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Abstract 
 

A Markov chain model is proposed for modelling residence time distribution of a tracer 

flowing together with a polymer through a single screw extruder, which has been designed 

for polymer extrusion with injection of supercritical CO2. The model has two dimensions and 

takes into consideration different velocity profiles of the flowing polymer between the screw 

and the barrel wall. In addition, the model allows obtaining the system response on any 

testing signal as unit step, Dirac or sinusoidal functions.  

In this work, the influence of the barrel temperature is considered. Experimental results of 

residence time distribution are given at different temperatures. A procedure of the model 

parameter identification from experiments was proposed. Within the range of working 

temperatures tested, a linear dependence of the velocity profile parameters was used to fit the 

experimental and model data.  

 

 

Introduction 
 

Extrusion is a process for converting a raw material into a product of uniform shape and 

density by forcing it through a die under controlled conditions [1]. Material transport is 

achieved by a single or twin-screw inside a barrel and the pressure produced by the screw 

force the material through the die. Industrial applications of the extrusion process dates back 

to the 1930’s; it is extensively applied in the plastic, food and rubber industries, where it is 

one of the most important manufacturing processes [1]. However, it implies high 

temperatures and mechanical constraints, prohibiting the use of fragile molecules. A 

particular application is polymer foaming. Foams are generally obtained by the addition of 

chemical blowing agents (CBA) which are mixed with the polymer matrix and it is their 

thermal decomposition which produces a gas. In that way, porosity cannot be well controlled 

and is thus often heterogeneous. This also implies the presence of residues in the final 

product and the need for an additional step to eliminate them. Hence, the use of pressurised 

fluids, such as the chlorofluorocarbons (CFC) or volatiles organic compound (VOC), in 

place of CBA has been considered. Porosity could then be controlled and no residue left in 

the foam. The polymer foams could then be produced by a green process provided the fluid 

used is environmentally friendly. 

A supercritical fluid (SCF) is defined as a substance whose both pressure and temperature 

are above the critical values. It has intermediate properties between those of gases and those 

of liquids [2]. Supercritical carbon dioxide (SC CO2) is most often used because it is non-

toxic, non-flammable, chemically inert, and its supercritical conditions are easily reached 

(Tc=31°C, Pc=7.38 MPa). 
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Due to its high polymer solubility, SC CO2 has often been used in polymer processing [33]. 

The special combination of gas-like viscosity and liquid-like density makes it an excellent 

solvent or plasticizer in these applications, e.g. polymer composites, microcellular foaming 

or particle production. Thus, mechanical and physical properties of material can be modified. 

 

Our laboratory has developed a supercritical carbon dioxide-assisted extrusion process, 

which leads to the manufacturing of micro-structured polymeric foams [4, 5]. Presence of SC 

CO2 in extrusion process modifies rheological and thermo-physical properties of the 

polymer in the barrel of the extruder and acts as a blowing agent during the relaxation at the 

passage through the die. Thus, its rather high solubilisation in the polymer results in 

extensive expansion at the die. The reduction of viscosity decreases the mechanical 

constraints and the operating temperature within the extruder. Thus, coupling extrusion and 

SC CO2 would allow the use of fragile or thermolabile molecules, like pharmaceutical 

molecules. The absence of residues in the final material is also an advantage for a 

pharmaceutical application. 

This process has been applied to a pharmaceutical polymer, Eudragit E100 [6]. A first study 

has been performed to understand the different phenomena implied in extrusion process and 

to determine correlations between the operating conditions and the expansion, the cell size 

and the cell density in macro or microcellular foaming [7].  
In another work, residence time distribution (RTD) has been determined in different 

operating conditions to better understand flow mixing in the single screw extruder [8]. A 

model based on the combination of a continuous stirred tank reactor (CSTR) and a plug flow 

reactor in series was used to model the RTD data obtained [8]. The authors also added some 

volumes representing the stagnant zones where convection is reduced. Such an approach 

allowed a better description of the experimental RTD curves, which usually had a rapid 

increase at the beginning (like a plug flow) and a long decline at the end (like a mixing 

effect). This method fits quite well the experimental results though it has some drawbacks. 

Equations for each reactor were based on the material mass balance for a Dirac function, and 

thus must be adapted if the test signal changes. Moreover, the approach did not allow adding 

other phenomena to the model without being completely changed. 

 

In this work, a model based on the theory of Markov chains is proposed for modelling these 

RTD. The model has two dimensions and it takes into consideration different velocity 

profiles occurring between the screw and the barrel wall. Therefore, it is possible to take into 

account the effect of the difference in pressure and drag flow. The model allows obtaining 

the system response on any testing signal as unit step, Dirac or sinusoidal functions. The 

model is applied to RTD experimental results at different temperatures. 

