09	0.00	0.0
1620	pNHD ₂	$_{\rm oH_2^+}$	poNH ₂ D ⁺	ρH ₂	1.1e-09	0.00	0.0
1621	oNHD ₂	$_{\rm oH_2^+}$	opNH ₂ D ⁺	oH ₂	1.1e-09	0.00	0.0
1622	pNHD ₂	$_{\rm oH_2^+}$	ppNH ₂ D ⁺	oHo	1.1e-09	0.00	0.0
1623	oNHD ₂	$_{\rm pH_2^+}$	$_{\rm ooNH_2D_2^+}$	oH2	3.4e-09	0.00	0.0
1624	pNHD ₂	$_{\rm pH_2^+}$	poNH2D2+	oH2	3.4e-09	0.00	0.0
1625	oNHD ₂	$^{1}_{pH_{2}^{+}}$	ooNH ₂ D ⁺	pH_{2}^{2}	2.3e-09	0.00	0.0
1626	pNHD _o	$_{\rm pH_{a}^{+}}$	poNH _a D ⁺	pH ₂	2.3e-09	0.00	0.0
1627	oNHD.	$^{-3}_{\rm pH_2^+}$	$_{\rm opNH_2D_2^+}$	oH ₂	2.3e-09	0.00	0.0
1628	pNHD ₂	$^{1}_{pH_{2}^{+}}$	ppNH ₂ D ⁺	oH2	2.3e-09	0.00	0.0
-	- Z	+ .3	• • Z Z	4			-

Table D6 – continued (part 23)

#	Reactant	s	Products		α	β	γ
1629	oNHDa	pH ⁺	opNH ₂ D ⁺	рНа	1.1e-09	0.00	0.0
1630	pNHD ₂	$_{\rm pH_2^+}$	ppNH ₂ D ₂ ⁺	pH ₂	1.1e-09	0.00	0.0
1631	oNHD ₂	$_{\rm oH_2D^+}$	$_{\rm ooNH_2D_2^+}$	HD	3.9e-09	0.00	0.0
1632	$_{\rm oNHD_2}$	$_{\rm oH_2D^+}$	$_{\text{poNH}_2}\tilde{D}_2^+$	HD	1.1e-09	0.00	0.0
1633	pNHD_2	$_{oH_2D^+}$	$_{00}NH_2D_2^+$	HD	2.2e-09	0.00	0.0
1634	$_{\rm pNHD}_2$	$_{oH_2D^+}$	$_{poNH_2D_2^+}$	HD	2.8e-09	0.00	0.0
1635	oNHD ₂	$^{\rm oH}{}_2{\rm D}^+$	$_{\rm opNH_2D_2^+}$	HD	7.9e-10	0.00	0.0
1636	oNHD ₂	$_{-11}^{OH}D^+$	$ppNH_2D_2'$	HD	2.2e-10	0.00	0.0
1638	DNHD ₂	$_{oH}D^+$	$_{\rm DDNH}^{\rm ODNH}$	нD НD	4.5e-10 5.6e-10	0.00	0.0
1639	oNHD _o	$_{\rm pH_{o}D^{+}}$	$_{00}^{\text{pprum}_2 D_2}$	HD	2.4e-09	0.00	0.0
1640	oNHD ₂	$_{\rm pH_2D^+}$	$poNH_2D_2^+$	HD	6.7e-10	0.00	0.0
1641	$pNHD_2$	$_{\rm pH_2D^+}$	$_{00}NH_{2}D_{2}^{+}$	HD	1.3e-09	0.00	0.0
1642	pNHD_2	$_{\rm pH_2D^+}$	$_{poNH_2D_2^+}$	HD	1.7e-09	0.00	0.0
1643	$_{0}$ NHD $_{2}$	$_{\rm pH_2D^+}$	$_{0}$ pNH $_{2}$ D $_{2}^{+}$	HD	2.4e-09	0.00	0.0
1644	oNHD ₂	$_{\rm pH_2D^+}$	$_{\rm ppNH_2D_2^+}$	HD	6.7e-10	0.00	0.0
1645	pNHD ₂	$_{\rm pH_2D^+}$	$_{\text{DDNH}_2\text{D}_2^+}$	HD HD	1.3e-09	0.00	0.0
1640	oNHD	рн ₂ р+	$_{mNHD}^{ppNH_2D_2}$	лIJ	1.7e-09	0.00	0.0
1648	oNHD ₂	$_{oH_2D}^{oH_2D}$	oNHD ⁺	oH ₂	1.1e-09	0.00	0.0
1649	pNHD ₂	$_{\rm oH_2D^+}$	$_{\rm pNHD_3^+}$	oH ₂	2.8e-10	0.00	0.0
1650	$_{\rm pNHD_2}$	$_{\rm oH_2D^+}$	_{oNHD} ⁺	$_{\rm oH_2}$	2.2e-09	0.00	0.0
1651	$ m oNHD_2$	$_{oH_2D^+}$	$mNHD_3^+$	$_{\rm pH_2}$	2.8e-10	0.00	0.0
1652	$ m oNHD_2$	$_{oH_2D^+}$	$_{0NHD_{3}^{+}}$	$_{\rm pH_2}$	2.2e-10	0.00	0.0
1653	$_{\rm pNHD_2}$	$_{0}H_{2}D^{+}$	$_{\rm pNHD_3^+}$	$_{\rm pH_2}$	5.6e-11	0.00	0.0
1654	pNHD ₂	$^{\rm oH_2D^+}$	oNHD3	pH ₂	4.5e-10	0.00	0.0
1656	oNHD	рн ₂ D+	$_{\rm oNHD}^+$	oH ₂	8.4e-10 6.7e 10	0.00	0.0
1657	DNHD ₂	$_{\rm pH_2D^+}$	$_{\rm DNHD_3^+}$	oH ₂	1.7e-10	0.00	0.0
1658	pNHD ₂	$_{\rm pH_2D^+}$	oNHD ₃	oH ₂	1.3e-09	0.00	0.0
1659	oNHD ₂	$_{\rm pH_2D^+}$	$_{\rm mNHD_3^+}$	$_{\rm pH_2}$	8.4e-10	0.00	0.0
1660	$_{oNHD_2}$	$_{\rm pH_2D^+}$	$_{\rm oNHD_3^+}$	$_{\rm pH_2}$	6.7e-10	0.00	0.0
1661	$pNHD_2$	$_{\rm pH_2D^+}$	$_{\rm pNHD_3^+}$	$_{\rm pH_2}$	1.7e-10	0.00	0.0
1662	$_{\rm pNHD_2}$	$_{pH_2D^+}$	$_{0NHD_{3}^{+}}$	$_{\rm pH_2}$	1.3e-09	0.00	0.0
1663	oNHD ₂	$^{\rm oHD_2^+}$	$_{\rm ooNH_2D_2^+}$	oD ₂	1.5e-09	0.00	0.0
1665	oNHD	oHD ₂	$_{\text{DONH}_2\text{D}_2^+}$	pD_2	3.2e-10 3.2e-10	0.00	0.0
1666	oNHD ₂	$_{\rm oHD_2}^+$	$poNH_2D_2$	DD2	1.9e-10	0.00	0.0
1667	oNHD ₂	$_{\rm pHD_2^+}$	ooNH ₂ D ₂ ⁺	$_{\rm oD_2}^{\rm pD_2}$	6.3e-10	0.00	0.0
1668	oNHD ₂	$_{\rm pHD_2^+}$	$_{\rm ooNH_2D_2^+}$	pD_2^2	7.6e-10	0.00	0.0
1669	$_{\rm oNHD_2}$	$_{\rm pHD_2^+}$	$_{\text{poNH}_2^-} D_2^+$	oD_2	7.6e-10	0.00	0.0
1670	$ m oNHD_2$	$_{\rm pHD_2^+}$	$_{poNH_2D_2^+}$	pD_2	1.3e-10	0.00	0.0
1671	$pNHD_2$	$_{\rm oHD_2^+}$	$_{2}^{\text{ooNH}_2\text{D}_2^+}$	oD_2	6.3e-10	0.00	0.0
1672	pNHD ₂	$^{\rm oHD_2^+}$	$_{00}NH_2D_2^+$	pD ₂	7.6e-10	0.00	0.0
1673	pNHD ₂	oHD ₂	$poNH_2D_2$	оD ₂	7.6e-10	0.00	0.0
1675	$_{\rm pNHD_2}$	$_{\rm pHD_2}^{\rm onD_2}$	$00NH_2D_2^+$	$_{0}D_{2}$	7.6e-10	0.00	0.0
1676	pNHD ₂	$_{\rm pHD_2}^{\rm pHD_2}$	$_{00}NH_{2}D_{2}^{+}$	pD_2	2.5e-10	0.00	0.0
1677	$_{\rm pNHD_2}^2$	$_{\rm pHD_2^+}$	$_{\rm poNH_2D_2^+}$	$^{\circ}D_2$	2.5e-10	0.00	0.0
1678	$_{\rm pNHD_2}$	$_{\rm pHD_2^+}$	$_{\rm poNH_2D_2^+}$	pD_2	1.0e-09	0.00	0.0
1679	$ m oNHD_2$	$_{\rm oHD_2^+}$	$_{\rm opNH_2D_2^+}$	oD_2	4.8e-10	0.00	0.0
1680	oNHD ₂	$_{\rm oHD_2^+}$	$_{\text{opNH}_2\text{D}_2^+}$	pD_2	1.1e-10	0.00	0.0
1681	oNHD ₂	$^{\rm oHD_2^+}$	$ppNH_2D_2^+$	οD ₂	1.1e-10	0.00	0.0
1682	ONHD	$_{\rm DHD^+}$	$ppNH_2D_2$	pD_2	6.3e-11	0.00	0.0
1684	oNHD ₂	pHD ²	$_{\rm opNH_2D_2}$	$_{\rm pD_2}$	2.1e-10 2.5e-10	0.00	0.0
1685	oNHD ₂	$_{\rm pHD_2}^+$	$ppNH_2D_2^+$	$_{\rm oD_2}$	2.5e-10	0.00	0.0
1686	$_{\mathrm{oNHD}_2}^2$	$_{\rm pHD_2^+}$	$_{\rm ppNH_2D_2^+}$	pD_2^2	4.2e-11	0.00	0.0
1687	$_{\rm pNHD_2}$	$_{\mathrm{oHD}_2}^{\tilde{+}}$	$_{\mathrm{opNH}_{2}\mathbf{D}_{2}^{\tilde{+}}}$	$_{oD_2}$	2.1e-10	0.00	0.0
1688	pNHD_2	$_{\rm oHD_2^+}$	$_{\rm opNH_2D_2^+}$	pD_2	2.5e-10	0.00	0.0
1689	pNHD_2	$_{\rm oHD_2^+}$	$_{ppNH_2D_2^+}$	oD_2	2.5e-10	0.00	0.0
1690	pNHD ₂	$_{\rm oHD_2^+}$	$_{\rm ppNH_2D_2^+}$	pD_2	4.2e-11	0.00	0.0
1691	DNHD ₂	$_{\rm pHD_2^+}$	$ODNH_2D_2$	0D2	2.5e-10	0.00	0.0
1692	DNHD-	$_{\rm pHD}^{2}$	$D_{1}^{NH_2}D_2^{-1}$	$_{0}D_{2}$	0.4e-11 8 4e-11	0.00	0.0
1694	pNHD ₂	$_{\rm pHD_2}^{\rm PHD_2}$	ppNH ₂ D ₂	pD_2	3.4e-10	0.00	0.0
1695	oNHD ₂	$_{\rm oHD_2^+}$	$mNHD_3^+$	HD	3.4e-09	0.00	0.0
1696	$_{\mathrm{oNHD}_2}^2$	$_{\rm oHD_2^{\hat{+}}}$	$_{0NHD_{3}^{+}}$	HD	2.7e-09	0.00	0.0
1697	oNHD_2	$_{\rm pHD_2^+}$	$mNHD_3^+$	HD	1.7e-09	0.00	0.0
1698	oNHD_2	$_{\rm pHD_2^+}$	$_{\rm pNHD_3^+}$	HD	3.4e-10	0.00	0.0
1699	oNHD ₂	$_{\rm pHD_2^+}$	$_{0NHD_{3}^{+}}$	HD	4.0e-09	0.00	0.0
1700	pNHD ₂	$^{\rm oHD_2^+}$	$mNHD_3^+$	HD	1.7e-09	0.00	0.0
1701	DNHD DNHD	$_{\rm oHD}^+$	oNHD ⁺	нр Нр	3.4e-10 4 0e-00	0.00	0.0
1104	P.111D2	$^{\circ 11D}2$	3		4.06-09	0.00	0.0

Table D6 – continued (part 24)

#	Reactant	s	Products		α	β	γ
1703	pNHD ₂	pHD ⁺	pNHD ⁺	HD	6.7e-10	0.00	0.0
1704	pNHD ₂	$_{\rm pHD_2^+}$	oNHD ₃ ⁺	HD	5.4e-09	0.00	0.0
1705	$_{\rm oNHD_2}$	mD_3^+	$_{\rm mNHD_3^+}$	$^{oD}2$	4.6e-09	0.00	0.0
1706	$ m oNHD_2$	mD_3^+	$mNHD_3^+$	pD_2	9.1e-10	0.00	0.0
1707	$_{ m oNHD}_2$	mD_3^+	$_{\rm oNHD_3^+}$	$^{oD}2$	2.7e-09	0.00	0.0
1708	oNHD ₂	$^{mD_3^+}$	$_{0}NHD_{3}^{+}$	pD_2	9.1e-10	0.00	0.0
1709	pNHD ₂	$^{mD_3^{\downarrow}}$	$mNHD_3^+$	oD ₂	1.8e-09	0.00	0.0
1710	DNHD ₂	$^{mD_3}_{mD^+}$	$_{\rm DNHD^+}$	$_{\rm oD}^{\rm pD_2}$	2.1e-09 3.0e-10	0.00	0.0
1712	pNHD ₂	$^{mD_3}_{mD_2^+}$	oNHD ⁺	oD ₂	4.2e-09	0.00	0.0
1713	pNHD ₂	mD_3^3	oNHD3	pD_2^2	6.1e-10	0.00	0.0
1714	oNHD ₂	pD_3^+	$mNHD_3^+$	pD_2	1.5e-09	0.00	0.0
1715	$_{oNHD_2}$	pD_3^+	$_{\rm pNHD_3^+}$	oD_2	1.5e-09	0.00	0.0
1716	$_{ m oNHD}_2$	pD_3^+	$_{\rm oNHD_3^+}$	$^{oD}2$	3.0e-09	0.00	0.0
1717	oNHD ₂	pD_3^+	$_{0}NHD_{3}^{+}$	pD_2	3.0e-09	0.00	0.0
1718	pNHD ₂	$_{-D^{+}}^{pD_{3}^{+}}$	$_{\rm pNHD_3^+}$	$_{pD_2}$	1.8e-09	0.00	0.0
1719	DNHD ₂	$_{\rm pD_3^+}$	oNHD ⁺	DD2	3.6e-09	0.00	0.0
1721	oNHD ₂	$_{\rm oD_3^+}$	$mNHD_{3}^{+}$	oDo	1.7e-09	0.00	0.0
1722	oNHD ₂	$_{\rm oD_3^+}$	$mNHD_3^+$	pD_2	1.3e-09	0.00	0.0
1723	$_{\rm oNHD_2}$	$_{\rm oD_3^+}$	$_{\rm PNHD_3}^{+}$	$^{\circ}D_2$	1.9e-10	0.00	0.0
1724	$ m oNHD_2$	$_{oD_{3}^{+}}$	$_{\rm pNHD_3^+}$	pD_2	1.1e-10	0.00	0.0
1725	$ m oNHD_2$	$_{oD_{3}^{+}}$	$_{0}NHD_{3}^{+}$	oD_2	4.0e-09	0.00	0.0
1726	$_{ m oNHD}_2$	$^{oD_3^+}$	$_{0}NHD_{3}^{+}$	pD_2	1.7e-09	0.00	0.0
1727	pNHD ₂	oD3	$^{mNHD_3^+}$	oD ₂	1.1e-09	0.00	0.0
1728	pNHD ₂	oD_3	$_{\rm NHD}^+$	$_{\rm pD_2}$	3.8e-10	0.00	0.0
1729	pNHD ₂	$^{0D_3}_{^{0D_3}}$	$_{\rm pNHD_3^+}$	D_2	2.3e-10	0.00	0.0
1731	pNHD ₂	$^{oD_3}_{oD_2^+}$	oNHD ⁺	$_{\rm oD_2}$	3.5e-09	0.00	0.0
1732	$_{\rm pNHD_2}^2$	$_{oD_{3}^{+}}$	$_{\rm oNHD_3^+}$	pD_2^2	3.5e-09	0.00	0.0
1733	mND_3	H^{+}	mND_3^+	н	5.2e-09	0.00	0.0
1734	pND_3	H^+	$_{\rm pND_3^+}$	Н	5.2e-09	0.00	0.0
1735	oND ₃	H+	$_{oND_3^+}$	Н	5.2e-09	0.00	0.0
1736	mND ₃	oH ₃	mNHD ₃	οH ₂	9.1e-09	0.00	0.0
1738	oND-	$_{\rm oH^+}$	$_{0}NHD^{+}$	он ₂ он-	9.1e-09	0.00	0.0
1739	mND ₂	$_{\rm pH_2^+}$	$mNHD_{2}^{+}$	oH ₂	4.6e-09	0.00	0.0
1740	pND ₃	$_{\rm pH_3^+}$	$_{\rm pNHD_3}^+$	$_{\rm oH_2}^2$	4.6e-09	0.00	0.0
1741	$_{oND_3}$	$_{\rm pH_3^+}$	$_{ m oNHD}_3^+$	$_{\rm oH_2}$	4.6e-09	0.00	0.0
1742	mND_3	$_{\rm pH_3^+}$	$mNHD_3^+$	$_{\rm pH_2}$	4.6e-09	0.00	0.0
1743	pND_3	$_{\rm pH_3^+}$	$_{\rm pNHD_3^+}$	$_{\rm pH_2}$	4.6e-09	0.00	0.0
1744	oND ₃	$_{\rm pH_3^+}$	oNHD3	$_{\rm pH_2}$	4.6e-09	0.00	0.0
1745	mND ₃	$_{oH_2D^+}$	$_{\rm oNHD}^+$	HD HD	4.0e-09	0.00	0.0
1740	DND ₂	$_{\rm oH_2D^+}$	$_{\rm DNHD_3}^+$	HD	2.0e-09	0.00	0.0
1748	pND ₃	$_{\rm oH_2D^+}$	oNHD3	HD	4.0e-09	0.00	0.0
1749	oND ₃	$_{\rm oH_2D^+}$	$mNHD_3^+$	HD	1.3e-09	0.00	0.0
1750	oND_3	$_{oH_2D^+}$	$_{\rm pNHD_3^+}$	HD	2.5e-10	0.00	0.0
1751	oND_3	$_{oH_2D^+}$	$_{\rm oNHD_3^+}$	HD	4.5e-09	0.00	0.0
1752	mND_3	$_{\rm pH_2D^+}$	$mNHD_3^+$	HD	4.0e-09	0.00	0.0
1753	mND ₃	$_{\rm pH_2D^+}$	oNHD ₃	HD	2.0e-09	0.00	0.0
1755	DND DND	рн ₂ р ' рн ₂ р+	$_{\rm ONHD}^+$	нр Нр	2.0e-09	0.00	0.0
1756	oND ₂	$_{\rm pH_2D^+}$	$_{\rm mNHD_2^+}$	HD	1.3e-09	0.00	0.0
1757	oND ₃	$_{\rm pH_2D^+}^{\rm r_2-}$	$_{\rm pNHD_3^+}$	HD	2.5e-10	0.00	0.0
1758	$_{\rm oND_3}$	$_{\rm pH_2^{-}D^+}$	$_{0}$ NHD $_{3}^{+}$	HD	4.5e-09	0.00	0.0
1759	mND_3	$_{\mathrm{oH}_{2}\mathrm{D}^{+}}$	IND_{4}^{+}	$_{\mathrm{oH}_2}$	1.5e-09	0.00	0.0
1760	mND_3	$_{oH_2D^+}$	$_{\rm oND_4^+}$	$_{oH_2}$	1.5e-09	0.00	0.0
1761	pND_3	$_{0}H_{2}D^{+}$	$_{\rm pND_4^+}$	$_{oH_2}$	3.0e-09	0.00	0.0
1762	oND ₃	$^{\rm oH_2D^+}$	mND_4	oH ₂	7.6e-10	0.00	0.0
1764	oND	oH D ⁺	$_{\rm DND_4^+}$	oH ₂	1.9e-09 3.8o 10	0.00	0.0
1765	mND _a	$_{\rm pH_2D^+}$	IND ⁺	pH ₂	1.5e-09	0.00	0.0
1766	mND ₂	$_{\rm pH_2D^+}$	$_{\rm oND_4^+}$	pH ₂	1.5e-09	0.00	0.0
1767	$_{\rm pND_3}$	$_{\rm pH_2D^+}$	pND_4^{\ddagger}	$_{\rm pH_2}$	3.0e-09	0.00	0.0
1768	$_{oND_3}$	$_{\rm pH_2D^+}$	mND_4^+	$_{\rm pH_2}$	7.6e-10	0.00	0.0
1769	oND3	$_{\rm pH_2D^+}$	$_{oND_{4}^{+}}$	pH_2	1.9e-09	0.00	0.0
1770	oND ₃	$_{\mathrm{pH}_{2}\mathrm{D}^{+}}$	$_{\rm pND_4^+}$	$_{\rm pH_2}$	3.8e-10	0.00	0.0
1771	mND ₃	$_{\rm oHD_2^+}$	$mNHD_3^+$	oD_2	1.5e-09	0.00	0.0
1772	mND_3	onD ₂	oNHD ⁺	pD_2	3.Ue-10	0.00	0.0
1774	mND	oHD ⁺	oNHD ⁺	$_{\rm pD}^{\rm OD_2}$	9.1e-10 3.0e-10	0.00	0.0
1775	mND_{2}	$_{\rm pHD_2^+}$	$_{\rm mNHD_2^+}$	$_{\rm oD_2}$	6.1e-10	0.00	0.0
1776	3 mND ₃	$_{\rm pHD_2^+}^{-2}$	$^{-3}_{mNHD_3}$	pD_2^2	7.1e-10	0.00	0.0

Table D6 – continued (part 25)

