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Decidability and Expressivity

of Ockhamist Propositional Dynamic Logics

Joseph Boudou(B) and Emiliano Lorini

IRIT-CNRS, Toulouse University, Toulouse, France
{joseph.boudou,lorini}@irit.fr

Abstract. Ockhamist Propositional Dynamic Logic (OPDL) is a logic
unifying the family of dynamic logics and the family of branching-time
temporal logics, two families of logic widely used in AI to model reactive
systems and multi-agent systems (MAS). In this paper, we present two
variants of this logic. These two logics share the same language and
differ only in one semantic condition. The first logic embeds Bundled
CTL

∗ while the second embeds CTL
∗. We provide a 2EXPTIME decision

procedure for the satisfiability problem of each variant. The decision
procedure for the first variant of OPDL is based on the elimination of
Hintikka sets while the decision procedure for the second variant relies
on automata.

1 Introduction

In [2] a new logic, called Ockhamist Propositional Dynamic Logic (OPDL) has
been introduced. This logic connects the family of dynamic logics with the fam-
ily of branching-time temporal logics, two families of logic that are traditionally
used in artificial intelligence for the verification of programs and for modelling
autonomous agents and multi-agent systems (MAS). On the one hand, dynamic
logics have been used to model actions of agents and their consequences as
well as deontic notions such as obligation and permission. On the other hand,
branching-time temporal logics have been used to model the evolution of the
agents’ attitudes and dispositions including beliefs, preferences and intentions
as well as to specify communication protocols and to model dynamics of com-
mitments in a multi-agent setting.

As shown in [2], OPDL offers the right “bridge” between these two fami-
lies of logics, as it embeds in a natural and polynomial way both Propositional
Dynamic Logic (PDL) [10] and Full Computation Tree Logic (CTL

∗) [14]. Exist-
ing embeddings of both PDL and CTL

∗ are rather complicated and unnatural.
For example, it is well-known that PDL and CTL

∗ can be embedded in modal
µ-calculus. However, although the embedding of PDL into modal µ-calculus is
simple and direct, the embedding of CTL

∗ into modal µ-calculus is rather com-
plicated and doubly exponential in the length of the input formula [5]. Another
logic that links PDL with CTL

∗ is the extension of PDL with a repetition con-
struct (PDL-∆) by [16]. But again, the embedding of CTL

∗ into PDL-∆ is rather
complicated and doubly exponential in the length of the input formula [19].



OPDL can be conceived as the logic in the dynamic logic family based
on the Ockhamist view of time. Ockhamist semantics for temporal logic have
been widely studied [4,17,20]. The logic of agency STIT (the logic of “seeing
to it that”) by Belnap et al. [3] is based on such semantics. According to the
Ockhamist conception of time (also called indeterminist actualist, see [20]) the
truth of statements is evaluated with respect to a moment and to a particular
actual linear history passing through that moment.1

The original semantics for OPDL given by [2] is based on the concept of OPDL

Ockhamist model, which can be seen as an extension with a program component
of Zanardo’s Ockhamist model for branching-time temporal logics [20]. Specif-
ically, in an OPDL Ockhamist model, temporal transitions between states are
labelled with sets of atomic programs. A second variant of OPDL is studied
by [2], called OPDL

lts . Like PDL, OPDL
lts is interpreted in labelled transition

systems (LTS). However, while in PDL the truth of a formula is evaluated with
respect to a state, in OPDL

lts it is evaluated with respect to a path.
The present paper furthers the study of OPDL by providing complexity

results of the satisfiability problems of its different variants. Specifically, we
introduce a new path semantics for OPDL, which allows for finer analyses of its
different variants. The OPDL Ockhamist semantics is proved to correspond to
the fusion closure condition in the path semantics. Observing that OPDL

lts stud-
ied by [2] lacks the conservative property, a new variant of OPDL, called OPDL

lc ,
is devised by adding the limit closure property to the path semantics, thereby
imitating the difference between the semantics for Bundled CTL

∗ (BCTL
∗) and

the semantics for CTL
∗. We show that the satisfiability problems of OPDL and

OPDL
lts are both 2EXPTIME-complete, the same complexity as for CTL

∗.
The rest of the paper is organized as follows. In the next section, the OPDL

language and the Ockhamist semantics for OPDL are recalled from [2]. The path
semantics framework is also introduced. Then, optimal decision procedures for
the satisfiability of OPDL and OPDL

lc are presented in Sects. 3 and 4, respec-
tively. We conclude in Sect. 5.2

2 Ockhamist Propositional Dynamic Logics

OPDL and OPDL
lc share the same language which is the language of PDL where

one special atomic program ≡ called the branching program is distinguished.
Formally, assume a countable set Prop = {p, q, . . .} of atomic propositions and
a countable set Atm = {a, b, . . .} of atomic programs (or actions). The language
LOPDL(Prop,Atm) of OPDL consists of a set Prg of programs and a set Fml of
formulas, defined as follows:

Prg : α ::= a | ≡ | (α1;α2) | (α1 ∪ α2) | α∗ | ϕ?
Fml : ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | [[α]]ϕ

1 The Ockhamist view of branching time is traditionally opposed to the Peircean view
[13,17]. According to the Peircean view, the truth of a temporal formula should be
evaluated with respect either to some history or all histories starting in a given state.

