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Joseph Boudou(B)

IRIT – Toulouse University, Toulouse, France
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Abstract. PPDL
det extends propositional dynamic logic (PDL) with

parallel composition of programs. This new construct has separation
semantics: to execute the parallel program (α || β) the initial state is
separated into two substates and the programs α and β are executed
on these substates. By adapting the elimination of Hintikka sets pro-
cedure, we provide a decision procedure for the satisfiability problem
of PPDL

det. We prove that this decision procedure can be executed in
deterministic exponential time, hence that the satisfiability problem of
PPDL

det is EXPTIME-complete.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about behaviors of programs [11,23]. A modal operator 〈α〉 is associated to each
program α, formulas 〈α〉ϕ being read “the program α can be executed from the
current state to reach a state where the formula ϕ holds”. The set of programs is
structured by the following operators: sequential composition (α ;β) of programs
α and β executes β after α; nondeterministic choice (α∪β) of programs α and β
executes α or β; test ϕ? on formula ϕ checks whether the current state satisfies ϕ;
iteration α∗ of program α executes α a nondeterministic number of times. The
satisfiability problem of PDL is EXPTIME-complete [11,23]. Since PDL programs
are abstract, this logic has been successfully adapted to many different domains
like knowledge representation or linguistics [9,10,26].

A limitation of PDL is the lack of a construct to reason about concurrency.
Different extensions of PDL have been devised to overcome this limitation; let
us mention interleaving PDL [1], PDL with intersection [13] and the concurrent
dynamic logic [22]. A noteworthy property of these logics is that whenever a
parallel program is executable, some of its subprograms are executable too. But
in some situations, for example when some agents are forced to cooperate, it
may be the case that the parallel composition of some programs is executable
while no other programs (but tests) are. The propositional dynamic logic with
storing, recovering and parallel composition (PRSPDL) [4] can cope with such
situations. This logic extends PDL with parallel compositions of programs and
four special programs (for storing and recovering). These five new constructs are



inspired by fork algebras [12] and their semantics rely on a single ternary relation
which intuitively models the decomposition of states into two substates. For the
parallel program (α ||β) to be executed at some state x, x must be decomposed
into two states w1 and w2 by the ternary relation, then α is executed at w1

reaching w3, β is executed at w2 reaching w4 and the final state y is obtained
by composing w3 and w4 by the ternary relation. These semantics for parallel
programs are inspired by the concurrent separation logic [6,21] and the ternary
relation, called the separation relation, is closely related to the Kripke semantics
of binary normal modal logics like the Boolean logic of bunched implication [18,
24]. In contrast with unary modalities which usually express relations between

states, a binary modality can express the internal structure of states, a formula
of the form ϕ ◦ ψ being read “the current state can be decomposed in two
substates, the first one satisfying ϕ, the other one satisfying ψ”. In PRSPDL, the
binary modality interpreted by the separation relation can be defined as ϕ◦ψ

.
=

〈ϕ? ‖ ψ?〉⊤. Hence, PRSPDL embeds both PDL and the minimal binary normal
modal logic. Since binary modalities have been used in various fields of logics (see
for instance [14,19,27]), combining one with PDL’s actions is promising. Despite
these interesting features, little is known about PRSPDL. To our knowledge, the
only complexity results to date are that the satisfiability problem of PRSPDL is
in 2EXPTIME [2] and that variants of PRSPDL interpreted in classes of models
where the decomposition of states is deterministic are undecidable [3].

In the present work, we study the logic PPDLdet which is a variant of PRSPDL.
Its language is the fragment of PRSPDL without the four store/recover programs.
These special programsweredesigned to reasonaboutdata structures andare of lit-
tle use to reason about concurrency. The formulas of PPDLdet are interpreted in the
class ofmodelswhere the composition of states is deterministic: there is atmost one
way to merge two states. This semantic condition, called ⊳-determinism, is quite
natural andhas been studied inmany logicswith a binarymodality such asBoolean
logics of bunched implication [18,24], separation logics [8,25] and arrow logics [19].
Formally, ⊳-determinism forces the ternary relation to be a partial binary opera-
tor. The satisfiability problem for PPDLdet has been shown in [5] to be in NEXP-
TIME, but the exact complexity of this problem was still unknown. In the present
paper,we adaptPratt’s elimination ofHintikka sets decisionprocedure forPDL [23]
to prove that the satisfiability problem of PPDLdet is EXPTIME-complete. Thus,
adding a ⊳-deterministic parallel composition to PDL does not increase the com-
plexity of the logic. The adaptation of the elimination of Hintikka sets procedure
to PPDLdet is not straightforward. First, as it has been already outlined in [2,5],
a comprehensive decomposition of formulas such as the Fischer-Ladner closure is
not expressible in PPDLdet. Second, whereas in Pratt [23] states can be considered
independently, for PPDLdet the decomposition path leading to each state must be
remembered. Third, like for the filtration [5], ⊳-determinism is not preserved by
the elimination of Hintikka set procedure.

The paper is organized as follows. In the next section, the language and
semantics of PPDLdet are introduced, along with the PPDLdet specific notions
of threads and twines. In Sect. 3, an adaptation of the Fischer-Ladner closure to



PPDLdet is proposed. Section 4 presents the optimal decision procedure, which is
proved to be complete and sound in Sects. 5 and 6 respectively. Section 7 draws
a conclusion and proposes perspectives for future works.

2 Language and Semantics of PPDL
det

Let Π0 be a countable set of atomic programs (denoted by a, b . . .) and Φ0 a
countable set of propositional variables (denoted by p, q . . .). The sets Π and Φ
of programs and formulas are defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖ β)

ϕ := p | ⊥ | ¬ϕ | 〈α〉ϕ

Parentheses may be omitted for clarity. We define the dual modalities as usual:
[α]ϕ

.
= ¬〈α〉¬ϕ. The missing Boolean operators can be defined too, starting

with ϕ → ψ
.
= [ϕ?]ψ. The syntactic operator ∼ is defined such that ∼ ϕ = ψ if

ϕ = ¬ψ for some ψ and ∼ ϕ = ¬ϕ otherwise. We write |α| and |ϕ| for the number
of occurrences of symbols in the program α and the formula ϕ, respectively.