	Ponetan	ta	Producto		~	в	~~~~
	neactan		riouucus		u	p	Y
1777	mND ₃	$_{\rm pHD_2^+}$	$_{\rm pNHD_3^+}$	oD_2	1.0e-10	0.00	0.0
1778	mND ₃	$_{\rm PHD_2^+}$	oNHD ₃	oD ₂	1.4e-09	0.00	0.0
1779	nND ₃	$_{\rm oHD^+}$	$_{\rm mNHD}^+$	pD_2 pD	2.0e-10 5.1e-10	0.00	0.0
1781	pND ₃	$_{\rm oHD_2^+}$	$_{\rm pNHD}^+$	$_{\rm oD_2}$	5.1e-10	0.00	0.0
1782	pND ₂	$_{\rm oHD_2^+}$	oNHD ⁺	$^{\rm oD}_2$	1.0e-09	0.00	0.0
1783	pND ₃	$_{\rm oHD_2^{4}}$	$_{\rm oNHD_3^+}$	pD_2^2	1.0e-09	0.00	0.0
1784	$_{\rm pND_3}$	$_{\rm pHD_2^+}$	$_{\rm pNHD_3^+}$	pD_2	6.1e-10	0.00	0.0
1785	pND_3	$_{\rm pHD_2^+}$	$_{0}NHD_{3}^{+}$	oD_2	1.2e-09	0.00	0.0
1786	pND_3	$_{\rm pHD_2^+}$	$_{0}NHD_{3}^{+}$	pD_2	1.2e-09	0.00	0.0
1787	oND ₃	$^{\rm oHD}_2$	$^{mNHD}_{3}$	oD ₂	5.7e-10	0.00	0.0
1788	oND ₃	oHD ₂	$_{\rm NHD}^+$	$_{\rm pD}_2$	4.4e-10	0.00	0.0
1789	oND ₃	$_{\rm oHD^+}$	$_{\rm pNHD}^+$	$^{\rm 0D_2}$	3.8e-11	0.00	0.0
1791	oND ₃	$_{\rm oHD_{2}^{+}}$	oNHD ⁺	oD _o	1.3e-09	0.00	0.0
1792	oND ₃	$_{\rm oHD_2^{4}}$	$_{\rm oNHD_3^+}$	pD_2^2	5.8e-10	0.00	0.0
1793	$_{oND_3}$	$_{\rm pHD_2^+}$	$mNHD_3^+$	$_{oD_2}$	3.8e-10	0.00	0.0
1794	oND_3	$_{\rm pHD_2^+}$	$_{\rm mNHD_3^+}$	pD_2	1.3e-10	0.00	0.0
1795	oND_3	$_{\rm pHD_2^+}$	$_{\rm pNHD_3^+}$	oD_2	1.3e-10	0.00	0.0
1796	oND ₃	$_{\rm pHD_2^+}$	$_{\rm pNHD_3^+}$	pD_2	7.6e-11	0.00	0.0
1797	oND ₃	$_{\rm pHD_2^+}$	oNHD ₃	oD_2	1.2e-09	0.00	0.0
1798	oND ₃	$_{o}^{\text{HD}_{2}^{+}}$	oNHD3	pD_2	1.2e-09	0.00	0.0
1800	mND_3	$_{\rm oHD_2}^{-1}$	mND_4^+	HD	2.7e-09 6.1e-10	0.00	0.0
1801	mND ₂	$_{\rm oHD_2}^+$	$_{\rm oND_4^+}$	HD	2.7e-09	0.00	0.0
1802	mND_3	$_{\rm pHD_2^+}$	$IND_4^{\frac{2}{+}}$	HD	1.2e-09	0.00	0.0
1803	mND_3	$_{\rm pHD_2^+}$	$_{\rm oND_4^+}$	HD	4.2e-09	0.00	0.0
1804	mND_3	$_{\rm pHD_2^+}$	$_{\rm pND_4^+}$	HD	6.1e-10	0.00	0.0
1805	pND_3	$_{\rm oHD_2^+}$	$_{\rm oND_4^+}$	HD	3.0e-09	0.00	0.0
1806	$_{pND_3}$	$_{\rm oHD_2^+}$	$_{\rm pND_4^+}$	HD	3.0e-09	0.00	0.0
1807	pND ₃	$_{\rm pHD_2^+}$	$^{\text{mND}_4^+}$	HD	2.4e-09	0.00	0.0
1808	$_{0ND_{3}}$	$_{\rm oHD}^+$	$\frac{\text{pND}_4}{\text{ND}_7^+}$	нD НD	5.6e-09 7.6e-10	0.00	0.0
1810	oND ₂	oHD ₂ ⁺	mND_4^+	HD	9.1e-10	0.00	0.0
1811	oND ₃	$_{\rm oHD_2^+}$	$_{\rm oND_4^+}$	HD	3.8e-09	0.00	0.0
1812	$_{\rm oND_3}$	$_{\mathrm{oHD}_{2}^{\tilde{+}}}$	pND_4^+	HD	6.1e-10	0.00	0.0
1813	oND_3	$_{\rm pHD_2^+}$	mND_4^+	HD	1.8e-09	0.00	0.0
1814	oND_3	$_{\rm pHD_2^+}$	$_{\rm oND_4^+}$	HD	3.0e-09	0.00	0.0
1815	oND ₃	$_{\rm pHD_2^+}$	pND_4^+	HD	1.2e-09	0.00	0.0
1816	mND ₃	mD_3	$\frac{1ND_4}{1ND^+}$	oD_2	3.5e-09	0.00	0.0
1818	mND_3	mD_3^+	$^{\rm IND_4}_{\rm mND^+}$	$_{oD_{2}}$	5.4e-10	0.00	0.0
1819	mND ₂	$^{mD_3}_{mD_2^+}$	mND_4^+	pD ₂	3.6e-10	0.00	0.0
1820	mND_3	mD_3^+	$_{\rm oND_4^+}$	$^{\circ}D_{2}^{2}$	3.3e-09	0.00	0.0
1821	mND_3	mD_3^+	$_{\rm oND_4^+}$	pD_2	8.2e-10	0.00	0.0
1822	mND_3	$_{pD_{3}^{+}}$	$1ND_{4}^{+}$	pD_2	9.1e-10	0.00	0.0
1823	mND_3	pD_3^+	$_{\rm oND_4^+}$	oD_2	2.7e-09	0.00	0.0
1824	mND ₃	pD_3^+	$_{\rm oND_4^+}$	pD_2	2.7e-09	0.00	0.0
1825	mND ₃	pD_3	pND_4	oD ₂	2.7e-09	0.00	0.0
1820 1827	$_{mND}^{mND}$	$_{0}D_{3}^{+}$	$\frac{1ND_4}{1ND^+}$	$_{\rm pD}^{\rm OD_2}$	1.1e-U9 0.1o.10	0.00	0.0
1828	mND_3	$_{oD_{3}^{+}}$	$^{\rm mND_4}_{\rm mND^+}$	$^{PD_2}_{OD_2}$	8.0e-10	0.00	0.0
1829	mND ₃	$_{\rm oD_3^+}$	$^{-4}_{mND_4^+}$	pD_2	1.1e-10	0.00	0.0
1830	mND_3	$_{oD_{3}^{+}}$	$oND_4^{\vec{+}}$	$_{\rm oD_2}$	3.9e-09	0.00	0.0
1831	mND_3	$_{o}D_{3}^{+}$	$_{oND_4^+}$	pD_2	1.5e-09	0.00	0.0
1832	mND_3	$_{oD_{3}^{+}}$	$_{pND_{4}^{+}}$	oD_2	5.1e-10	0.00	0.0
1833	mND ₃	$^{oD_3^+}$	pND_4^+	pD_2	1.7e-10	0.00	0.0
1834	pND ₃	$^{mD_3^+}$	$_{\rm oND}^+$	pD_2	9.1e-10	0.00	0.0
1835	pND ₃	$^{mD_3}_{mD^+}$	$_{\rm oND_4^+}$	oD_2	2.7e-09	0.00	0.0
1837	pND ₃	$^{\rm mD_3}_{\rm mD_3^+}$	$_{\rm pND^+}$	$_{\rm oD_2}$	2.7e-09 2.7e-09	0.00	0.0
1838	pND ₂	pD_3^+	mND_4^+	oD ₂	3.6e-09	0.00	0.0
1839	$_{\rm pND_3}$	$_{\rm pD_3^+}$	$_{\rm pND_4}^{\ddagger}$	$_{\rm pD_2}$	5.5e-09	0.00	0.0
1840	$_{\rm pND_3}$	$_{\mathrm{oD}_{3}^{\widetilde{+}}}$	mND_4^+	oD_2	1.1e-09	0.00	0.0
1841	pND_3	$_{oD_{3}^{+}}$	mND_4^+	pD_2	1.1e-09	0.00	0.0
1842	pND ₃	$^{oD_3^+}$	oND_4^+	oD_2	1.7e-09	0.00	0.0
1843	pND ₃	$^{oD_3^+}$	oND_4^+	pD_2	1.7e-09	0.00	0.0
1844 1845	риD ₃ рND	$_{oD_{3}}^{oD_{3}}$	pND_4^+	оD ₂ рD	1.7e-09	0.00	0.0
1840	$_{0ND}$	mD_3^+	ND_4^+	$_{0}D_{2}$	1.7e-09 1.1e-00	0.00	0.0
1847	oND.	mD_{2}^{+}	IND_4^+	pD_{2}	9.1e-10	0.00	0.0
1848	$_{\rm oND_2}^3$	mD_{3}^{4}	mND_4^4	$^{-2}$ oD ₂	8.0e-10	0.00	0.0
1849	$_{oND_3}$	mD_3^4	mND_4^{\ddagger}	pD_2	1.1e-10	0.00	0.0
1850	oND ₃	mD_3^{\downarrow}	$_{\rm oND_4^+}$	$_{oD_2}$	3.9e-09	0.00	0.0

Table D6 – continued (part 26)

#	Reactants		Products			α	в	γ
1051	ND	D+	ND ⁺	D		1 5 . 00		,
1850	oND ₃	mD_3^+	$_{\rm pND_4^+}$	$_{\rm aD}^{\rm pD}$		1.5e-09	0.00	0.0
1853	oND	mD_3	$_{\rm pND_4}^{\rm pND_4}$	D_2		1.7e.10	0.00	0.0
1854	oND-	$_{\rm nD_3}^{\rm mD_3}$	mND^+	$_{0}D_{2}$		1.7e-10 1.1e-09	0.00	0.0
1855	oNDo	pD_3^+	mND^+	DDo		1.1e-09	0.00	0.0
1856	oND	pD_{2}^{+}	$_{\rm oND_4^+}$	oD _o		1.7e-09	0.00	0.0
1857	oND ₂	pD_{2}^{+}	$_{\rm oND_4^+}$	pD_{2}		1.7e-09	0.00	0.0
1858	oND.	pD_{2}^{+}	$_{\rm pND_4^4}$	oD ₂		1.7e-09	0.00	0.0
1859	oND.	pD_{2}^{+}	$_{\rm pND_4^+}$	pD_{2}^{2}		1.7e-09	0.00	0.0
1860	$_{\rm oND_2}^{\rm o}$	$^{\circ}_{oD_{2}^{+}}$	IND ⁴	oD ₂		4.3e-10	0.00	0.0
1861	oND ₃	$_{\rm oD_3^+}$	IND_{4}^{+}	pD_2		1.4e-10	0.00	0.0
1862	oND ₃	$_{\rm oD_3^+}$	mND_4^+	oD ₂		1.2e-09	0.00	0.0
1863	oND ₃	$_{0}D_{3}^{+}$	mND_4^+	pD_2		8.5e-10	0.00	0.0
1864	oND ₃	$_{\rm oD_3^+}$	$_{\rm oND_4^+}$	$^{oD}2$		3.0e-09	0.00	0.0
1865	$_{oND_3}$	$_{0}D_{3}^{+}$	$_{\rm oND_4^+}$	pD_2		2.1e-09	0.00	0.0
1866	oND ₃	$_{0}D_{3}^{+}$	$_{\rm PND_4^+}$	oD_2		8.5e-10	0.00	0.0
1867	oND ₃	$^{\text{oD}_3^+}$	pND_4^+	pD_2		5.1e-10	0.00	0.0
1868	N ₂	$^{\rm oH_2D^+}$	$N_{2}H^{+}$	HD		8.7e-10	0.00	0.0
1869	N ₂	рн ₂ D -	N2H'	нD N D ⁺		8.7e-10 4.3o 10	0.00	0.0
1870	N ₂	$_{\rm pH_2D^+}$	DH2	N_2D^+		4.3e-10 4.3e-10	0.00	0.0
1872	No No	oHD ⁺	oDo	N _o H ⁺		4.3e-10	0.00	0.0
1873	Na	$_{\rm pHD_2^+}$	pD_{2}	N_0H^+		4.3e-10	0.00	0.0
1874	N_2^2	oHD	N_2D^+	HD		8.7e-10	0.00	0.0
1875	N ₂	$_{\rm pHD_2^+}$	$\tilde{N_2D^+}$	HD		8.7e-10	0.00	0.0
1876	N ₂	$^{\rm mD_3^+}$	$_{oD_2}$	N_2D^+		1.3e-09	0.00	0.0
1877	N ₂	$_{\rm pD_3^+}$	pD_2	N_2D^+		1.3e-09	0.00	0.0
1878	N_2	$_{\mathrm{oD}_{3}^{+}}$	oD_2	N_2D^+		6.5e-10	0.00	0.0
1879	N ₂	$_{oD_3^+}$	pD_2	N_2D^+		6.5e-10	0.00	0.0
1880	N ⁺	e ⁻	N	γ		3.8e-12	-0.62	0.0
1881	NH ⁺	e	N	H		2.0e-07	-0.50	0.0
1882	oNH ₂	e	NH	H		1.2e-07	-0.50	0.0
1883	pNH ₂	e	NH	H		1.2e-07	-0.50	0.0
1884	oNH ₂	e 	он ₂	IN N		1.2e-08	-0.50	0.0
1000	oNH ⁺	e	рп ₂ ц	IN LI	N	1.2e-08	-0.50	0.0
1887	DNH ⁺	e	н	н	N	1.70.07	-0.50	0.0
1888	oNH ⁺	e	oNH-	н	14	1.7e-07 1.5e-07	-0.50	0.0
1889	pNH ⁺	e_	oNH ₂	н		7.7e-08	-0.50	0.0
1890	pNH ⁺	e ⁻	pNH ₂	Н		7.7e-08	-0.50	0.0
1891	oNH ⁺	e ⁻	NH 2	Н	н	1.5e-07	-0.50	0.0
1892	$_{\rm pNH_3^+}$	e^{-}	NH	Н	н	1.5e-07	-0.50	0.0
1893	mNH_4^+	e^-	oNH_2	oH_2		1.9e-08	-0.60	0.0
1894	$_{\rm pNH_4^+}$	e ⁻	oNH ₂	oH ₂		9.4e-09	-0.60	0.0
1895	$_{\rm pNH_4^+}$	e^-	pNH_2	pH_2		9.4e-09	-0.60	0.0
1896	$_{\rm oNH_4^+}$	e^-	$_{oNH_2}$	oH_2		6.3e-09	-0.60	0.0
1897	$_{\rm oNH_4^+}$	e ⁻	oNH_2	pH_2		6.3e-09	-0.60	0.0
1898	$_{\rm oNH_4^+}$	e ⁻	$_{\rm pNH_2}$	$_{0}$ oH $_{2}$		6.3e-09	-0.60	0.0
1899	$^{\rm mNH_4^+}$	e^-	oNH ₃	Н		8.0e-07	-0.60	0.0
1900	$_{\rm pNH_4}$	e	pNH ₃	H		8.0e-07	-0.60	0.0
1901	onh ₄	е -	onH ₃	H		2.7e-07	-0.60	0.0
1002	$_{N^+}^{ONH_4}$	е 0	рин ₃	п N		0.3e-U7 3.6c.09	-0.60	0.0
1903	N_2	е е [—]	No	H		2.8e-07	-0.42	0.0
1904	$N_{2}H^{+}$	e_	NH	N		2.1e-07	-0.74	0.0
1906	$\tilde{ND^+}$	e ⁻	Ν	D		2.0e-07	-0.50	0.0
1907	NHD+	e^-	Ν	н	D	1.5e-07	-0.50	0.0
1908	NHD ⁺	e^-	NH	D		7.5e-08	-0.50	0.0
1909	NHD+	e ⁻	ND	Н		7.5e-08	-0.50	0.0
1910	oND_2^{+}	e	ND	D		1.5e-07	-0.50	0.0
1911	pND_2	e	ND	D		1.5e-07	-0.50	0.0
1912	onD ₂	е -	D	D D	IN N	1.5e-07	-0.50	0.0
1913	ONH D+	e e	D oNH	D D	IN	1.5e-07 1.0e-07	-0.50	0.0
1914	$_{\rm pNH_2D^+}$	e-	pNH ₂	D		1.0e-07	-0.50	0.0
1916	oNH ₂ D ⁺	e ⁻	NHD	н		2.0e-07	-0.50	0.0
1917	$_{pNH_{2}^{2}D^{+}}$	e^{-}	NHD	н		2.0e-07	-0.50	0.0
1918	$_{0}NH\tilde{D}_{2}^{+}$	e^{-}	oND_2	Н		1.0e-07	-0.50	0.0
1919	$_{\rm pNHD_2}^{\mp}$	e^-	pND_2	н		1.0e-07	-0.50	0.0
1920	$_{\rm oNHD_2^+}$	e^{-}	NHD	D		2.0e-07	-0.50	0.0
1921	$_{\rm pNHD_2^+}$	e^{-}	NHD	D		2.0e-07	-0.50	0.0
1922	mND_3^+	e ⁻	oND_2	D		3.0e-07	-0.50	0.0
1923	pND_3^+	e^-	pND_2	D		3.0e-07	-0.50	0.0
1924	oND_3^{T}	e ⁻	oND ₂	D		1.5e-07	-0.50	0.0

Table D6 – continued (part 27)

	Ponetanta		Producto		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	в	~~~~~
#	Reactants		Froducts		u	ρ	Y
1925	$_{\rm oND_3^+}$	e^-	pND_2	D	1.5e-07	-0.50	0.0
1926	oNH ₃ D ⁺	e^{-}	oNH_2	HD	2.5e-07	-0.50	0.0
1927	$_{\rm pNH_3D^+}$	e	oNH ₂	HD	1.3e-07	-0.50	0.0
1928	oNH D+	e o-	pNH ₂	HD NHD	1.3e-07	-0.50	0.0
1929	$_{\rm DNH}^{\rm ONH}$	е 0 ⁻	oH	NHD	2.3e-07	-0.50	0.0
1931	$_{\rm DNH_{-}D^{+}}$	e_	он ₂ рН-	NHD	1.3e-07	-0.50	0.0
1932	oNH ₂ D ⁺	e ⁻	oNH ₂	D	1.9e-07	-0.50	0.0
1933	$_{\rm pNH_3D^+}$	e^{-}	pNH_3	D	1.9e-07	-0.50	0.0
1934	$_{\rm oNH_3D^+}$	e^{-}	$_{oNH_2}D$	н	5.7e-07	-0.50	0.0
1935	$_{\rm pNH_3D^+}$	e^-	$_{0}$ NH $_{2}$ D	Н	2.9e-07	-0.50	0.0
1936	pNH ₃ D ⁺	e^{-}	pNH_2D	Н	2.9e-07	-0.50	0.0
1937	$_{00}NH_{2}D_{2}^{+}$	e^{-}	oD_2	oNH_2	8.5e-08	-0.50	0.0
1938	$poNH_2D_2^+$	e^{-}	pD_2	oNH_2	8.5e-08	-0.50	0.0
1939	$_{0}$ pNH $_{2}$ D $_{2}^{+}$	e^-	oD_2	$_{\rm pNH_2}$	8.5e-08	-0.50	0.0
1940	$_{\text{ppNH}_2\text{D}_2^+}$	e ⁻	pD_2	$_{\text{pNH}_2}$	8.5e-08	-0.50	0.0
1941	$_{00}NH_{2}D_{2}^{+}$	e ⁻	NHD	HD	3.4e-07	-0.50	0.0
1942	$_{poNH_2D_2^+}$	e ⁻	NHD	HD	3.4e-07	-0.50	0.0
1943	$_{\rm opNH_2D_2^+}$	e ⁻	NHD	HD	3.4e-07	-0.50	0.0
1944	$ppNH_2D_2^+$	e^{-}	NHD	HD	3.4e-07	-0.50	0.0
1945	$_{2}^{OONH_2D_2^+}$	e ⁻	oND ₂	$^{\mathrm{oH}_2}$	8.5e-08	-0.50	0.0
1946	$_{poNH_2D_2^+}$	e ⁻	pND ₂	$^{\mathrm{oH}_2}$	8.5e-08	-0.50	0.0
1947	$_{\rm opNH_2D_2^+}$	e^{-}	oND ₂	$_{\rm pH_2}$	8.5e-08	-0.50	0.0
1948	$ppNH_2D_2$	e-	DND2	рн ₂	8.5e-08	-0.50	0.0
1949	$OONH_2D_2^+$	e-	onh ₂ D	D	3.8e-07	-0.50	0.0
1950	$poNH_2D_2$	e	NIL D	D	3.8e-07	-0.50	0.0
1951	$_{2}^{\text{opNH}_2\text{D}_2^+}$	е 	-NUL D	D	3.8e-07	-0.50	0.0
1952	$ppNH_2D_2$	е 	-NUD		3.8e-07	-0.50	0.0
1955	$D_2 D_2$	е 0	DNHD	п u	3.8e-07	-0.50	0.0
1954	$ponn_2D_2$	е 0	ONHD	п u	3.8e-07	-0.50	0.0
1955	$_{\rm DDNH_2D_2}$	e 0 ⁻	DNHD	п п	3.86-07	-0.50	0.0
1950	$_{\rm mNHD}^{\rm ppNH}_2$	e 0 ⁻	$_{oD}$		3.8e-07	-0.50	0.0
1058	DNHD ⁺	e 0 ⁻	DD2	NHD	2.5e-07	-0.50	0.0
1050	oNHD ⁺	e 0 ⁻	$_{oD}^{pD_2}$	NHD	1.30.07	-0.50	0.0
1960	oNHD ⁺	e ⁻	DD2	NHD	1.3e-07	-0.50	0.0
1961	$_{\rm mNHD}^+$	e ⁻	oND-	HD	2.5e-07	-0.50	0.0
1962	DNHD ⁺	e ⁻	DND-	HD	2.5e-07	-0.50	0.0
1963	oNHD ⁺	e_	oND ₂	HD	1.3e-07	-0.50	0.0
1964	oNHD ⁺	e_	DND.	HD	1.3e-07	-0.50	0.0
1965	$mNHD^+$	e ⁻	mND _o	н	1.9e-07	-0.50	0.0
1966	pNHD ⁺	e-	DND.	н	1.9e-07	-0.50	0.0
1967	oNHD	e ⁻	oND.	н	1.9e-07	-0.50	0.0
1968	mNHD ³⁺	e ⁻	oNHD ₂	D	5.7e-07	-0.50	0.0
1969	pNHD	e^{-}	pNHD ₂	D	5.7e-07	-0.50	0.0
1970	oNHD ⁺	e^{-}	oNHD ₂	D	2.9e-07	-0.50	0.0
1971	oNHD ³	e ⁻	DNHD ₂	D	2.9e-07	-0.50	0.0
1972	IND_4^+	e^{-}	oND ₂	oD_2	5.1e-07	-0.50	0.0
1973	mND_4^+	e^{-}	oND ₂	$_{\rm oD_2}$	2.5e-07	-0.50	0.0
1974	mND_4^+	e^{-}	pND_2	pD_{2}	2.5e-07	-0.50	0.0
1975	$_{\rm oND_4^+}$	e^{-}	oND_2^{-}	$_{\rm oD_2}$	1.7e-07	-0.50	0.0
1976	$_{\rm oND_4^+}$	e^{-}	$_{oND_2}$	$_{\rm pD_2}$	1.7e-07	-0.50	0.0
1977	$_{0}ND_{4}^{\hat{+}}$	e^{-}	pND_2	$_{oD_2}$	1.7e-07	-0.50	0.0
1978	$_{\rm pND_4^+}$	e^{-}	$_{oND_2}$	pD_2	1.7e-07	-0.50	0.0
1979	$_{\rm pND_4^+}$	e^{-}	pND_2	$_{oD_2}$	1.7e-07	-0.50	0.0
1980	$_{\mathrm{pND}_{4}^{\tilde{+}}}$	e^-	pND_2	pD_2	1.7e-07	-0.50	0.0
1981	IND_4^+	e^-	mND_3	D	7.6e-07	-0.50	0.0
1982	mND_4^+	e^-	oND3	D	7.6e-07	-0.50	0.0
1983	$_{\rm oND_4^+}$	e^-	mND_3	D	2.5e-07	-0.50	0.0
1984	$_{\rm oND_4^+}$	e^-	oND ₃	D	5.1e-07	-0.50	0.0
1985	$_{\rm pND_4^+}$	e^-	pND_3	D	2.5e-07	-0.50	0.0
1986	$_{\rm pND_4^+}$	e^{-}	oND_3	D	5.1e-07	-0.50	0.0
1987	N_2D^+	e^-	N_2	D	2.8e-07	-0.74	0.0
1988	N_2D^+	e^{-}	ND	N	2.1e-08	-0.74	0.0
1989	NH ⁺	γ_2	N+	H	2.2e+01	0.00	0.0
1990	N ₂	γ ₂	IN N	N U	3.9e+01	0.00	0.0
1000	NH	γ2 γ-	NH ⁺	п е ⁻	3.7e+02 7.1e±00	0.00	0.0
1992	oNH	12 Vo	NH	Н	7.2e+02	0.00	0.0
1994	pNH ₂	72 Yo	NH	н	$7.2e \pm 02$	0.00	0.0
1995	oNHo	12 Yn	oNH ⁺	e	1.4e+02	0.00	0.0
1996	pNH ₂	γ2 γ2	pNH ⁺	e ⁻	1.4e+02	0.00	0.0
1997	oNH ₂	12 Y2	oH ₂	NH	1.1e+03	0.00	0.0
1998	$_{\rm pNH_3}^{3}$	γ2.	oH2	NH	5.5e + 02	0.00	0.0

Table D6 – continued (part 28)

									_
	#	Reactant	s	Products			α	β	
199	99	pNH_3	γ_2	$_{\rm pH_2}$	NH		5.5e + 02	0.00	
200	00	oNH_3	γ2	$_{0}NH_{3}^{+}$	e^-		2.2e + 02	0.00	
200)1	pNH ₃	Y2	$_{\rm pNH_3^+}$	e^{-}		2.2e+02	0.00	
200)2	ND	Y2	Ν	D		3.7e + 02	0.00	
200)3	ND	1/2	ND^+	e		7.1e + 00	0.00	
200)4	NHD	75	NH	D		3.6e + 02	0.00	
200)5	NHD	25	ND	Н		3.6e + 02	0.00	
200)6	NHD	25	NHD ⁺	e^{-}		1.4e + 02	0.00	
200	07	oNDo	72 75	ND	D		7.2e + 02	0.00	
200)8	pND ₂	72 75	ND	D		7.2e + 02	0.00	
200	ng	oND	12	oND ⁺	e ⁻		$1.4e \pm 0.2$	0.00	
200	10	-ND	r2	$-ND^{\pm}$			$1.4e \pm 0.2$	0.00	
20.	10	pND ₂	γ_2	pND ₂	e		1.4e+02	0.00	
20.	11	oNH ₂ D	Y2	NH	HD		4.5e+02	0.00	
20	12	pNH ₂ D	γ2	NH	HD		4.5e+02	0.00	
20	13	oNH ₂ D	γ_2	oH_2	ND		2.2e+02	0.00	
203	14	$_{\rm pNH_2D}$	γ2	pH_2	ND		2.2e + 02	0.00	
203	15	$_{o}NH_{2}D$	γ2	NHD	Н		2.9e+02	0.00	
20	16	pNH_2D	γ2	NHD	Н		2.9e+02	0.00	
203	17	$_{\rm oNH_2D}$	γ_2	oNH ₂	D		1.4e+02	0.00	
203	18	$pNH_{2}D$	12	pNH_{2}	D		1.4e + 02	0.00	
203	19	oNH ₂ D	12	$_{0NH_{2}D^{+}}$	e^{-}		2.2e + 02	0.00	
203	20	pNH ₀ D	γ ₂	pNH ₀ D ⁺	e^{-}		2.2e + 02	0.00	
205	21	oNHD.	ν <u>-</u> γ ₂	ND 2	HD		4.5e + 02	0.00	
20	22	DNHD_	12 Vo	ND	HD		$4.5e \pm 02$	0.00	
20.	22	ONHD	12	oD	NH		2.00 ± 02	0.00	
20.	20	DNHD	12 N	D_2	NU		$2.2e \pm 0.2$	0.00	
20.	24	-NUD	Y2	pD_2	Б		2.2e + 02	0.00	
20.	20	NHD2	1/2	NHD	D		2.9e+02	0.00	
203	26	$_{\rm pNHD_2}$	Y2	NHD	D		2.9e+02	0.00	
202	27	oNHD ₂	γ2	oND ₂	H		1.4e+02	0.00	
203	28	$_{\rm pNHD}_2$	γ_2	pND ₂	Н		1.4e+02	0.00	
202	29	$oNHD_2$	γ_2	$_{0}NHD_{2}^{+}$	e		2.2e+02	0.00	
203	30	pNHD ₂	1/2	$_{\rm pNHD_2^+}$	e		2.2e + 02	0.00	
203	31	mND ₂	γ ₂	oD ₂	ND		6.7e + 02	0.00	
20;	32	pND ₂	ν <u>-</u>	pD2	ND		6.7e + 02	0.00	
20:	33	oND	12	oD_	ND		$3.4e \pm 02$	0.00	
20:	34	oND	12	pD_{2}^{2}	ND		$3.4e \pm 02$	0.00	
201	35	mND-	12	oND-	D		$4.3e \pm 0.2$	0.00	
200	36	nND-	12	pND-	D		$4.3e \pm 0.2$	0.00	
200	27	oND	12	oND	D		$4.3e \pm 0.2$	0.00	
200	20	oND 3	72 N	DND2	D		$2.1e \pm 0.2$	0.00	
200	0	ND ND	12	ND ⁺	D		2.10+02	0.00	
20.	39	mND ₃	γ_2	mND3	е		2.2e+02	0.00	
20^{4}	10	$_{pND_3}$	γ_2	pND3	e ⁻		2.2e+02	0.00	
20^{4}	11	oND ₃	γ_2	$_{0}ND_{3}^{+}$	e^-		2.2e+02	0.00	
20^{4}	12	mNH_4^+	\mathbf{Gr}	oNH ₃	Η	Gr^+	3.8e-07	0.50	
204	13	$_{\rm pNH_4^+}$	\mathbf{Gr}	pNH ₃	Н	Gr^+	3.8e-07	0.50	
20^{4}	14	oNH	Gr	oNH	Н	Gr^+	1.3e-07	0.50	
20/	15	oNH ⁴	Gr	DNH 3	н	Gr^{+}	2 5e-07	0.50	
20	16	mNH ⁺	Cr-	oNU	U U	Cr	2.00 07	0.50	
204	17	MINT4	Gr	NIT S	11	G	3.8e-07	0.50	
204	±'7	pNH4	Gr ⁻	pNH ₃	H	Gr	3.8e-07	0.50	
20^{4}	18	$_{0}^{\rm NH_{4}^{+}}$	Gr^{-}	$_{0}$ NH ₃	Н	\mathbf{Gr}	1.3e-07	0.50	
20^{4}	19	$_{\rm oNH_4^+}$	Gr^-	$_{\rm pNH_3}$	Н	\mathbf{Gr}	2.5e-07	0.50	
20	50	N_2H^{\downarrow}	\mathbf{Gr}	Gr^+	N_2	Н	1.0e-07	0.50	
20	51	N_2H^+	\mathbf{Gr}	Gr^+	NH	Ν	1.9e-07	0.50	
20	52	$\tilde{N_2H^+}$	Gr^-	\mathbf{Gr}	N.2	н	1.0e-07	0.50	
20	53	$\tilde{N_{0}H^{+}}$	Gr^{-}	\mathbf{Gr}	ΝĤ	N	1.9e-07	0.50	
205	54	$\tilde{N_{2}D^{+}}$	\mathbf{Gr}	Gr^+	N ₂	D	3.0e-07	0.50	
20	55	$\tilde{N_{o}D^{+}}$	Gr^{-}	\mathbf{Gr}	N.	D	3.0e-07	0.50	
20	56	s	H^+	s^+	H ²		1.0e-15	0.00	
200	57	S	0H+	~ oH	SH+		2.60.00	0.00	
208		5	-11+	-11	C11+		2.00-03	0.00	
208	80	3	pH ₃	on ₂	SH		1.3e-09	0.00	
20	59	S	pH_3^{+}	$_{\text{pH}_2}$	SH^+		1.3e-09	0.00	
200	30	SH	Η	oH_2	S		1.9e-11	0.00	
200	31	$_{\rm SH}$	Н	$_{\rm pH_2}$	\mathbf{S}		6.3e-12	0.00	
200	32	SH	He^+	S^+	Η	He	1.7e-09	0.00	
206	33	SH	H^+	$_{\rm SH^+}$	Н		1.6e-09	0.00	
206	34	SH	H^+	oHa	s^+		1.2e-09	0.00	
200	35	SH	H^+	pH2	s^+		4,0e-10	0.00	
204	36	SH	0H+	0H-S+	oH		1 40 00	0.00	
200	27	CII	-11+	-11 g+	-11		1.40-03	0.00	
200) (SH	oH ₃	on ₂ S	рн ₂		2.4e-10	0.00	
200	58	SH	$_{0}H_{3}$	$_{\rm pH_2S^+}$	oH_2		2.4e-10	0.00	
206	39	SH	pH_3^+	$_{0}H_{2}S^{+}$	oH_2		7.1e-10	0.00	
	70	SH	pH_3^+	$_{oH_2S^+}$	pH_2		4.8e-10	0.00	
20'				4	-				
$20''_{20'}$	71	SH	pH_{a}^{+}	$_{\rm pH_{3}S^{+}}$	oHa		4.8e-10	0.00	

