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ABSTRACT

This paper presents a novel nonlinear hyperspectral mixture model

and its associated supervised unmixing algorithm. The model as-

sumes a linear mixing model corrupted by an additive term which

accounts for multiple scattering nonlinearities (NL). The proposed

model generalizes bilinear models by taking into account higher or-

der interaction terms. The inference of the abundances and non-

linearity coefficients of this model is formulated as a convex opti-

mization problem suitable for fast estimation algorithms. This for-

mulation accounts for constraints such as the sum-to-one and non-

negativity of the abundances, the non-negativity of the nonlinearity

coefficients, and the spatial sparseness of the residuals. The result-

ing convex problem is solved using the alternating direction method

of multipliers (ADMM) whose convergence is ensured theoretically.

The proposed mixture model and its unmixing algorithm are vali-

dated on both synthetic and real images showing competitive results

regarding the quality of the inference and the computational com-

plexity when compared to the state-of-the-art algorithms.

Index Terms— Hyperspectral imagery, collaborative sparse re-

gression, ADMM, nonlinear unmixing, convex optimization

1. INTRODUCTION

As a result of its simplicity, the linear mixing model (LMM) is

used by many of the hyperspectral unmixing algorithms presented

in the literature [1]. This model assumes that each hyperspectral

pixel spectrum is a mixture of several pure materials (endmembers),

whose proportions are known as abundances. The supervised un-

mixing scenario consists then in estimating the abundances while

assuming a priori known endmembers (extracted using an endmem-

ber extraction algorithm (EEA) such as vertex component analysis

(VCA) [2]). The LMM is generally justified when considering

flat scenes without component interactions. However, an inherent

limitation of the LMM occurs in presence of volumetric scattering,

terrain relief, or intimate mixtures of materials which require the

definition of new sophisticated models, to take these effects into ac-

count. Nonlinear mixture models are an alternative to better account

for those effects [3, 4]. We distinguish between signal processing

based models and physical based models, which include the intimate

mixture models [5] and those accounting for bilinear interactions

[6–10]. This paper considers a physical based nonlinearity that gen-

eralizes the bilinear formulation in [11, 12] to account for multiple

scattering effects.

This work was supported by the EPSRC Grants EP/J015180/1,
EP/N003446/1, EP/K015338/1, and by the Portuguese Science and Technol-
ogy, Project UID/EEA/50008/2013

The first contribution of this paper is the introduction of a mix-

ture model to deal with NL due to multiple scattering. The model as-

sumes a linear mixing model corrupted by an additive residual term

[13]. The residual term is assumed to be a linear combination of

high order interaction spectra. The number of possible interactions

is large. However, in a given pixel, only a few are active. This parsi-

monious number of interactions is accounted for by assuming that

the non-negative nonlinearity coefficients are sparse, so that only

a few interactions are active for each pixel. In addition, the cor-

rupted pixels are assumed spatially sparse meaning that only a small

number of nonlinear pixels are present, as previously suggested in

[14, 15]. This property has been introduced by considering the well

known collaborative sparse regression strategy [14, 16–19] as a way

of promoting group-sparsity over the residual terms while using the

information of the residuals in all the pixels. A clear motivation for

this new formulation is the simplification it introduces in the unmix-

ing problem thanks to the linear expression for both the LMM term

and the residual term. Note finally that the resulting formulation is

general, and covers many NL models [6–10, 15].

The second contribution of this paper is the introduction of a

convex formulation for unmixing the proposed observation model.