A frame is a tuple (W,R, ⊳) where W is a non-empty set of states (denoted
by w, x, y . . .), R is a function assigning a binary relation over W to each atomic
program and ⊳ is a ternary relation over W called the separation relation. Intu-
itively, x R (a) y means that the program a can be executed in state x, reaching
state y. Similarly, x ⊳ (y, z) means that x can be split into the states y and
z. We say that y and z are substates of x by the decomposition (x, y, z) ∈⊳.
Equivalently, x ⊳ (y, z) means that the substates y and z can be merged to
obtain x. When the merging of substates is functional, the frame is said to be
⊳-deterministic. This is a common restriction, for instance in Boolean logics
of bunched implication [18]. Formally, a frame is ⊳-deterministic iff for all
x, y, w1, w2 ∈ W ,

if x ⊳ (w1, w2) and y ⊳ (w1, w2) then x = y (⊳ -determinism)

A model is a tuple (W,R, ⊳, V ) where (W,R, ⊳) is a frame and V is a valua-
tion function associating a subset of W to each propositional variable. A model is
⊳-deterministic iff its frame is ⊳-deterministic. The forcing relation � is defined
by parallel induction along with the extension of R to all programs:

M, x � p iff x ∈ V (p)
M, x � ⊥ never
M, x � ¬ϕ iff M, x � ϕ
M, x � 〈α〉ϕ iff ∃y ∈ W, x R (α) y and M, y � ϕ
x R (α ; β) y iff ∃z ∈ W, x R (α) z and z R (β) y
x R (α ∪ β) y iff x R (α) y or x R (β) y
x R (ϕ?) y iff x = y and M, x � ϕ
x R (α∗) y iff x R (α)

∗
y

where R (α)
∗

is the reflexive and transitive closure of R (α)
x R (α ‖ β) y iff ∃w1, w2, w3, w4 ∈ W,

x ⊳ (w1, w2) , w1 R (α) w3, w2 R (β) w4 and y ⊳ (w3, w4)



PPDLdet is the logic with language Φ interpreted in the class of ⊳-deter-
ministic frames. A formula ϕ ∈ Φ is PPDLdet satisfiable iff there exists a
⊳-deterministic model M = (W,R, ⊳, V ) and a state w ∈ W such that
M, w � ϕ. The satisfiability problem of PPDLdet is the decision problem answer-
ing whether a formula in Φ is PPDLdet satisfiable.

Because of the semantics of parallel programs, PPDLdet does not have the
tree-like model property. To overcome this difficulty, PPDLdet models can be
partitioned into parts which have good properties. In [5], threads and twines were
introduced for that purpose. A thread is a set of states which can be reached
from each other by some program. Formally, given a model M = (W,R,⊳, V ),
a thread is an equivalence class over W by the symmetric and transitive closure
of the relation � defined by: x � y iff there exists some program α such that
x R (α) y. A twine is either a thread which contains no substates of another
state or a pair of threads such that whenever a state in one thread is a substate
by a decomposition then the other substate by this decomposition belongs to
the other thread in the twine. Formally, a twine is an ordered pair θ = (tℓ, tr)
of threads such that for all x, y, z ∈ W if x ⊳ (y, z) then y /∈ tr, z /∈ tℓ and
y ∈ tℓ ⇔ z ∈ tr. We abusively identify twines with the union of their threads.
It has been proved in [5] that whenever a formula is PPDLdet satisfiable, it is
satisfiable in a model M = (W,R, ⊳, V ) such that the set of twines of M is a
partition of W and for any twine θ in M, there is at most two decompositions
(w, x, y) ∈⊳ such that {x, y} ⊆ θ.

3 Fischer-Ladner Closure

The Fischer-Ladner closure [11] is a decomposition of PDL formulas into a com-
prehensive set of subformulas. This decomposition is used in the elimination
of Hintikka sets decision procedure of Pratt [23]. For PPDLdet we need such
a decomposition but parallel compositions of programs cause some difficulties.
Firstly, the language of PPDLdet is not expressive enough for a set of formulas
to capture the semantics of formulas of the form 〈α ‖ β〉ϕ. What is missing is
some formulas to put after the modalities 〈α〉 and 〈β〉. For this purpose, we add
the special propositional variables L1, L2, R1 and R2. These new propositional
variables identify corresponding left and right components of decompositions by
the separation relation: if x ⊳ (y, z) then Lt and Rt identify y and z respec-
tively, for some t ∈ {1, 2}. These propositional variables are special because
we will not include their valuation in the model. Instead, we will allow us to
modify their valuation depending on the states we consider (see Sect. 6). Two
pairs of new propositional variables are needed because we will consider pairs
of decompositions in Sect. 4 and we will need to distinguish them. We write
∆+ = {L1, L2, R1, R2}, Φ+

0 = Φ0 ∪ ∆+ and Φ+ for the formulas over Π0 and
Φ+

0 . Implicitly, Φ denotes the set of formulas over Π0 and Φ0, i.e. formulas which
do not contain any propositional variables from ∆+. Secondly, we need to keep
track of the level of separation of each subformula. Hence we consider localized

formulas. A location is a word on the alphabet {ℓ, r}, the empty word being



denoted by ǫ. A localized formula is a pair (µ, ϕ) composed of a location µ and
a formula ϕ.

Then, given a localized formula (µ, ϕ) we construct the closure Cl(µ, ϕ) of
(µ, ϕ) as the least set of localized formulas containing (µ, ϕ) and closed by the
rules in Fig. 1. It has to be noted that the closure presented here is an ad hoc

decomposition devised for the needs of the decision procedure in Sect. 4. More
general (and involved) closures for PPDLdet have been presented in [2,5].