2 Due to space restriction, this version of the paper contains only sketches of proofs
of some theorems.



where ≡ is a syntactic symbol distinct from atomic programs. We adopt the stan-
dard definitions for the remaining Boolean operations. Implicit elimination of dou-
ble negations is assumed: ¬¬ϕ is identified with ϕ. The dual 〈〈α〉〉 of the modality

[[α]] is defined by 〈〈α〉〉ϕ
def

= ¬[[α]]¬ϕ. We write |α| and |ϕ| to denote the numbers
of occurrences of symbols in the program α and the formula ϕ. Like for PDL, the
formula [[α]]ϕ has to be read as “ϕ holds after all possible executions of α”.

2.1 Ockhamist Semantics

OPDL models are structures with two dimensions: a vertical dimension corre-
sponding to the concept of history, a horizontal dimension corresponding to the
concept of moment.

Definition 1. An OPDL model is a tuple M = (W, Q,L,R≡,V) where:

– W is a nonempty set of states (or worlds),
– Q is a partial function Q : W −→ W assigning a successor to states,
– L is a mapping L : W × W −→ 2Atm from pairs of states to sets of atomic

programs such that L(w, v) �= ∅ iff v is the successor of w, i.e., v = Q(w),
– R≡ ⊆ W × W is an equivalence relation between states in W ,
– V : W −→ 2Prop is a valuation function for atomic propositions,

and such that for all w, v, u ∈ W :

(C1) if Q(w) = v and (v, u) ∈ R≡ then there is z ∈ W such that (w, z) ∈ R≡,
Q(z) = u and L(z, u) = L(w, v).

(C2) if (w, v) ∈ R≡ then V(w) = V(v).

R≡-equivalence classes are called moments. A history starting in w1 is a
maximal sequence σ = w1, w2, . . . of states such that wk+1 = Q(wk) for all
positive k less than the length of σ.

Constraint C1 corresponds to what in Ockhamist semantics is called property
of weak diagram completion. This means that if two worlds v and u are in the
same moment and world w is a predecessor of v then, there exists a world z such
that (i) w and z are in the same moment, (ii) u is the successor of z, (iii) the
transition from w to v and the transition from z to u are labeled with the same
set of action names. Constraint C2 just means that two worlds belonging to the
same moment agree on the truth values of the atoms.

The truth of an OPDL formula is evaluated with respect to a world w in an
OPDL model M .

Definition 2. Let M = (W, Q,L,R≡,V) be an OPDL model. Given a program
α, we define a binary relation Rα on W with (w, v) ∈ Rα (or w Rα v) meaning
that v is accessible from w by performing α. We also define a binary relation |=



between worlds in M and formulas with M,w |= ϕ meaning that formula ϕ is
true at w in M . The rules inductively defining Rα and |= are:

Ra = {(w, v) | Q(w) = v and a ∈ L(w, v)}

Rα1;α2
= Rα1

◦ Rα2

Rα1∪α2
= Rα1

∪ Rα2

Rα∗ = (Rα)∗

Rϕ? = {(w,w) | M,w |= ϕ}

and M,w |= p ⇐⇒ p ∈ V(w);

M,w |= ¬ϕ ⇐⇒ M,w � ϕ;

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ;

M,w |= [[α]]ϕ ⇐⇒ ∀v ∈ W, if w Rα v then M,v |= ϕ.

An OPDL formula ϕ is OPDL valid, denoted by |=OPDL ϕ, iff for every OPDL

model M and for every world w in M , we have M,w |= ϕ. An OPDL formula ϕ
is OPDL satisfiable iff ¬ϕ is not OPDL valid.

2.2 Path Semantics

In this section we describe the path semantics for LOPDL(Prop,Atm), inspired
by the path semantics for branching time temporal logics [14]. In this semantics,
the set of all histories is explicit in the model and formulas are interpreted
over histories. We show that one variant of this semantics is equivalent to the
Ockhamist semantics of the previous section, while another variant defines the
OPDL

lc logic.

Notation. Given an alphabet Σ, Σ∗ denotes the set of finite words over Σ, Σω

the set of infinite words and Σ∞ the union of Σ∗ and Σω. Let σ = w1w2 . . .
be a finite or infinite word. The length of σ is denoted by |σ|. If σ is infinite
then |σ| = ω. For any i ∈ 1.. |σ|, we use σi, σ≤i and σ≥i to denote respectively
the ith element wi in σ, the prefix w1 . . . wi of σ up to its ith element and the
suffix wiwi+1 . . . of σ from its ith element. The notations σ<i, σ>i and σi..j are
shorthands for σ≤i−1, σ≥i+1 and (σ≤j)≥i, respectively.

Definition 3. A path model is a tuple M = (W, L, B,V) where W is non-
empty set of states, L : W ×W −→ 2Atm is a function assigning a set of atomic
programs to each pair of states, the bundle B ⊆ W∞ is a non-empty set of
sequences of states (histories) such that for each sequence σ = w1, w2, . . . ∈ B
and all k ≥ 1 less than the length of σ, L(wk, wk+1) �= ∅ and V : W −→ 2Prop

is a valuation for the propositional variables. The binary relations Rα over B



for all programs α and the forcing relation |= between M , sequences in B and
formulas are defined by simultaneous induction such that:

Ra = {(σ1, σ2) | σ2 = σ≥2
1 and a ∈ L(σ1

1 , σ1
2)}

R≡ = {(σ1, σ2) | σ1
1 = σ1

2}

and M,σ |= p ⇐⇒ p ∈ V(σ1)

M,σ |= ¬ϕ ⇐⇒ M,σ � ϕ;

M,σ |= ϕ ∧ ψ ⇐⇒ M,σ |= ϕ and M,σ |= ψ;

M,σ |= [[α]]ϕ ⇐⇒ ∀σ′ ∈ B, if σ Rα σ′ then M,σ′ |= ϕ.

the missing cases being identical as to Definition 2.