The convexity is obtained thanks to the linearity of the observation

model with respect to the unknown parameters, as well as to the con-

sidered regularization terms. Indeed, the formulation accounts for

the known physical constraints on the estimated parameters, such

as the sum-to-one and non-negativity of the abundances, the non-

negativity of the nonlinearity coefficients, and the spatial sparseness

of the residuals. The resulting convex problem is solved using the

alternating direction method of multipliers (ADMM) whose conver-

gence is ensured theoretically. More precisely, we propose an al-

gorithm denoted as NUSAL-K for Nonlinear Unmixing by variable

Splitting and Augmented Lagrangian with order K. Note that the

ADMM algorithms are well adapted for large scale problems, i.e.,

with a large number of parameters to be estimated [20, 21]. More-

over, this method offers good performance at a reduced computa-

tional cost, as already shown in many hyperspectral unmixing works

[18, 22]. The proposed mixture model and estimation algorithm are

validated using synthetic and real hyperspectral images. The results

obtained are very promising and show the potential of the proposed

mixture model and associated inference algorithm with respect to the

estimation quality and the computational cost.

The paper is structured as follows. Section 2 presents the pro-

posed NL mixture model. Section 3 introduces the convex unmixing

formulation and the ADMM-based optimization algorithm denoted

by NUSAL-K. Section 4 analyzes the performance of the proposed

algorithm when applied to a synthetic image with known ground

truth. Results on a real hyperspectral image are presented in Sec-



tion 5 and conclusions and future work are reported in Section 6.

2. NONLINEAR MIXTURE MODEL

As a result of its simplicity, the LMM has been widely used in hy-

perspectral image analysis. However, the LMM has some limitations

in the presence of multiple scattering effect. This paper deals with

this issue by generalizing the observation model proposed in [11], it-

self inspired from the residual component analysis model described

in [13]. The proposed model considers a sum of a linear model and

a residual term that accounts for the multiple scattering effect. The

general observation model for the (L× 1) pixel spectrum yn, where

L is the number of spectral bands, is given by

yn = Man + φ
NL-K
n (M ,xn) + en (1)

where an = (a1,n, · · · , aR,n)
T

is an (R× 1) vector of abundances

associated with the nth pixel, M = (m1, · · · ,mR) is an (L×R)
fixed and assumed known endmembers matrix (e.g., extracted us-

ing an EEA), xn =
(

x
(1)
n , · · · , x(DK)

n

)T

, ∀n is a (DK × 1) vec-

tor of non-negative nonlinearity coefficients associated with the nth

pixel, R is the number of endmembers, and en ∼ N (0,Σ) is a

centered Gaussian noise. Due to physical constraints, the abundance

vector an satisfies the abundance non-negativity constraint (ANC):

ar,n ≥ 0, ∀r ∈ {1, . . . , R} , ∀n, and abundance sum-to-one con-

straint (ASC):
∑R

r=1 ar,n = 1, ∀n.

In this paper, the residual component φNL-K
n accounts for the

multiple scattering of order lower or equal to K as

φ
NL-K
n (M ,xn) = Q

(K)(M)xn, (2)

where Q(K) is the (L×DK) matrix gathering the interaction

spectra of the form mi ⊙ mj ⊙ · · · ⊙ ml, (⊙ denotes the

Hadamard term-wise product), DK =
∑K

i=2
(R+i−1)!
i!(R−1)!

is the

number of coefficients associated with the interaction terms that

have an order lower or equal to K and x! denotes the facto-

rial of x. For instance, considering only second order interac-

tion terms (i.e., K = 2) leads to D2 = R(R+1)
2

, xn(2) =
(

x
(1,2)
n , · · · , x(R−1,R)

n , x
(1,1)
n , · · · , x(R,R)

n

)T

, ∀n, Q(2)(M) =
(√

2m1,2, · · · ,
√
2mR−1,R,m1,1, · · · ,mR,R

)

, and a residual

term similar to [11, 12] as follows

φ
NL-2
n (M ,xn) = Q

(2)(M)xn(2) =
R
∑

r=1

x
(r,r)
n mr,r

+

R−1
∑

r=1

R
∑

r′=r+1

x
(r,r′)
n

√
2mr,r′ (3)