(µ, a ϕ)

(µ, ϕ)

(µ, ϕ)

(µ, ∼ϕ)

(µ, ϕ? ψ)

(µ, ϕ) (µ, ψ)

(µ, α ; β ϕ)

(µ, α β ϕ)

(µ, α∗ ϕ)

(µ, α α∗ ϕ) (µ, ϕ)

(µ, α ∪ β ϕ)

(µ, α ϕ) (µ, β ϕ)

(µ, α β ϕ)

( α L1) ( α L2) (µ.r, β R1) (µ.r, β R2) (µ, ϕ)

Fig. 1. Rules of the closure calculus

In the remainder of this paper we will be mainly interested in the closure of
localized formulas of the form (ǫ, ϕ0) for some formula ϕ0 ∈ Φ. We define the
abbreviations Cl (ϕ0) = Cl(ǫ, ϕ0), SP(ϕ0) = {α | ∃µ,∃ϕ, (µ, 〈α〉ϕ) ∈ Cl (ϕ0)}
and Loc(ϕ0) = {µ | ∃ϕ, (µ, ϕ) ∈ Cl (ϕ0)} . The cardinality of Cl (ϕ0) is denoted
by Nϕ0

. It can be easily checked that the closure has the two properties expressed
by Lemmas 1 and 2.

Lemma 1. For any location µ, any program α and any formulas ψ ∈ Φ+ and

ϕ0 ∈ Φ, if (µ, 〈α〉ψ) ∈ Cl (ϕ0) then (µ, ψ) ∈ Cl (ϕ0).

Lemma 2. For any location µ and and any formulas ψ ∈ Φ+ and ϕ0 ∈ Φ, if

(µ, ψ) ∈ Cl (ϕ0) and ψ? ∈ SP(ϕ0) then there are no occurrences of propositional

variables from ∆+ in ψ.

Moreover, the proof from [11] can be adapted to prove the following lemma:

Lemma 3. The cardinality of Cl (ϕ0) is linear in |ϕ0|.

Proof. For any localized formula (µ, ϕ), we define the restricted closure rCl(µ, ϕ)
of ϕ like the closure Cl(µ, ϕ) except that the rules for negations, iterations,
nondeterministic choices and parallel compositions are replaced with the rules
in Fig. 2. The new propositional variables of the form Qψ serve the same role as
in [11]. Obviously, Cl(ǫ, ϕ0) can be obtained from rCl(ǫ, ϕ0) and the cardinality
of Cl(ǫ, ϕ0) is not greater than four times the cardinality of rCl(ǫ, ϕ0). Then, the
function γ on programs and formulas is inductively defined by:



γ(p) = 1

γ(L1) = 1

γ(R1) = 1

γ(Qϕ) = 1

γ(¬ϕ) = γ(ϕ) + 1

γ(〈α〉ϕ) = γ(α) + γ(ϕ)

γ(a) = 1

γ(ϕ?) = γ(ϕ) + 1

γ(α ; β) = γ(α) + γ(β) + 1

γ(α∗) = γ(α) + 2

γ(α ∪ β) = γ(α) + γ(β) + 3

γ(α ‖ β) = γ(α) + γ(β) + 3

The following properties can be easily proved by induction on n > 0:

1. For any program α, if n = |α| then γ(α) ≤ 3n.
2. For any formula ϕ, if n = |ϕ| then γ(ϕ) ≤ 3n.
3. For any localized formula (µ, ϕ), if γ(ϕ) = n then the cardinality of rCl(µ, ϕ)

is less or equal to n. ⊓⊔

(µ, α∗ ϕ)

(µ, α Q α∗ ϕ) (µ, ϕ)

(µ, α ∪ β ϕ)

(µ, α Qϕ) (µ, β Qϕ) (µ, ϕ)

(µ, ¬ϕ)

(µ, ϕ)

(µ, α β ϕ)

( α L1) (µ.r, β R1) (µ, ϕ)

Fig. 2. Replacement rules for the restricted closure calculus

4 Elimination of Hintikka Sets Procedure

In this section we describe a decision procedure for the satisfiability problem
of PPDLdet. This decision procedure is based on the elimination of Hintikka set
decision procedure devised for PDL by Pratt [23]. The principle of such decision
procedures is to first construct a potential finite model for the formula ϕ0 being
tested for satisfiability. This initial model must somehow embed any possible
model which could satisfy ϕ0. Then the states of that model not fulfilling some
eventualities are recursively removed. The procedure succeeds if the final model
still contains some states satisfying ϕ0. For PDL, states of the initial model are
some subsets of the Fischer-Ladner closure called Hintikka sets, an eventual-
ity is a formula of the form 〈α〉ψ belonging to a state and a state satisfies a
formula if it contains this formula. There are two main difficulties in adapting
this decision procedure to PPDLdet. Firstly, Hintikka sets are not sufficient to
characterize states of PPDLdet models. The decomposition path leading to each
state is an essential information. Therefore, we introduce plugs, which corre-
spond to decompositions by the separation relation, and sockets, which are sets
of plugs and correspond to twines. A state of the initial model is a pair (H,S)
where H is a Hintikka set and S a socket. Secondly, the resulting model is not
⊳-deterministic. Hence to prove that whenever the procedure succeeds the for-
mula is satisfiable, a ⊳-deterministic model must be constructed from the final



model. This construction is detailed in Sect. 5. In the remainder of the present
section, we formally describe the elimination of Hintikka sets procedure for
PPDLdet.

Definition 1. Let ϕ0 ∈ Φ be a formula and µ a location in Loc(ϕ0). A Hintikka
set H over ϕ0 at µ is any maximal subset of Cl (ϕ0) verifying all the following

conditions:

1. If (µ′, ϕ) ∈ H, then µ′ = µ.

2. If (µ,¬ϕ) ∈ Cl (ϕ0), then (µ,¬ϕ) ∈ H iff (µ, ϕ) /∈ H.

3. If (µ, 〈α ; β〉ϕ) ∈ Cl (ϕ0), then (µ, 〈α ; β〉ϕ) ∈ H iff (µ, 〈α〉〈β〉ϕ) ∈ H.

4. If (µ, 〈α ∪ β〉ϕ) ∈ Cl (ϕ0), then (µ, 〈α ∪ β〉ϕ) ∈ H iff (µ, 〈α〉ϕ) ∈ H or

(µ, 〈β〉ϕ) ∈ H.

5. If (µ, 〈ϕ?〉ψ) ∈ Cl (ϕ0), then (µ, 〈ϕ?〉ψ) ∈ H iff (µ, ϕ) ∈ H and (µ, ψ) ∈ H.

6. If (µ, 〈α∗〉ϕ) ∈ Cl (ϕ0), then (µ, 〈α∗〉ϕ) ∈ H iff (µ, 〈α〉〈α∗〉ϕ) ∈ H or

(µ, ϕ) ∈ H.