The main interest in the path semantics is that, by adding additional condi-
tions restricting the possible bundles, it gives a convenient framework to analyse
and distinguish different logics based on the same language. We list some such
conditions and discuss their impact on logics. We abusively write that a model
has one of these conditions whenever its bundle has it.

Suffix closure. B is suffix closed iff for any sequence σ ∈ B and any k ∈ 1.. |σ|,
σ≥k ∈ B. In contrast with CTL

∗, as long as seriality is not imposed, this condition
does not change the logic. But since this condition makes the definition of Ra

more natural, we will assume path models have it.

Fusion closure. B is fusion closed iff for any two sequences σ1, σ2 ∈ B, if σk
1 = σk′

2

for some k and k′ then the sequence σ<k
1 σ≥k′

2 is in B. This condition corresponds
to condition (C1). Indeed, we have the following theorem.

Theorem 1. OPDL is the logic obtained by interpreting LOPDL(Prop,Atm) in
the class of all suffix and fusion closed path models.

Limit closure. B is limit closed iff whenever an infinite sequence σ ∈ Wω is such
that for all k ≥ 1, there is a sequence σk ∈ B such that σ≤k

k = σ≤k then σ ∈ B.
A similar condition makes the difference between BCTL

∗ and CTL
∗ [14]. The

logic obtained by interpreting LOPDL(Prop,Atm) in the class of suffix, fusion
and limit closed models is called OPDL

lc .

Seriality. B is serial iff all paths in B are infinite (B ⊆ Wω). Combining this
condition with the suffix closure corresponds, in the Ockhamist semantics, to
enforcing Q to be a total function. If Atm is infinite, then any path model
satisfying a formula ϕ0 can be turned into a serial path model satisfying ϕ0 by
choosing an atomic program e not occurring in ϕ0 and by adding for each finite
sequence σ ∈ B a state wσ such that wσ is a successor by {e} of itself and of the
last state in σ. This transformation preserves satisfiability and the suffix closed,
fusion closed and limit closed conditions. Therefore, since OPDL and OPDL

lc

are conservative, we can assume that these logics are interpreted in serial path
models.



Total seriality. B is totally serial iff B is the set of all infinite paths. By the
constructions used in the proofs of Corollary 1 or Theorem 4, we can prove as
a corollary of any of these theorems that the logic obtained by interpreting
LOPDL(Prop,Atm) in the class of all suffix closed, fusion closed and totally serial
models is OPDL

lc .

Total maximality. B is totally maximal iff B is the set of all maximal paths.
In [2], the logic obtained by interpreting LOPDL(Prop,Atm) in the class of totally
maximal models, called OPDL

lts(Prop,Atm), have been considered. But, in con-
trast with OPDL and OPDL

lc , OPDL
lts(Prop,Atm) is not conservative. We

define a logic L1 in the language L(Prop,Atm) as being conservative iff every
extensions L2 of L1 to the language L(Prop′,Atm ′) where Prop ⊆ Prop′ and
Atm ⊆ Atm ′, is a conservative extension, i.e., the set of validities of L2 in the
language L(Prop,Atm) is exactly the set of validities of L1. Intuitively, a logic
is conservative if the validity of any formula is independent of the propositional
variables and atomic program which does not occur in the formula. To prove that
OPDL

lts(Prop, {a}) is not conservative, consider the formula [[a]]⊥ ∧ 〈〈≡; a〉〉⊤.
This formula is not OPDL

lts(Prop, {a}) satisfiable but is OPDL
lts(Prop, {a, b})

satisfiable. In the present work, we will study OPDL
lc (which is conservative)

instead of OPDL
lts(Prop,Atm). It can easily be proved that if Atm is infinite

then OPDL
lc and OPDL

lts(Prop,Atm) are the same logic. Moreover, the proof
from [2] that CTL

∗ can be embedded into OPDL
lts can easily be adapted to prove

that CTL
∗ can be embedded into OPDL

lc.

3 Optimal Decision Procedure for OPDL

We describe a decision procedure for the satisfiability problem of OPDL, based
on the elimination of Hintikka sets procedure devised for PDL by Pratt [12]
and adapted to BCTL

∗ by Reynolds [15]. The general idea is to construct a
syntactic structure which contains all the possible states then to eliminate the
states preventing the structure to be a model. For PDL the possible states are
Hintikka sets (hues in [15]). For BCTL

∗, states are sets of Hintikka sets, called
clusters in this paper (colors in [15]). For OPDL, states must be clusters too, but
because of formulas like 〈〈a〉〉p∧ [[b]]¬p∧ 〈〈≡〉〉〈〈b〉〉p, the atomic programs labeling
edges have to be considered. Hence the syntactic structures are more involved
than for PDL or BCTL

∗. We study these syntactic structures before introducing
the decision procedure for OPDL. Properties of syntactic structures are used for
the automata-based procedure of Sect. 4 too.

3.1 Syntactic Structures

Given a formula ϕ0, the Fischer-Ladner closure FL (ϕ0) of ϕ0 is defined as for
PDL (see [9] for details) except that we enforce FL (ϕ0) to be closed under
negation: ψ ∈ FL (ϕ0) iff ¬ψ ∈ FL (ϕ0). Since implicit elimination of double
negation is assumed, the well-known result that the cardinal of FL (ϕ0) is linear
in |ϕ0| remains. We write SP (ϕ0) to denote the set {α | ∃ϕ, 〈〈α〉〉ϕ ∈ FL (ϕ0)}.