where mi,j = mi ⊙mj , and the interaction terms are weighted

by the coefficient
√
2 obtained by comparison with a homogeneous

polynomial kernel of the 2nd degree (see [23] for more details re-

garding these coefficients and the construction of Q(K)). In what

follows, and for brevity, we drop the order index (K) for general

statements (related to all interaction orders) and only include it when

dealing with specific orders. The model proposed in (1) reduces to

the LMM for xn = 0, ∀n and has many links to state-of-the-art

models. Indeed, model (1) with K = 2 is similar to [11,12] and has a

close relation to the RCA model [15] (as shown in [12]). Moreover, it

generalizes the GBM model [7,24] by accounting for self-interaction

between the endmembers, and also generalizes the PPNMM [6] by

considering different weights for the bilinear terms. Overall, model

(1) is of a similar polynomial form as the bilinear models (GBM [7],

PPNMM [6], Nascimento [8], Fan [9], and Meganem [10] models)

with the main difference due to the introduction of higher order in-

teraction terms, and the non-negativity and sum-to-one constraints

associated with each model. In contrast with the model described

in [25], which accounts for all the interactions by using only one

parameter, the model (1) includes a different coefficient for each in-

teraction term, which enables analysis of the interaction between any

specific physical components (i.e., availability of interaction maps).

Note that the nonlinear behavior generally affects some pixels

of the image as already exploited in [14,15], which suggest a spatial

sparsity of the nonlinear pixels. Moreover, it makes sense to assume

that the elements of the nonlinear vector xn will not be active at the

same time, meaning that the vector is sparse. This can be explained

since the lowest order of interactions have often a higher effect [7–9]

and all the interactions between endmembers are not likely to be ac-

tive at the same time. These sparsity properties are of great impor-

tance and will be exploited when designing the unmixing algorithm

associated with model (1) in Section 3.

3. THE UNMIXING ALGORITHM: NUSAL-K

This section introduces the unmixing algorithm used to estimate the

abundances and the residual coefficients of the proposed model. To

this end, we adopt an optimization approach that minimizes a reg-

ularized data fidelity cost function. More precisely, considering an

independent and identically distributed (i.i.d.) Gaussian noise (Σ

proportional to the identity matrix) in model (1) leads to the follow-

ing data fidelity term

LQ (Z) =
1

2
||Y − [M ,Q]Z||2F (4)

where Y = [y1, · · · ,yN ], N is the total number of pixels, Z =
[

A⊤,X⊤
]⊤

is the (R + D) × N matrix gathering the (R × N)
abundance matrix A and the (D × N) residual coefficients X and

||Y ||F =
√

trace
(

Y Y ⊤
)

denotes the Frobenius norm. Estimating

the abundances and the residual coefficients is an ill-posed inverse

problem that requires the introduction of prior knowledge (or regu-

larization terms) about those parameters of interest. In this paper we

consider two assumptions (i) the nonlinearity appears in some pixels

of the image, (ii) in a nonlinear pixel, only a few interactions are ac-

tive. Under these considerations, we propose to solve the following

optimization problem

CNUSAL-K (Z) =LQ (Z) + iR+ (A) + i{1(1,R)}
(

1(1,R)A
)

+ τ1||X||1 + τ2||X||2,1 + iR+ (X)
(5)

where τ1 > 0, τ2 > 0 are two regularization parameters, iR+ (A) =
∑N

n=1 iR+ (an) is the indicator function that imposes the ANC

(iR+ (an) = 0 if an belongs to the non-negative orthant and +∞
otherwise), i{1(1,R)}

(

1(1,R)A
)

=
∑N

n=1 i{1}
(

1(1,R)an

)

is the

indicator function that imposes the ASC to each abundance vec-

tor an, 1(i,j) denotes the i × j vector of 1s. The first line of

(5) is a sum of the quadratic data fidelity term associated with

the Gaussian noise statistics and two convex terms imposing the

abundance constraints. The second line of (5) accounts for the

sparsity behavior of the residual coefficients. The first convex term

||X||1 =
∑N

n=1 ||xn||1 is an ℓ1 norm that promotes element-wise

sparsity on the D × N matrix X . This term imposes a point-wise



sparse repartition of the active elements of X . The second convex

term ||X||2,1 =
∑N

n=1 ||xn||2 =
∑N

n=1

√

xT
nxn is the ℓ21 mixed

norm of X which promotes sparsity among the columns of X , i.e.,

it promotes solutions of (5) with a small number of nonlinear pixels.