Table D6 – continued (part 29)

#	Reactant	s	Products	;		α	β	γ
2073	oHaS	He^+	oHa	s^+	He	3.6e-09	0.00	0.0
2074	pH_2S	He^+	pH ₂	\tilde{s}^+	He	3.6e-09	0.00	0.0
2075	oH ₂ S	$_{\rm He}^+$	SH [‡]	н	He	4.8e-10	0.00	0.0
2076	pH_2S	$_{\rm He}+$	$_{\rm SH^+}$	Η	He	4.8e-10	0.00	0.0
2077	$_{0}H_{2}S$	He^+	$_{oH_2S^+}$	He		3.1e-10	0.00	0.0
2078	pH_2S	He ⁺	pH_2S^+	He		3.1e-10	0.00	0.0
2079	oH ₂ S	H^+	$^{\rm oH_2S^+}$	H		7.6e-09	0.00	0.0
2080	pH ₂ S	н т+	pH_2S^+	н		7.6e-09	0.00	0.0
2081	oH ₂ S	он ₃	oH ₃ S	он ₂		2.3e-09	0.00	0.0
2082	oH25	он ₃	-11 S+	рн ₂		3.1e-10	0.00	0.0
2083	оп ₂ 5 он S	оп ₃	рп ₃ 5 ' ъц с+	оп ₂		8.0e-10 2.5e-10	0.00	0.0
2084	501125 DH S	он ₃	рп ₃ 5+	oH		2.3e-10 9.3e-10	0.00	0.0
2086	pH ₂ S	он ₃	он s+	DH2		9.30-10	0.00	0.0
2087	pH ₂ S	0H3 0H ⁺	DH-S ⁺	oH-		1.9e-09	0.00	0.0
2088	oH ₂ S	$_{\rm pH_{+}^{+}}$	oH _o S ⁺	oH ₂		8.6e-10	0.00	0.0
2089	oHoS	$_{\rm pH_3}^{\rm pH_3}$	oH _o S ⁺	DHo		6.2e-10	0.00	0.0
2090	oH ₂ S	$_{\rm pH_2^+}$	pH ₂ S ⁺	oH ₂		1.7e-09	0.00	0.0
2091	oH ₂ S	$_{\rm pH_2^+}$	$_{\rm pH_2S^+}$	$_{\rm pH_2}^2$		4.9e-10	0.00	0.0
2092	$_{\rm pH_2S}^2$	$_{\rm pH_2^+}$	oH ₂ S ⁺	oH ₂		7.4e-10	0.00	0.0
2093	$_{\rm pH_2S}$	$_{\rm pH_3^+}$	$_{\rm pH_3S^+}$	oH ₂		1.5e-09	0.00	0.0
2094	$_{\rm pH_2S}$	$_{\rm pH_3^+}$	$_{pH_{3}S^{+}}$	$_{\rm pH_2}$		1.5e-09	0.00	0.0
2095	s^+	Fe	Fe^{+}	s		1.8e-10	0.00	0.0
2096	SH ⁺	Н	oH_2	s^+		8.2e-11	0.00	0.0
2097	SH+	H	pH ₂	S^+		2.7e-11	0.00	0.0
2098	SH ⁺	oH ₂	$^{\text{oH}_3\text{S}^+}$	γ		6.7e-16	0.00	0.0
2099	sн+	oH ₂	pH ₃ S'	γ γ		3.3e-10 1.0e 15	0.00	0.0
2100	SH ⁺	5 S	S^+	/ SH		9.7e-10	0.00	0.0
2101	SH ⁺	oH ₂ S	$_{\rm oH_2S^+}$	S		3.3e-10	0.00	0.0
2103	$_{\rm SH^+}$	oH ₂ S	$_{\rm pH_3S^+}$	S		1.7e-10	0.00	0.0
2104	$_{\rm SH^+}$	$_{\rm pH_2^{-S}}$ S	$_{pH_{3}S^{+}}$	S		5.0e-10	0.00	0.0
2105	SH ⁺	Fe	Fe^+	SH		1.6e-09	0.00	0.0
2106	$_{0}H_{2}S^{+}$	H	oH ₂	SH+		1.7e-10	0.00	0.0
2107	$^{\text{oH}_2\text{S}^+}$	H	pH ₂	SH^+		3.3e-11	0.00	0.0
2108	рп ₂ 5 · ън s+	п	DH	ы su+		1.0e-10	0.00	0.0
2109	$_{\rm oH_2S^+}$	S	$_{oH_{a}S}^{pm_{2}}$	s+		1.0e-10 1.1e-09	0.00	0.0
2111	$_{\rm pH_{2}S^{+}}$	s	pH ₂ S	s+		1.1e-09	0.00	0.0
2112	$_{\rm oH_2S^+}$	SH	oH ₂ S	$_{\rm SH^+}$		5.0e-10	0.00	0.0
2113	pH_2S^+	SH	$_{\rm pH_2S}$	$_{\rm SH^+}$		5.0e-10	0.00	0.0
2114	$_{oH_2S^+}$	Fe	$_{0}H_{2}S$	Fe ⁺		1.8e-09	0.00	0.0
2115	$_{\rm pH_2S^+}$	Fe	pH ₂ S	Fe ⁺		1.8e-09	0.00	0.0
2116	oH ₃ S⊤	H	$_{2}^{\text{oH}}S^{+}$	oH ₂		4.5e-11	0.00	0.0
2117	он ₃ 5 '	H H	$_{\rm pH}^{\rm oH_2S^+}$	pH ₂		7.5e-12 7.5e-12	0.00	0.0
2110	$_{\rm pH_{\circ}S^+}$	н	$_{\rm oH_{2}S^{+}}$	oH ₂		2.2e-11	0.00	0.0
2120	$_{\rm pH_3S^+}$	н	oH ₂ S+	$_{\rm pH_2}^2$		1.5e-11	0.00	0.0
2121	$_{\rm pH_3S^+}$	Н	$_{pH_{2}S^{+}}$	$_{\rm oH_2}$		1.5e-11	0.00	0.0
2122	$_{pH_{3}S^{+}}$	Н	$_{pH_{2}S^{+}}$	$_{\rm pH_2}$		7.5e-12	0.00	0.0
2123	S	$_{oH_2D^+}$	SH ⁺	HD		1.7e-09	0.00	0.0
2124	S	$_{\rm PH_2D^+}$	SH ⁺	HD		1.7e-09	0.00	0.0
2125	s s	оп ₂ D' ън ъ+	оп ₂ рН	sd' sd+		o./e-10 8 7o 10	0.00	0.0
2120	S	$_{\rm oHD}^{\rm PH_2D}$	oD.	SH ⁺		8 70-10	0.00	0.0
2128	s	$_{\rm pHD}^{+}$	DD_{2}	SH+		8,7e-10	0.00	0.0
2129	s	$_{\rm oHD_2}^{-122}$	SD^+	HD		1.7e-0.9	0.00	0.0
2130	S	pHD ⁺	SD ⁺	HD		1.7e-09	0.00	0.0
2131	ŝ	mD_{2}^{+}	oDo	SD^+		2.6e-09	0.00	0.0
2132	S	pD_{2}^{+}	pD ₂	SD^+		2.6e-09	0.00	0.0
2133	S	$_{\rm oD_3^+}$	- ∠ oD,	SD^+		1.3e-09	0.00	0.0
2134	S	$_{oD_{3}}^{\downarrow}$	pD_2	SD^+		1.3e-09	0.00	0.0
2135	SH	$_{\rm oH_2D^+}$	$_{oH_{2}S^{+}}$	HD		1.6e-09	0.00	0.0
2136	SH	$_{oH_2D^+}$	$_{\rm pH_2S^+}$	HD		3.2e-10	0.00	0.0
2137	SH	$_{\rm pH_2D^+}$	$^{oH_2S^+}$	HD		9.5e-10	0.00	0.0
2138	SH	$^{\text{pH}_2\text{D}^+}$	pH_2S^{\top}	HD	F	9.5e-10	0.00	0.0
2139	SH	$^{\text{oHD}_2^+}$	оD ₂	oH ₂ S	-	1.4e-09	0.00	0.0
2140	SH	$_{o}^{\text{PHD}_{2}^{+}}$	$_{\rm aD}^{\rm pD}$	oH ₂ S	+	1.4e-09	0.00	0.0
2141 2179	SH SH	опD ₂ ънъ+	$^{0D}_{2}$	рп ₂ 5 гц с-	+	4.00-10	0.00	0.0
2142 2143	oH.S	$_{\rm oH_{*}D^{+}}$	$_{\rm oH, S^+}$	рп ₂ 5 НП		4.0e-10 2.5e-00	0.00	0.0
2144	oH ₂ S	$_{\rm oH_2D^+}$	pH _a S ⁺	HD		1.2e-09	0.00	0.0
2145	oH2S	$_{\rm pH_2D^+}$	oH ₃ S ⁺	HD		1.2e-09	0.00	0.0
2146	$_{0}H_{2}S$	$_{\rm pH_2D^+}$	$_{\rm pH_3S^+}$	HD		2.5e-09	0.00	0.0

Table D6 – continued (part 30)

	Reactant	e	Products			<i>α</i>	в	v
π 01.47	IL C	. II D+		IID		1.0.00	P	1
2147	рн ₂ 5	$_{-11}^{OH_2D^+}$	он ₃ 5 -	HD		1.2e-09	0.00	0.0
2140	рн ₂ 5	$_{\rm pu}^{\rm on_2D^+}$	pn_3s			2.5e-09	0.00	0.0
2149	рн ₂ 5	$_{\rm H_2D^+}$	pn ₃ s			5.7e-09	0.00	0.0
2150	oH ₂ S	$^{\text{oHD}_2}$	0D2	oH ₃ S		2.5e-09	0.00	0.0
2151	$_{0}$ H_{2} S	pHD ₂	pD_2	oH ₃ S		2.5e-09	0.00	0.0
2152	$_{0}$ M $_{2}$ S	$_{\rm oHD_2}$	oD_2	$_{pH_{3}S^{+}}$		1.2e-09	0.00	0.0
2153	$_{0}H_{2}S$	$_{\rm pHD_2^+}$	pD_2	$_{\rm pH_3S^+}$		1.2e-09	0.00	0.0
2154	$_{\rm pH_2S}$	$_{\rm oHD}_2^+$	oD_2	$_{pH_{3}S^{+}}$		3.7e-09	0.00	0.0
2155	pH_2S	$_{\rm pHD_2^+}$	pD_2	pH_3S^+		3.7e-09	0.00	0.0
2156	s^+	Gr	$\mathrm{Gr}^{ ilde{+}}$	s		2.8e-07	0.50	0.0
2157	s^+	Gr^-	\mathbf{Gr}	S		2.8e-07	0.50	0.0
2158	$_{oH_{3}S^{+}}$	Gr	$_{oH_{2}S}$	Н	Gr^+	2.7e-07	0.50	0.0
2159	$_{pH_{3}S^{+}}$	\mathbf{Gr}	$_{0H_{2}S}$	Н	Gr^+	1.4e-07	0.50	0.0
2160	$_{pH_{3}S^{+}}$	Gr	pH_2S	Н	Gr^+	1.4e-07	0.50	0.0
2161	$_{oH_3S^+}$	Gr^-	$_{oH_2S}$	Н	\mathbf{Gr}	2.7e-07	0.50	0.0
2162	$_{\rm pH_3S^+}$	Gr^-	$_{oH_{2}S}$	Н	\mathbf{Gr}	1.4e-07	0.50	0.0
2163	$_{\rm pH_3S^+}$	Gr^{-}	pH_2S	Н	\mathbf{Gr}	1.4e-07	0.50	0.0
2164	s^+	e ⁻	S	γ		3.9e-12	-0.63	0.0
2165	$_{\rm SH^+}$	e ⁻	S	Н		2.0e-07	-0.50	0.0
2166	$_{oH_{2}S^{+}}$	e ⁻	SH	Н		1.5e-07	-0.50	0.0
2167	$_{\rm pH_2S^+}$	e^-	SH	Η		1.5e-07	-0.50	0.0
2168	$_{oH_2S^+}$	e ⁻	н	Н	S	1.5e-07	-0.50	0.0
2169	$_{\rm pH_2S^+}$	e ⁻	Н	Н	S	1.5e-07	-0.50	0.0
2170	$_{oH_{2}S^{+}}$	e ⁻	$_{oH_2S}$	γ		1.1e-10	-0.70	0.0
2171	$_{\rm pH_2S^+}$	e^-	$_{\rm pH_2S}$	γ		1.1e-10	-0.70	0.0
2172	$_{oH_{3}S^{+}}$	e ⁻	$_{o}H_{2}S$	Н		3.0e-07	-0.50	0.0
2173	$_{\rm pH_3S^+}$	e ⁻	$_{0}H_{2}S$	Н		1.5e-07	-0.50	0.0
2174	pH_3S^+	e ⁻	$_{\rm pH_2S}$	H		1.5e-07	-0.50	0.0
2175	oH ₃ S ⁺	e^-	$^{\mathrm{oH}}2$	SH		1.0e-07	-0.50	0.0
2176	$_{\rm pH_3S^+}$	e	oH ₂	SH		5.0e-08	-0.50	0.0
2177	$_{\rm gp1}^{\rm pH_3S^+}$	e	pH ₂	SH		5.0e-08	-0.50	0.0
2178	SDT	e	S 0+	D		2.0e-07	-0.50	0.0
2179	S	Y2	51	e		8.0e+02	0.00	0.0
2180	SH	1/2 25	5 517+	н °_		1.1e+03	0.00	0.0
2181 2182	oHC	12	SH '	е н		$3.4e \pm 0.2$	0.00	0.0
2102	он ₂ 5 рН S	12	SH	н Н		3.4e+03	0.00	0.0
2184	oH ₂ S	12 15	oH _a S ⁺	e ⁻		6 2e±02	0.00	0.0
2185	pH _c S	12 15	$_{\rm pH_cS^+}$	e_		$6.2e \pm 02$	0.00	0.0
2186	SH^{+12S}	1∠ 16	S+25	H		$4.6e \pm 02$	0.00	0.0
2187	0	CH	HCO^+	 e ⁻		2.4e-14	0,50	0.0
2188	õ	CH	CO	H		6.6e-11	0,00	0.0
2189	õ	oCH	H	Н	CO	1.0e-10	0.00	0.0
2190	0	pCH ₂	Н	Н	CO	1.0e-10	0.00	0.0
2191	0	oCH ₂	oH ₂	СО		4.0e-11	0.00	0.0
2192	0	pCH_2	pH_	CO		4.0e-11	0.00	0.0
2193	0	oCH ₂	oH,	Н	CO	1.8e-10	0.50	0.0
2194	0	pCH	oH2	Н	CO	9.0e-11	0.50	0.0
2195	0	pCH ₃	pH_2	Н	CO	9.0e-11	0.50	0.0
2196	0	C ₂	co	С		2.0e-10	-0.12	0.0
2197	0	$\tilde{C_2}H$	СО	CH		1.0e-10	0.00	250.0
2198	0	$\tilde{C_3}$	CO	C_2		5.0e-11	0.50	0.0
2199	0	$\tilde{C_3}H$	C_2H	сõ		5.0e-11	0.50	0.0
2200	0	C_3H_2	C_2H_2	CO		5.0e-11	0.50	0.0
2201	0	NH	NŐ	Н		6.6e-11	0.00	0.0
2202	0	oNH_2	NH	OH		7.0e-12	-0.10	0.0
2203	0	pNH_2	NH	OH		7.0e-12	-0.10	0.0
2204	0	CN	CO	Ν		5.0e-11	0.00	0.0
2205	0	HNC	CO	NH		2.0e-10	0.50	200.0
2206	0	$_{\rm SH}$	OH	S		1.7e-11	0.67	956.0
2207	0	$_{\rm SH}$	SO	Н		1.6e-10	0.00	0.0
2208	0	CS .	CO	S		2.6e-10	0.00	760.0
2209	0	$_{0}CH_{3}^{+}$	$_{0}H_{2}$	HCO^+		3.1e-10	0.00	0.0
	0	pCH_3^+	$_{0}H_{2}$	HCO^+		1.6e-10	0.00	0.0
2210	0	. 1	pH _o	HCO^+		1.6e-10	0.00	0.0
2210 2211	0	pCH_3	1 2					0.0
2210 2211 2212	0	$_{\rm pCH_3^+}$ $_{\rm oCH_2^+}$	oH ⁺	CO		1.3e-11	0.00	0.0
2210 2211 2212 2213	0 0 0	$_{\text{pCH}_{3}^{+}}$ $_{\text{oCH}_{3}^{+}}$ $_{\text{pCH}_{2}^{+}}$	$^{\rm oH_3^+}_{\rm pH_3^+}$	CO CO		1.3e-11 1.3e-11	$0.00 \\ 0.00$	0.0
2210 2211 2212 2213 2214		pCH_3 oCH_3^+ pCH_3^+ pCH_3^+	$^{\text{oH}_3^+}_{\text{pH}_3^+}$	CO CO oCH-		1.3e-11 1.3e-11 2.2e-10	$0.00 \\ 0.00 \\ 0.00$	0.0
2210 2211 2212 2213 2214 2215		pCH_3^+ oCH_3^+ pCH_3^+ pCH_5^+ oCH_5^+	$^{P}_{OH_{3}}^{+}$ $^{PH_{3}}_{OH_{3}}^{+}$ $^{OH_{3}}O^{+}$ $^{OH_{2}}O^{+}$	CO CO oCH ₂ oCH		1.3e-11 1.3e-11 2.2e-10 5.4e-11	0.00 0.00 0.00 0.00	0.0
2210 2211 2212 2213 2214 2215 2216		pCH_3 oCH_3^+ pCH_3^+ pCH_5^+ oCH_5^+ oCH_5^+	$^{P}_{OH_{3}^{+}}^{2}$ $^{PH_{3}^{+}}_{OH_{3}O^{+}}^{OH_{3}O^{+}}$	CO CO oCH_2 oCH_2 pCH		1.3e-11 1.3e-11 2.2e-10 5.4e-11	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
2210 2211 2212 2213 2214 2215 2216 2217		PCH_{3}^{+} oCH_{3}^{+} PCH_{3}^{+} PCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+}	P 2 OH 3 PH 3 OH OH OH OH OH OH	$\begin{array}{c} \text{CO} \\ \text{CO} \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{pCH}_2 \\ \text{oCH}_2 \end{array}$		1.3e-11 1.3e-11 2.2e-10 5.4e-11 5.4e-11	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
2210 2211 2212 2213 2214 2215 2216 2217 2216		PCH_{3}^{-} oCH_{3}^{+} PCH_{3}^{+} PCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+}	P 2 O H 3 P H 3 O H O H O H O H O H O H O H O H O H O H O H	$\begin{array}{c} \text{CO} \\ \text{CO} \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{pCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \end{array}$		1.3e-11 1.3e-11 2.2e-10 5.4e-11 1.1e-10	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	0.0 0.0 0.0 0.0 0.0 0.0
2210 2211 2212 2213 2214 2215 2216 2217 2218 2210		pCH_{3}^{-} oCH_{3}^{+} pCH_{3}^{+} pCH_{5}^{+} oCH_{5}^{++} oCH_{5}^{++} oCH_{5}^{++} mCH_{5}^{++}	$^{P}_{OH_{3}}^{+}$ $^{P}_{OH_{3}}^{+}$ $^{OH_{3}}_{OH_{3}}^{O+}$ $^{OH_{3}}_{OH_{3}}^{O+}$ $^{OH_{3}}_{OH_{3}}^{O+}$ $^{OH_{3}}_{OH_{3}}^{O+}$	$\begin{array}{c} \text{CO} \\ \text{CO} \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{pCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \end{array}$		1.3e-11 1.3e-11 2.2e-10 5.4e-11 5.4e-11 1.1e-10 4.3e-11	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220	0 0 0 0 0 0 0 0 0 0	pCH_{3}^{+} oCH_{3}^{+} pCH_{3}^{+} pCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+} oCH_{5}^{+} mCH_{5}^{+} mCH_{5}^{+} mCH_{5}^{+}	1 2 1 2 1	$\begin{array}{c} \text{CO} \\ \text{CO} \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{pCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \\ \text{oCH}_2 \end{array}$		1.3e-11 1.3e-11 2.2e-10 5.4e-11 5.4e-11 1.1e-10 4.3e-11 8.6e-11	$\begin{array}{c} 0.00\\$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table D6 – continued (part 31)

#	Rea	ictants	Products		α	β	γ
2221	0	HCO_{2}^{+}	HCO+	0.	1.0e-09	0.00	0.0
2222	0	SH^{+2}	so^+	H	2.9e-10	0.00	0.0
2223	0	$_{\rm SH^+}$	s^+	OH	2.9e-10	0.00	0.0
2224	Ο	$_{oH_2S^+}$	$_{\rm SH^+}$	OH	3.1e-10	0.00	0.0
2225	Ο	$_{pH_{2}S^{+}}$	$_{\rm SH^+}$	OH	3.1e-10	0.00	0.0
2226	Ο	$_{oH_2S^+}$	oH_2	so^+	3.1e-10	0.00	0.0
2227	Ο	$_{\rm pH_2S^+}$	$_{\rm pH_2}$	SO^+	3.1e-10	0.00	0.0
2228	0	HCS ⁺	HCO ⁺	S	1.0e-09	0.00	0.0
2229	С	ОН	CO	Н	3.1e-11	-0.36	0.0
2230	C		CO	0	3.3e-11	0.50	0.0
2231	C	NH	HCN	н u	1.2e-10 2.0c 11	0.00	0.0
2232	C	DNH2	HCN	н Н	3.0e-11	-0.20	-0.0
2233	c	oNH ₂	HNC	н	3.0e-11	-0.20	-6.0
2235	č	pNH ₂	HNC	н	3.0e-11	-0.20	-6.0
2236	С	NO ²	CN	0	6.0e-11	-0.16	0.0
2237	\mathbf{C}	NO	CO	Ν	9.0e-11	-0.16	0.0
2238	\mathbf{C}	SH	CS	Н	2.0e-11	0.00	0.0
2239	\mathbf{C}	SO	CO	S	7.2e-11	0.00	0.0
2240	\mathbf{C}	SO	CS	0	1.7e-10	0.00	0.0
2241	С	oH ₃ O ⁺	oH_2	HCO ⁺	1.0e-11	0.00	0.0
2242	С	$_{\rm pH_3O^+}$	oH ₂	HCO ⁺	5.0e-12	0.00	0.0
2243	С	pH ₃ O⊤	pH ₂	HCO ⁺	5.0e-12	0.00	0.0
2244	C	HCO+	CH+	00	1.1e-09	0.00	0.0
2245	C	O_2	CO+	0	5.2e-11	0.00	0.0
2246	C	O_2^{\perp}	C^+	O_2	5.2e-11	0.00	0.0
2247	C	SH'	UCS -	H U	9.9e-10	0.00	0.0
2240	C	$_{\rm pH}^{\rm OH_2S^+}$	HCS ⁺	п	1.0e-09	0.00	0.0
2245	c	$_{\rm oH_2DO^+}$	oH-	DCO^+	1.0e-03	0.00	0.0
2251	c	$_{\rm pH_{o}DO^+}$	DH ₂	DCO^+	1.0e-11	0.00	0.0
2252	č	oHD _o O ⁺	DCO+	HD	1.0e-11	0.00	0.0
2253	С	$_{\rm pHD_2^2O^+}$	DCO^+	HD	1.0e-11	0.00	0.0
2254	\mathbf{C}	mD_3O^+	oD_2	DCO^+	1.0e-11	0.00	0.0
2255	\mathbf{C}	pD_3O^+	pD_2	DCO^+	1.0e-11	0.00	0.0
2256	\mathbf{C}	$_{0}D_{3}O^{+}$	oD_2	DCO^+	5.0e-12	0.00	0.0
2257	\mathbf{C}	$_{0}D_{3}O^{+}$	pD_2	DCO^+	5.0e-12	0.00	0.0
2258	Ν	CH	CN	Н	1.4e-10	0.41	0.0
2259	Ν	CN	N_2	С	8.8e-11	0.42	0.0
2260	N	NO	N ₂	0	7.3e-11	0.44	12.7
2261	N	oCH ₂	HCN	H	5.0e-11	0.17	0.0
2262	IN N	PCH ₂	HUNC	H	5.0e-11	0.17	0.0
2203	N	DCH ₂	HNC	п	3.0e-11 3.0e-11	0.17	0.0
2265	N	oCH ₂	oH-	HCN	1 3e-11	0.17	0.0
2266	N	DCH ₂	oHo	HCN	6.5e-12	0.50	0.0
2267	N	pCH ₂	pH _o	HCN	6.5e-12	0.50	0.0
2268	Ν	OH	NO	Н	5.0e-11	0.00	6.0
2269	Ν	O_2^+	NO ⁺	0	7.8e-11	0.00	0.0
2270	Ν	oCH ₂ ⁺	HCN^+	н	9.4e-10	0.00	0.0
2271	Ν	$_{\rm pCH_2^+}$	HCN^+	Н	9.4e-10	0.00	0.0
2272	Ν	с, н ⁴	C_2N^+	Н	8.3e-10	0.00	0.0
2273	Ν	$_{0}$ CH $_{3}^{+}$	oĤ,	HCN^+	6.7e-11	0.00	0.0
2274	Ν	$_{\rm pCH_3^+}$	oH ₂	HCN^+	3.4e-11	0.00	0.0
2275	Ν	PCH ⁺	pH_{2}	HCN^+	3.4e-11	0.00	0.0
2276	Ν	°CH ⁺	HCNH ⁺	Н	6.7e-11	0.00	0.0
2277	Ν	DCH ⁺	HCNH ⁺	н	6.7e-11	0.00	0.0
2278	Ν	$C_{3}H_{3}^{+}$	CH^+	HCN	2.5e-11	0.00	0.0
2279	Ν	so	NO	S	1.7e-11	0.50	750.0
2280	\mathbf{S}	CH	CS	Н	1.1e-12	0.00	0.0
2281	\mathbf{S}	OH	SO	Н	1.0e-10	0.00	100.0
2282	\mathbf{S}	O_2	SO	Ο	5.2e-12	0.00	265.0
2283	\mathbf{S}	CH^+	s+ .	CH	4.7e-10	0.00	0.0
2284	S	CH ⁺	SH ⁺	С	4.7e-10	0.00	0.0
2285	S	CH+	CS^+	Н	4.7e-10	0.00	0.0
2286	S	$_{\rm oCH_3^+}$	oH ₂	HCS+	1.4e-09	0.00	0.0
2287	S	$_{\rm pCH_3^+}$	oH ₂	HCS+	7.0e-10	0.00	0.0
2288	S	$_{\rm pCH_3^+}$	pH_2	HCS+	7.0e-10	0.00	0.0
2289	s	$_{\rm pCH_5^+}$	mCH_4	SH+	1.3e-09	0.00	0.0
2290	S	oCH_5^+	mCH_4	SH+	3.3e-10	0.00	0.0
2291	S	oCH_5^+	oCH_4	SH+	9.8e-10	0.00	0.0
2292	S	mCH_5^+	pCH_4	SH+	5.2e-10	0.00	0.0
2293	\mathbf{S}	mCH_5^+	oCH_4	$_{\rm SH^+}$	7.8e-10	0.00	0.0
2294	\mathbf{S}	HCO^+	SH^+	CO	3.3e-10	0.00	0.0