µ is called the location of H, denoted by λ(H). The set of all Hintikka sets over

ϕ0 at all µ ∈ Loc(ϕ0) is denoted by Hin (ϕ0).

Definition 2. A plug for ϕ0 is a triple P = (H,H1,H2) of Hintikka sets from

Hin (ϕ0) such that:

1. λ(H1) = λ(H).ℓ and λ(H2) = λ(H).r;
2. P has a type, which is an index t ∈ {1, 2} such that (λ(H1), Lt) ∈ H1 and

(λ(H2), Rt) ∈ H2.

Notice that a plug may have more than one type. Two plugs have different types
if there is no t ∈ {1, 2} such that t is a type of both plugs. The location of the
plug P = (H,H1,H2), denoted by λ(P ), is the location of H.

Definition 3. A socket for ϕ0 is a set S of plugs for ϕ0 such that:

1. S is either the empty set, a singleton or a set {P, P ′} such that P and P ′

have the same location but different types;

2. for any (H,H1,H2), (H
′,H3,H4) ∈ S, any type t′ of (H ′,H3,H4) and any

α, β, ϕ such that (λ(H), 〈α ‖ β〉ϕ) ∈ Cl (ϕ0),

if (λ(H ′), ϕ) ∈ H ′ and

(λ(H1), 〈α〉Lt′) ∈ H1 and

(λ(H2), 〈β〉Rt′) ∈ H2

then (λ(H), 〈α ‖ β〉ϕ) ∈ H.

The set of all sockets for ϕ0 is denoted by S (ϕ0). The location set of a socket S,

denoted by Λ(S), is defined such that Λ(∅) = {ǫ} and for all S �= ∅, Λ(S) =
{λ(P ).ℓ, λ(P ).r | P ∈ S} .



Given a formula ϕ0 ∈ Φ we construct inductively for each k ∈ N the tuple
Mϕ0

k = (Wϕ0

k , Rϕ0

k ,⊳ϕ0

k , V ϕ0

k ) where Wϕ0

k ⊆ Hin (ϕ0) × S (ϕ0). Each of these

tuples is a model iff Wϕ0

k �= ∅. The restricted accessibility relation R̂ϕ0

k (α) over
Wϕ0

k is inductively defined for all k ∈ N and all α ∈ Π by:

– (H,S) R̂ϕ0

k (a) (H ′, S′) iff (H,S) Rϕ0

k (a) (H ′, S′),

– (H,S) R̂ϕ0

k (ϕ?) (H ′, S′) iff (H,S) = (H ′, S′) and (λ(H), ϕ) ∈ H,

– (H,S) R̂ϕ0

k (α ; β) (H ′, S′) iff ∃ (H ′′, S′′) ∈ Wϕ0

k , (H,S) R̂ϕ0

k (α) (H ′′, S′′) and

(H ′′, S′′) R̂ϕ0

k (β) (H ′, S′),

– (H,S) R̂ϕ0

k (α ∪ β) (H ′, S′) iff (H,S) R̂ϕ0

k (α) (H ′, S′) or (H,S) R̂ϕ0

k (β)
(H ′, S′),

– (H,S) R̂ϕ0

k (α∗) (H ′, S′) iff (H,S) R̂ϕ0

k (α)
∗
(H ′, S′) where R̂ϕ0

k (α)
∗

is the

reflexive and transitive closure of R̂ϕ0

k (α),

– (H,S) R̂ϕ0

k (α ‖ β) (H ′, S′) iff S = S′ and ∃H1,H2,H3,H4 ∈ Hin (ϕ0),

S′′ = {(H,H1,H2), (H
′,H3,H4)} ∈ S (ϕ0), (H1, S

′′) R̂ϕ0

k (α) (H3, S
′′) and

(H2, S
′′) R̂ϕ0

k (β) (H4, S
′′).

Initial Step. The initial tuple Mϕ0

0 = (Wϕ0

0 , Rϕ0

0 ,⊳ϕ0

0 , V ϕ0

0 ) is constructed as
follows:

– Wϕ0

0 is the set of pairs (H,S) ∈ Hin (ϕ0) × S (ϕ0) such that λ(H) ∈ Λ(S),
– for all a ∈ Π0, (H,S) Rϕ0

0 (a) (H ′, S′) iff S = S′ and ∀(µ, ϕ) ∈ H ′, if
(µ, 〈a〉ϕ) ∈ Cl (ϕ0) then (µ, 〈a〉ϕ) ∈ H,

– (H,S) ⊳
ϕ0

0 ((H1, S1) , (H2, S2)) iff S1 = S2 and (H,H1,H2) ∈ S1,
– for all p ∈ Φ+

0 , V ϕ0

0 (p) = {(H,S) ∈ Wϕ0

0 | (λ(H), p) ∈ H} .

Inductive (k + 1)th Step. Suppose Mϕ0

k = (Wϕ0

k , Rϕ0

k ,⊳ϕ0

k , V ϕ0

k ) has already
been defined. A state (H,S) ∈ Wϕ0

k is demand-satisfied in Mϕ0

k iff for any
program α and any formula ϕ, if (λ(H), 〈α〉ϕ) ∈ H then there exists (H ′, S′) ∈

Wϕ0

k such that (H,S) R̂ϕ0

k (α) (H ′, S′) and (λ(H ′), ϕ) ∈ H ′. Define Mϕ0

k+1 =(
Wϕ0

k+1, R
ϕ0

k+1,⊳
ϕ0

k+1, V
ϕ0

k+1

)
such that :

– Wϕ0

k+1 = {(H,S) ∈ Wϕ0

k | (H,S) is demand-satisfied in Mϕ0

k } ,
– Rϕ0

k+1(a) = Rϕ0

k (a) ∩ (Wϕ0

k+1)
2 for all a ∈ Π0,

– ⊳
ϕ0

k+1=⊳
ϕ0

k ∩(Wϕ0

k+1)
3,

– V ϕ0

k+1(p) = V ϕ0

k (p) ∩ Wϕ0

k+1 for all p ∈ Φ+
0 .