Definition 4. A set H ⊂ FL (ϕ0) is a Hintikka set for ϕ0 iff all the following
conditions are satisfied:

– for any ¬ϕ ∈ FL (ϕ0), ϕ ∈ H iff ¬ϕ /∈ H
– for any ϕ ∧ ψ ∈ FL (ϕ0), ϕ ∧ ψ ∈ H iff ϕ ∈ H and ψ ∈ H
– for any [[α;β]]ϕ ∈ FL (ϕ0), [[α;β]]ϕ ∈ H iff [[α]][[β]]ϕ ∈ H
– for any [[α ∪ β]]ϕ ∈ FL (ϕ0), [[α ∪ β]]ϕ ∈ H iff [[α]]ϕ ∈ H and [[β]]ϕ ∈ H
– for any [[α∗]]ϕ ∈ FL (ϕ0), [[α∗]]ϕ ∈ H iff ϕ ∈ H and [[α]][[α∗]]ϕ ∈ H
– for any [[ϕ?]]ψ ∈ FL (ϕ0), [[ϕ?]]ψ ∈ H iff ¬ϕ ∈ H or ψ ∈ H
– if [[≡]]ϕ ∈ H then ϕ ∈ H

Definition 5. A set C of Hintikka sets for ϕ0 is a cluster for ϕ0 iff C �= ∅ and
for any H1,H2 ∈ C the following conditions are satisfied:

– for any propositional variable p ∈ FL (ϕ0), p ∈ H1 iff p ∈ H2

– for any formula [[≡]]ϕ ∈ FL (ϕ0), [[≡]]ϕ ∈ H1 iff [[≡]]ϕ ∈ H2

Given a set P ⊆ Atm of atomic programs, the successor relation SP over
Hintikka sets is defined such that H1 SP H2 iff (i) for any formula 〈〈a〉〉ϕ ∈ H1,
a ∈ P and (ii) for any formula 〈〈a〉〉ϕ ∈ FL (ϕ0) such that a ∈ P , 〈〈a〉〉ϕ ∈ H1 iff
ϕ ∈ H2. This relation is extended to clusters: C1 SP C2 iff for all H2 ∈ C2 there
exists H1 ∈ C1 such that H1 SP H2.

A syntactic structure is a pseudo-model where the valuation has been
replaced with a function assigning clusters and where the bundle is implicit.
Intuitively, each Hintikka set in the cluster associated to a state w corresponds
to the set of formulas satisfied by a history starting at w.

Definition 6. A syntactic structure for a formula ϕ0 is a tuple S = (W, L,C)
where W is a non-empty set of states, L assigns a set of atomic programs to each
pair of states, C assigns a cluster for ϕ0 to each state such that for all w, x ∈ W ,
if L(w, x) �= ∅ then C(w) SL(w,x) C(x). A syntactic structure is standard iff
(i) ϕ0 ∈ H for some H ∈ C(w) and some w ∈ W and (ii) for all w ∈ W , there
exists x ∈ W such that L(w, x) �= ∅.

A path in a syntactic structure S is a (possibly infinite) non-empty sequence π
over the alphabet composed by the special branching symbol • and all the couples
(H, w) where w ∈ W and H ∈ C(w). Any path π must satisfy all the following
conditions, for all k ∈ 1.. |π|:

– π1 �= • and if |π| < ω, π|π| �= •;
– if πk = • then πk−1 = (H, w) and πk+1(H′, w) for some w ∈ W and some

H,H′ ∈ C(w);
– if πk = (Hk, wk) and πk+1 = (Hk+1, wk+1) then L(wk, wk+1) �= ∅ and

Hk SL(wk,wk+1) Hk+1.

Intuitively, a finite path π corresponds to a possible execution of some programs
(different programs may have some common possible executions). When this is
the case, we say that the path carries the program. This relation between a



finite path and a program is defined formally as the least relation satisfying the
following conditions:

– (H1, w1)(H2, w2) carries a iff a ∈ L(w1, w2).
– (H1, w) • (H2, w) carries ≡.
– (H1, w1) carries ϕ? iff ϕ ∈ H1.
– π carries (α ∪ β) iff π carries α or β.
– π carries (α;β) iff for some m ∈ 1.. |π|, π≤m carries α and π≥m carries β.
– π carries α∗ iff there is a non-empty list k0, . . . , km such that k0 = 1, km = |π|

and for all i < m, ki < ki+1 and πki...ki+1 carries α.

An unbranching path is a path which contains no occurrences of the branching
symbol •. The trunk of a path is its longest unbranching prefix. The support of
an unbranching path (H1, w1)(H2, w2) . . . is the sequence w1w2 . . ..

An eventuality chain is a non-empty sequence η = α1 . . . αnϕ where the
last element is a formula and the other elements are programs. To an eventu-
ality chain η = α1 . . . αnϕ corresponds the formula form (η) = 〈〈α1〉〉 . . . 〈〈αn〉〉ϕ.
This correspondence is not injective, for instance the eventuality chains aap,
a〈〈a〉〉p and 〈〈a〉〉〈〈a〉〉p all correspond to the same formula 〈〈a〉〉〈〈a〉〉p. The max-
imal eventuality chain for a formula ϕ is the longest eventuality chain η such
that form (η) = ϕ. Fulfillment of an eventuality chain η by a path π is defined
inductively as follows:

– The path π fulfills a one-element eventuality chain η = ϕ iff π = (H1, w1) and
ϕ ∈ H1 for some state w1 and some Hintikka set H1 ∈ C(w1);

– The path π fulfills an eventuality chain η = αη′ iff there is k ∈ 1.. |π| such
that π≤k carries α and π≥k fulfills η′.