Table D6 – continued (part 32)

#	Reactar	its	Product	5		α	β	
2295	S	O^+	so+	0		5 4e-10	0.00	
2206	S	0^{+}	s+	Ő		5 40 10	0.00	ć
2290	5	U_2	+	O_2		1.1.00	0.00	0
2297	5 6	N II+	SH ·	NO		1.1e-09	0.00	0
2298	5	N2H '	SH '	N2	TT	1.1e-09	0.00	0
2299	00	He'	C+	0	He	1.5e-09	0.00	0
2300	SO	He⊤	0+	S	He	8.3e-10	0.00	0
2301	SO	He⊤	S+	0	He	8.3e-10	0.00	0
2302	NO	He^+	N ⁺	0	He	1.4e-09	0.00	0
2303	NO	He^+	0+	N	He	2.2e-10	0.00	0
2304	CN	He^+	C^+	N	He	8.8e-10	0.00	0
2305	CN	He^+	N^+	\mathbf{C}	He	8.8e-10	0.00	C
2306	\mathbf{CS}	He^+	C^+	S	He	1.3e-09	0.00	(
2307	\mathbf{CS}	He^+	s^+	С	He	1.3e-09	0.00	0
2308	Na	He^+	N^+	Ν	He	7.9e-10	0.00	0
2309	N	He^+	N_{2}^{+}	He		4 1e-10	0.00	(
2310	HCN	He ⁺	CN^+	н	He	1.5e-09	0.00	ò
2010	HCN	u _e +	CH+	N	LIC LIC	6.20.10	0.00	0
2011	HCN	11e +	CH ·	NIT	IIe II-	0.2e-10 7.8-10	0.00	
2012	HCN	не ч	N+	CIL	пе	7.8e-10	0.00	(
2313	HCN	He	IN '	Сн	He	2.5e-10	0.00	(
2314	HNC	He⊤	CNT	Н	He	1.6e-09	0.00	(
2315	HNC	He^+	C^+	NH	He	1.6e-09	0.00	(
2316	CO_2	He^+	CO+	0	He	7.7e-10	0.00	(
2317	CO_2	He^+	O^+	CO	He	1.8e-10	0.00	(
2318	CO_2	He^+	C^+	02	He	4.0e-11	0.00	(
2319	so,	He^+	s^+	0.2	He	8.6e-10	0.00	(
2320	SO ₂	He^+	SO^+	o	He	3.4e-09	0.00	(
2321	\overline{ocs}	He^+	CS^+	0	He	7.6e-10	0.00	
2322	OCS	He ⁺	$\tilde{s^+}$	co	He	7.6e-10	0.00	
2323	OCS	He ⁺	$\tilde{c}o^+$	S	He	7.6e-10	0.00	
2020	OCS	Ho+	0+	CS	Ho	7.60.11	0.00	
2324	OUS CIL	cu+		CS	ne	1.0e-11	0.00	
2325	Сн	SH	OCH ₂	5		4.3e-10	0.00	
2326	СН	SH+	pCH_2^+	S		1.4e-10	0.00	. (
2327	$_{oH_2O}$	pCH_5^+	mCH_4	oH ₃ O+		1.9e-09	0.00	. (
2328	oH_2O	pCH_5^+	pCH_4	oH_3O^+		1.6e-10	0.00	. (
2329	oHoO	pCH_{F}^{+}	oCH 4	$_{\rm oH_{2}O^{+}}$		8.5e-10	0.00	(
2330	oH_O	DCH ⁺	mCH	DH O+		5 7e-10	0.00	
2331	oH O	pCH ⁺	oCH	ън 0 ⁺		2.00.10	0.00	
2001	011 ₂ O	pon ₅	CIII4	$pn_{3}O$		2.06-10	0.00	
2332	pH_2O	pCH_5	mCH_4	oH ₃ O		6.2e-10	0.00	
2333	$_{\rm pH_2O}$	pCH_5^{+}	oCH_4	$_{oH_{3}O^{+}}$		1.9e-09	0.00	. (
2334	$_{\rm pH_2O}$	pCH_5^+	mCH_4	$_{\rm pH_3O^+}$		1.2e-09	0.00	(
2335	oH ₂ O	$_{\rm oCH_5^+}$	mCH_4	$_{\rm oH_3O^+}$		4.7e-10	0.00	(
2336	oHoO	oCH ⁺	DCH.	$_{\rm oH_{2}O^{+}}$		2.3e-10	0.00	(
2337	oH_O	OCH ⁺	OCH.	oH _o O ⁺		1.4e-0.9	0.00	
2001	oH_O	°CH ⁺	mCH	5H30+		8 5o 10	0.00	
2000	011 ₂ O		and a set	μ_{30}		8.5e-10	0.00	
2339	oH ₂ O	oCH ₅	pCH_4	pH ₃ O		1.8e-10	0.00	'
2340	$_{0}H_{2}O$	oCH_5^{+}	oCH_4	$_{\rm pH_3O^+}$		5.6e-10	0.00	
2341	$_{\rm pH_2O}$	oCH_5^+	mCH_4	$_{oH_{3}O^{+}}$		3.5e-10	0.00	
2342	pH_2O	$_{oCH_5}^+$	pCH_4	$_{oH_3O^+}$		7.0e-10	0.00	
2343	pH ₂ O	oCH [∓]	oCH₄	oH ₂ O ⁺		1.1e-09	0.00	
2344	- ⊥ pH₂O	оСН	mCH.	pH _c O ⁺		7.0e-10	0.00	
2345	лн О	осн ⁺	оСн	лн O+		8 80 10	0.00	
2040	-11-0	CII ⁺	- CII	-11 O+		2.0.10	0.00	
2346	on ₂ O	mCH ₅	mCH ₄	on ₃ O		3.2e-10	0.00	
2347	он ₂ О	mCH ₅	pCH_4	он ₃ 0⊤		4.7e-10	0.00	(
2348	$_{0}H_{2}O$	mCH_5^+	oCH_4	$_{oH_{3}O^{+}}$		9.7e-10	0.00	
2349	$_{0}H_{2}O$	mCH_5^+	mCH_4	$_{\rm pH_3O^+}$		4.7e-10	0.00	
2350	oH ₂ O	mCH_5^+	pCH₄	$_{\rm pH_3O^+}$		3.5e-10	0.00	
2351	oH_O	mСН	oCH	$_{\rm pH_{2}O^{+}}$		1.1e-09	0.00	
2352	$_{\rm DH_{-}O}$	mCH^+	mCH	0H-O+		2 6e 10	0.00	
2002	ри <u>2</u> 0	mons mout	aCTT	он <u>з</u> О+		7.0-10	0.00	
2003 007 ·	рп ₂ 0	mon ₅	OCH4	оп ₃ 0 '		1.9e-10	0.00	
2354	$_{\rm pH_2O}$	mCH ₅	pCH_4	рн ₃ 0⊤		1.1e-09	0.00	
2355	$_{\rm pH_2O}$	mCH_5^{+}	oCH_4	$_{\rm pH_3O^+}$		1.6e-09	0.00	1
2356	$_{0}$ O $_{2}$ O	C_3H^+	C_2H_2	HCO^+		2.5e-10	0.00	
2357	$_{\rm pH_2O}$	C_3H^+	C_2H_2	HCO^+		2.5e-10	0.00	
2358	oH,O	C_3H^+	С,Н,	CO		2.0e-10	0.00	
2359	pH_O	с н+	С _{я́} н [‡]	СО		2.0e-10	0.00	
22200	р <u>гг</u> 20	~3 ¹¹	~2 ¹¹ 3 mNII ⁺	OP		1 50 10	0.00	
2300	оп ₂ О	on H3	mnH_4	Он		1.5e-10	0.00	
2361	он ₂ О	oNH3	pNH_4	OH		1.7e-11	0.00	
2362	$_{0}$ O $_{2}$ O	$_{\rm oNH_3^+}$	$_{0}NH_{4}^{+}$	OH		8.7e-11	0.00	
2363	pH_2O	$_{\rm oNH_3^+}$	mNH_4^+	OH		6.3e-11	0.00	
2364	pH_O	oNH	oNH+	OH		1.9e-10	0.00	ſ
2365	oH O	лNH+	mNH+	OH		4 20 11	0.00	
2000	-11-0	- NTT+	+	011		9.0.11	0.00	
0000	OH ()	pNH	pNH ₄	Он		3.3e-11	0.00	'
2366	01120	* 3 		~ ~ ~			-	
$2366 \\ 2367$	$_{\rm oH_2O}^{\rm OH_2O}$	$_{\rm pNH_3^+}^3$	$_{\rm oNH_4^+}$	OH		1.7e-10	0.00	(

Table D6 – continued (part 33)

#	Reactar	nts	Products		α	β	γ
2369	pH ₂ O	pNH_2^+	$_{\rm oNH_4^+}$	ОН	1.5e-10	0.00	0.0
2370	oH ₂ O	N ₂ H ⁺	$_{0H_3}\tilde{O}^+$	N_2	1.7e-09	0.00	0.0
2371	oH2O	$\tilde{N_2H^+}$	$_{\rm pH_3O^+}$	N_2	8.7e-10	0.00	0.0
2372	$_{\rm pH_2^{-}O}$	$\tilde{N_2H^+}$	$_{\rm pH_3O^+}$	N_2	2.6e-09	0.00	0.0
2373	oH ₂ O	HNO^+	$_{\rm oH_3O^+}$	NŌ	1.5e-09	0.00	0.0
2374	$_{o}H_{2}O$	HNO ⁺	$_{\rm pH_3O^+}$	NO	7.7e-10	0.00	0.0
2375	$_{\rm pH_2O}$	HNO ⁺	$_{\rm pH_3O^+}$	NO	2.3e-09	0.00	0.0
2376	$_{0}M_{2}O$	SH ⁺	oH ₃ O ⁺	S	4.2e-10	0.00	0.0
2377	$_{0}H_{2}O$	SH+	$_{\rm pH_3O^+}$	S	2.1e-10	0.00	0.0
2378	pH ₂ O	SH^+	$_{\rm pH_3O^+}$	S	6.3e-10	0.00	0.0
2379	oH ₂ O	$^{\rm oH}_2S^+$	oH ₃ O⊤	SH	5.4e-10	0.00	0.0
2380	он ₂ О	$_{-11}^{OH_2S}$	$_{\rm PH_3O^+}$	SH	2.7e-10	0.00	0.0
2001	oH20	pn_2s	$_{\rm DH_{3}O^{+}}$	SU	2.7e-10 5.4e-10	0.00	0.0
2382	$_{\rm pH}^{\rm OII_2O}$	$_{\rm oH}$ s ⁺	$_{\rm oH}$ O ⁺	SH	2.4e-10	0.00	0.0
2384	pH ₂ O	oH _o S ⁺	pH _a O ⁺	SH	5.4e-10	0.00	0.0
2385	$pH_{2}O$	$_{\rm pH_2S^+}$	$_{\rm pH_2O^+}$	SH	8.1e-10	0.00	0.0
2386	oNH ₂	SH ⁺	oNH ⁺	SH	5.3e-10	0.00	0.0
2387	pNH ₂	$_{\rm SH^+}$	DNH ³⁺	SH	5.3e-10	0.00	0.0
2388	oNH ₂	$_{\rm SH^+}$	mNH ⁺	S	6.1e-10	0.00	0.0
2389	oNH ₂	$_{\rm SH^+}$	oNH ⁴	S	3.7e-10	0.00	0.0
2390	pNH ₂	$_{\rm SH^+}$	$_{\rm pNH_4^+}$	S	2.4e-10	0.00	0.0
2391	DNH ₂	$_{\rm SH^+}$	oNH ⁴	S	7.3e-10	0.00	0.0
2392	oNH ₂	$_{oH_{2}S^{+}}$	mNH_4^+	SH	7.9e-10	0.00	0.0
2393	oNH ₂	oH ₂ S ⁺	$_{\rm pNH_4^+}$	SH	9.1e-11	0.00	0.0
2394	oNHo	oHoS ⁺	oNH ⁺	SH	4.8e-10	0.00	0.0
2395	oNHo	pH _o S ⁺	mNH_{4}^{+}	SH	3.4e-10	0.00	0.0
2396	oNHo	pH _o S ⁺	$_{\rm oNH^+}$	SH	1.0e-09	0.00	0.0
2397	DNH.	oHoS ⁺	mNH_{4}^{+}	SH	2.3e-10	0.00	0.0
2398	pNH _o	oHoS ⁺	$_{\rm DNH^+}$	SH	1.8e-10	0.00	0.0
2399	pNH _o	oHoS ⁺	oNH ⁺	SH	9.5e-10	0.00	0.0
2400	pNH _o	$_{\rm pH_{2}S^{+}}$	$_{\rm DNH^+}$	SH	5.4e-10	0.00	0.0
2401	pNH _o	$_{\rm pH_2S}^{\rm pH_2S}$	oNH ⁺	SH	8 2e-10	0.00	0.0
2402	oNHa	$_{\rm oH_{2}S^{+}}$	$_{\rm oNH_{+}^{+}}$	oHaS	3.4e-10	0.00	0.0
2403	oNH _o	$_{\rm pH_{2}S^{+}}$	oNH ⁺	pH ₂ S	3 4e-10	0.00	0.0
2400	DNH.	$_{\rm oH_{2}S^{+}}$	DNH ⁺	oH ₂ S	3.4e-10	0.00	0.0
2404	pNH-	DH-S ⁺	DNH ⁺	pH-S	3.4e-10	0.00	0.0
2406	oNHa	$_{\rm oH_{\circ}S^+}$	mNH ⁺	oH ₂ S	9.9e-10	0.00	0.0
2400	oNH-	oH-S ⁺	mNH ⁺	pH-S	1.2e-10	0.00	0.0
2401	oNH-	oH-S ⁺	DNH ⁺	oH-S	7.9e-11	0.00	0.0
2400	oNH-	oH-S ⁺	DNH ⁺	pH-S	4 7e-11	0.00	0.0
2400	oNH-	oH-S ⁺	oNH ⁺	oH-S	5.5e-10	0.00	0.0
2410	oNH-	oH-S ⁺	oNH ⁺	pH-S	1.2e-10	0.00	0.0
2411	oNH-	DH-S ⁺	mNH ⁺	oH-S	3 2e-10	0.00	0.0
2412	oNH-	$_{\rm pH_2S^+}$	mNH ⁺	pH-S	2.4e-10	0.00	0.0
2410	oNH-	$_{\rm pH_2S^+}$	DNH ⁺	oH-S	1.6e-10	0.00	0.0
2414	oNH	$_{\rm pH_3S}^{\rm pH_3S}$	$_{\rm oNH}^{\rm pivi14}$	oH S	9.50.10	0.00	0.0
2410	oNH-	$_{\rm pH_2S^+}$	oNH ⁺	pH-S	2.4e-10	0.00	0.0
2417	pNH _o	oH _o S ⁺	mNH^+	oH ₂ S	3 2e-10	0.00	0.0
2417	pNH-	oH-S ⁺	mNH ⁺	pH-S	2.4e-10	0.00	0.0
2410	pNH-	oH-S ⁺	DNH ⁺	oH-S	1.6e-10	0.00	0.0
2420	pNH _o	oH _o S ⁺	oNH ⁺	oH ₂ S	9.5e-10	0.00	0.0
2421	pNH _o	oHoS ⁺	oNH ⁺	nH _o S	2.4e-10	0.00	0.0
2422	DNH	pH _a S ⁺	mNH ⁺	oHaS	1 6e-10	0.00	0.0
2423	DNH.	pH _o S ⁺	DNH ⁺	oHaS	3.2e-10	0.00	0.0
2424	DNH_	$_{\rm pH_{\circ}S^+}$	pNH ⁺	pH ₂ S	1 9e-10	0.00	0.0
2425	pNH _o	pH _o S ⁺	oNH ⁺	oH _o S	7.6e-10	0.00	0.0
2426	pNH-	$_{\rm pH_2S^+}$	oNH ⁺	pH-S	4.8e-10	0.00	0.0
2420	oNH-	50 ⁺	$_{\rm oNH^+}$	SO	1.3e-09	0.00	0.0
2421	DNH	s0+	DNH ⁺	50	1.3e-09	0.00	0.0
2420	oNH	O^+	oNH ⁺	0	2.0e-09	0.00	0.0
2420	DNH	O^{+}	DNH ⁺	O^2	2.0e-09	0.00	0.0
2431	CO	O_2^{0}	CO ₂	H^2	4.4e-13	-1.15	390.0
2432	CO	$_{\rm oH_c^+}$	HCO^+	Н	2.2e-09	0.00	0.0
2433	CO	pH ⁺	HCO+	Н	2.2e-09	0.00	0.0
2434	CO	oH ⁺	oHe	co+	6.4e-10	0.00	0.0
2435	CO	DH ⁺	pH_	co^+	6 4e-10	0.00	0.0
2436	co	oH ⁺	oH_	HCO^+	1 70-09	0.00	0.0
2437	CO	$_{\rm pH_{c}^{+}}$	oH _c	HCO+	8.5e-10	0.00	0.0
2438	CO	$_{\rm pH_{c}^{+}}$	pH _c	HCO+	8.5e-10	0.00	0.0
2439	CO	DCH ⁺	mCH.	HCO+	9.9e-10	0.00	0.0
2440	CO	oCH [±]	mCH.	HCO+	2.5e-10	0.00	0.0
2441	CO	oCH ⁺	oCH.	HCO+	7.4e-10	0.00	0.0
2442	СО	mCH_5^+	pCH_4^4	$\rm HCO^+$	4.0e-10	0.00	0.0

Table D6 – continued (part 34)

#	Reacts	ants	Products		α	в	γ
π 0442	00		- CU	UCO+	E 0. 10	P	1
2443	CO	mCH_5	$_{\rm oCH_4}$	HCOT	5.9e-10	0.00	0.0
2444	00	$^{OH_2D^+}$	HCO+	HD	1.1e-09	0.00	0.0
2445	CO	$_{-11}^{pH_2D^+}$	-U	HD DCO ⁺	1.1e-09 5 7- 10	0.00	0.0
2440	CO	$_{\rm pH}^{\rm oH_2D^+}$	oH ₂	DCO ⁺	5.7e-10 5.7e-10	0.00	0.0
2447	00	p_{H_2D}	pn ₂	DCO+	5.7e-10	0.00	0.0
2448	00	ohD ₂	oD ₂	HCOT	5.7e-10	0.00	0.0
2449	00	$_{\rm pHD_2}^{\rm pHD_2}$	pD ₂	HCOT	5.7e-10	0.00	0.0
2450	CO	oHD ₂	DCO+	HD	1.1e-09	0.00	0.0
2451	CO	$_{\rm pHD_2}$	DCO+	HD	1.1e-09	0.00	0.0
2452	CO	$^{mD_{3}^{+}}$	$^{oD}2$	DCO+	1.7e-09	0.00	0.0
2453	CO	pD_3^{-}	pD_2	DCO+	1.7e-09	0.00	0.0
2454	CO	$_{0}D_{3}^{+}$	oD_2	DCO+	8.5e-10	0.00	0.0
2455	CO	$_{o}D_{3}^{+}$	pD_2	DCO^+	8.5e-10	0.00	0.0
2456	SO	он	SO_2	Н	2.0e-10	-0.17	0.0
2457	SO	H^+	SO^+	н	3.2e-09	0.00	0.0
2458	SO	$_{0}H_{3}^{+}$	oH_2	HSO ⁺	1.9e-09	0.00	0.0
2459	SO	$_{\rm pH_3^+}$	oH_2	HSO^+	9.5e-10	0.00	0.0
2460	SO	$_{\rm pH_3^+}$	pH_2	HSO^+	9.5e-10	0.00	0.0
2461	SO	CH^+	OH+	CS	1.0e-09	0.00	0.0
2462	SO	CH^+	$_{\rm SH^+}$	CO	1.0e-09	0.00	0.0
2463	SO	$_{\circ CH_3^+}$	oH_2	$HOCS^+$	9.5e-10	0.00	0.0
2464	SO	$_{\rm pCH_3^+}$	oH_2	$HOCS^+$	4.8e-10	0.00	0.0
2465	SO	$_{\rm pCH_3^+}$	pH_2	$HOCS^+$	4.8e-10	0.00	0.0
2466	SO	HCO^+	HSO^+	CO	7.5e-10	0.00	0.0
2467	NO	CH	HCN	0	1.2e-11	-0.13	0.0
2468	NO	H^+	NO ⁺	Н	1.9e-09	0.00	0.0
2469	NO	$_{\rm oH_3^+}$	oH_2	HNO^+	1.1e-09	0.00	0.0
2470	NO	$_{\rm pH_3^+}$	oH ₂	HNO^+	5.5e-10	0.00	0.0
2471	NO	$_{pH_3^+}$	pH_2	HNO^+	5.5e-10	0.00	0.0
2472	NO	HCO_2^+	HNO+	CO ₂	1.0e-10	0.00	0.0
2473	NO	O_{2}^{+}	NO ⁺	0,	4.4e-10	0.00	0.0
2474	NO	$S\tilde{H}^+$	NO ⁺	SĤ	3.3e-10	0.00	0.0
2475	NO	$_{oH_{2}S^{+}}$	oH ₂ S	NO ⁺	3.7e-10	0.00	0.0
2476	NO	$_{pH_{2}S^{+}}$	$_{\rm pH_2S}$	NO ⁺	3.7e-10	0.00	0.0
2477	NO	$_{oH_{2}D^{+}}$	HNO+	HD	7.3e-10	0.00	0.0
2478	NO	$_{\rm pH_2D^+}$	HNO^+	HD	7.3e-10	0.00	0.0
2479	NO	$_{\rm oHD_2^+}$	oD_2	HNO^+	3.7e-10	0.00	0.0
2480	NO	$_{\rm pHD_2^+}$	pD_2	HNO ⁺	3.7e-10	0.00	0.0
2481	CN	oNH ₃	oNH_2	HCN	2.8e-11	-0.85	0.0
2482	$_{\rm CN}$	$_{\rm pNH_3}$	$_{\rm oNH_2}$	HCN	1.4e-11	-0.85	0.0
2483	CN	$_{\rm pNH_3}$	pNH_2	HCN	1.4e-11	-0.85	0.0
2484	CN	$_{\rm oH_3^+}$	oH_2	HCN^+	1.0e-09	0.00	0.0
2485	CN	$_{\rm pH_3^+}$	oH_2	HCN^+	5.0e-10	0.00	0.0
2486	CN	$_{\rm pH_3^+}$	pH_2	HCN^+	5.0e-10	0.00	0.0
2487	CN	$_{\rm oH_3^+}$	HCNH ⁺	Н	1.0e-09	0.00	0.0
2488	CN	$_{\rm pH_3^+}$	$HCNH^+$	Н	1.0e-09	0.00	0.0
2489	CN	oH ₃ O ⁺	$HCNH^+$	OH	4.5e-09	0.00	0.0
2490	CN	$_{\rm pH_3O^+}$	HCNH ⁺	OH	4.5e-09	0.00	0.0
2491	CN	$_{\rm oH_2D^+}$	HCNH ⁺	D	1.0e-09	0.00	0.0
2492	CN	$_{\rm pH_2D^+}$	$HCNH^+$	D	1.0e-09	0.00	0.0
2493	CN	$_{oH_2D^+}$	HCN^+	HD	1.0e-09	0.00	0.0
2494	CN	$_{pH_2D^+}$	HCN^+	HD	1.0e-09	0.00	0.0
2495	\mathbf{CS}	OH	OCS	Н	1.7e-10	0.00	0.0
2496	\mathbf{CS}	OH	CO	SH	3.0e-11	0.00	0.0
2497	\mathbf{CS}	H+	CS^+	H	4.9e-09	0.00	0.0
2498	CS	$_{3}^{OH_{3}^{+}}$	$_{oH_2}$	HCS ⁺	2.9e-09	0.00	0.0
2499	\mathbf{CS}	$_{\rm pH_3^+}$	$_{oH_2}$	HCS ⁺	1.4e-09	0.00	0.0
2500	CS	$_{\rm pH_3^+}$	$_{\rm pH_2}$	HCS^+	1.4e-09	0.00	0.0
2501	\mathbf{CS}	$_{oH_2D^+}$	HCS ⁺	HD	2.9e-09	0.00	0.0
2502	\mathbf{CS}	$_{\rm pH_2D^+}$	HCS^+	HD	2.9e-09	0.00	0.0
2503	\mathbf{CS}	$_{\rm oHD_2^+}$	oD_2	HCS^+	2.9e-09	0.00	0.0
2504	\mathbf{CS}	$_{\rm pHD_2^+}$	pD_2	HCS^+	2.9e-09	0.00	0.0
2505	SO	$_{oH_2D^+}$	HSO ⁺	HD	1.9e-09	0.00	0.0
2506	SO	$_{\rm pH_2D^+}$	HSO^+	HD	1.9e-09	0.00	0.0
2507	SO	$_{\rm oHD_2^+}$	oD_2	HSO ⁺	1.9e-09	0.00	0.0
2508	SO	$_{\rm pHD_2^+}$	pD_2	HSO^+	1.9e-09	0.00	0.0
2509	HCN	H^+	HCN^+	H	1.1e-08	0.00	0.0
2510	HCN	oH_3^+	$_{oH_2}$	$HCNH^+$	9.5e-09	0.00	0.0
2511	HCN	$_{\rm pH_3^+}$	$_{oH_2}$	$HCNH^+$	4.8e-09	0.00	0.0
2512	HCN	$_{\rm pH_3^+}$	pH_2	$HCNH^+$	4.8e-09	0.00	0.0
2513	HCN	$_{\rm oH_3O^+}$	$_{o}H_{2}O$	$HCNH^+$	4.5e-09	0.00	0.0
2514	HCN	$_{\rm pH_3O^+}$	$_{o}H_{2}O$	HCNH ⁺	2.2e-09	0.00	0.0
2515	HCN	$_{\rm pH_3O^+}$	$_{\rm pH_2O}$	$HCNH^+$	2.2e-09	0.00	0.0
2516	HCN	$_{oH_{3}S^{+}}$	oH_2S	HCNH ⁺	1.9e-09	0.00	0.0