This regularization term has received increasing interest in recent

years [14, 16–19] and is known as a collaborative regularization

since it uses information about the residuals in all the pixels to pro-

mote group-sparsity over the columns of X . Equation (5) includes a

combination of the ℓ1 norm and the ℓ21 mixed norm which leads to

a slightly different effect, i.e., it allows for sparse element inside the

active columns of X . Finally the cost function (5) is a sum of con-

vex functions that is solved using the ADMM algorithm proposed in

[20, 26] and described in the next section.

3.1. The ADMM algorithm

Consider the optimization problem

argmin
Z

C (Z) = argmin
Z

J
∑

j=1

gj (HjZ) (6)

where Z ∈ R
(R+D)×N , gj : R

pj×N → R are closed, proper,

convex functions, and Hj ∈ R
pj×(R+D) are arbitrary matrices.

After denoting U j = HjZ ∈ R
pj×N and introducing the auxil-

iary variable F j ∈ R
pj×N , the authors in [20, 26] introduced the

ADMM variant summarized in Algo. 1 to solve (6) using a variable

splitting and an augmented Lagrangian algorithm. This algorithm

is designed to solve any sum of an ℓ2 norm with convex functions.

Moreover, [27, Theorem 1] states that Algo. 1 converges when the

matrix G =
[

∑J

j=1 (Hj)
⊤
Hj

]

has full rank, and the functions

gj are closed, proper, and convex. Under these conditions, the same

theorem states that, for any µ > 0, if (6) has a non-empty set of

solutions, then the generated sequence Z(k) converges to a solution.

If (6) does not have a solution, then at least one of the sequences

U (k) or F (k) diverges. Note that the main steps of Algo. 1, in each

iteration, are the solution of a linear system of equations (line 8), the

computation of the Moreau proximity operators (MPOs) [28] (line

12), and the updating of the Lagrange multipliers (line 16). Another

important point to note is that the setting of µ has a strong impact on

the convergence speed of the algorithm. In this paper, µ is updated

using the adaptive procedure described in [18, 21], whose objective

is to keep the ratio between the ADMM primal and dual residual

norms within a given positive interval, as they both converge to zero.

Note finally that the algorithm is stopped if the primal or dual resid-

ual norms are lower than a given threshold [21]. We refer the reader

to [18, 20, 21, 26] for more details regarding the ADMM algorithm.

3.2. The NUSAL-K algorithm

This section presents the optimization problem considered for esti-

mating the parameters of the NL model (1). Using the same notation

as in (6), problem (5) can be expressed as the sum of J = 5 convex

terms given by

g1 (U1) =LQ (U1) , H1 = I(R+DK)

g2 (U2) = iR+ (U2) , H2 = I(R+DK)

g3 (U3) = i{1⊤}
(

1
⊤
U3

)

, H3 =
[

IR,0(R,DK)

]

g4 (U4) = τ1||U4||1, H4 =
[

0(DK ,R), IDK

]

g5 (U5) = τ2||U5||2,1, H5 =
[

0(DK ,R), IDK

]

(7)

where In denotes the n × n identity matrix and 0(i,j) denotes the

i×j matrix of zeros. For this problem, the matrix G is given by G =

Algorithm 1 ADMM variant for (6)

1: Initialization

2: Initialize U
(0)
j ,F

(0)
j , ∀j, µ > 0. Set k ← 0, conv← 0

3: while conv= 0 do

4: for j=1:J do

5: ξ
(k)
j ← U

(k)
j + F

(k)
j ,

6: end for

7: Linear system of equations

8: Z(k+1) ← G−1 ∑J

j=1 (Hj)
⊤
ξ
(k)
j ,

9: Moreau proximity operators

10: for j=1:J do

11: V
(k)
j ←HjZ

(k+1) − F
(k)
j ,

12: U
(k+1)
j ← argmin

Uj

µ

2
||U j − V

(k)
j ||2 + gj (U j),

13: end for

14: Update Lagrange multipliers

15: for j=1:J do

16: F
(k+1)
j ← U

(k+1)
j − V

(k)
j ,

17: end for

18: k = k + 1
19: end while

diag
{

[31(1,R), 41(1,DK)]
}

which is full rank. This matrix and the

properties of gi, i ∈ {1, · · · , J} ensure the algorithm convergence.