For any eventuality chain η = αϕ of length two, the corresponding formula 〈〈α〉〉ϕ
is called an eventuality and any path fulfilling η is said to fulfill the eventuality
〈〈α〉〉ϕ. A state w ∈ W is fulfilling if for any Hintikka set H ∈ C(w) and any
eventuality 〈〈α〉〉ϕ ∈ H, there is a path π from (H, w) fulfilling 〈〈α〉〉ϕ. A syntactic
structure S fulfills all eventualities iff all its states are fulfilling. A justifying path
is an infinite unbranching path π such that for all k, if πk = (Hk, wk) for some
Hk and wk then for any eventuality 〈〈α〉〉ϕ ∈ Hk, there is a fulfilling path π′ for
〈〈α〉〉ϕ starting at (Hk, wk) such that the trunk of π′ is a prefix of π≥k.

We can now state the main result of this section.

Theorem 2. A formula ϕ0 is OPDL satisfiable if and only if there is a standard
syntactic structure for ϕ0 fulfilling all eventualities.

Proof (Proof sketch). We only detail the right-to-left direction. Given a standard
syntactic structure S = (W, L,C) for ϕ0 fulfilling all eventualities, we define the
path model M = (W, L, B,V) such that B is the set of supports of the justifying
paths in S and V(w) = H ∩ Prop for any H ∈ C(w). Two steps are difficult
in proving that M is an OPDL path model satisfying ϕ0: the proof that B is
fusion-closed and the proof of the following Existence Lemma.



Lemma 1 (Existence Lemma). For any finite unbranching path π in a stan-
dard syntactic structure S fulfilling all eventualities, there is a justifying path π′

in S such that π is a prefix of π′.

For BCTL
∗, these two points are resolved by the fact that any eventuality

ϕ U ψ is either resolved at the current state or still satisfied in the successor
state. For OPDL, we need the Witness Lemma below. To state this lemma,
we inductively define the function next from eventuality chains to sets of pairs
composed of a set of formulas (the guard) and an eventuality chain:

next(ϕ) = {(∅, ϕ)} next(ψ?η) = {(G ∪ {ψ}, η′) | (G, η′) ∈ next(η)}

next(aη) = {(∅, aη)} next((β1 ∪ β2)η) = next(β1η) ∪ next(β2η)

next(≡η) = {(∅,≡η)} next((β1;β2)η) = next(β1β2η)

next(α∗η) = next(η) ∪ {(G, β1 . . . βn′−1α
∗η) | n′ > 1 and

(G, β1 . . . βn′−1form (α∗η)) ∈ next(αform (α∗η))}

Lemma 2 (Witness Lemma). For any syntactic structure S = (W, L,C),
any state w ∈ W , any Hintikka set H ∈ C(w), any eventuality chain η1 such
that form (η1) ∈ H and any path π in S from (H, w), π fulfills η1 if and only if
there is (G, η2) ∈ next(η1) such that G ∪ {form (η2)} ⊆ H and π fulfills η2.

The proof of the Witness Lemma is by induction on the sum
∑|η1|−1

k=1

∣

∣ηk
1

∣

∣ of the
length of the programs in η. ⊓⊔

In the proof of Theorem2, we construct from a standard syntactic structure
S = (W, L,C) for ϕ0 the path model M = (W, L, B,V) in which B is the set
of supports of the justifying paths in S. Therefore if the set of the supports of
the justifying paths in S is limit closed then B is limit closed too. Hence the
following corollary can be deduced from Theorem2.

Corollary 1. A formula ϕ0 is OPDL
lc satisfiable if and only if there is a stan-

dard syntactic structure S for ϕ0 which fulfills all eventualities and such that the
set of the supports of the justifying paths in S is limit closed.

3.2 The Optimal Decision Procedure

We describe a procedure which, given a formula ϕ0, either fails or exhibits a
standard syntactic structure for ϕ0 fulfilling all eventualities. The procedure
inductively constructs a finite sequence S0, . . . ,Sn of syntactic structures for ϕ0.
The initial syntactic structure S0 = (W0,L0,C0) is defined such that:

– W0 is the set of all pairs (P, C) where P is a non-empty subset of SP (ϕ0)∪{e}
for some fixed e /∈ SP (ϕ0) and C is a cluster for ϕ0,

– L((P1, C1), (P2, C2)) = P2 if C1 SP2
C2 and is empty otherwise,

– C(P, C) = C.



Then for all k, the syntactic structure Sk+1 is constructed from Sk =
(Wk,Lk,Ck) by removing from Wk the states (P, C) which are not fulfilling or
such that for some H ∈ C, there is no (P ′, C′) ∈ Wk and H′ ∈ C′ such that
C SP ′ C′ and H SP ′ H′.

There exists a constant C such that the number of states in W0 for any ϕ0

is bounded by 22C·ℓ

where ℓ = |ϕ0|. Therefore, for some n ≤ 22C·ℓ

no state
can be eliminated from Sn. The procedure terminates successfully iff there is a
state (P, C) ∈ Wn and a Hintikka set H ∈ C such that ϕ0 ∈ H. By Theorem2,
the decision procedure is sound and complete. Since the satisfiability problem of
OPDL is 2EXPTIME-hard [2], we have the following theorem.