Table D6 – continued (part 35)

#	Reacta	nts	Products		α	β	γ
2517	HCN	pH ₂ S ⁺	oHaS	HCNH ⁺	9.5e-10	0.00	0.0
2518	HCN	$_{\rm pH_2S^+}$	pH ₂ S	HCNH ⁺	9.5e-10	0.00	0.0
2519	HCN	HCO+	HCNH ⁺	CO	3.7e-09	0.00	0.0
2520	HCN	$_{oH_2D^+}$	$HCNH^+$	HD	9.5e-09	0.00	0.0
2521	HCN	$_{\rm pH_2D^+}$	$HCNH^+$	HD	9.5e-09	0.00	0.0
2522	HNC	н	HCN	Н	1.0e-15	0.00	0.0
2523	HNC	H^+	H^+	HCN	1.0e-09	0.00	0.0
2524	HNC	$_{0}H_{3}^{+}$	$_{oH_2}$	HCNH ⁺	9.5e-09	0.00	0.0
2525	HNC	$_{\rm pH_3^+}$	oH ₂	HCNH ⁺	4.8e-09	0.00	0.0
2526	HNC	$_{\rm pH_3}^{\rm pH_3}$	pH ₂	HCNH ⁺	4.8e-09	0.00	0.0
2527	HNC	$_{-11}^{OH_2D^+}$	HCNH ⁺	HD	9.5e-09	0.00	0.0
2520	HNC	$_{\rm oH}^{\rm ph_2D^+}$	oH O	HCNH ⁺	9.5e-09 4.5e-09	0.00	0.0
2520	HNC	$_{\rm pH_{2}O^{+}}$	oH ₂ O	HCNH ⁺	2.2e-09	0.00	0.0
2531	HNC	$_{\rm pH_3O^+}$	$pH_{2}^{2}O$	HCNH ⁺	2.2e-09	0.00	0.0
2532	HNC	HCO^+	HCNH ⁺	CO	3.7e-09	0.00	0.0
2533	CO_2	H ⁺	HCO^+	0	4.2e-09	0.00	0.0
2534	CO_2	$_{0H_{3}^{+}}$	$_{oH_2}$	HCO_2^+	2.0e-09	0.00	0.0
2535	CO_2	$_{\rm pH_3^+}$	$^{\mathrm{oH}}2$	HCO_2^+	1.0e-09	0.00	0.0
2536	CO_2	$_{\rm pH_3^+}$	$_{\rm pH_2}$	HCO_2^+	1.0e-09	0.00	0.0
2537	CO_2	$_{0}H_{2}D^{+}$	HCO_2^+	HD	1.3e-09	0.00	0.0
2538	CO_2	$_{\rm pH_2D^+}$	HCO_2^{+}	HD	1.3e-09	0.00	0.0
2539	CO_2	$_{0}H_{2}D^{+}$	oH ₂	DCO_2	6.7e-10	0.00	0.0
2540	CO_2	$^{pH_2D^+}$	pH ₂	DCO_2^+	6.7e-10	0.00	0.0
2541	CO_2	$^{\text{oHD}_2^-}$	оD ₂	HCO ₂	6.7e-10	0.00	0.0
2542	CO_2	$_{\rm pHD_2^+}$	pD_2	HCO ₂	6.7e-10	0.00	0.0
2543	CO_2	oHD ₂	DCO_2^+	HD	1.3e-09	0.00	0.0
2544	CO_2	$_{\rm pHD_2}^{\rm pHD_2}$	DCO ₂	HD DCO ⁺	1.3e-09	0.00	0.0
2545	CO_2	mD_3	oD ₂	DCO_2	2.0e-09	0.00	0.0
2540	CO_2	$_{\rm aD^+}$	$_{\rm pD}^{\rm pD}_2$	DCO_2	2.0e-09	0.00	0.0
2547	CO_2	0D_3	D_2	DCO_2	1.0e-09	0.00	0.0
2540	CO^2	$N D^+$	DCO^+	N	1.0e-09	0.00	0.0
2549	50 ²	N_2D	oH	H_{SO}^+	1.4e-09	0.00	0.0
2551	SO-	$_{\rm pH^+}$	oH-	HSO_2^+	6.5e-10	0.00	0.0
2552	SO ₂	$_{\rm pH_3}^{\rm pH_3}$	pH ₂	HSO ⁺	6.5e-10	0.00	0.0
2553	SO ₂	oH _o D ⁺	HSO ⁺	HD	1.3e-09	0.00	0.0
2554	SO ₂	$_{\rm pH_{2}^{2}D^{+}}$	HSO_{2}^{2}	HD	1.3e-09	0.00	0.0
2555	so_	oHD ₂ ⁺	oD ₂	HSO_2^+	1.3e-09	0.00	0.0
2556	SO2	$_{\rm pHD_2^+}$	pD_2	HSO_2^{4}	1.3e-09	0.00	0.0
2557	ocs	$^{\rm H+}$ $$	sн∓́	co ²	5.9e-09	0.00	0.0
2558	OCS	$_{\rm oH_3^+}$	oH_2	HOCS ⁺	1.9e-09	0.00	0.0
2559	OCS	$_{\rm pH_3^+}$	oH_2	$HOCS^+$	9.5e-10	0.00	0.0
2560	OCS	$_{\rm pH_3^+}$	pH_2	$HOCS^+$	9.5e-10	0.00	0.0
2561	OCS	HCO+	HOCS+	CO	1.1e-09	0.00	0.0
2562	oH ₂ S	oH ₃ O ⁺	oH ₃ S⊤	oH ₂ O	1.2e-09	0.00	0.0
2563	oH ₂ S	$^{\rm oH}_{3}0^+$	он ₃ 5 -	pH ₂ O	1.6e-10	0.00	0.0
2565 2565	$_{\rm oH_2S}$	$_{\rm oH_3O^+}$	$_{\rm pH_3S^+}$	$_{\rm pH_2O}$	1.3e-10	0.00	0.0
2566	pH ₂ S	$_{\rm oH_3O^+}$	oH _a S ⁺	oH ₂ O	4.8e-10	0.00	0.0
2567	$_{\rm pH_2S}$	$_{\rm oH_3O^+}$	$_{oH_{3}S^{+}}$	pH_2^2O	4.8e-10	0.00	0.0
2568	$_{\rm pH_2^{-S}S}$	$_{\rm oH_3O^+}$	$_{\rm pH_3S^+}$	$_{\rm oH_2O}$	9.5e-10	0.00	0.0
2569	$_{\rm oH_2S}$	$_{\rm pH_3O^+}$	$_{0}H_{3}S_{i}^{+}$	$_{\rm oH_2O}$	4.4e-10	0.00	0.0
2570	$_{0}H_{2}S$	pH ₃ O ⁺	oH ₃ S ⁺	pH ₂ O	3.2e-10	0.00	0.0
2571	oH ₂ S	$_{\rm pH_3O^+}$	$_{\rm pH_3S^+}$	oH ₂ O	8.9e-10	0.00	0.0
2572	oH ₂ S	$_{\rm pH_3O^+}$	pH ₃ S ⁺	pH ₂ O	2.5e-10	0.00	0.0
2575	pH ₂ S	$_{\rm pH_3O^+}$	$_{\rm pH}^{\rm OH_3S^+}$	oH O	5.8e-10 7.6e-10	0.00	0.0
2575	pH ₂ S	$_{\rm pH_3O^+}$	$_{\rm pH_3S}^{\rm pH_3S}$	pH ₂ O	7.6e-10	0.00	0.0
2576	SH	HCO+	$_{\rm oH_2S^+}$	CO	6.2e-10	0.00	0.0
2577	$_{\rm SH}$	HCO^+	$_{\rm pH_2S^+}$	CO	2.0e-10	0.00	0.0
2578	\mathbf{CS}	HCO^+	HCS ⁺	CO	1.2e-09	0.00	0.0
2579	$_{0}H_{2}S$	HCO+	$_{oH_{3}S^{+}}$	CO	1.1e-09	0.00	0.0
2580	oH ₂ S	HCO^+	$_{\rm pH_3S^+}$	CO	5.3e-10	0.00	0.0
2581	pH_2S	нсот o ⁺	pH_3S^+	00	1.6e-09	0.00	0.0
2582	oH ₂ S	O_2^+	oH ₂ S ⁺		1.4e-09	0.00	0.0
2583	pH ₂ S	O_2	pH_2S^+	02	1.4e-09	0.00	0.0
2584	on ₂ S		m_{H_4}	SH	3.5e-10	0.00	0.0
2080 2586	on c	onn3	$_{\rm oNU}^{\rm pinn_4}$	SH SH	4.0e-11 0.1-10	0.00	0.0
2080 2597	оп ₂ 5 ъц с	onn3	mNH ⁺	SH SH	2.1e-10 1 5- 10	0.00	0.0
2001 2599	ри ₂ 5 ри с	oNH ⁺	$_{\rm oNH}^{\rm mnn_4}$	SH	1.5e-10 4.5c 10	0.00	0.0
2589	oH-S	DNH ⁺	mNH ⁺	SH	1 0e-10	0.00	0.0
2590	oH ₂ S	pNH ⁺	$_{\rm pNH^+}$	SH	8.0e-11	0.00	0.0
	2	- 3	- 4				-

Table D6 – continued (part 36)

#	Reactar	nts	Products		α	β	γ
2591	oHaS	pNH ⁺	oNH ⁺	SH	4.2e-10	0.00	0.0
2592	pH _o S	pNH ⁺	$_{\rm pNH^+}$	SH	2.4e-10	0.00	0.0
2593	pH _o S	pNH ⁺	oNH ⁺	SH	3.6e-10	0.00	0.0
2594	OCS	oH ₂ D ⁺	$HOCS^+$	HD	1.9e-09	0.00	0.0
2595	OCS	$_{\rm pH_{2}D^{+}}$	HOCS ⁺	HD	1.9e-09	0.00	0.0
2596	OCS	oHD ₂ ⁺	oDa	HOCS ⁺	1.9e-09	0.00	0.0
2597	OCS	$_{\rm pHD_{2}^{2}}$	pD	HOCS ⁺	1.9e-09	0.00	0.0
2598	S	N ₂ D ⁴	sd [‡]	N ₂	1.1e-09	0.00	0.0
2599	oH ₂ O	N_2D^+	$_{oH_{2}DO^{+}}$	N ₂	2.6e-09	0.00	0.0
2600	$_{\rm pH_2O}$	$\tilde{N_2D^+}$	pH_2DO^+	N ₂	2.6e-09	0.00	0.0
2601	CO	N_2D^+	DCO ⁺	N ₂	8.8e-10	0.00	0.0
2602	C^+	S	s+	С	5.5e-12	0.86	681.0
2603	C+	OH	CO+	Н	8.0e-10	0.00	0.0
2604	C^+	ОН	H ⁺	CO	8.0e-10	0.00	0.0
2605	C^+	он ₂ О	HCO ⁺	H U	2.4e-09	-0.63	0.0
2000	C^+	рн ₂ 0	0+	п	2.4e-09	-0.03	0.0
2608	C+	O_2	CO^+	0	3.1e-10	0.00	0.0
2609	\tilde{c}^+	CO_2	CO^+	co	1.1e-09	0.00	0.0
2610	\tilde{c}^+	NH	CN^+	H	7.8e-10	0.00	0.0
2611	C^+	oNH ₂	HCN^+	Н	1.1e-09	0.00	0.0
2612	C^+	pNH_2	HCN^+	Н	1.1e-09	0.00	0.0
2613	C^+	oNH ₃	$_{\rm oNH_3^+}$	С	5.3e-10	0.00	0.0
2614	C^+	pNH ₃	pNH_3^+	С	5.3e-10	0.00	0.0
2615	C^+	oNH ₃	H_2NC^+	Н	7.8e-10	0.00	0.0
2616	C^+	pNH_3	H_2 NC+	Н	7.8e-10	0.00	0.0
2617	C^+	$_{o}NH_{3}$	HCNH ⁺	H	7.8e-10	0.00	0.0
2618	C^+	$_{\rm pNH_3}$	HCNH ⁺	H	7.8e-10	0.00	0.0
2619	C+	oNH ₃	oH ₂	HCN ⁺	2.1e-10	0.00	0.0
2620	C^+	pNH ₃	oH ₂	HCN ⁺	1.0e-10	0.00	0.0
2621	C+	pNH ₃	$C N^+$	HCN '	1.0e-10	0.00	0.0
2022	C^+	HNC	$C_2 N^+$	н	3.4e-09	0.00	0.0
2624	C+	NO	NO^+	C	3.4e-09	0.00	0.0
2624	C^+	NO	N ⁺	CO	9.0e-10	0.00	0.0
2626	\tilde{c}^+	SH	CS ⁺	н	1.1e-09	0.00	0.0
2627	C^+	oH ₂ S	HCS^+	Н	1.3e-09	0.00	0.0
2628	C^+	pH_2S	HCS^+	Н	1.3e-09	0.00	0.0
2629	C^+	$_{\rm oH_2S}$	$_{oH_2S^+}$	С	4.2e-10	0.00	0.0
2630	C^+	pH_2S	$_{\rm pH_2S^+}$	С	4.2e-10	0.00	0.0
2631	C^+	SO	s+	CO	2.6e-10	0.00	0.0
2632	C^+	SO	CS^+	0	2.6e-10	0.00	0.0
2633	C+	SO	SO ⁺	C	2.6e-10	0.00	0.0
2634	C^+	SO	CO^+	S	2.6e-10	0.00	0.0
2635	C^+	SO_2	SO+	00	2.3e-09	0.00	0.0
2636	C+	CS	CS +	C	1.6e-09	0.00	700.0
2037	C^+	OCS	co^+	D	1.0e-09 8.0o.10	0.00	0.0
2639	C^+	OD	D+	CO	8.0e-10	0.00	0.0
2640	C^+	HDO	DCO^+	н	1 2e-09	-0.63	0.0
2641	\tilde{c}^+	HDO	HCO+	D	1.2e-09	-0.63	0.0
2642	C^+	oD ₂ O	DCO^+	D	2.4e-09	-0.63	0.0
2643	C^+	$pD_{2}^{2}O$	DCO^+	D	2.4e-09	-0.63	0.0
2644	N^+	02	O_2^+	Ν	2.8e-10	0.00	0.0
2645	N^+	$\tilde{O_2}$	NÕ+	0	2.4e-10	0.00	0.0
2646	N^+	$\tilde{O_2}$	O^+	NO	$3.3e{-}11$	0.00	0.0
2647	N^+	сō	CO^+	Ν	8.3e-10	0.00	0.0
2648	N ⁺	CO	NO ⁺	С	1.5e-10	0.00	0.0
2649	N ⁺	NO	NO ⁺	N	4.5e-10	0.00	0.0
2650	N ⁺	NO	N_2^+	0	7.9e-11	0.00	0.0
2651	S ⁺	CH	CS ⁺	H	6.2e-10	0.00	0.0
2652	S+	oCH ₂	HCS+	H 	1.0e-11	0.00	0.0
2653	S^{+}	pCH ₂	HCS^+	H	1.0e-11	0.00	0.0
2654	8 ' 8 +	OH NO	SO '	н с	0.1e-10	0.00	0.0
2000 2650	5' c+		-NII ⁺	3	3.2e-10	0.00	0.0
2050	5 ' c+	ond ₃		3	1.0e-09	0.00	0.0
2057	5 ' 5+	рин ₃	p_{NH_3}	3	1.0e-09	0.00	0.0
2000 2650	s+	ONH D	ONH D+	s	2.5e-11 1.6e.00	0.00	0.0
2009 2660	s+	DNH D	$_{\rm DNH}^{\rm ON12D^+}$	S	1.0e-09	0.00	0.0
2661	s^+	oNHD	oNHD ⁺	ŝ	1.6e-09	0.00	0.0
2662	s+	DNHD	DNHD ⁺	S	1.6e.00	0.00	0.0
2663	s^+	mND	$_{\rm mND}^+$	ŝ	1.6e-09	0.00	0.0
2664	\tilde{s}^+	$_{\rm DND}$.	$_{\rm DND}^+$	š	1.6e-09	0.00	0.0
	~	P3	P3	~	1.00-00	0.00	5.0

Table D6 – continued (part 37)

#	Reactants	;	Products			α	β	γ
2665	S^+	oND ₃	oND ₃ ⁺	S		1.6e-09	0.00	0.0
2666	CO^+	oH ₂	нсо ⁺	Н		1.3e-09	0.00	0.0
2667	CO^+	pH_2	HCO^+	Н		1.3e-09	0.00	0.0
2668	CO+	Н	H^+	CO		7.5e-10	0.00	0.0
2669	HCO+	CH	$_{\rm oCH_2^+}$	CO		4.7e-10	0.00	0.0
2670	HCO ⁺	CH	pCH_2^+	CO		1.6e-10	0.00	0.0
2671	HCO+	oCH ₂	oCH ₃	CO		5.7e-10	0.00	0.0
2672	HCO+	oCH ₂	pCH ₃	00		2.9e-10	0.00	0.0
2673	HCO ⁺	oH O	PCH ₃	CO		8.6e-10 1.7e.00	0.00	0.0
2675	HCO ⁺	oH ₂ O	$_{\rm pH_2O^+}$	CO		1.7e-03 8.3e-10	0.00	0.0
2676	HCO+	pH ₂ O	$_{\rm pH_3O^+}$	CO		2.5e-09	0.00	0.0
2677	HCO^+	OH	HCO_2^+	Н		1.0e-09	0.00	0.0
2678	HCO^+	C_2H	$C_2 H_2^{\neq}$	CO		7.8e-10	0.00	0.0
2679	HCO^+	$\bar{C_2H_2}$	$\tilde{C_2}H_3^{\mp}$	CO		1.4e-09	0.00	0.0
2680	HCO^+	C_3H	$C_3H_2^+$	CO		1.4e-09	0.00	0.0
2681	HCO+	C_3H_2	$C_{3}H_{3}^{+}$	CO		1.4e-09	0.00	0.0
2682	HCO+	NH	$_{0}NH_{2}^{+}$	CO		4.8e-10	0.00	0.0
2683	HCO+	NH	$_{\rm pNH_2^+}$	CO		1.6e-10	0.00	0.0
2684	HCO ⁺	oNH ₂	$_{\rm oNH_3^+}$	CO		5.9e-10	0.00	0.0
2685	HCO+	oNH ₂	pNH3	CO		3.0e-10	0.00	0.0
2686	HCO ⁺	PNH ₂	pNH ₃	CO		8.9e-10	0.00	0.0
2087	HCO+	oNH ₃	$_{\rm oNH}^{\rm mNH_4}$	CO		1.2e-09 7.1e-10	0.00	0.0
2088	HCO ⁺	DNH DNH	DNH ⁺	CO		1.1e-10	0.00	0.0
2690	HCO+	pNH ₃	oNH ⁺	CO		4.8e-10 1.4e-09	0.00	0.0
2691	HCO+	Fe Fe	Fe^+	CO	н	1.9e-09	0.00	0.0
2692	HCO_2^+	CO	HCO^+	CO ₂		1.0e-09	0.00	0.0
2693	HCO_2^{1}	mCH_4	pCH_5^+	CO_2		4.7e-10	0.00	0.0
2694	HCO_2^{+}	mCH_4	$_{\circ CH_5^+}$	CO_2		3.1e-10	0.00	0.0
2695	HCO_2^+	pCH_4	mCH_5^+	CO_2		7.8e-10	0.00	0.0
2696	HCO_2^+	oCH_4	$_{\rm oCH_5^+}$	CO_2		5.2e-10	0.00	0.0
2697	HCO_2^+	oCH_4	mCH_5^+	CO_2		2.6e-10	0.00	0.0
2698	oH ₃ O+	CH	$_{\rm oCH_2^+}$	$_{0}H_{2}O$		5.1e-10	0.00	0.0
2699	oH ₃ O+	CH	$_{\rm oCH_2^+}$	$_{\rm pH_2O}$		8.5e-11	0.00	0.0
2700	oH ₃ O+	CH	pCH_2^+	oH ₂ O		8.5e-11	0.00	0.0
2701	pH ₃ O+	CH	$_{\rm oCH_2}$	oH ₂ O		2.5e-10	0.00	0.0
2702	pH ₃ O⊤	CH	oCH ₂	pH ₂ O		1.7e-10	0.00	0.0
2703	рн ₃ 0+	CH	$_{\rm pCH_2}$	он ₂ О		1.7e-10 9 5 - 11	0.00	0.0
2704	$_{\rm oH}^{\rm ph_3O^+}$	сп •СЧ	$_{\rm oCH}^{\rm pCH_2}$	рн ₂ 0		5.9e-11	0.00	0.0
2705	он 0+	oCH	$_{\rm oCH^+}$	DH O		7.8e-11	0.00	0.0
2707	$_{\rm oH_2O^+}$	oCH ₂	$_{\rm pCH_3^+}$	oH ₂ O		2.2e-10	0.00	0.0
2708	$_{\rm oH_{2}O^{+}}$	oCH _o	pCH ⁺	pH _o O		6.3e-11	0.00	0.0
2709	$_{\rm oH_2O^+}$	pCH ₂	oCH ⁺	oH ₂ O		2.4e-10	0.00	0.0
2710	oH ₃ O+	pCH ₂	$_{\rm oCH_3^+}$	pH ₂ O		2.4e-10	0.00	0.0
2711	oH ₃ O+	pCH_2	pCH_3^+	$_{0}H_{2}O$		4.7e-10	0.00	0.0
2712	$_{pH_{3}O^{+}}$	oCH ₂	$_{0}CH_{3}^{+}$	oH ₂ O		2.2e-10	0.00	0.0
2713	$_{\rm pH_3O^+}$	oCH_2	$_{\rm oCH_3^+}$	$_{\rm pH_2O}$		1.6e-10	0.00	0.0
2714	$_{\rm pH_3O^+}$	oCH_2	$_{\rm pCH_3^+}$	$_{0}H_{2}O$		4.4e-10	0.00	0.0
2715	$_{\rm pH_3O^+}$	oCH_2	pCH_3^+	$_{\rm pH_2O}$		1.3e-10	0.00	0.0
2716	$_{\rm pH_3O^+}$	pCH_2	$_{\rm oCH_3^+}$	$_{0}H_{2}O$		1.9e-10	0.00	0.0
2717	pH ₃ O ⁺	pCH ₂	pCH_3^+	oH ₂ O		3.8e-10	0.00	0.0
2718	pH_3O^+	pCH ₂	pCH_3^+	pH ₂ O		3.8e-10	0.00	0.0
2719	он ₃ От	oNH ₃	mNH_4	он ₂ О		1.1e-09	0.00	0.0
2720	oH O+	ONH3	mNH_4	pH ₂ O		1.4e-10	0.00	0.0
2721	он ₃ 0 -	oNH	$_{\rm pNH^+}$	DH O		9.2e-11 5.5e 11	0.00	0.0
2722	он ₃ 0+	oNH	$_{\rm oNH}^{\rm pNH_4}$	рн ₂ 0 он О		5.5e-11 6.3o 10	0.00	0.0
2723	OH_3O^+	oNH-	oNH ⁺	оп ₂ 0 рН-О		1.4e-10	0.00	0.0
2725	$_{\rm oH_2O^+}$	pNH _a	mNH^+_4	oH ₂ O		3.7e-10	0.00	0.0
2726	oH ₂ O ⁺	pNH ₂	mNH ⁴	pH ₂ O		2.7e-10	0.00	0.0
2727	$_{\rm oH_3O^+}$	pNH ₃	pNH_4^{+}	oH ₂ O		1.8e-10	0.00	0.0
2728	$_{\rm oH_3O^+}$	$_{\rm pNH_3}$	$_{\rm oNH_4^{\ddagger}}$	$_{\rm oH_2O}$		1.1e-09	0.00	0.0
2729	$_{\rm oH_3O^+}$	$_{\rm pNH_3}$	$_{\rm oNH_4^+}$	$_{\rm pH_2O}$		2.7e-10	0.00	0.0
2730	$_{\rm pH_3O^+}$	$_{\rm oNH_3}$	$_{mNH_4^+}$	oH ₂ O		3.7e-10	0.00	0.0
2731	$_{\rm pH_3O^+}$	$_{\rm oNH_3}$	$mNH_4^{\hat{+}}$	$_{\rm pH_2O}$		2.7e-10	0.00	0.0
2732	$_{\rm pH_3O^+}$	oNH_3	$_{\rm pNH_4^+}$	$_{0}H_{2}O$		1.8e-10	0.00	0.0
2733	$_{pH_{3}O^{+}}$	oNH_3	$_{\rm oNH_4^+}$	$_{o}H_{2}O$		1.1e-09	0.00	0.0
2734	$_{\rm pH_3O^+}$	oNH_3	$_{\rm oNH_4^+}$	$_{\rm pH_2O}$		2.7e-10	0.00	0.0
2735	pH ₃ O ⁺	pNH ₃	mNH_4^+	oH ₂ O		1.8e-10	0.00	0.0
2736	pH_3O^+	pNH ₃	$_{\text{pNH}_{4}^{+}}$	oH ₂ O		3.7e-10	0.00	0.0
2737	$_{-11}^{\text{pH}_3\text{O}^+}$	pNH ₃	pNH_4	pH ₂ O		2.2e-10	0.00	0.0
2738	pH ₃ O⊤	pnH ₃	ONH_4	он ₂ О		8.8e-10	0.00	0.0

Table D6 – continued (part 38)