It can be easily proved that there is less than 27Nϕ0
+1 states in Wϕ0

0 . There-
fore, there exists n ≤ 27Nϕ0

+1 such that Mϕ0

n = Mϕ0

n+k for all k ∈ N. Let
Mϕ0 = (Wϕ0 , Rϕ0 ,⊳ϕ0 , V ϕ0) = Mϕ0

n . Our procedure succeeds iff there is a
state (H0, S0) ∈ Wϕ0 such that (ǫ, ϕ0) ∈ H0.

Lemma 4. Given a formula ϕ0, to construct the corresponding model Mϕ0 and

to check whether there is a state (H0, S0) ∈ Wϕ0 such that (ǫ, ϕ0) ∈ H0 can be

done in deterministic exponential time.



Proof. We have already stated that the procedure constructs at most an expo-
nential number of models. The method from [16] can be easily adapted to prove

that R̂ϕ0

k (α) can be computed in time polynomial in the cardinality of Wϕ0

k .
Therefore, the whole procedure can be executed in deterministic exponential
time. ⊓⊔

The remainder of this work is devoted to prove that this procedure is a deci-
sion procedure for the satisfiability problem of PPDLdet. We use the traditional
vocabulary used for the dual problem of validity.

5 Completeness

In this section, we suppose that Mϕ0 = (Wϕ0 , Rϕ0 ,⊳ϕ0 , V ϕ0) has been con-
structed, for a given formula ϕ0 ∈ Φ, as defined in the previous section and that
there exists (H0, S0) ∈ Wϕ0 such that (ǫ, ϕ0) ∈ H0. We will prove that ϕ0 is
satisfiable in the class of ⊳-deterministic models. Obviously, Mϕ0 is a model.
But in the general case, Mϕ0 is not ⊳-deterministic. Therefore we will construct
from Mϕ0 a ⊳-deterministic model Mdet =

(
W det, Rdet,⊳det, V det

)
satisfying

ϕ0. The main idea is to consider the equivalence classes by the relation ≍ over
Wϕ0 defined such that (H,S) ≍ (H ′, S′) iff S = S′. It can be proved that, by
removing from Mϕ0 some “unreachable” states, these equivalence classes are
twines and that the removed states are not needed in the proofs of the present
section. Hence we will abusively call these equivalence classes twines. Remark
that each such twine corresponds exactly to a socket. The initial twine θ0 is
the twine which corresponds to the empty socket ∅. The model Mdet is con-
structed inductively as follows. Initially, the model contains only a copy of the
initial twine θ0. Then, whenever two states in Mdet are copies of states reachable
in Mϕ0 by a parallel program, a copy of the twine linking these two states in
Mϕ0 is added to Mdet. Since there are no decompositions within twines, we can
ensure that Mdet is ⊳-deterministic, while preserving the satisfiability of ϕ0.

Formally, to be able to copy twines, hence states, the states of Mdet are
pairs (i, (H,S)) where i is a positive natural number and (H,S) is a state
from Mϕ0 . We define the set PL ⊆ N × Wϕ0 × SP(ϕ0) × Wϕ0 of paral-

lel links such that (n, (H,S) , α, (H ′, S′)) ∈ PL iff (H,S) R̂ϕ0 (α) (H ′, S′)
and there exists β, γ ∈ Π such that α = β ‖ γ. As both Wϕ0 and SP(ϕ0)
are finite, PL can be totally ordered such that (n1, (H1, S1) , α1, (H

′
1, S

′
1)) <

(n2, (H2, S2) , α2, (H
′
2, S

′
2)) implies n1 ≤ n2. If PL is not empty, such an order

has a least element, hence the kth element of PL is well defined for all k ∈ N.
Moreover, if (n, (H,S) , α, (H ′, S′)) is the kth element of PL, then n ≤ k. Now,
we construct inductively the models

(
Mdet

k

)
k∈N

as follows.



Initial Step. Mdet
0 =

(
W det

0 , Rdet
0 ,⊳det

0 , V det
0

)
is defined such that:

W det
0 = {(0, (H,S)) | (H,S) ∈ θ0}

Rdet
0 (a) =

{
((iF , (HF , SF )), (iT , (HT , ST ))) ∈ W det

0 × W det
0

∣∣

iF = iT and (HF , SF ) Rϕ0 (a) (HT , ST )}

⊳
det
0 = ∅

V det
0 (p) =

{
(i, (H,S)) ∈ W det

0 | (λ(H), p) ∈ H}

If PL is empty, let us define Mdet
k = Mdet

0 for all k > 0. Otherwise, the
following step is applied recursively.

Inductive (k + 1)th Step. Suppose that Mdet
k has already been constructed and

(n, (H,S) , α ‖ β, (H ′, S′)) is the kth tuple in PL. If (n, (H,S)) /∈ W det
k or

(n, (H ′, S′)) /∈ W det
k then Mdet

k+1 = Mdet
k . Otherwise, since (H,S) R̂ϕ0 (α ‖ β)

(H ′, S′), there exists H1,H2,H3,H4 ∈ Hin (ϕ0) such that S′′ = {(H,H1,H2),

(H ′,H3,H4)} ∈ S (ϕ0), (H1, S
′′) R̂ϕ0 (α) (H3, S

′′) and (H2, S
′′) R̂ϕ0 (β)

(H4, S
′′). Let θ be the twine corresponding to S′′. The model Mdet

k+1 is defined
by:

W det
k+1 = W det

k ∪ {(i, (H ′′′, S′′′)) | i = k + 1 and (H ′′′, S′′′) ∈ θ}

Rdet
k+1(a) =

{
((iF , (HF , SF )), (iT , (HT , ST ))) ∈ W det

k+1 × W det
k+1

∣∣

iF = iT and (HF , SF ) Rϕ0 (a) (HT , ST )}

⊳
det
k+1 =⊳

det
k ∪ {((n, (H,S)), (k + 1, (H1, S

′′)), (k + 1, (H2, S
′′))),

((n, (H ′, S′)), (k + 1, (H3, S
′′)), (k + 1, (H4, S

′′)))}

vdet
k+1(p) =

{
(i, (H ′′′, S′′′)) ∈ W det

k+1 | (λ(H ′′′), p) ∈ H ′′′}

Finally, the model Mdet is defined as the union of all the models Mdet
k for

k ∈ N. We prove now that Mdet is a ⊳-deterministic model satisfying ϕ0.

Lemma 5. Mdet is ⊳-deterministic.