 
Figure 1. Experimental extruder 
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Cell model of the extruder 

 

Figure 1 presents the geometry of the extruder [7]. This equipment has an input from a small 

hopper and an output from the die. The free volume is not constant inside and diminishes 

towards the outlet. The polymer enters as granules, melts inside, is mixed with supercritical 

CO2 and is pumped by the screw towards the outlet. 

 

To build a model based on the theory of Markov chains, the whole free volume of the 

extruder is divided into several cells according to the radial and the axial directions. To 

choose a number of cells, it is assumed that the length of one cell is equal to two screw 

flights. According to the length of the screw, 16 working cells are defined in the axial 

direction, plus one cell representing the die that has approximate length of one screw flank 

(Figure 2). 

The number of cells in radial direction has been arbitrarily fixed to 10. This number can be 

modified depending on how many layers are necessary. These cells represent the finite 

volumes between the screw and barrel walls. The last column corresponds to the 

accumulating cells, in which the matter goes into at the outside of the die. Therefore, each 

cell has a given volume and consequently a given mass when the extruder is filled. As far as 

the free volume par length unit is a variable function along the screw, it would be necessary 

to use cells of variable volume. However, it is assumed that each cells has the same mass to 

bring more transparency to the model. 

 

Figure 2. Scheme of the Markov chain model 

 

Finally, the free volume of the extruder is divided into a finite number of discrete intervals 

n,m according to two directions. These intervals are called system states. In this case, 

continuous probability density distribution function is replaced by the probabilities of the 

state Si. Some additional information is published in [9, 10, 11, 12]. The set of probabilities 

Si forms a state vector whose elements can be tracer concentration or mass in a cell: 
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The mass of the tracer is initially distributed in the first column of cells which represents the 

volume under the hopper. If the mass of the injected tracer is Mtr, then each element of the 

state vector ( 1 ) corresponding to the cells of the first column will have the mass (Mtr/m). 
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The other elements of the state vector are equal to zero because there is no tracer in the other 

cells at the beginning of the process. 

 

The relationships between the cells are determined by the transition probabilities. Probability 

means the part of the mass in a cell which may transit to another cell. Hence, the value Pij is 

the probability for a part of particles in the cell j to transit to the cell i. If i=j, then Pjj is the 

probability for the mass to remain in the cell during the time interval of one transition 

(Figure 3). However, we will use another presentation in which a backward probability 

equals to d and a forward probability equals to d+v (Figure 3). 

 

  

Figure 3. Representation of transition probabilities 

 

ΔM is the mass, which is passing through the cell during ∆t due to the convection part of 

transition (due to velocity v) and goes to the next cell. If Q is the mass flow rate in the cell, 

the mass passed is Q∆t, and the forward transition probability v is: 

 

v =
ΔM

Mcell

=
QΔt

Mcell

 ( 2 ) 

 

According to the Fick's first law, the mass transported by diffusion from one cell to another 

can be written as: 

d =
D

Δz
2
Δt  ( 3 ) 

 

D is the dispersion coefficient, Δz is a spatial length characterising the cell through which the 

mass transfers. The parameter d can be thus interpreted as the inverse of the adimensional 

Peclet number, which allows the comparison between transport by convection and transport 

by diffusion. To determine all the relationships between cells, the transition probabilities are 

placed in the matrix of transition probabilities, which contains blocks of matrices on its 

diagonals, therefore: 
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 ( 4 ) 

 

Z are zero matrices of the size mxm, Pii are the transition matrices inside i
th

 column, Pij are 

the matrices of transition probabilities from j
th

 to i
th

 columns. 
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According to Figure 2, it can be written: 
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 ( 5 ) 

 

The same principle is implied for building other matrices Pii in accordance with the scheme. 

The matrix of transition probability P12 is: 
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 ( 6 ) 

 

The other matrices are built using this method. It is necessary to note that the elements on the 

main diagonal of matrices Pii are calculated to keep the condition of normalization requiring 

that the sum of all probabilities staying on each column of the matrix P has to be equal to 1. 

Thus, we place all the matrices in the matrix P and then calculate the elements of the main 

diagonal from the condition of normalization. This approach is quite convenient but it is 

necessary to check that negative elements do not appear. 