#	Reactants		Products			α	β	γ
2739	pH _a O ⁺	pNHa	oNH ⁺	pH _o O		5.5e-10	0.00	0.0
2740	CN ⁺	oH ₂	HCN ⁴ +	H 2		1.0e-09	0.00	0.0
2741	CN^+	$_{\rm pH_2}$	HCN ⁺	Н		1.0e-09	0.00	0.0
2742	HCN ⁺	oH ₂	HCNH ⁺	Н		9.8e-10	0.00	0.0
2743	HCN ⁺	pH ₂	HCNH ⁺	H		9.8e-10	0.00	0.0
2744	HCNH ⁺	CH	oCH ₂	HCN		2.4e-10	0.00	0.0
2745	HCNH ⁺	CH	$_{\rm pCH_2}$	HUNC		7.9e-11	0.00	0.0
2740	HCNH ⁺	Сн	$_{\rm pCH^+}$	HNC		2.4e-10 7.9e 11	0.00	0.0
2748	HCNH ⁺	oCH-	$_{\rm oCH^+}$	HCN		2.9e-10	0.00	0.0
2749	HCNH ⁺	oCH _o	$_{\rm pCH_2^+}$	HCN		1.4e-10	0.00	0.0
2750	HCNH ⁺	pCH ₂	pCH ⁺	HCN		4.3e-10	0.00	0.0
2751	HCNH ⁺	oCH ₂	oCH ₃	HNC		2.9e-10	0.00	0.0
2752	$HCNH^+$	$_{oCH_2}$	$_{pCH_3^+}$	HNC		1.4e-10	0.00	0.0
2753	$HCNH^+$	pCH_2	pCH_3^+	HNC		4.3e-10	0.00	0.0
2754	$HCNH^+$	oNH_2	$_{\rm oNH_3^+}$	HCN		3.0e-10	0.00	0.0
2755	HCNH ⁺	oNH_2	$_{\rm pNH_3^+}$	HCN		1.5e-10	0.00	0.0
2756	HCNH ⁺	pNH_2	$_{\rm pNH_3^+}$	HCN		4.5e-10	0.00	0.0
2757	HCNH ⁺	$_{oNH_2}$	$_{\rm oNH_3^+}$	HNC		3.0e-10	0.00	0.0
2758	HCNH ⁺	oNH ₂	$_{\rm pNH_3}$	HNC		1.5e-10	0.00	0.0
2759	HCNH ⁺	pNH ₂	pNH ₃	HNC		4.5e-10	0.00	0.0
2760	HCNH ⁺	oNH ₃	$_{\rm oNH^+}$	HCN		6.9e-10	0.00	0.0
2762	HCNH ⁺	DNH	$_{\rm pNH^+}$	HCN		4.1e-10 2.7e-10	0.00	0.0
2763	HCNH ⁺	pNH ₃	oNH ⁺	HCN		2.7e-10 8.3e-10	0.00	0.0
2764	HCNH ⁺	oNH _o	mNH^+_4	HNC		6.9e-10	0.00	0.0
2765	HCNH ⁺	oNH ₂	$_{\rm oNH_4^+}$	HNC		4.1e-10	0.00	0.0
2766	HCNH ⁺	$_{\rm pNH_3}$	$_{\rm pNH_4^+}$	HNC		2.7e-10	0.00	0.0
2767	$HCNH^+$	pNH ₃	$_{\rm oNH_4^+}$	HNC		8.3e-10	0.00	0.0
2768	HCNH ⁺	$_{oH_2S}$	oH ₃ S ⁺	HCN		1.1e-10	0.00	0.0
2769	HCNH ⁺	$_{0}$ M $_{2}$ S	pH ₃ S ⁺	HCN		5.7e-11	0.00	0.0
2770	HCNH ⁺	pH ₂ S	$_{\rm pH_3S^+}$	HCN		1.7e-10	0.00	0.0
2772	HCNH ⁺	oH S	$_{\rm pH}^{\rm oH_3S'}$	HNC		1.1e-10 5.7e-11	0.00	0.0
2773	HCNH ⁺	$_{\rm pH_{\circ}S}$	$_{\rm pH_3S^+}$	HNC		1.7e-10	0.00	0.0
2774	N_2H^+	CO	HCO+	N ₂		8.8e-10	0.00	0.0
2775	$\tilde{N_2H^+}$	CO_2	HCO_2^+	$\tilde{N_2}$		1.4e-09	0.00	0.0
2776	N_2H^+	NO	hno+	N_2		3.4e-10	0.00	0.0
2777	C_2N^+	$_{oNH_3}$	C_2H_2	N_2H^+		1.9e-09	0.00	0.0
2778	$C_2 N^{+}$	pNH ₃	C_2H_2	N ₂ H⊤ NO		1.9e-09	0.00	0.0
27780	HNO ⁺	Fe C	CH ⁺	NO		1.0e-09	0.00	0.0
2780	HNO ⁺	co	HCO+	NO		1.0e-10	0.00	0.0
2782	HNO ⁺	CO.	HCO_2^+	NO		1.0e-10	0.00	0.0
2783	HNO^+	OH	$_{0}H_{2}O^{+}$	NO		4.6e-10	0.00	0.0
2784	HNO ⁺	OH	$_{\rm pH_2O^+}$	NO		1.6e-10	0.00	0.0
2785	SO ⁺	Fe	Fe ⁺	SO		1.6e-09	0.00	0.0
2786	CS ⁺	oH ₂	HCS -	H U		4.8e-10	0.00	0.0
2788	нсо+	Gr	Gr ⁺	CO	н	3.0e-07	0.00	0.0
2789	HCS ⁺	Gr	Gr^+	cs	н	2.4e-07	0.50	0.0
2790	HCO^+	Gr^-	\mathbf{Gr}	CO	Н	3.0e-07	0.50	0.0
2791	HCS+	$\rm Gr^-$	\mathbf{Gr}	\mathbf{CS}	Η	2.4e-07	0.50	0.0
2792	CO^+	e	С	0		1.0e-07	-0.46	0.0
2793	HCO ⁺	e	C0 C0	н		2.4e-07	-0.69	0.0
2794	HCO_2^+	е 	CO_2	н ОЧ		2.2e-07	-0.50	0.0
2795	CN^+	е е ⁻	c	N		1.8e-07	-0.50	0.0
2797	$C_{2}N^{+}$	e-	\tilde{C}_{2}	N		1.0e-07	-0.50	0.0
2798	$\tilde{C_2}N^+$	e^{-}	ĈŇ	С		2.0e-07	-0.50	0.0
2799	HCN+	e^-	$_{\rm CN}$	Н		1.5e-07	-0.50	0.0
2800	HCN ⁺	e	CH	N		1.5e-07	-0.50	0.0
2801	HCNH ⁺	e	HCN	н ц		9.6e-08	-0.65	0.0
2802 2803	HCNH ⁺	е е ⁻	CN	л Н	н	9.0e-08 9.1e-08	-0.65	0.0
2803	H _o NC ⁺	e-	HNC	н	.1	1.8e-07	-0.50	0.0
2805	$H_2^{\prime}NC^+$	e^-	CN	н	н	1.8e-08	-0.50	0.0
2806	NO ⁺	e^-	Ν	0		4.3e-07	-0.37	0.0
2807	HNO ⁺	e ⁻	NO	Н		3.0e-07	-0.50	0.0
2808	CS^+	e	C	S		2.0e-07	-0.50	0.0
2809 2810	HCS⊤ SO ⁺	е е [—]	CS S	н		7.0e-07 2.0e-07	-0.50	0.0
2811	HSO ⁺	e_	so	н		2.0e-07	-0.50	0.0
2812	HSO_2^+	e^-	SO	н	О	1.0e-07	-0.50	0.0
Table D6 – continued (part 39)

#	Reactants		Products			α	β	γ
2813	HSO_2^+	e-	SO	OH		1.0e-07	-0.50	0.0
2814	$HOCS^+$	e^{-}	OH	\mathbf{CS}		2.0e-07	-0.50	0.0
2815	$HOCS^+$	e^-	OCS	Н		2.0e-07	-0.50	0.0
2816	Fe^+	e ⁻	Fe	γ		3.7e-12	-0.65	0.0
2817	DCO+	e^-	CO	D		2.4e-07	-0.69	0.0
2818	DCO_2^+	e^-	CO_2	D		2.2e-07	-0.50	0.0
2819	DCO_2^+	e ⁻	CO	OD		1.2e-07	-0.50	0.0
2820	CO_2	γ2	co	0		6.0e + 02	0.00	0.0
2821	CO	γ ₂	C CO ⁺	0		4.6e + 01	0.00	0.0
2822	HCO+	72 75	co^+	е		$1.4e \pm 01$ 3 3e \pm 00	0.00	0.0
2824	CO^+	72 Vo	C^+	0		$7.7e \pm 01$	0.00	0.0
2825	CN	12 12	č	N		4.5e + 02	0.00	0.0
2826	CN	γ_2	CN^+	e^{-}		8.3e + 00	0.00	0.0
2827	HCN	γ2	CN	Н		2.0e+03	0.00	0.0
2828	HCN	γ2	HCN^+	e		1.4e+00	0.00	0.0
2829	HNC	γ2	CN	Н		2.0e + 03	0.00	0.0
2830	NO	γ ₂	N NO ⁺	0		3.0e+02	0.00	0.0
2831	NO SO	72 75	NO '	e		2.4e+02 5.5e+03	0.00	0.0
2832	50 50	72 Vo	so^+	e ⁻		$4.5e \pm 02$	0.00	0.0
2834	CS	γ ₂ γ ₂	s	C		1.9e + 0.2	0.00	0.0
2835	\mathbf{CS}	γ ₂	CS^+	e^{-}		2.0e+01	0.00	0.0
2836	OCS	γ2	CO	S		5.2e + 03	0.00	0.0
2837	SO_2	γ ₂	so	Ο		2.7e + 03	0.00	0.0
2838	Ν	$C_2H_2^+$	CH^+	HNC		2.5e-11	0.00	2600.0
2839	HNC	pCH_5^+	$C_{2}H_{3}^{+}$	$_{o}NH_{3}$		8.3e-10	0.00	0.0
2840	HNC	pCH_5^+	$C_{2}H_{3}^{+}$	$_{\rm pNH_3}$		1.7e-10	0.00	0.0
2841	HNC	$_{oCH_{5}^{+}}$	$C_{2}H_{3}^{+}$	$_{o}NH_{3}$		5.0e-10	0.00	0.0
2842	HNC	$_{\rm oCH_5^+}$	$C_{2}H_{3}^{+}$	$_{pNH_3}$		5.0e-10	0.00	0.0
2843	HNC	mCH_5^+	$C_{2}H_{3}^{+}$	$_{oNH_3}$		3.0e-10	0.00	0.0
2844	HNC	mCH_5^+	$C_2H_3^+$	$_{\rm pNH_3}$		7.0e-10	0.00	0.0
2845	oH ₃ O+	C ₃ H	$C_3H_2^+$	oH ₂ O		1.7e-09	0.00	0.0
2846	oH ₃ O⊤	С ₃ Н	$C_3H_2^+$	pH ₂ O		2.5e-10	0.00	0.0
2847	$_{\rm pH_3O^+}$	С ₃ Н	$C_3H_2^+$	oH ₂ O		1.3e-09	0.00	0.0
2848	pH ₃ O⊤	С3н	C_3H_2	pH ₂ O		7.5e-10	0.00	0.0
2849	C_2H_3	e 	он ₂	C ₂ H		1.0e-07	-0.50	0.0
2800	C_2H_3	е 	oCH ₂	CH		1.0e-07	-0.50	0.0
2801	C ₂ H ₃	е u+	pCH ₂	С и+		0.8e-08	-0.50	0.0
2852	$C_2 H_2$ $C_2 H_2$	н+	DH ₂	$C_2 H^+$		6.7e-10	0.00	0.0
2854	C_2H_2 C_2H_2	$^{\rm H^+}$	oH ₂	$C_{2}H^{+}$		1.3e-09	0.00	0.0
2855	$C_{3}H_{2}$	H^+	$_{\rm pH_2}$	$C_{3}H^{+}$		6.7e-10	0.00	0.0
2856	$C_2 H_2$	$_{\rm He^+}$	$_{\rm pH_2}$	C_2^+	He	1.6e-09	0.00	0.0
2857	$\tilde{C_3H_2}$	$_{\rm He^+}$	$_{\rm pH_2}$	C_3^{\mp}	He	1.0e-09	0.00	0.0
2858	$_{0H_{3}^{+}}$	C_2H_2	$C_2 H_3^+$	\widetilde{OH}_2		2.3e-09	0.00	0.0
2859	$_{\rm oH_3^+}$	C_2H_2	$C_{2}H_{3}^{+}$	pH_2		5.1e-10	0.00	0.0
2860	$_{\rm pH_3^+}$	C_2H_2	$C_2H_3^+$	oH_2		1.9e-09	0.00	0.0
2861	$_{\rm pH_3^+}$	C_2H_2	$C_{2}H_{3}^{+}$	pH_2		1.0e-09	0.00	0.0
2862	$_{0H_{3}^{+}}$	C_3H_2	$C_3H_3^+$	$_{0}$ oH $_{2}$		1.6e-09	0.00	0.0
2863	$_{0}H_{3}^{+}$	C_3H_2	$C_3H_3^+$	$_{\rm pH_2}$		4.0e-10	0.00	0.0
2864	pH_3^+	C_3H_2	$C_3H_3^+$	$^{\mathrm{oH}_2}$		1.3e-09	0.00	0.0
2865	$_{\rm pH_3^+}$	C_3H_2	$C_3H_3^+$	$_{\rm pH_2}$		7.0e-10	0.00	0.0
2866	oH ₂ D+	C_2H_2	$C_2 H_3^+$	HD		2.9e-09	0.00	0.0
2867	pH ₂ D+	C_2H_2	$C_2 H_3^+$	HD		2.9e-09	0.00	0.0
2868	$^{oH_2D^+}$	С ₃ н ₂	C_3H_3	HD		2.0e-09	0.00	0.0
2869	pH_2D^{+}	C_3H_2	C_3H_3	HD		2.0e-09	0.00	0.0
2870	C ₂ H ₂	$_{\rm HD_2^+}$	$C_2 H_3$	pD ₂		2.9e-09	0.00	0.0
2871	$C_{3}H_{2}$	$_{-11}^{\text{pHD}_2}$	$C_3 H_3$	pD_2		2.0e-09	0.00	0.0
2012	$C_2 H_2^-$	он ₂ О	5H ₃ O ⁺	С ₂ п С ч		1.1e-10	0.00	0.0
2013	$C_{2}\Pi_{2}$	511 ₂ 0	$_{\rm out}^{\rm pm}$ O ⁺			7.20.11	0.00	0.0
2875	$C_{2}H_{2}^{+}$	pH O	5H 0 ⁺	С н		1.3e-11	0.00	0.0
2876	$C_2 H^{+}_2$	N N	0H-	C_{-N+}		2.2e-10	0.00	0.0
2877	$C_{0}H^{+}$	N	pH _c	$C_0 N^+$		2.2e-10	0.00	0.0
2878	H_2CO	'n	oH ₂	CO		1.1e+04	0.00	0.0
2879	H ₂ CO	12	$_{\rm pH_2}^2$	CO		1.1e + 04	0.00	0.0
2880	$_{0H_{3}O^{+}}$	C_3H_2	$C_3 \tilde{H}_3^+$	oH ₂ O		2.4e-09	0.00	0.0
2881	oH ₃ O ⁺	$\tilde{C_3H_2}$	$\tilde{C_3H_3^+}$	pH_2O		6.0e-10	0.00	0.0
2882	$_{pH_{3}O^{+}}$	C_3H_2	$\tilde{C_3}H_3^+$	$_{0}H_{2}O$		2.0e-09	0.00	0.0
2883	$_{pH_{3}O^{+}}$	C_3H_2	$C_3H_3^{\uparrow}$	$_{\rm pH_2O}$		1.1e-09	0.00	0.0
2884	$C_2H_3^+$	oH ₂ O	oH ₃ O ⁺	C_2H_2		6.1e-10	0.00	0.0
2885	$C_{2}H_{3}^{+}$	$_{0}H_{2}O$	$_{\rm pH_3O^+}$	C_2H_2		5.0e-10	0.00	0.0
2886	$C_{2}H_{3}^{+}$	$_{\rm pH_2O}$	oH ₃ O ⁺	C_2H_2		3.9e-10	0.00	0.0

Table D6 – continued (part 40)

#	Reactants	5	Products		α	β	γ
2887	$C_2H_3^+$	$_{\rm pH_2O}$	$_{\rm pH_3O^+}$	C_2H_2	7.2e-10	0.00	0.0
2888	$_{0}H_{3}^{+}$	HD	$_{\rm pH_3^+}$	HD	7.7e-11	0.44	-4.8
2889	$_{3}^{\text{oH}_{3}^{+}}$	HD	$_{\rm pH_2D^+}$	oH_2	1.6e-10	-0.02	-0.4
2890	$_{0}H_{3}^{+}$	HD	oH ₂ D+	$_{\rm pH_2}$	1.5e-10	-0.16	1.1
2891	$^{\text{oH}_3^+}$	HD	$^{\rm oH_2D^+}$	oH ₂	1.1e-09	0.01	0.3
2892	$_{11}^{pH_3}$	HD	$^{\rm oH_3^+}$	HD	1.2e-10	0.33	29.2
2893	$_{11+}^{pH_3}$	HD	pH ₂ D⊤ 11 D+	pH ₂	1.1e-10	-0.41	2.9
2894	рн ₃	HD HD	рн ₂ D	oH ₂	2.5e-10	-0.27	3.3
2895	$_{\rm pH^+}^{\rm pH_3}$	нр	oH D ⁺	oH	2.8e-10 1.2e-09	-0.32	22.8
2897	$_{\rm oH^+}$	oHa	$_{\rm pH_2^+}$	pH ₂	1.3e-10	0.08	-0.7
2898	$_{\rm oH_2^+}$	oH ₂	oH ⁺	pH _o	9.7e-11	0.00	-0.2
2899	$_{\rm oH_3^+}$	pH_2	$_{\rm pH_3^+}$	oH ₂	3.5e-10	-0.90	154.2
2900	$_{\rm oH_3^+}$	$_{\rm pH_2}$	$_{\rm oH_3^+}$	oH ₂	5.0e-10	-0.42	180.4
2901	$_{0}H_{3}^{+}$	oH_2	$_{\rm pH_3^+}$	$_{oH_2}$	4.1e-10	0.02	-0.5
2902	$_{pH_{3}^{+}}$	$_{oH_2}$	$_{pH_{3}^{+}}$	$_{\rm pH_2}$	1.9e-10	-0.18	1.1
2903	$_{pH_3^+}$	oH ₂	$_{3}^{\text{oH}_{3}^{+}}$	pH ₂	1.7e-10	-0.28	1.7
2904	$_{3}^{\text{pH}_{3}}$	oH ₂	oH ₃	oH ₂	6.7e-10	-0.07	33.3
2905	$_{11}^{\text{pH}_3^{+}}$	pH ₂	$_{\rm pH_3}$	oH ₂	1.0e-09	-0.57	180.4
2906	рн ₃ _u+	pH ₂	он ₃	он ₂ ир	9.2e-10 1.2e-00	-0.54	216.9
2907	$_{\rm oH^+}$	oD_2	$_{\rm oHD^+}$	oH-	6.2e-10	-0.22	-0.8
2909	oH ⁺	DDo	oHoD ⁺	HD	9.1e-10	0.05	-0.4
2910	$_{\rm oH_2^+}$	pD_2	$_{\rm pHD_2^+}$	oHa	6.5e-10	-0.06	0.5
2911	$_{\rm pH_3^+}$	$_{\rm oD_2}$	$_{\rm pH_2D^+}$	НĎ	5.3e-10	0.24	-1.6
2912	$_{\rm pH_3^+}$	$_{oD_2}$	$_{\rm oH_2D^+}$	HD	5.8e-10	0.38	-3.7
2913	$_{\rm pH_3^+}$	oD_2	$_{\rm oHD_2^+}$	pH_2	2.6e-10	-0.27	2.2
2914	$_{\rm pH_3^+}$	oD_2	$_{\rm oHD_2^+}$	oH_2	4.0e-10	-0.13	1.3
2915	$_{\rm pH_3^+}$	pD_2	$_{\rm pH_2D^+}$	HD	4.0e-10	0.06	-1.1
2916	$_{pH_3^+}$	pD_2	$_{0H_2D^+}$	HD	4.7e-10	-0.03	0.2
2917	$_{11}^{\text{pH}_3^{+}}$	pD_2	$_{\rm HD_2^+}$	pH ₂	2.6e-10	-0.06	0.5
2918	рн ₃ _ч_р+	рD ₂	$_{pHD_2}^{pHD_2}$	он ₂ ир	4.1e-10 7.0e 11	0.00	0.6
2919	$_{oH-D^+}$	oH-	$_{\rm oH^+}$	HD	1.3e-10	-0.12	-4.0
2921	$_{\rm oH_2D^+}$	oH ₂	$_{\rm pH_2D^+}$	pH ₂	7.6e-11	-0.00	-1.3
2922	$_{0H_{2}D^{+}}$	$_{0H_{2}}$	$_{\rm pH_2D^+}$	oH ₂	1.5e-10	-0.04	-0.7
2923	$_{oH_2D^+}$	$^{\mathrm{oH}}2$	oH ₂ D+	$_{\rm pH_2}$	1.4e-10	-0.16	0.6
2924	$_{0}H_{2}D^{+}$	pH_2	$_{pH_{3}^{+}}$	HD	9.4e-11	-0.79	154.6
2925	$^{\rm oH}{}_2{\rm D}^+$	pH ₂	$^{\mathrm{oH}_{3}^{+}}$	HD	1.1e-10	-0.52	184.4
2926	oH D ⁺	рн ₂ рН	oH D ⁺	он ₂ оН	8.2e-10 9.3e-10	-0.04	82.2 177 1
2928	$_{\rm pH_{\circ}D^+}$	oH _o	$_{\rm pH_2^+}^{\rm 2D}$	HD	9.0e-11	-0.69	68.2
2929	$_{pH_{2}D^{+}}$	oH ₂	oH ⁺	HD	8.7e-11	-0.58	99.6
2930	$_{\rm pH_2^2D^+}$	$_{\rm oH_2^2}$	$_{oH_2^{o}D^+}$	pH_2	4.9e-10	-0.40	3.8
2931	$_{\rm pH_2D^+}$	$^{\mathrm{oH}}2$	oH ₂ D+	oH_2	7.5e-10	-0.43	91.3
2932	$_{\rm pH_2D^+}$	$_{\rm pH_2}$	$_{\rm pH_3^+}$	HD	2.7e-10	-1.08	245.4
2933	pH_2D^+	pH ₂	он ₂ D	oH ₂	3.1e-09	-0.55	267.1
2934	oH ₂ D'	HD HD	рн ₃ ъч+	pD ₂	4.8e-12 4.7e-12	-0.61	155.0
2935	$_{\rm oH_2D^+}$	HD	$_{\rm oH^+}$	D_2	4.7e-12 1.5e-11	-0.10	188.4
2937	$_{oH_{2}D^{+}}$	HD	$_{\rm oH_2^+}$	oD ₂	1.1e-11	-0.49	106.9
2938	$_{\rm oH_2^2D^+}$	HD	$_{\rm pH_2D^+}$	HD	1.7e-10	0.31	-3.5
2939	$_{oH_2D^+}$	HD	$_{\rm pHD_2^+}$	pH_2	3.2e-11	-0.30	3.2
2940	$_{0}H_{2}D^{+}$	HD	$_{\rm pHD}^+_2$	$_{oH_2}$	2.0e-10	-0.16	0.8
2941	$_{0}H_{2}D^{+}$	HD	$_{\rm oHD_2^+}$	pH_2	6.0e-11	-0.39	3.7
2942	$^{\rm oH}{}_2{\rm D}^+$	HD	$^{\mathrm{oHD}_2^+}$	oH ₂	4.7e-10	-0.04	-0.3
2943	$^{pH_2D^+}$	HD	pH ₃	pD ₂	2.5e-11	-0.49	218.2
2944 2945	$_{\rm pH_2D^+}$	HD HD	рп ₃ он. D+	оD ₂ НD	2.2e-11 8.4e-10	-0.40	88.8
2946	$_{\rm pH_2D^+}$	HD	$_{\rm pHD_{2}^{+}}$	pHo	8.6e-11	-0.65	5.4
2947	$_{\rm pH_{2}D^{+}}$	HD	$_{\rm pHD_2^+}$	oH ₂	1.0e-10	-0.76	53.4
2948	$_{\rm pH_2D^+}$	HD	$_{\mathrm{oHD}_{2}^{\tilde{+}}}$	$_{\rm pH_2}$	2.3e-10	-0.48	4.9
2949	$_{\rm pH_2D^+}$	HD	$_{\rm oHD_2^+}$	oH_2	4.7e-10	0.35	-3.5
2950	$_{oH_2D^+}$	oD_2	$_{oH_2D^+}$	pD_2	1.1e-10	0.27	83.4
2951	$^{\rm oH_2D^+}$	oD ₂	$_{\rm pHD_2^+}$	HD	2.7e-10	-0.02	-0.1
2952	oH ₂ D⊤	οD ₂	oHD2	HD -U	9.3e-10	0.02	0.3
⊿903 2054	оп ₂ D ' он D+	$_{oD}^{OD}$	mD^+	oH-	0.0e-11 7 2o 11	-0.10	-0.2
2954 2955	$_{oH_{2}D^{+}}$	pD_2	$_{\rm oH_3D^+}$	oD ₂	8.1e-11	0.30	-2.5
2956	oH2D+	$^{-2}$ pD ₂	$_{\rm pHD_2^+}$	HD	5.8e-10	-0.05	0.7
2957	$_{oH_{2}D^{+}}$	pD_2	$_{\rm oHD_2^{\ddagger}}$	HD	5.1e-10	-0.01	-0.4
2958	$_{\rm oH_2D^+}$	pD_2	pD_3^+	oH_2	1.4e-11	-0.03	-0.2
2959	$_{oH_2D^+}$	pD_2	$_{0}D_{3}^{+}$	$^{\mathrm{oH}_2}$	1.1e-10	-0.10	1.4
2960	pH_2D^+	oD_2	pH_2D^+	pD_2	8.5e-11	0.28	73.5

Table D6 – continued (part 41)