Proof. Let us suppose that (k, (H,S)) ⊳det ((k1, (H1, S1)), (k2, (H2, S2))) and
(k′, (H ′, S′)) ⊳det ((k1, (H1, S1)), (k2, (H2, S2))). By construction, k1 = k2 and
S1 = S2. Moreover, those two tuples have been added to ⊳det at the k1

th induc-
tive step. Therefore, k = k′, S = S′ and {(H,H1,H2), (H

′,H1,H2)} ∈ S (ϕ0).
Since the types of (H,H1,H2) and (H ′,H1,H2) only depend on H1 and H2,
these two plugs have the same types. Hence, by Definition 3, H = H ′. ⊓⊔

To prove that Mdet satisfies ϕ0 (Lemma 8), we need the following two lemmas.

Lemma 6. For all k ∈ N, all (H,S) , (H ′, S′) ∈ Wϕ0

k and all programs α,

if (H,S) R̂ϕ0

k (α) (H ′, S′), then S = S′, λ(H) = λ(H ′) and for all i ≤ k,

(H,S) R̂ϕ0

i (α) (H ′, S′).



Proof. By a simple induction on |α|. We detail only the case for parallel composi-

tions. Suppose that (H,S) R̂ϕ0

k (α ‖ β) (H ′, S′). By definition, S = S′ and there
exists H1,H2,H3,H4 such that S′′ = {(H,H1,H2), (H

′,H3,H4)} is a socket,

(H1, S
′′) R̂ϕ0

k (α) (H3, S
′′) and (H2, S

′′) R̂ϕ0

k (β) (H4, S
′′). Since S′′ is a socket,

λ(H) = λ(H ′). By induction, for all i ≤ k, (H1, S
′′) R̂ϕ0

i (α) (H3, S
′′) and

(H2, S
′′) R̂ϕ0

i (β) (H4, S
′′), hence (H,S) R̂ϕ0

i (α ‖ β) (H ′, S′). ⊓⊔

Lemma 7. For all (H,S) , (H ′, S′) ∈ Wϕ0 , all α ∈ Π and all ϕ ∈ Φ, if

(λ(H), [α]ϕ) ∈ H and (H,S) R̂ϕ0 (α) (H ′, S′) then (λ(H ′), ϕ) ∈ H ′.

Proof. The proof is by induction on |α|. We only prove the case when α is a
parallel composition. The other cases are straightforward and left to the reader.
Suppose that (λ(H), [α ‖ β]ϕ) ∈ H and (H,S) R̂ϕ0 (α ‖ β) (H ′, S′). By defi-
nition, there exists H1,H2,H3,H4 ∈ Hin (ϕ0) such that, S′′ = {(H,H1,H2),

(H ′,H3,H4)} ∈ S (ϕ0), (H1, S
′′) R̂ϕ0 (α) (H3, S

′′) and (H2, S
′′) R̂ϕ0 (β)

(H4, S
′′). As H is a Hintikka set, (λ(H), 〈α ‖ β〉¬ϕ) /∈ H. Since (H ′,H3,H4) is a

plug, there exists t′ ∈ {1, 2} such that (λ(H3), Lt′) ∈ H3 and (λ(H4), Rt′) ∈ H4.
And since S′′ is a socket, by Condition 2 of Definition 3, one of the following
statements holds:

(λ(H1), 〈α〉Lt′) /∈ H1 (1)

(λ(H2), 〈β〉Rt′) /∈ H2 (2)

(λ(H ′),¬ϕ) /∈ H ′ (3)

If (1) holds, then (λ(H1), [α]¬Lt′) ∈ H1 and by the induction hypothesis
(λ(H3),¬Lt′) ∈ H3 which is a contradiction. The case when (2) holds is similar.
Finally, if (3) holds, then (λ(H ′), ϕ) ∈ H ′. ⊓⊔

We can now state the following truth lemma.

Lemma 8 (Truth lemma). For all (k, (H,S)) ∈ W det and all (µ, ϕ) ∈ Cl (ϕ0),

(µ, ϕ) ∈ H iff Mdet, (k, (H,S)) � ϕ and λ(H) = µ

Proof. The following two properties are proved by induction on n for all n ∈ N

and all (k, (H,S)) ∈ W det:

IH.1 for all α ∈ Π and all (k′, (H ′, S′)) ∈ W det, if n = |α| and ∃ϕ ∈ Φ+ such
that (λ(H), 〈α〉ϕ) ∈ Cl (ϕ0), then:

(k, (H,S)) Rdet (α) (k′, (H ′, S′)) iff (H,S) R̂ϕ0 (α) (H ′, S′) and k = k′

IH.2 for all (µ, ϕ) ∈ Cl (ϕ0), if n = |ϕ| and λ(H) = µ then:

(µ, ϕ) ∈ H iff Mdet, (k, (H,S)) � ϕ



First note that by Lemma 6 and by the construction of Mdet, if (k, (H,S)) ∈

W det and (H,S) R̂ϕ0 (α) (H ′, S′) then (k, (H ′, S′)) ∈ W det. Then for IH.1, we
detail only the case for parallel compositions, the other cases being straightfor-
ward. Suppose α = β ‖ γ. For the right-to-left direction, (k, (H,S) , α, (H ′, S′)) ∈
PL, hence by construction and by IH.1, (k, (H,S)) Rdet (α) (k′, (H ′, S′)). For
the left-to-right direction, there exists wi = (ki, (Hi, Si)) ∈ W det for each
i ∈ 1 . . 4 such that (k, (H,S)) ⊳det (w1, w2), w1 Rdet (β) w3, w2 Rdet (γ) w4 and

(k′, (H ′, S′)) ⊳det (w3, w4). By IH.1, k1 = k3, k2 = k4, (H1, S1) R̂ϕ0 (β) (H3, S3)

and (H2, S2) R̂ϕ0 (γ) (H4, S4). By the construction of Mdet, k = k′, S1 = S2 =
S3 = S4 and {(H,H1,H2), (H

′,H3,H4)} ⊆ S1. And since any subset of a socket

is a socket, (H,S) R̂ϕ0 (α) (H ′, S′). For IH.2, the cases for propositional variables
and their negation are trivial. For diamond modalities, suppose ϕ = 〈α〉ψ. By

construction of Mϕ0 , there is (H ′, S′) ∈ Wϕ0 such that (H,S) R̂ϕ0 (α) (H ′, S′)
and (λ(H ′), ψ) ∈ H ′. And by IH.1 and IH.2, Mdet, (k, (H,S)) � 〈α〉ψ. The case
for box modalities is managed by Lemma 7. ⊓⊔

By hypothesis, there exists (H,S) ∈ Wϕ0 such that (ǫ, ϕ0) ∈ H. And by con-
struction, for any state (H,S) ∈ Wϕ0 , if λ(H) = ǫ then (0, (H,S)) ∈ W det.
Therefore, Lemma 8 proves Mdet satisfy ϕ0.