Theorem 3. The satisfiability problem of OPDL is 2EXPTIME-complete.

4 Optimal Decision Procedure for OPDL
lc

The procedure of the Sect. 3 is difficult to adapt to OPDL
lc because no simple

condition can be checked during the construction of the syntactic structure to
guarantee that the set of the supports of all justifying paths is limit closed.
Therefore, we first prove that OPDL

lc has a particular tree model property.
Then we use this property to reduce the satisfiability problem of OPDL

lc to
the (dual of) the emptiness problem of an automaton on infinite trees. Because
syntactic structures are more convenient than models for decision procedures,
we prove a tree syntactic structure property, from which the usual tree model
property can be deduced using the construction of Sect. 3.1.

4.1 Tree Model Property of OPDL
lc

An N -ary ω-tree over an alphabet Σ is a function T : [1..N ]∗ −→ Σ. In such a
tree, nodes are labeled with elements of Σ. A branch in T is an infinite sequence
σ1 = λ1λ2 . . . for which there exists σ2 ∈ [1..N ]ω and i ∈ N such that for all

k > 0, λk = σ≤i+k
2 . Like in the previous section, we need nodes to be labeled

with pairs (P, C) where P is the set of atomic programs labeling the incoming
edge and C is a cluster. To simulate incomplete trees, we allow P to be empty,
in which case the branch is said to be pruned.

Definition 7. An N -ary syntactic tree for a formula ϕ0 is an N -ary ω-tree T
over Σ = 2Atm × Clusters(ϕ0) where Clusters(ϕ0) is the set of clusters on ϕ0

and such that:

1. TP (ǫ) = ∅ and there is σ ∈ [1..N ]ω such that for all i > 0, TP (σ≤i) �= ∅;
2. for all λ ∈ [1..N ]∗ and k ∈ 1..N , TP (λk) = ∅ or TC(λ) STP (λk) TC(λk).

where TP and TC are the projections of T on 2Atm and Clusters(ϕ0), respectively.
A branch σ in T is valid if for all k > 1, TP (σk) �= ∅ and pruned otherwise.



To any N -ary syntactic tree T = (TP , TC) naturally corresponds the syntactic
structure S(T ) = ([1..N ]∗,L, TC) where L(λ1, λ2) = TP (λ2) if λ2 = λ1k for
some k ∈ 1..N and is the empty set otherwise. Therefore, an N -ary syntactic
tree can be seen as a tree syntactic structure. Indeed, we will abusively write
about paths in syntactic trees. For the following definition of a good syntactic
tree, since we do not assume that the corresponding syntactic structure fulfills
all eventualities, we adapt the definition of a justifying path. A pseudo-justifying
path is an infinite unbranching path π such that for all k > 0, if πk = (Hk, wk)
then for any eventuality 〈〈α〉〉ϕ ∈ Hk there is ℓ ≥ k such that πℓ = (Hℓ, wℓ) and
either πk..ℓ fulfills 〈〈α〉〉ϕ or there is an eventuality chain η such that η1 = ≡,
form (η) ∈ Hℓ and for any path π2 from πℓ fulfilling η, πk..(ℓ−1)π2 fulfills 〈〈α〉〉ϕ.
By the Witness Lemma, any justifying path is a pseudo-justifying path.

Definition 8. An N -ary syntactic tree T = (TP , TC) for a formula ϕ0 is good
iff all the following conditions hold:

1. any valid branch σ is the support of a pseudo-justifying path;
2. for any node λ in T , if TP (λ) �= ∅ and there is H ∈ TC(λ) such that 〈〈≡〉〉ψ ∈ H

for some formula ψ, then there is a finite path π in T from (H′, λ) fulfilling
the maximal eventuality chain for ψ;

3. there is a pseudo-justifying path in T from (H, ǫ) such that ϕ0 ∈ H.

Let N≡
ϕ0

be the number of eventualities of the form 〈〈≡〉〉ψ in FL (ϕ0) plus

one. The tree property of OPDL
lc is stated as follows.

Theorem 4. A formula ϕ0 is OPDL
lc satisfiable iff there is a good N≡

ϕ0
-ary

syntactic tree for ϕ0.

Proof (Proof sketch). We only detail the construction for the left-to-right direc-
tion, which is inspired by a similar construction for CTL

∗ [7]. Suppose ϕ0 is
satisfiable. By Corollary 1, there is a standard syntactic structure S = (W, L,C)
for ϕ0 which fulfills all eventualities and such that the set of the supports of the
justifying paths in S is limit closed. Let 〈〈≡〉〉ψ2, . . . , 〈〈≡〉〉ψN≡

ϕ0
be an ordering

of the eventualities of the form 〈〈≡〉〉ψ in FL (ϕ0). We first define the N≡
ϕ0

-ary
ω-tree Tpath over the alphabet of all the paths in S plus the empty word ǫ. By
Lemma 1, there is a justifying path π0 from (H0, w0). We label the root of Tpath

with this path: Tpath(ǫ) = π0. For each node λ ∈ [1..N≡
ϕ0

]∗, if Tpath(λ) �= ǫ, the

labeling path continues with the first successor: Tpath(λ1) = Tpath(λ)≥2. For the
other successors k ∈ 2..N≡