 

After building the final matrix, there are different values of probabilities v and d which must 

be defined in order to calculate the RTD. To solve this problem, a normalized parabolic 

function has been chosen for v with an argument i (which is the number of cell rows or 

layers m): 

vi = v0 1−β
i −m0
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   with   m0 =

m −1

2
+ λ  ( 7 ) 

 

β, λ and v0 are three parameters: “parabola bend”, parabolic peak shift from the row m/2 and 

“amplitude” coefficient respectively. In this study, we kept λ constant equal to 2, when the 

peak is centred. The function vi can take values in the range [0,1]. 

Therefore, giving some values to v0 and β, we obtained the probability or dimensionless 

velocity profile distribution. On the other hand, such combination of these parameters must 

verify that the equation of throughput balance is checked. 

 

Afterwards, the general process to calculate RTD is defined by: 

 

S
j+1
= P.S

j
 ( 8 ) 
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S
i
 is the current state vector and S

i+1 
is the state vector characterising the system after one 

transition. Thus, the process evolution is calculated after each transition. By assuming that 

the duration of one transition is Δt, we obtain a discrete outflow for discrete time steps in 

seconds. The model has 4 parameters: Δt, β, d and Mcell. The effective mass of material 

inside the extruder is lower than the total mass of material because of the zones where the 

polymer does not circulate. Moreover, this effective mass for the same material is a function 

of process characteristics as temperature and screw rotation speed. Therefore this mass is 

difficult to determine and the cell mass is considered as an additional parameter in our 

model.  

 

The tracer outflow E(i) can be calculated using the following equation: 

( )∑
+−

+ −=
mn

mmn

i

j

i

j SSiE
1)(

1)(  ( 9 ) 

Having found the RTD, other characteristics like the mean residence time and centred 

variance were also calculated. Therefore, such approach integrates different velocity profiles 

and calculates characteristics of the flowing of material. 

 

 

Model results 
 

The first step of experimental work was to measure RTD for different temperatures at a 

constant screw speed of 40 rpm: 130°C (Figure 4), 140°C (Figure 5) and 150°C ( 

 

 

 

 

 

 

 

 

 

Figure 6). 

 

The parameters of the model were found by using a numerical method of four parameter 

optimisation for the least square error between experimental and modelled cumulative RTD. 

The values of calculated parameters are given in table 1. The values of model parameters for 

the temperature 140°C were taken as the mean between the experiments at 130°C and 

150°C. Both differential and cumulative experimental RTD are well represented by the 

model. This was confirmed by the coherent values of calculated mean times and centred 

variances, excepted centred variance at 130°C which was three times higher. This result 

shows the linear dependence of the velocity profile parameters with temperature. 

 

Table 1. Results obtained with the model 

Temperature 130
o
C 140

o
C 150

o
C 

Mcell (kg) 0.126 0.121 0.115 

β (-) 0.85 0.77 0.70 

Δt (s) 6.9 5.5 4.2 

d (-) 0.027 0.013 0.008 
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mean time (s) 184.1 132.3 96.0 

mean time difference 

with experiment (%) 
11 1 8 

centred variance 

(for normalized curve) 
0.33 0.13 0.14 

variance difference  

with experiment (%) 
319 10 24 

T130; v40

 
Figure 4. RTD at 130°C  (a – differential, b – cumulative) 

T140; v40

 
Figure 5. RTD at 140°C  (a – differential, b – cumulative) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. RTD at 150°C  (a – differential, b – cumulative) 

 

The parameter Mcell depends on the temperature: the higher the temperature, the lower the 

cell mass. The determination of the experimental filling ratio according to the different 

operating conditions allows knowing that it increases with temperature. Hence, these 

T150; v40
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considerations suggest that the opportunity for stagnant zones increases with temperature. 

The coefficient β diminishes as the temperature increases, what means that the velocity 

profile is less curved as far as polymer viscosity decreases. This suggests an enhanced plug 

flow and this is consistent with analysis of the same experimental curves with a combined 

continuous stirred tank reactor exchanging with stagnant zones and plug flow reactor in 

series previously performed [6]. 

Lastly, d decreases with temperature suggesting an increase of convective flow compared to 

the dispersive one, which is consistent with the decrease of β and the flattening of the 

velocity profile. 

 

Conclusion 
 

A two-dimensional model of the RTD in a single screw extruder is proposed. It is based on 

the theory of Markov chains and it takes into consideration different velocity profiles 

occurring between the screw and the barrel wall. It allows calculating response for any test 

signal. 

It has been applied to the XFSC process, in which supercritical CO2 was injected in the 

melting zone of a single screw extruder. Finally, the response for three different temperatures 

is presented. Within the range of working temperatures, a linear behaviour of the velocity 

profile parameters was observed. The model can thus be used to predict RTD characteristics 

on this temperature interval without performing any additional experiments. 
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