6 Soundness

In this section we prove that for any PPDLdet formula ϕ0, if ϕ0 is satisfi-
able then there exists (H0, S0) ∈ Wϕ0 such that (ǫ, ϕ0) ∈ H0, where Mϕ0 =
(Wϕ0 , Rϕ0 ,⊳ϕ0 , V ϕ0) has been obtained by the elimination of Hintikka sets pro-
cedure described in Sect. 4. The proof proceeds as follows. First, considering a
PPDLdet model M satisfying ϕ0, a correspondence between the states of M and
some states of Wϕ0

0 is constructed. Then, it is proved that the states of Wϕ0

0

corresponding to states in M can not be deleted by the procedure and that
one of these states (H0, S0) ∈ Wϕ0

0 is such that (ǫ, ϕ0) ∈ H0. The difficulties
come from the involved structure of Mϕ0

0 with locations, Hintikka sets, plugs
and sockets and from the new propositional variables Lt and Rt. To overcome
these difficulties, we use the following result from [5] which allows us to assume
some properties about M.

Proposition 1. For any formula ϕ0, if ϕ0 is PPDL
det satisfiable then there

exists a model M = (W,R, ⊳, V ), a state x0 ∈ W and a function λ from W to

locations such that for all x, y, z ∈ W and α ∈ Π:

M, x0 � ϕ0 (4)

λ(x0) = ǫ (5)

if x ⊳ (y, z) then λ(y) = λ(x).ℓ and λ(z) = λ(x).r (6)

if x R (α) y then λ(x) = λ(y) (7)



From now on, we assume that M is as described in Proposition 1. In order to
interpret the new propositional variables introduced by the closure defined in
Sect. 3, extensions of the valuation V are defined as follows.

Definition 4. For any model M = (W,R,⊳, V ) and any formulas ϕ0, a valua-

tion extension of M to ϕ0 is a function V from the new propositional variables

L1, L2, R1 and R2 to subsets of W . We write M+V for the model (W,R,⊳, V ′)
where V ′ is the function satisfying:

V ′(p) = V (p) iff p ∈ Φ0

V ′(p) = V(p) iff p ∈ ∆+

The set of all valuation extensions of M to ϕ0 is denoted by V(M, ϕ0).

It has to be noticed that by Lemma 2, there are no occurrences of propositional
variables from ∆+ in any program of SP(ϕ0). Therefore, as long as only programs
from SP(ϕ0) are considered, the extension of R for M + V does not depend on
V and the notation R for this extension is not ambiguous.

Then, to define the correspondence between W and Wϕ0

0 , we define the func-
tions hhin, hplug, hsocket and hstate such that for all x, y, z ∈ W , T ⊆⊳ and
V,V ′ ∈ V(M, ϕ0):

hhin(x,V) = {(µ, ϕ) ∈ Cl (ϕ0) | µ = λ(x) and M + V, x � ϕ}

hplug((x, y, z),V,V ′) = (hhin(x,V ′), hhin(y,V), hhin(z,V))

hsocket(T ,V,V ′) = {hplug(D,V,V ′) | D ∈ T }

hstate(x, T ,V,V ′) = (hhin(x,V), hsocket(T ,V,V ′))

A state (H,S) ∈ Wϕ0

0 has a correspondence if there exists x ∈ W , T ⊆⊳ and
V,V ′ ∈ V(M, ϕ0) such that hstate(x, T ,V,V ′) = (H,S). Obviously, for all x ∈ W
and all V ∈ V(M, ϕ0), hhin(x,V) is a Hintikka set. The following lemmas prove
this correspondence has the desired properties.

Lemma 9. For some x ∈ W , T ⊆⊳ and V,V ′ ∈ V(M, ϕ0), (ǫ, ϕ0) ∈ hhin(x,V)
and hstate(x, T ,V,V ′) ∈ Wϕ0

0 .

Proof. Define V∅ such that V∅(p) = ∅ for all p ∈ ∆+. By (4) and (5), (ǫ, ϕ0) ∈
hhin(x0,V∅). Moreover, hsocket(∅,V∅,V∅) = ∅ is trivially a socket and since Λ(∅) =
{ǫ}, hstate(x0, ∅,V∅,V∅) ∈ Wϕ0

0 . ⊓⊔

Lemma 10. For all x ∈ W , all T ⊆⊳ and all V,V ′ ∈ V(M, ϕ0),

if hstate(x, T ,V,V ′) ∈ Wϕ0

0 then for all k ∈ N, hstate(x, T ,V,V ′) ∈ Wϕ0

k .

Proof. We prove by induction on k that for all k ∈ N, x ∈ W , T ⊆⊳ and
V,V ′ ∈ V(M, ϕ0):

IH.1 if hstate(x, T ,V,V ′) ∈ Wϕ0

0 then hstate(x, T ,V,V ′) ∈ Wϕ0

k ;
IH.2 for all y ∈ W and all α ∈ Π such that ∃ϕ, (λ(x), 〈α〉ϕ) ∈ Cl (ϕ0), if

x R (α) y and hstate(x, T ,V,V ′) ∈ Wϕ0

k then hstate(y, T ,V,V ′) ∈ Wϕ0

k and

hstate(x, T ,V,V ′) R̂ϕ0

k (α) hstate(y, T ,V,V ′).