ϕ0
of λ, let (Hλ, wλ) = Tpath(λ)1. If 〈〈≡〉〉ψk ∈ Hλ then

let π1 be the shortest path fulfilling the maximal eventuality chain for ψk and
such that π1

1 = (H′, wλ) for some H′. By Lemma 1, there is a justifying path
πλk whose prefix is the trunk of π1. We label the kth successor of λ with it:
Tpath(λk) = π≥2

λk . Otherwise, if 〈〈≡〉〉ψk−1 /∈ Hλ then Tpath(λk) = ǫ. All suc-
cessors of a node labeled with ǫ are labeled with ǫ. Finally, the good N≡

ϕ0
-ary

syntactic tree T for ϕ0 is constructed from Tpath as follows. For the root node,
T (ǫ) = (∅,C(w0)). For λ ∈ [1..N≡

ϕ0
]∗ and k ∈ 1..N≡

ϕ0
, if Tpath(λ)1 = (Hλ, wλ)

and Tpath(λk)1 = (Hλk, wλk) then T (λk) = (L(wλ, wλk),C(wλk)). Otherwise,
T (λk) = (∅, C) for some arbitrary cluster C. ⊓⊔



4.2 Automata-based Decision Procedure for OPDL
lc

By Theorem 4, whenever a formula ϕ0 is satisfiable, there is a good N≡
ϕ0

-ary
syntactic tree for ϕ0. Therefore, we construct an automaton which recognizes
exactly the good N≡

ϕ0
-ary syntactic trees for ϕ0. We first recall the definitions

of the automata used in the procedure before describing the construction of our
automaton.

A Büchi word automaton is a tuple A = (Σ,S, ρ, S0, F ) where Σ is the input
alphabet, S is the set of states of the automaton, ρ : S × Σ −→ 2S is a non-
deterministic transition function, S0 ⊆ S is the set of initial states and F ⊆ S
is the termination condition. Given an infinite word µ over Σ, a run of A on µ
is a word r over S such that r1 ∈ S0 and for all k ≥ 1, rk+1 ∈ ρ(rk, µk). The
set of states occurring infinitely often in a run r is denoted by inf(r). A word
µ is accepted by A iff there is a run r of A on µ such that inf(r) ∩ F �= ∅. By
extension, a Büchi word automaton accepts a tree iff it accepts all its branches
seen as words over the labels of the trees’s nodes.

A Street tree automaton is a tuple A = (Σ,S, ρ, S0, F ) similar to a Büchi

word automaton except that ρ : S × Σ −→ 2SN

assigns a set of N -ary tuples of
states and F ⊆ 2S × 2S is a set of pairs of set of states. Given an N -ary ω-tree
T over Σ, a run of A on T is a tree Tr over S such that Tr(ǫ) ∈ S0 and for
all λ ∈ [1..N ]∗, (Tr(λ1), . . . , Tr(λN)) ∈ ρ(Tr(λ), T (λ)). For all branch σ in Tr,
the set of states occurring infinitely often in σ is denoted by inf(σ). A tree T is
accepted by A iff there is a run Tr of A on T such that for any branch σ in Tr

and any pair (A,B) ∈ F , if inf(σ) ∩ A �= ∅ then inf(σ) ∩ B �= ∅.
Given a formula ϕ0 we devise a Streett tree automaton A which recognizes

exactly the good N≡
ϕ0

-ary syntactic trees for ϕ0. We first describe three automata,

each checking conditions from Definitions 7 and 8. Let Σ = 2Atm ×Clusters(ϕ0).
Condition (2) of Definition 7 is checked by the “successor” Büchi word

automaton AS = (Σ,SS , ρS , SS,0, F ) where SS is the set of clusters on ϕ0 plus
the special state I, SS,0 = {I}, FS = SS and s1 ∈ ρS(s0, (P, C)) iff (i) s1 = C
and (ii) P = ∅ or s0 SP s1.

Condition (1) of Definition 8 is checked by the “justifying” Büchi word
automaton AJ = (Σ,SJ , ρJ , SJ,0, FJ ) where

– SJ is the set of pairs (H, E) where E is a set of eventuality chains to be fulfilled
and H is either a Hintikka set of the parent cluster or the empty set if the
current node is the root or FL (ϕ0) if the current branch is pruned;

– SJ,0 = {(∅, ∅)} and FJ = {(H, E) ∈ SJ | H �= ∅ and E = ∅};
– (H1, E1) ∈ ρJ((H0, E0), (P, C)) if one of the following condition holds:

• H0 is a Hintikka set, E0 �= ∅, H1 ∈ C, P �= ∅, H0 SP H1 and for all η0 ∈ E0,
form (η0) ∈ H1 and there is (G1, η1) ∈ next(η0) such that G1∪{form (η1)} ⊆

H1 and if η1
1 ∈ Atm then η≥2

1 ∈ E1.
• H0 �= FL (ϕ0), E0 = ∅, H1 ∈ C, if H0 �= ∅ then P �= ∅ and H0 SP H1

and for any eventuality 〈〈α〉〉ϕ ∈ H1, there is (G1, η1) ∈ next(αϕ) such that

G1 ∪ {form (η1)} ⊆ H1 and if η1
1 ∈ Atm then η≥2

1 ∈ E1.
• H1 = FL (ϕ0) and E1 �= ∅.
• H1 = FL (ϕ0), E1 = ∅ and either E0 = ∅ or H0 �= ∅ and P = ∅.