#	Reactants	5	Products		α	β	γ
2961	pH _o D ⁺	oDo	pHD ⁺	HD	2.7e-10	0.02	-0.8
2962	$_{\rm pH_2D^+}$	oD ₂	oHD ⁺	HD	1.2e-09	0.21	-1.2
2963	$_{\rm pH_2D^+}$	$_{\rm oD_2}^2$	$_{\rm oD_2^+}^2$	pHa	4.6e-11	-0.52	5.0
2964	$_{\rm pH_2D^+}$	oD2	mD_3^+	$_{\rm pH_2}^{-2}$	3.8e-11	-0.74	5.8
2965	$_{\rm pH_2^{-}D^+}$	pD_2	$_{\rm pH_2D^+}$	oD_2	3.5e-11	-0.11	-0.4
2966	$_{\rm pH_2D^+}$	pD_2	$_{\rm pHD_2^+}$	HD	6.9e-10	0.01	-0.2
2967	$_{\rm pH_2D^+}$	pD_2	$_{\rm oHD_2^+}$	HD	5.6e-10	0.01	0.7
2968	$_{\rm pH_2D^+}$	pD_2	pD_3^+	$_{\rm pH_2}$	5.6e-12	-0.45	3.4
2969	$_{\mathrm{pH_2D^+}}$	pD_2	$^{\text{oD}_3^+}$	pH_2	5.7e-11	-0.37	2.2
2970	$^{\rm oHD_2^+}$	oH ₂	$_{pH_3}^{pH_3}$	oD_2	7.1e-12	-1.09	182.4
2971	oHD ₂	oH ₂	OH_3	oD_2	1.9e-11	-1.24	215.7
2972	$_{\rm oHD}^{2}$	oH	рп ₂ D	нD НD	2.0e-10	0.44	12.5
2974	$_{\rm oHD_2}^+$	oH ₂	$_{\rm oHD}^+$	nHa	1.2e-03	-0.42	4 2
2975	oHD ₂	pH ₂	$_{\rm pH_2^+}$	oD ₂	4.0e-11	-1.29	357.6
2976	$_{\rm oHD_2^{4}}$	$_{\rm pH_2}^{1-2}$	$_{\rm pH_2D^+}$	HD	8.1e-10	-0.64	196.4
2977	$_{\rm oHD_2^{\tilde{+}}}$	$_{\rm pH_2}$	$_{\rm oH_2D^+}$	HD	1.2e-09	-0.92	288.2
2978	$_{\mathrm{oHD}_2^{\widetilde{+}}}$	$_{\rm pH_2}$	$_{\rm oHD_2^+}$	$_{\rm oH_2}$	9.2e-10	-0.68	178.8
2979	$_{\rm pHD_2^+}$	oH_2	$_{\rm pH_3^+}$	pD_2	9.8e-12	-0.87	220.4
2980	$_{\rm pHD_2^+}$	oH_2	$_{\rm oH_3^+}$	pD_2	3.5e-11	-0.82	249.9
2981	$_{\rm pHD_2^+}$	$_{oH_2}$	$_{\rm pH_2D^+}$	HD	1.9e-10	0.37	-1.4
2982	$_{\rm pHD_2^+}$	$^{\rm oH_2}$	$^{\rm oH_2D^+}$	HD	8.1e-10	-0.06	53.5
2983	$_{-UD}^{pHD_2^{\prime}}$	oH ₂	$_{-11}^{\text{pHD}_2^+}$	рН ₂	1.3e-10	-0.31	2.1
2984 2095	$_{\rm pHD_2^+}$	рн ₂	рн ₃ ън ъ+	рD ₂ нр	9.3e-11	-0.68	388.7
2960 2986	$_{\rm pHD}^{2}_{2}$	рн ₂ рН-	oH ₂ D ⁺	НD	5.5e-10 7 0e-10	-0.55	144.0 236.4
2987	$_{\rm pHD_2}^+$	pH ₂	$_{\rm pHD_{2}^{+}}$	oHa	6.5e-10	-0.73	182.4
2988	oHD ₂	HD	$_{\rm pH_2D^+}$	pD_2	4.3e-11	-0.49	200.3
2989	$_{\rm oHD_2^+}$	HD	$_{\rm pH_2D^+}$	$^{\circ}D_2$	6.8e-11	-0.27	113.0
2990	$_{\mathrm{oHD}_2^{\widetilde{+}}}$	HD	$_{\rm oH_2D^+}$	pD_2	2.2e-10	-0.85	290.0
2991	$_{\rm oHD_2^+}$	HD	$_{oH_2D^+}$	oD_2	2.7e-10	-0.82	205.4
2992	$_{\rm oHD_2^+}$	HD	$_{\rm pHD_2^+}$	HD	6.7e-10	0.03	53.0
2993	$_{\rm oHD_2^+}$	HD	$_{0}D_{3}^{+}$	$_{\rm pH_2}$	1.3e-11	-0.93	8.6
2994	$_{\rm oHD_2^+}$	HD	$^{\text{oD}_3^+}$	$^{\rm oH_2}$	4.7e-11	-0.77	7.0
2995	$_{\rm oHD_2^+}$	HD	mD_3	$_{\rm pH_2}$	2.0e-11	-0.84	8.1
2996	$_{\rm pHD}^{\rm oHD}_{2}$	HD UD	mD_3	oH ₂	5.9e-11	-0.52	4.7
2997	$_{\rm pHD}^{\rm pHD}_2$	HD	$_{\rm pH}^{\rm pH}$ D ⁺	$_{oD}^{pD_2}$	7.5e-11 2.5e-11	-0.11	143.7 56.0
2999	$_{\rm pHD_2}^{\rm pHD_2}$	HD	$_{\rm oH_2D^+}$	$^{\rm DD_2}$	2.9e-10	-0.64	238.6
3000	pHD ₂	HD	oH ₂ D ⁺	oD_0	1.0e-10	-0.49	149.5
3001	pHD ₂	HD	$_{\rm oHD}^{2}_{2}^{+}$	нĎ	9.0e-10	0.40	-1.7
3002	$_{\rm pHD_2^{\mp}}$	HD	pD_3^+	pH_2	3.6e-12	-0.58	4.6
3003	$_{\rm pHD_2}^+$	HD	pD_3^+	$_{\rm oH_2}$	1.2e-11	-0.49	3.6
3004	$_{\rm pHD_2^+}$	HD	$_{0}D_{3}^{+}$	$_{\rm pH_2}$	3.2e-11	-0.51	3.9
3005	$_{\rm pHD_2^+}$	HD	${}_{0}D_{3}^{+}$	$_{oH_2}$	1.2e-10	-0.48	5.1
3006	$^{\rm oHD_2^+}$	oD_2	$^{\text{pHD}_2^+}$	pD_2	1.8e-10	-0.36	143.7
3007	$^{\text{oHD}_2}$	oD ₂	$_{\rm PHD_2}^{\rm pHD_2}$	oD ₂	1.6e-10	-0.05	55.6
3008	oHD ₂	oD ₂	$_{\rm oD}^+$	рD ₂ ир	2.5e-10 2.2c 10	0.17	83.8
3010	$_{\rm oHD}^{2}$	0D_2	$^{\rm 0D_3}_{\rm mD_2^+}$	нр	4 7e-10	-0.24	2.7
3011	$_{\rm oHD_2}^2$	pD_{n}	$_{\rm pHD_{2}^{+}}$	pD _o	1.0e-10	0.07	54.2
3012	oHD	$^{-2}_{pD_2}$	$_{\rm pHD_2^+}^{1}$	$^{\circ}D_{2}$	1.3e-10	-0.14	0.5
3013	$_{\rm oHD_2^{4}}$	pD_2^2	$_{\mathrm{oHD}_{2}}^{\ddagger}$	$_{\rm oD_2^2}$	1.8e-10	0.22	-2.6
3014	$_{\mathrm{oHD}_{2}}^{\mp}$	$_{\rm pD_2}$	pD_3^+	НD	2.3e-11	-0.45	3.2
3015	$_{\rm oHD}^+_2$	pD_2	$_{oD_{3}}^{+}$	HD	4.9e-10	-0.13	2.3
3016	$_{\rm oHD_2^+}$	pD_2	${^{mD}3^+_{\perp}}$	HD	1.9e-10	-0.15	0.6
3017	$_{\rm pHD_2^+}$	oD ₂	$_{\rm pHD_2^+}$	pD_2	7.8e-11	-0.01	86.3
3018	$_{\rm pHD_2^+}$	oD ₂	$^{\text{oHD}_2^-}$	pD_2	2.6e-10	0.20	31.9
3019	рн0 ₂ ън0+	ەD2	$_{\rm pD^+}^{\rm onD_2^+}$	оD ₂ ир	2.1e-10	0.32	0.8
3020	$_{\rm pHD}^{\rm pHD}_2$	$_{0}D_{2}$	$_{0}D_{3}^{+}$	НЛ	4.1e-11 5.0e-10	-0.20	2.1 0.8
3022	$_{\rm pHD_2}^2$	$_{\rm oD_2}^{\rm OD_2}$	$^{\rm mD_3^+}$	HD	2.2e-10	-0.12	1.4
3023	pHD	pD_{2}	$_{\rm pHD_2^+}$	oD.	5.7e-11	0.04	-0.3
3024	$_{\rm pHD_2^+}$	pD_{2}	oHD	pD_{2}^{2}	1.4e-10	0.44	-0.7
3025	$_{\rm pHD_2^{\hat{+}}}$	pD_2	$_{\rm oHD}_2^{\ddagger}$	$_{oD_{2}}$	2.1e-10	0.17	-0.4
3026	$_{\rm pHD_2^+}$	pD_2	pD_3^+	HD	7.0e-11	-0.08	-0.5
3027	$_{\rm pHD_2^+}$	pD_2	$_{0}D_{3}^{+}$	HD	5.7e-10	-0.15	1.3
3028	$^{oD_3^+}$	$_{oH_2}$	$_{oH_2D^+}$	pD_2	2.3e-10	-1.01	324.3
3029	$^{oD_3^-}$	oH ₂	$^{\mathrm{oH}_{2}\mathrm{D^{+}}}$	oD_2	1.3e-10	-0.67	227.0
3030		oH ₂	$_{\rm pHD_2^+}$	HD	1.1e-09	-0.21	71.6
3031	$\frac{0D_3}{mD^+}$	oH ₂	onD ₂ on D+	UD OD	0.8e-10	-0.13	18.7
3032	mD^+	0112 0H-	$_{\rm oHD}^+$	$^{0D}_{2}$	3.7e-00	0.41	60.2
3034	mD_2^+	pH ₂	$_{\rm pH_2D^+}$	oD _o	8.1e-10	-0.57	355.0
	చ	- 2	- 4	2			

Table D6 – continued (part 42)

#	Reactants	5	Products			α	β	γ
	1		1					
3035	mD_3^+	$_{\rm pH_2}$	$^{\rm oHD_2^+}$	HD		9.6e-09	-0.01	236.9
3036	pD_3^+	$_{oH_2}$	$_{oH_2D^+}$	pD_2		6.1e-10	-0.55	304.6
3037	pD_3^+	oH_2	$_{\rm pHD_2^+}$	HD		2.3e-09	0.17	50.1
3038	oD3	pH ₂	$_{\rm pH_{2}D^{+}}$	pD.		3.1e-10	-0.67	400.1
3039	oD ⁺	pH ₂	$pH_{0}D^{+}$	oD		1.5e-10	-0.85	315.3
3040	aD^{+}	DH 2	$_{\rm DHD}^{\rm +}$	нD		1.3e-09	-0.75	253.9
2041	0D3	ри2 ъЧ	ount	UD		0.20.10	0.50	107.9
2041	D_3	^{p11} 2	$11D_2$	IID D		9.20-10	-0.59	197.0
3042	pD3	$_{\rm pH_2}$	pH ₂ D	pD_2		8.2e-10	-0.18	378.0
3043	pD_3^-	$_{\rm pH_2}$	$_{\rm pHD_2}$	HD		3.5e-09	-0.34	233.0
3044	$_{0}D_{3}^{+}$	HD	$_{\rm pHD_2^+}$	pD_2		4.2e-10	-0.85	259.0
3045	$_{oD_{3}^{+}}$	HD	$_{\rm pHD_2^+}$	oD_2		3.8e-10	-0.56	166.4
3046	$_{0}D_{3}^{+}$	HD	$_{\rm oHD_2^+}$	pD_2		7.3e-10	-0.18	199.3
3047	oD+	HD	oHD	oD_		3.6e-10	-0.24	114.1
3048	$_{0}D^{+}_{+}$	HD	$_{\rm pD}^+$	HD		4 5e-11	-0.33	19.2
2040	°D3	чD	p = 3 $m D^{\pm}$	чD		2 10 10	0.07	0.4
2050	0D ₃		$\frac{11D_3}{11D^+}$	IID		2.16-10	-0.07	0.4
3050	mD3	HD	phD ₂	oD ₂		7.5e-10	-0.32	213.9
3051	mD_3^+	HD	$^{\rm oHD_2^+}$	pD_2		2.0e-09	0.31	238.1
3052	mD_3^+	HD	$_{\rm oHD_2^+}$	oD_2		2.9e-09	0.30	151.8
3053	mD_3^+	HD	$_{oD_3}^+$	HD		1.1e-09	0.25	44.1
3054	pD_2^+	HD	$_{\rm pHD_2^+}$	pD_{2}		1.6e-09	-0.13	232.6
3055	$^{-}_{\rm nD^+_{2}}$	HD	лнD [‡]	oD_		6.9e-10	-0.21	146 1
3056	pD ⁺	нD	0HD+	2 pD		8 90 10	0.05	176.0
2057	pD_3		D^+	PD_2		0.5.10	0.05	170.9
3057	pD_3	HD	oD_3	HD		9.56-10	0.08	-0.7
3058	oD ₃	oD_2	$_{\rm pD_3}$	pD_2		2.5e-11	-0.60	110.1
3059	oD_3^{-}	oD_2	pD_3^{\top}	oD_2		2.0e-11	-0.57	20.8
3060	$_{oD_3^+}$	oD_2	$_{oD_3^+}$	pD_2		4.9e-10	-0.26	88.4
3061	$_{oD_3^+}$	oD_2	mD_3^+	pD_2		2.2e-10	-0.23	41.9
3062	$_{0}D_{2}^{+}$	$_{oD_{2}}$	mD_2^+	$_{oD_{2}}$		1.3e-10	-0.33	2.4
3063	D^{3+}	pD2	$_{\rm pD}^{4}$	$_{\rm D}D_{2}$		3 2e-11	-0.24	18.1
2064	-D ⁺	pD ₂	$_{pD3}^{PD3}$	oD		4.40.11	0.00	0.2
2004	D_3	pD_2	$_{\rm D}^+$	D_2		4.46-11	-0.00	-0.5
3065	oD3	pD_2	oD3	oD_2		3.5e-10	-0.21	1.9
3066	oD3	pD_2	mD ₃	pD_2		3.7e-11	-0.06	0.1
3067	oD_3^+	pD_2	mD_3^+	oD_2		6.2e-10	0.99	-8.3
3068	mD_3^+	oD_2	$_{oD_3^+}$	pD_2		3.4e-09	1.08	126.4
3069	mD_3^+	oD_2	$_{oD_3}^+$	oD_2		6.5e-10	-0.02	46.2
3070	mD_2^+	$_{oD_{2}}$	mD_2^+	pD_{2}		2.9e-10	0.11	84.5
3071	mD_{2}^{+}	pD_	nD+	oD_		3 2e-11	-0.42	3.5
3072	mD+	P = 2	oD ⁺	2 pD		1.90.10	0.24	13.0
2072	mD ₃	-D	-D ⁺	-D		1.3e-10 8.1 - 10	0.11	40.5
3073	mD_3	pD_2	0D_3	0D_2		8.1e-10	0.11	-0.5
3074	mD ₃	pD_2	mD_3	oD_2		2.2e-10	0.18	-2.6
3075	pD_3^{-}	oD_2	$^{\rm oD}_3^{\perp}$	pD_2		1.3e-09	0.35	66.1
3076	pD_3^+	oD_2	$_{oD_3^+}$	oD_2		4.1e-10	-0.17	0.9
3077	pD_3^+	oD_2	mD_3^+	pD_2		1.8e-10	-0.36	25.9
3078	pD_2^+	pD_2	oD_2^+	pD_2		6.6e-10	0.15	-1.8
3079	$_{\rm pD_{0}^{+}}$	pD _o	$_{0}D_{+}^{+}$	oDo		4.7e-10	-0.00	0.6
3080	р£3 рH ⁺	p=2 0 ⁻	523 5H	н		0.20.00	0.73	1.0
2001	113 11 ⁺	e . –	p112	11		9.20-09	-0.75	1.0
3081	pH ₃	е	oH ₂	н		9.2e-09	-0.73	1.0
3082	$_{\rm pH_3}$	е	Н	Н	Н	3.6e-08	-0.73	1.0
3083	$_{0}H_{3}^{+}$	e ⁻	oH_2	Η		2.5e-08	0.16	-1.0
3084	$_{0H_{3}^{+}}$	e^{-}	Н	Η	Η	4.9e-08	0.16	-1.0
3085	$_{\rm pH_2D^+}$	e^-	Н	Н	D	5.6e-07	0.44	-2.8
3086	$_{\rm pH_2D^+}$	e^-	HD	Н		1.3e-07	0.44	-2.8
3087	$_{\rm pH_2D^+}$	e^{-}	pH_2	D		5.2e-09	0.44	-2.8
3088	$_{oH_2D^+}$	e^-	Н	Н	D	1.5e-07	-0.00	-3.5
3089	$_{oH_{2}D^{+}}$	e^{-}	HD	н		3.7e-08	-0.00	-3.5
3090	$_{\rm oH_2D^+}$	e^{-}	$_{\rm oH_2}$	D		1.4e-08	-0.00	-3.5
3091	pHD_{2}^{+}	e^{-}	D	D	н	1.7e-07	0.69	-9.4
3092	$^{-2}_{\rm pHD^{+}}$	e ⁻	HD	D		2.2e-08	0.69	-9.4
3002	рно ₂	e ⁻	nD	ч		2.20-00	0.60	0.4
2023	$_{-11D^+}$	с 	PD_2	л 11	TT	2.00-00	0.09	-9.4
3094	onD ₂	е	D	D E	н	9.4e-08	0.66	-12.5
3095	$_{0HD_{2}^{+}}$	e^{-}	HD	D		1.2e-08	0.66	-12.5
3096	$_{\rm oHD_2^+}$	e ⁻	oD_2	Н		1.1e-08	0.66	-12.5
3097	pD_2^+	e^-	D	D		2.3e-08	-0.69	0.0
3098	$_{oD_{2}}^{\overline{+}}$	e^{-}	D	D		2.3e-08	-0.69	0.0
3099	pD_{a}^{\uparrow}	e^{-}	D	D	D	5.8e-08	-0.60	9.2
3100	$^{-3}$	e_	nD-	D	-	1 90-08	-0.60	0.2
3101	mD ⁺	0-	г~2 D	л П	D	3 7 09	0.40	0.2 0.0
3102	mD_{3}^{+}	e 	-D	D D	D	1.0.00	-0.49	-2.0
3102	mD_3	е	ەت2 ت	D D		1.2e-08	-0.49	-2.8
3103	oD	e^{-}	D	D	D	7.4e-08	-0.77	15.0
3104	$_{0}D_{3}^{+}$	e^-	pD_2	D		1.2e-08	-0.77	15.0
3105	$_{oD_3^+}$	e^{-}	oD_2	D		1.2e-08	-0.77	15.0
3106	$_{\rm oH_2}$	H^+	pH_2	H^+		1.8e-10	0.13	-0.0
3107	pH_{2}	H^+	oH ₂	H^+		1.6e-09	0.13	170.5
3108	N^{+}	pH ₂	NH ⁺	Н		8.4e-10	0.00	168.5

Table D6 – continued (part 43)

#	Reactants		Products				α	β	γ
3109	N^+	oHa	NH ⁺	Н			4.2e-10	-0.15	44.1
3110	oH ₂	нсо+	pH ₂	HCO^+			1.3e-10	0.00	0.0
3111	pH_2	HCO^+	$_{\rm oH_2}$	HCO^+			1.1e-09	0.00	170.7
3112	HD	H^+	D^{+}	pH_2			4.4e-10	0.00	458.0
3113	HD	H^+	D^+	oH_2			7.1e-10	0.00	628.7
3114	oD_2	D^+	D^+	pD_2			6.0e-10	0.00	86.0
3115	pD_2	D+	D^+	oD ₂			4.0e-10	0.00	0.0
3116	oD_2	DCO+	pD_2	DCO+			3.7e-10	0.00	86.0
3117	pD_2	DCO^+	oD ₂	DCO^+			2.5e-10	0.00	0.0
3118	$C_2H_2^+$	$_{\rm pH_2}$	$C_2H_3^+$	Н			5.0e-10	0.00	800.0
3119	$C_2H_2^+$	oH_2	$C_2H_3^+$	Η			5.0e-10	0.00	629.3
3120	HD ⁺	Η	pH_2^+	D			1.0e-09	0.00	285.0
3121	$_{\rm pH_2D^+}$	Н	$_{\rm pH_3^+}$	D			1.0e-09	0.00	644.2
3122	$_{oH_2D^+}$	Н	$_{\rm pH_3^+}$	D			1.0e-09	0.00	644.2
3123	$_{\rm pHD_2^+}$	Н	$_{\rm pH_2D^+}$	D			1.0e-09	0.00	599.6
3124	$_{\rm oHD_2^+}$	Н	$_{\rm pH_2D^+}$	D			1.0e-09	0.00	599.6
3125	$_{pD_3^+}$	Н	$_{\rm pHD_2^+}$	D			1.0e-09	0.00	646.2
3126	mD_3^+	н	$_{\rm pHD_2^+}$	D			1.0e-09	0.00	646.2
3127	$_{0}D_{3}^{+}$	н	$_{\rm pHD_2^+}$	D			1.0e-09	0.00	646.2
3128	pNH_3	OH	pNH_2	$_{\rm pH_2O}$			3.5e-12	0.00	925.0
3129	$_{oNH_3}$	OH	pNH_2	$_{\rm pH_2O}$			3.5e-12	0.00	925.0
3130	$_{\rm pH_2S}$	OH	SH	$_{\rm pH_2O}$			6.1e-12	0.00	80.0
3131	$_{oH_2S}$	OH	SH	$_{\rm pH_2O}$			6.1e-12	0.00	80.0
3132	oCH ₄	He ⁺	CH ⁺	oH ₂	H	He	1.7e-10	0.00	0.0
3133	oCH ₄	He^+	CH ⁺	pH ₂	H	He	8.5e-11	0.00	0.0
3134	mCH ₄	He'	CH ⁺	oH ₂	H	He	2.6e-10	0.00	0.0
3135	pCH ₄	He ' Ho+	CH ⁺	oH ₂	н u	He	1.3e-10	0.00	0.0
2127	$_{\rm Cu}^{\rm pon_4}$	ne ·	oCH	рп ₂ ц	и п	ne	2.02.07	0.00	0.0
2120	$-CII^{\pm}$	e		11	11		2.0e-07	-0.00	0.0
2120	mCH^+	e	oCH	и и	и п		2.00.07	-0.00	0.0
2140	nCH^+	e	oCH	и и	и п		1.50.07	-0.00	0.0
2140	$_{-CII^{+}}$	e 	CH2	п	п		1.5e-07	-0.00	0.0
2141	$_{-CII}^{+}$	e 	CU CU	п - 11	п -Ш		1.5e-07	-0.00	0.0
3142 2142	CII	e 	СН	оп ₂	-11		4.4e-08	-0.30	0.0
2143	OCH_5	e 	СН	оп ₂	рп ₂		4.46-08	-0.30	0.0
2144	mCH_5	e 	СН	он ₂	-11		3.56-08	-0.30	0.0
3140 2146	mCH_5	e 	СН	рп ₂	-11		3.3e-08	-0.30	0.0
2140	$-CII^{\pm}$	e	CII	-112	-112		2.36-08	-0.30	0.0
2147	$_{-CII}^{+}$	e 	-CU	оп ₂	оп ₂		6.7e-08	-0.30	0.0
2140	CII	e 	-CII	он ₂	п		4.4e-08	-0.30	0.0
2150	CII	e 	CH2	рп ₂	п		2.2e-08	-0.30	0.0
2151	OCH_5	e 	PCH ₂	оп ₂	п		2.20-08	-0.30	0.0
2150	mCH_5	e 	-CII	он ₂	п		3.3e-08	-0.30	0.0
3152	CII+	e	OCH ₂	рп ₂	п		1.86-08	-0.30	0.0
2153	mCH_5	e 	PCH ₂	он ₂	п		1.80-08	-0.30	0.0
2155	$-CU^{\pm}$	e 	PCH ₂	рп ₂	п		1.8e-08	-0.30	0.0
2150	$_{-NII}^{\text{pCH}_5}$	e 	-NII	оп ₂	п		8.7e-08	-0.30	0.0
2157	$-NII^+$	e 	onn ₂	п	п		6.1e-08	-0.00	0.0
2159	mNH ⁺	е 0 [—]	oNH	11 U	п u		4.1e-08	-0.00	0.0
3150	$_{\rm DNH^+}$	e 0 ⁻	oNH	н Н	н		6.10.09	0.00	0.0
3160	DNH ⁺	e	DNH2	н	н		6 1 0 00	0.00	0.0
3161	CH-OH	16	DCH	ОН	11		3 0e±03	0.00	0.0
3162	Gr	12 Vo	Gr^+	e ⁻			$6.3e \pm 0.07$	0.00	0.0
3163	Gr^-	12 Ya	Gr	e_			4.2e + 08	0.00	0.0
3164	Gr	é-	Gr^{-}	γ			6.9e-05	0.50	0.0
3165	Gr^+	e^-	\mathbf{Gr}	γ			6.9e-05	0.50	0.0
3166	Fe	Y2	Fe^+	e^-			$4.8e{+}02$	0.00	0.0

Table D7. Species-to-species rates for the inter-conversion reactions of H_3^+ with HD, H_2 , and D_2 . The rates have been fitted, in the 5 to 50 K temperature range, by a modified Arrhenius function of the form $k(T) = \alpha (T/300)^{\beta} \exp(-\gamma/T)$ in cm³s⁻¹. Elastic channels are not reported. Rates at 10 K are also listed.