Base case. IH.1 is trivial. For IH.2, we first prove that hstate(y, T ,V,V ′) ∈
Wϕ0

0 . By hypothesis, hsocket(T ,V,V ′) is a socket. Hence it only remains to be
proved that λ(y) ∈ Λ (hsocket(T ,V,V ′)) which is the case by (7) since λ(x) ∈

Λ (hsocket(T ,V,V ′)). The proof that hstate(x, T ,V,V ′) R̂ϕ0

0 (α) hstate(y, T ,V,V ′)
is by a subinduction on |α|. We detail only the case for parallel compositions, the
other cases being straightforward. Suppose x R (β ‖ γ) y. There exists w1, w2,
w3, w4 ∈ W such that x ⊳ (w1, w2), w1 R (β) w3, w2 R (γ) w4 and y ⊳ (w3, w4).
Let V ′′ be defined such that V ′′(L1) = {w1}, V ′′(R1) = {w2}, V ′′(L2) = {w3} and
V ′′(R2) = {w4}. Since, by hypothesis, there exists ϕ such that (λ(x), 〈β ‖ γ〉ϕ) ∈
Cl (ϕ0), by Lemma 1, (λ(x).ℓ, L1) ∈ Cl (ϕ0) and (λ(x).r, R1) ∈ Cl (ϕ0). There-
fore, by (6), hplug((x,w1, w2),V

′′,V) is a plug of type 1. By a similar reasoning,
hplug((y, w3, w4),V

′′,V) is a plug of type 2. Let T ′ = {(x,w1, w2), (y, w3, w4)},
S′ = hsocket(T

′,V ′′,V) and Hi = hhin(wi,V
′′) for all i ∈ 1 . . 4. By definition,

(Hi, S
′) = hstate(wi, T

′,V ′′,V) for all i ∈ 1 . . 4. We prove that S′ is a socket.
For Condition 1 of Definition 3, suppose first that hplug((x,w1, w2),V

′′,V) has
both types. Then (λ(w1), L2) ∈ H1 and (λ(w2), R2) ∈ H2, hence w1 = w3,
w2 = w4 and T ′ is a singleton. The case is similar if hplug((y, w3, w4),V

′′,V) has
both types. And if the plugs have different types, by (7) they have the same
location. For Condition 2 of Definition 3, suppose that (λ(x), 〈α′ ‖ β′〉ϕ′) ∈
Cl (ϕ0), (λ(y), ϕ′) ∈ hhin(y,V), (λ(w1), 〈α

′〉L2) ∈ H1 and (λ(w2), 〈β
′〉R2) ∈

H2, the other case being symmetric. By definition of V ′′, w1 R (α′) w3 and
w2 R (β′) w4, hence M + V, x � 〈α′ ‖ β′〉ϕ′ and (λ(x), 〈α′ ‖ β′〉ϕ′) ∈ hhin(x,V).
Therefore, S′ is a socket.Moreover, since Λ(S′) = {λ(x).ℓ, λ(x).r}, by (6) and (7),
{(H1, S

′), (H2, S
′), (H3, S

′), (H4, S
′)} ⊆ Wϕ0

0 .Bythesubinductionhypothesis,we

have H1 R̂ϕ0

0 (β) H3 and H2 R̂ϕ0

0 (γ) H4. Therefore, by definition of the restricted

accessibility relation, hstate(x, T ′,V,V ′′) R̂ϕ0

0 (β ‖ γ) hstate(y, T ′,V,V ′′).

Inductive step. Suppose now that IH.1 and IH.2 hold for a given k. Here the
order of the proofs matters since we use IH.1 for k + 1 to prove IH.2 for k + 1.
To prove IH.1 for k + 1, suppose that hstate(x, T ,V,V ′) ∈ Wϕ0

k . Then for any
formula 〈α〉ϕ such that (λ(x), 〈α〉ϕ) ∈ hhin(x,V), there exists y ∈ W such that
x R (α) y and M+V, y � ϕ. And by IH.2, Lemma 1 and (7), hstate(y, T ,V,V ′) ∈

Wϕ0

k , hstate(x, T ,V,V ′) R̂ϕ0

k (α) hstate(y, T ,V,V ′) and (λ(y), ϕ) ∈ hhin(y,V).
Therefore hstate(x, T ,V,V ′) is demand-satisfied and belongs to Wϕ0

k+1. The proof
of IH.2 for k + 1 is similar to the corresponding proof in the base case except
that the hypothesis IH.1 for k + 1 is used. For instance, in the case for parallel
compositions, once it has been proved that hstate(wi, T

′,V ′′,V) ∈ Wϕ0

0 for all
i ∈ 1 . . 4, we use IH.1 to state that hstate(wi, T

′,V ′′,V) ∈ Wϕ0

k+1 for all i ∈ 1 . . 4.
Thus the subinduction hypothesis can be used to conclude. ⊓⊔

7 Conclusion and Perspectives

In this work, we have presented a procedure for the decision of the satisfiabil-
ity problem of PPDLdet. This procedure is a nontrivial adaptation of Pratt’s
elimination of Hintikka set procedure [23]. We have proved that this decision



procedure can be executed in deterministic exponential time. Since PDL can
be trivially embedded into PPDLdet, this decision procedure is optimal and the
satisfiability problem of PPDLdet is EXPTIME-complete. This result extends a
previous similar result for the iteration-free fragment of PPDLdet [2]: adding a
⊳-deterministic separating parallel composition to PDL does not increase the
theoretical complexity of the logic. This result contrasts with the 2EXPTIME
complexity of the satisfiability problem of both PDL with intersection [17] and
interleaving PDL [20].

Although ⊳-determinism is a very natural semantic condition, which turns
the ternary separation relation into a partial binary operator, it would be inter-
esting for future research to consider other classes of models. For instance, for the
class of all models, only a 2EXPTIME upper bound is currently known [2]. For
the class of models where the separation of states is deterministic, even though
PRSPDL has been proved to be undecidable [3], it may be possible that in the
absence of the four store/recover programs of PRSPDL the logic is decidable.
Finally, for many concrete semantics like Petri nets or finite sets of agents, the
separation relation would have to be both ⊳-deterministic and associative. The
minimal associative binary normal modal logic is undecidable [15], therefore the
variant of PDL with separating parallel composition interpreted in the class of
all associative ⊳-deterministic models is undecidable too. But since there exists
some decidable associative binary modal logics (for instance the separation log-
ics kSL0 [7]), it would be interesting to search for decidable variants of PDL

with separating parallel composition interpreted in special classes of associative
⊳-deterministic models.
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