Finally, the “existential” Büchi tree automaton AE = (Σ,SE , ρE , SE,0, FE)
ensures that there is a pseudo-justifying path π from (H1, ǫ) where ϕ0 ∈ H1 and
such that the support of π is the branch obtained by always choosing the first
successor (conditions (1) of Definition 7 and (3) of Definition 8). Moreover, AE

checks conditions (2) of Definition 8. It is defined such that:

– SE is the set of triples (H, E, t) where H and E play the same role as in AJ

and t is a Boolean value (⊤ or ⊥) indicating whether the state is final;
– SE,0 = {(∅, ∅,⊥)} and FE = {(SE , F )} where F = {(H, E, t) ∈ SE | t = ⊤}.

The transition function ρE is defined such that if

((H1, E1, t1), . . . , (HN≡

ϕ0
, EN≡

ϕ0
, tN≡

ϕ0
)) ∈ ρE((H0, E0, t0), (P, C))

then all the following conditions hold:

– for all k ∈ 1..N≡
ϕ0

, either Hk ∈ C or Hk = FL (ϕ0);
– if H0 = ∅ then H1 is a Hintikka set, ϕ0 ∈ H1 and P = ∅;
– if H0 is a Hintikka set then P �= ∅, H1 is a Hintikka set and H0 SP H1;
– if H1 is a Hintikka set and E0 = ∅ then for all eventuality 〈〈α〉〉ϕ ∈ H1 there

is (G2, η2) ∈ next(αϕ) such that G2 ∪ {form (η2)} ⊆ H1, if η1
2 ∈ Atm then

η≥2
2 ∈ E1 and if η1

2 = ≡ and Ek �= ∅ for k such that form (η2) = 〈〈≡〉〉ψk−1

then tk = ⊥;
– if H1 is a Hintikka set then for all η1 ∈ E0, form (η1) ∈ H1 and there is

(G2, η2) ∈ next(η1) such that G2 ∪ {form (η2)} ⊆ H1, if η1
2 ∈ Atm then

η≥2
2 ∈ E1 and if η1

2 = ≡ and Ek �= ∅ for k such that form (η2) = 〈〈≡〉〉ψk−1

then tk = ⊥;
– for all k ∈ 2..N≡

ϕ0
, if H1 is a Hintikka set and 〈〈≡〉〉ψk−1 ∈ H1 then Hk is

a Hintikka set, ψk−1 ∈ Hk and there is (G2, η2) ∈ next(η1) where η1 is the
maximal eventuality chain for ψk−1 such that G2 ∪ {form (η2)} ⊆ Hk and if

η1
2 ∈ Atm then η≥2

2 ∈ Ek;
– if E1 �= ∅ then t1 = ⊥.

AS is deterministic and the number of its states is double exponential in |ϕ0|.
It can be directly translated into a Streett tree automaton with no termination
pair. AJ has an exponential number of states but it must be determinized before
being transformed into a tree automaton, because the choice of the Hintikka
sets depends on the successor of the node. By the construction of Piterman [11],
any nondeterministic Büchi word automaton with s states can be transformed
into an equivalent deterministic Streett word automaton with s2s+2 states and
s pairs. Hence, the resulting Streett tree automaton corresponding to AJ has a
double exponential number of states and an exponential number of termination
pairs. AE has an exponential number of states and a single termination pair.
The product of these three tree automata gives a Streett tree automaton A
with a double exponential number of states and an exponential number of pairs.
Emerson and Jutla [8] proved that the emptiness of a Streett tree automaton with
s states and p termination pairs can be decided in deterministic time (s · p)O(p).



Since A recognizes exactly the good syntactic trees for ϕ0, by Theorem 4, the
satisfiability problem of OPDL

lc is in 2EXPTIME. Moreover, the proof from [2]
that OPDL

lts is 2EXPTIME-hard can easily be adapted to OPDL
lc . Hence we

have the following result.

Theorem 5. The satisfiability problem of OPDL
lc is 2EXPTIME-complete.

5 Conclusion

In this work, we have first shown that the logic OPDL
lts proposed by [2] does

not have the good property of being conservative. Using the more convenient
path semantics framework, the semantics of this logic has been slightly modified
to obtain the new logic OPDL

lc which is conservative and in which PDL and
CTL

∗ can still be embedded. Then, we have answered the question, left open
in [2], of the complexity of the satisfiability problems of OPDL and OPDL

lc .
We have proved that both problems are 2EXPTIME-complete. However, the
methods used to prove these results are quite different. Whereas for OPDL a
finite model with bounded size is constructed, for OPDL

lc infinite branches must
be considered using automata on infinite trees. This highlights the difference
between OPDL and OPDL

lc as a consequence of the limit closure property of the
path semantics.

Some questions about OPDL and OPDL
lc have been left open for future

research. For instance, there is still no axiomatization for OPDL and OPDL
lc .

Furthermore, it would be interesting to study the relative expressive power of
these logics and other logics embedding both PDL and CTL

∗ like the automata-
based logic YAPL [18] or the extension PDL−∆ of PDL with repetition [16].

Another issue of future research is the relation between OPDL, OPDL
lc and

ATL
∗, the full version of Alternating-time Temporal Logic (ATL) introduced in

[1]. There have recently been interesting results by [6], providing a tableau-based
decision procedure for ATL

∗, which has been proved to be in 2EXPTIME as well,
and to also work for CTL

∗. The procedure has been implemented. Future research
will be devoted to verify whether a similar solution can be found for OPDL and
OPDL

lc in order to have an implemented procedure for checking satisfiability in
these logics.
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