#	React	ants	Products		α	β	γ	k(10)
					$\mathrm{cm}^3\mathrm{s}^{-1}$		Κ	$cm^3 s^{-1}$
1	oH_3^+	HD	pH_3^+	HD	7.7e-11	0.44	-4.8	2.8e-11
2	oH_3^+	HD	pH_2D^+	oH_2	1.6e-10	-0.02	-0.4	1.8e-10
3	oH_3^+	HD	oH_2D^+	pH_2	1.5e-10	-0.16	1.1	2.3e-10
4	oH_3^+	HD	oH_2D^+	oH_2	1.1e-09	0.01	0.3	1.0e-09
5	pH_3^+	HD	oH_3^+	HD	1.2e-10	0.33	29.2	2.1e-12
6	pH_3^+	HD	pH_2D^+	pH_2	1.1e-10	-0.41	2.9	3.3e-10
7	pH_3^+	HD	pH_2D^+	oH_2	2.5e-10	-0.27	3.3	4.5e-10
8	pH_3^+	HD	oH_2D^+	pH_2	2.8e-10	-0.32	1.9	6.9e-10
9	pH_3^+	HD	oH_2D^+	oH_2	1.2e-09	0.30	22.8	4.4e-11
10	oH_3^+	oH_2	pH_3^+	pH_2	1.3e-10	0.08	-0.7	1.1e-10
11	oH_3^+	oH_2	oH_3^+	pH_2	9.7e-11	0.00	-0.2	9.9e-11
12	oH_3^+	pH_2	pH_3^+	oH_2	3.5e-10	-0.90	154.2	1.5e-15
13	oH_3^+	pH_2	oH_3^+	oH_2	5.0e-10	-0.42	180.4	$3.1e{-}17$
14	oH_3^+	oH_2	pH_3^+	oH_2	4.1e-10	0.02	-0.5	4.0e-10
15	pH_3^+	oH_2	pH_3^+	pH_2	1.9e-10	-0.18	1.1	$3.1e{-}10$
16	pH_3^+	oH_2	$_{0}H_{3}^{+}$	pH_2	1.7e-10	-0.28	1.7	$3.7e{-}10$
17	pH_3^+	oH_2	oH_3^+	oH_2	6.7e-10	-0.07	33.3	3.0e-11
18	pH_3^+	pH_2	pH_3^+	oH_2	1.0e-09	-0.57	180.4	1.0e-16
19	pH_3^+	pH_2	oH_3^+	oH_2	9.2e-10	-0.54	216.9	2.2e-18
20	oH_3^+	oD_2	oH_2D^+	HD	1.2e-09	0.34	-0.8	4.1e-10
21	oH_3^+	oD_2	oHD_2^+	oH_2	6.2e-10	-0.22	1.2	1.2e-09
22	oH_3^+	pD_2	oH_2D^+	HD	9.1e-10	0.05	-0.4	8.0e-10
23	oH_3^+	pD_2	pHD_2^+	oH_2	6.5e-10	-0.06	0.5	7.6e-10
24	pH_3^+	oD_2	pH_2D^+	HD	5.3e-10	0.24	-1.6	2.7e-10
25	pH_3^+	oD_2	oH_2D^+	HD	5.8e-10	0.38	-3.7	2.3e-10
26	pH_3^+	oD_2	oHD_2^+	pH_2	2.6e-10	-0.27	2.2	5.2e-10
27	pH_3^+	oD_2	oHD_2^+	oH_2	4.0e-10	-0.13	1.3	5.5e-10
28	pH_3^+	pD_2	pH_2D^+	HD	4.0e-10	0.06	-1.1	3.6e-10
29	pH_3^+	pD_2	oH_2D^+	HD	4.7e-10	-0.03	0.2	5.1e-10
30	pH_3^+	pD_2	pHD_2^+	pH_2	2.6e-10	-0.06	0.5	3.0e-10
31	pH_3^+	pD_2	pHD_2^+	oH_2	4.1e-10	0.00	0.6	3.9e-10

Table D8. Same as Table D7 for reactions involving H_2D^+ .

#	Reactant	s	Products		α	в	γ	<i>k</i> (10)
		-			$cm^3 s^{-1}$	F	ĸ	$cm^{3}s^{-1}$
1	oH_2D^+	oH ₂	pH_3^+	HD	7.9e-11	0.27	-4.0	4.7e-11
2	$_{0}H_{2}D^{+}$	$_{\rm oH_2}$	oH_3^+	HD	1.3e-10	-0.12	7.4	9.3e-11
3	$_{0}H_{2}D^{+}$	$_{0}H_{2}$	pH_2D^+	pH_2	7.6e-11	-0.00	-1.3	8.7e-11
4	$_{0}H_{2}D^{+}$	$_{0}H_{2}^{}$	pH_2D^+	$_{\rm oH_2}$	1.5e-10	-0.04	-0.7	1.8e-10
5	$_{0}H_{2}D^{+}$	$_{\rm oH_2}$	$_{0}H_{2}D^{+}$	pH_2	1.4e-10	-0.16	0.6	2.3e-10
6	oH_2D^+	pH_2	pH_3^+	HD	9.4e-11	-0.79	154.6	2.7e-16
$\overline{7}$	$_{0}H_{2}D^{+}$	pH_2	oH_3^{\downarrow}	HD	1.1e-10	-0.52	184.4	6.3e-18
8	$_{0}H_{2}D^{+}$	pH_2	pH_2D^+	oH_2	8.2e-10	-0.04	82.2	2.5e-13
9	$_{0}H_{2}D^{+}$	pH_2	$_{0}H_{2}D^{+}$	$_{0H_{2}}$	9.3e-10	-0.41	177.1	7.6e-17
10	pH_2D^+	oH_2	pH_3^+	HD	9.0e-11	-0.69	68.2	1.0e-12
11	pH_2D^+	$_{\rm oH_2}$	oH_3^+	HD	8.7e-11	-0.58	99.6	3.0e-14
12	pH_2D^+	$_{0}H_{2}$	$_{0H_{2}D^{+}}$	pH_2	4.9e-10	-0.40	3.8	1.3e-09
13	pH_2D^+	oH_2	oH_2D^+	oH_2	7.5e-10	-0.43	91.3	3.5e-13
14	pH_2D^+	pH_2	pH_3^{+}	HD	2.7e-10	-1.08	245.4	2.3e-19
15	pH_2D^+	pH_2	$_{0}H_{2}D^{+}$	oH_2	3.1e-09	-0.55	267.1	5.1e-20
16	$_{0H_{2}D^{+}}$	HD	pH_3^+	pD_{2}	4.8e-12	-0.61	155.0	7.1e-18
17	$_{0}H_{2}D^{+}$	HD	pH_3^+	oD_2	4.7e-12	-0.10	65.3	9.6e-15
18	$_{0}H_{2}D^{+}$	HD	oH_3^+	pD_{2}	1.5e-11	-0.61	188.4	7.9e-19
19	$_{0}H_{2}D^{+}$	HD	$_{0}H_{3}^{+}$	$^{\circ}$ $^{\circ}$ $^{\circ}$	1.1e-11	-0.49	106.9	1.3e-15
20	oH_D+	HD	$pH_{2}D^{+}$	HD	1.7e-10	0.31	-3.5	8.4e-11
21	$_{0}H_{2}D^{+}$	HD	pHD_2^+	pH_2	3.2e-11	-0.30	3.2	6.4e-11
22	$_{0}H_{2}D^{+}$	HD	pHD_2^+	oH ₂	2.0e-10	-0.16	0.8	3.2e-10
23	$_{0}H_{2}D^{+}$	HD	$_{\rm oHD_2^+}$	pH2	6.0e-11	-0.39	3.7	1.6e-10
24	$_{0}H_{2}D^{+}$	HD	$_{\rm oHD_2^{+}}$	oH_	4.7e-10	-0.04	-0.3	5.5e-10
25	$pH_{2}^{2}D^{+}$	HD	pH_2^+	pD_2^2	2.5e-11	-0.49	218.2	4.4e-20
26	pH_{2} D ⁺	HD	$^{+}_{eHq}$	$^{0}D_{2}$	2.2e-11	-0.40	140.6	6.7e-17
27	$pH_{2}^{I}D^{+}$	HD	$^{\rm oH_2D^+}$	HD^2	8.4e-10	-0.11	88.8	1.7e-13
28	$pH_{2}D^{+}$	HD	pHD_2^+	pH_2	8.6e-11	-0.65	5.4	4.6e-10
29	$_{\rm pH_2D^+}$	HD	pHD_2^+	oH ₂	1.0e-10	-0.76	53.4	6.4e-12
30	$pH_{0}^{2}D^{+}$	HD	$_{\rm oHD_2^+}$	pH2	2.3e-10	-0.48	4.9	7.2e-10
31	$pH_{2}D^{+}$	HD	$_{\rm oHD_2^{+}}$	oH ₂	4.7e-10	0.35	-3.5	2.0e-10
32	$_{\rm oH_2D^+}$	oD_2	$_{0}H_{2}\tilde{D}^{+}$	pD_2^2	1.1e-10	0.27	83.4	1.0e-14
33	$_{0}H_{2}D^{+}$	oD2	pHD_2^+	HD	2.7e-10	-0.02	-0.1	2.9e-10
34	$_{0}H_{2}D^{+}$	oD_2	$_{\rm oHD_2^+}$	HD	9.3e-10	0.02	0.3	8.4e-10
35	$_{0}H_{2}D^{+}$	oD_2	oD_2^+	oHa	6.0e-11	-0.10	-0.2	8.6e-11
36	$_{0}H_{2}D^{+}$	oD_2	mD_2^+	oH2	7.2e-11	-0.32	1.2	1.9e-10
37	$_{0}H_{2}D^{+}$	pD_2	$_{0}H_{2}D^{+}$	oD_2	8.1e-11	0.30	-2.5	$3.7e{-}11$
38	$_{0}H_{2}D^{+}$	pD_2	pHD_2^+	НĎ	5.8e-10	-0.05	0.7	6.4e-10
39	$_{0}H_{2}D^{+}$	pD_2	$_{\rm oHD_2^+}$	HD	5.1e-10	-0.01	-0.4	5.5e-10
40	$_{0}H_{2}D^{+}$	pD_2	pD_3^+	oH_2	1.4e-11	-0.03	-0.2	1.6e-11
41	$_{0}H_{2}D^{+}$	pD_2	$^{\circ}\mathrm{D}_{2}^{+}$	oH2	1.1e-10	-0.10	1.4	1.3e-10
42	$pH_{2}D^{+}$	$^{0}D_{2}$	$pH_{2}D^{+}$	pD_{2}	8.5e-11	0.28	73.5	2.1e-14
43	$pH_{2}D^{+}$	oD_2^2	pHD_2^+	HD	2.7e-10	0.02	-0.8	$2.7e{-}10$
44	$pH_{2}D^{+}$	oD_2^2	$_{\rm oHD_2^+}$	HD	1.2e-09	0.21	-1.2	6.6e-10
45	$_{pH_{2}D^{+}}$	oD_{2}	oD_3^+	pH_2	4.6e-11	-0.52	5.0	1.6e-10
46	pH_{2} D+	oD_{2}^{2}	mD_2^+	pH_{2}	3.8e-11	-0.74	5.8	2.6e-10
47	$_{\rm pH_2D^+}$	pD_{2}^{2}	$_{\rm pH_2D^+}$	$^{\circ}_{oD_{2}}$	3.5e-11	-0.11	-0.4	$5.3e{-}11$
48	$_{pH_{2}D^{+}}$	pD_{2}	$_{\rm pHD_2^+}$	HD^{2}	6.9e-10	0.01	-0.2	6.8e-10
49	$pH_{2}D^{+}$	pD_{2}	oHD2	HD	5.6e-10	0.01	0.7	5.0e-10
50	$pH_{2}D^{+}$	pD_{2}	pD_3^+	pH_{2}	5.6e-12	-0.45	3.4	1.8e-11
51	pH_2D^+	pD_2	oD_3^+	$_{\rm pH_2}$	5.7e-11	-0.37	2.2	1.6e-10

Table D9. Same as Table D7 for reactions involving D_2H^+ .

#	Reactan	its	Products	;	α	β	γ	k(10)
					$cm^{3}s^{-1}$		Κ	$\mathrm{cm}^3\mathrm{s}^{-1}$
1	oHD+	oH	nH ⁺	oD	7 10-12	_1.00	182 /	3 50-18
1	$^{\text{oud}}_{2}$	oII ₂	$_{\circ}\Pi^{\pm}$	$^{\circ D}_2$	1.16-12	-1.03	102.4 915 7	5.56-10
2	UD_2	. II	-11^{3}	UD_2	1.96-11	-1.24	210.7	5.5e-19
3	OHD_2^+	он ₂	pH_2D^+	HD	2.6e-10	0.44	12.3	1.7e-11
4	$^{\mathrm{oHD}_2}$	oH_2	$^{\rm oH}_{2}^{\rm D^+}$	HD	1.2e-09	-0.42	109.4	8.9e-14
5	oHD_2^+	oH_2	$^{\rm oHD_2^+}$	pH_2	1.4e-10	-0.47	4.2	4.5e-10
6	oHD_2^+	pH_2	pH_3^+	oD_2	4.0e-11	-1.29	357.6	9.5e-25
7	$_{\rm oHD_2^+}$	pH_2	pH_2D^+	HD	8.1e-10	-0.64	196.4	2.1e-17
8	oHD_2^+	pH_2	oH_2D^+	HD	1.2e-09	-0.92	288.2	8.4e-21
9	$_{\mathrm{oHD}_{2}^{\overline{+}}}$	pH_2	$_{\rm oHD_2^+}$	oH ₂	9.2e-10	-0.68	178.8	1.6e-16
10	pHD	oH	pH_2^+	pD	9.8e-12	-0.87	220.4	5.1e-20
11	$_{\rm DHD_{2}^{+}}$	oH	$^{1}_{0H_{2}^{+}}$	pD_{2}^{2}	3.5e-11	-0.82	249.9	8.0e-21
12	$_{\rm pHD}^{+}$	oH.	$_{\rm pH} D^+$	HD	1 9e-10	0.37	_1 4	6.2e-11
12	$_{\rm pHD}^{\rm pHD}_{2}$	оп ₂	$_{\rm oH} D^+$		1.3e-10 8 1o 10	0.07	-1.4 59 5	4 70 19
1.0	$_{\rm mUD}^+$	011 ₂	$_{\rm mID}^+$	nD nU	0.1e-10	-0.00	00.0	4.76-12
14	$_{\rm HD_2^+}$	оп ₂	p_{HD_2}	рп ₂	1.5e-10	-0.51	2.1	5.0e-10
15	pHD_2	$_{\rm pH_2}$	pH_3	pD_2	9.3e-11	-0.68	388.7	1.2e-26
16	pHD_2	pH_2	pH_2D^+	HD	3.3e-10	-0.55	144.3	1.2e-15
17	pHD_2^+	pH_2	oH_2D^+	HD	7.0e-10	-0.59	236.4	2.8e-19
18	pHD_2^+	pH_2	pHD_2^+	oH_2	6.5e-10	-0.73	182.4	9.3e-17
19	$_{\rm oHD_2^+}$	HD	pH_2D^+	pD_2	4.3e-11	-0.49	200.3	4.6e-19
20	$_{\rm oHD_2^+}$	HD	pH_2D^+	oD_2	6.8e-11	-0.27	113.0	2.1e-15
21	$_{\rm oHD_2^{+}}$	HD	$_{\rm oH_2D^+}$	pD_{2}	2.2e-10	-0.85	290.0	1.0e-21
22	oHD [‡]	HD	$_{0}H_{0}^{2}D^{+}$	$_{0}D_{0}^{2}$	2.7e-10	-0.82	205.4	5.3e-18
23	$_{\rm oHD}^+$	HD	$_{\rm pHD_{2}^{+}}$	HD	6 7e-10	0.03	53.0	3.0e-12
24	oHD ⁺	HD	$_{o}D^{+}$	nH	1 30-11	-0.03	8.6	1.30-10
25	oHD ⁺	нр	$_{oD^+}$	oH	4 70 11	0.77	7.0	3.2010
20	UID_2		D_3	- II	4.76-11	-0.11	1.0	5.2e-10
20	OHD_2	HD	mD_3	pH_2	2.0e-11	-0.84	8.1	1.5e-10
27	$^{\rm oHD_2^+}$	HD	mD_3	oH ₂	5.9e-11	-0.52	4.7	2.2e-10
28	pHD_2	HD	pH_2D^+	pD_2	7.3e-11	-0.11	143.7	6.1e-17
29	pHD_2^+	HD	pH_2D^+	oD_2	2.5e-11	0.05	56.0	7.8e-14
30	pHD_2^+	HD	oH_2D^+	pD_2	2.9e-10	-0.64	238.6	1.1e-19
31	pHD_2^+	HD	oH_2D^+	oD_2	1.0e-10	-0.49	149.5	1.7e-16
32	pHD_2^+	HD	oHD_2^+	HD	9.0e-10	0.40	-1.7	2.7e-10
33	pHD_2^+	HD	pD_3^+	pH_2	3.6e-12	-0.58	4.6	1.6e-11
34	$_{\rm pHD_2^+}$	HD	pD_2^+	oH ₂	1.2e-11	-0.49	3.6	4.4e-11
35	$_{\rm pHD_{2}^{+}}$	HD	$^{1}_{0}D_{0}^{+}$	pH	3.2e-11	-0.51	3.9	1.2e-10
36	$_{\rm pHD_{2}^{+}}$	HD	OD^+	oH ₂	1 2e-10	-0.48	5.1	3 7e-10
37	oHD ⁺	oD	$_{\rm pHD^+}$	nD	1.20 10	-0.36	1/3 7	3.50-16
38	$_{\rm oHD^+}$	0D_2	$_{\rm pHD^+}$	$_{o}D$	1.60-10	-0.50	55.6	7.30^{-10}
30	UD_2^+	D_2	$_{1}^{\text{phD}_2}$	D_2	1.0e-10	-0.05	00.0	2.0.14
39	OHD_2	$^{OD}_2$	$_{\rm D^+}$	pD_2	2.5e-10	0.17	83.8	3.2e-14
40	$^{\rm oHD_2^+}$	oD_2	oD_3	HD	3.3e-10	-0.24	2.7	5.7e-10
41	oHD ₂	$^{oD}_{2}$	mD_3	HD	4.7e-10	-0.09	0.9	5.8e-10
42	oHD_2^+	pD_2	pHD_2^+	pD_2	1.0e-10	0.07	54.2	3.5e-13
43	oHD_2^+	pD_2	pHD_2^+	oD_2	1.3e-10	-0.14	0.5	2.0e-10
44	oHD_2^+	pD_2	oHD_2^+	oD_2	1.8e-10	0.22	-2.6	1.1e-10
45	$_{\rm oHD_2^+}$	pD_2	pD_3^+	HD	2.3e-11	-0.45	3.2	7.7e-11
46	$_{\rm oHD_2^+}$	pD_2	oD_3^+	HD	4.9e-10	-0.13	2.3	6.1e-10
47	$_{\mathrm{oHD}_{2}^{\overline{+}}}$	pD_2	mD_3^+	HD	1.9e-10	-0.15	0.6	3.0e-10
48	pHD	oD ₀	$_{\rm pHD_{0}^{+}}$	pDa	7.8e-11	-0.01	86.3	1.4e-14
49	$_{\rm pHD_{2}^{+}}$	$_{0}D_{2}^{2}$	$_{\rm oHD_2^+}$	pD_{a}	2.6e-10	0.20	31.9	5.4e-12
50	$_{\rm pHD}^+$	$_{0}D_{2}$	$_{\rm oHD}^+$	$_{\rm oD}$	2.00 10 9 1 ₀₋ 10	0.32	0.8	6.5e-11
51	$_{\rm pHD}^+$	$_{o}D$	$^{\text{nD}_2}$	HD	4 10 11	_0.92	0.0	7 6c 11
51 51	$_{\rm pHD}^{\rm HD+}$	$_{o}D$	$_{\rm PD}^+$	ПД	4.10-11 5.0° 10	0.20	4.1 0.9	8 0o 10
0Z	$\mu \Pi D_2^+$	D_2	UD_3^+		5.0e-10	-0.10	0.8	0.0e-10
53	$_{\rm HD_2^+}$	oD_2	mD_3^+	нD	2.2e-10	-0.12	1.4	2.9e-10
54	pHD_2^{+}	pD_2	pHD_2^+	oD_2	5.7e-11	0.04	-0.3	5.1e-11
55	pHD_2^+	pD_2	oHD_2^+	pD_2	1.4e-10	0.44	-0.7	3.4e-11
56	pHD_2^+	pD_2	oHD_2^+	oD_2	2.1e-10	0.17	-0.4	1.2e-10
57	pHD_2^+	pD_2	pD_3^+	HD	7.0e-11	-0.08	-0.5	9.7e-11
58	pHD_2^+	pD_2	oD_3^+	HD	5.7e-10	-0.15	1.3	8.3e-10

Table D10. Same as Table D7 for reactions involving D_3^+ .

	Roacto	nta	Products		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ß	24	k(10)
#	neacta		Tiouucis		$cm^{3}s^{-1}$	Ρ	r K	$cm^3 s^{-1}$
	1				chi 3		IX	
1	oD_3^+	oH_2	oH_2D^+	pD_2	2.3e-10	-1.01	324.3	5.9e-23
2	oD_3^+	oH_2	oH_2D^+	oD_2	1.3e-10	-0.67	227.0	1.8e-19
3	oD_3^+	oH_2	pHD_2^+	HD	1.1e-09	-0.21	71.6	1.7e-12
4	oD_3^+	oH_2	oHD_2^+	HD	5.8e-10	-0.13	18.7	1.4e-10
5	mD_3^+	oH_2	oH_2D^+	oD_2	8.8e-10	-0.52	270.7	9.0e-21
6	mD_3^+	oH_2	oHD_2^+	HD	3.7e-09	0.41	60.2	2.2e-12
7	mD_3^+	pH_2	pH_2D^+	oD_2	8.1e-10	-0.57	355.0	2.2e-24
8	mD_3^+	pH_2	oHD_2^+	HD	9.6e-09	-0.01	236.9	5.1e-19
9	pD_3^+	oH_2	oH_2D^+	pD_2	6.1e-10	-0.55	304.6	2.3e-22
10	pD_3^+	oH_2	pHD_2^+	HD	2.3e-09	0.17	50.1	8.6e-12
11	oD_3^+	pH_2	pH_2D^+	pD_2	3.1e-10	-0.67	400.1	1.3e-26
12	oD_3^+	pH_2	pH_2D^+	oD_2	1.5e-10	-0.85	315.3	5.5e-23
13	oD_3^+	pH_2	pHD_2^+	HD	1.3e-09	-0.75	253.9	1.6e-19
14	oD_3^+	pH_2	$\mathrm{oHD}_2^{\overline{+}}$	HD	9.2e-10	-0.59	197.8	1.8e-17
15	pD_3^+	pH_2	pH_2D^+	pD_2	8.2e-10	-0.18	378.0	5.8e-26
16	pD_3^+	pH_2	pHD_2^+	HD	3.5e-09	-0.34	233.0	8.5e-19
17	oD_3^+	HD	$_{\rm pHD_2^+}$	pD_2	4.2e-10	-0.85	259.0	4.3e-20
18	oD_3^+	HD	pHD_2^+	$^{\circ}$ D ₂	3.8e-10	-0.56	166.4	1.5e-16
19	oD_3^+	HD	$_{\rm oHD_2^+}$	pD_2	7.3e-10	-0.18	199.3	3.0e-18
20	oD_3^+	HD	$_{\mathrm{oHD}_{2}^{\tilde{+}}}$	oD_2	3.6e-10	-0.24	114.1	9.0e-15
21	oD_2^+	HD	pD_2^+	HD^{2}	4.5e-11	-0.33	19.2	2.0e-11
22	oD_2^+	HD	$^{\rm mD_2^+}$	HD	2.1e-10	-0.07	0.4	2.6e-10
23	mD_2^+	HD	$^{\rm pHD_2^+}$	oD_2	7.5e-10	-0.32	213.9	1.1e-18
24	mD_2^+	HD	$^{1}_{0HD_{2}^{+}}$	pD_{2}	2.0e-09	0.31	238.1	3.2e-20
25	mD_{2}^{3}	HD	$_{\rm oHD_0^{2+}}$	oD _o	2.9e-09	0.30	151.8	2.7e-16
26	mD_2^{3}	HD	oD_2^+	HD^2	1.1e-09	0.25	44.1	5.7e-12
27	$^{3}_{c}$ Ca	HD	$^{\rm o}_{\rm 2}$ $^{\rm OH}_{\rm 2}$	pD_{2}	1.6e-09	-0.13	232.6	2.0e-19
28	nD_{n}^{+}	HD	$_{\rm pHD_{2}^{+}}$	$_{\rm pD_{o}}$	6.9e-10	-0.21	146.1	6.4e-16
29	pD_{a}^{+}	HD	$_{\rm oHD_{\circ}^+}$	pD_{a}	8.9e-10	0.05	176.9	1.6e-17
30	pD_{2}^{+}	HD	oD_2^+	HD	9.5e-10	0.08	-0.7	7.8e-10
31	$_{0}D_{0}^{+}$	oDo	nD_{n}^{+}	nDa	2.5e-11	-0.60	110.1	3.2e-15
32	$_{0}D_{a}^{+}$	oD ₂	pD_3^+	$_{\rm oD_o}$	2.0e-11	-0.57	20.8	1.7e-11
33	$_{0}D_{a}^{+}$	$_{0}D_{2}$	$_{0}D_{2}^{+}$	nD ₂	4.9e-10	-0.26	88.4	1.7e-13
34	$_{0}D_{2}^{+}$	$_{0}D_{2}$	mD_{2}^{+}	pD_2	2 2e-10	-0.23	41.9	7 3e-12
35	$_{0}D_{2}^{+}$	$_{0}D_{2}$	mD_{2}^{+}	$_{\rm oD_2}$	1.3e-10	-0.33	2.4	3.1e-10
36	$_{0}D_{+}^{+}$	0D_2	nD_{+}^{+}	nD.	3 2e-11	-0.24	18.1	1 2e-11
37	$_{0}D_{2}^{+}$	pD ₂	$^{pD3}_{nD_{2}^{+}}$	$_{\rm oD_2}$	4 4e-11	-0.00	-0.3	4.5e-11
38	$_{0}D_{2}^{+}$	pD_2	$_{0}D_{2}^{+}$	$_{0}D_{2}$	3.5e-10	-0.21	19	5.9e-10
39	$_{0}D_{3}^{+}$	pD_2 pD_2	mD_{1}^{+}	$^{\rm 0D_2}$	3 7e-11	-0.21	0.1	4.5e-11
40	$_{0}D_{3}^{+}$	pD_2 pD_2	mD_{3}^{+}	$_{\rm oD_2}$	6.2e-10	0.00	-8.3	4.9e-11
41	mD_3^+	$_{\rm oD_2}$	$^{\rm nnD_3}$	$^{\rm 0D_2}$	3.4e-09	1.08	126.4	2.8e-16
41	$^{\text{mD}_3}$	$_{oD}^{OD_2}$	0D_3	$_{\rm oD}^{\rm pD_2}$	6 5e-10	-0.02	120.4	6.0e-10
42	$^{\text{mD}_3}$	$_{oD}^{OD_2}$	$^{\rm nD_3}$	$^{\text{oD}_2}$	$2.9e^{-10}$	0.11	84.5	4 30-14
40	mD_3^+	D_2	$^{\text{IIID}_3}$ $^{\text{D}^+}$	$_{oD}^{pD_2}$	2.56-10	0.11	25	9.40.11
44	mD_3	pD_2	$_{\rm PD_3}$	$^{\rm oD}_2$	1.00.10	0.44	12 O	1 0o 19
40	mD_3	pD_2 pD	$_{0}D^{+}$	$_{o}D$	1.9e-10 8 1o 10	0.24	40.9 _0 5	5.0e-12
40	mD_3^+	pD_2	mD^+	$_{o}D$	0.10-10	0.11	-0.0 9.6	1.50 ± 10
41 10	nD_3	$_{o}D$	$_{0}D^{+}$	D_2	2.2e-10	0.10	-2.0 66 1	5 30 19
40 40	pD_3 pD^+	$_{o}D_{2}$	$_{0}D_{3}^{+}$	pD_2	1.50-09	0.50	00.1	0.00-10 6 70 10
49 50	pD_3^+	$^{0D}_{2}$	mD^+	pD_2	4.16-10	-0.17	0.9	0.70-10 4.60 11
50	pD_3 pD^+	D_2	$_{\rm aD^+}$	pD_2	1.0e-10	-0.30	20.9 1 0	4.00-11
51	pD_3	pD_2	0D_3	pD_2	0.0e-10	0.10	-1.8	4.76-10
52	pD_3	pD_2	oD_3	oD_2	4.7e-10	-0.00	0.6	$4.4e{-}10$