The optimization problems shown in line 12 of algo. 1 ad-

mit analytical solutions that are not presented here for brevity (see

[23]). The computational complexity of Algo. 1 per iteration is

O
(

(R+D)2N
)

, which is related to the most expensive step intro-

duced by solving a linear system to obtain U1. Finally, it is interest-

ing to note that the matrices to inverse involve low complexity, for

instance, the matrix G in line 8 is diagonal and easy to inverse.

4. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed NUSAL-

K algorithm when considering a synthetic image with a known

ground truth. The synthetic image has 100 × 100 pixels, L = 207
spectral bands, R = 3 endmembers extracted from the ENVI

software library [29] and it has been corrupted by an i.i.d. Gaus-

sian noise with SNR= 25 dB. The image has been partitioned

into 4 spatial classes associated with the LMM, NL-3 model (1)

(where xn ∼ N(R+)D (0D,1, 0.1ID)), GBM (with random non-

linear coefficients in [0.8, 1]) and PPNMM (with b = 0.5), re-

spectively. Note that the generated nonlinear coefficients xn are

not sparse, which is a challenging scenario for the NUSAL-K al-

gorithm. The abundances have been generated uniformly in the

simplex of ANC and ASC. The performance of the algorithms

has been assessed in terms of abundance root mean square error

RMSE (A) =
√

1
N R

∑N

n=1 ‖an − ân‖22 and spectral angle map-

per SAM = 1
N

∑N

n=1 arccos
(

ŷT
nyn

‖yn‖2 ‖ŷn‖2

)

, where arccos(·) is

the inverse cosine operator and yn, ŷn denote the #nth measured

and estimated pixel spectra. All simulations have been implemented

using MATLAB R2015a on a computer with Intel(R) Core(TM)

i7-4790 CPU@3.60GHz and 32GB RAM.

The two variants NUSAL-2 and NUSAL-3 are compared with

the linear unmixing SUNSAL algorithm [22], and the NL algorithms

CDA-NL [11], SKhype [30], and RNMF [14]. For a fair compari-

son, the endmembers of these algorithms have been fixed to the ac-

tual spectra used to generate the data and the CDA-NL algorithm



Table 1. Results on the LMM-NL based synthetic image.

RMSE

RMSE SAM TimeC1 C2 C3 C4
LMM NL-3 GBM PPNMM

SUNSAL 1.4 20.3 5.8 11.9 10.8 7.6 0.1
SKhype 2.2 11.7 3.0 3.9 6.0 − 466

CDA-NL 1.4 4.5 2.1 4.2 2.9 5.8 182
RNMF 1.5 12.8 2.5 5.2 6.4 6.8 110

NUSAL-2 1.4 3.9 2.0 5.0 2.8 5.8 7
NUSAL-3 1.4 2.9 2.0 4.9 2.6 5.7 19

has been used while fixing the illumination coefficient to the value

#1. The regularization parameters of RNMF, and NUSAL-K have

been selected to provide the best performance (in terms of abun-

dance RMSE) when testing the following values: λ of RNMF varies

in {0.01λ0, 0.1λ0, λ0} (where λ0 has been suggested in [14]), and

for NUSAL-K: τ1 and τ2 vary in {0.01, 0.05, 0.1}.

Table 1 reports the obtained results. The proposed NUSAL-

2 and NUSAL-3 algorithms provide the best RMSE performance

for the LMM, RCA-NL-3 and the GBM pixels. For PPNMM, the

best RMSE is obtained with SKhype that is well adapted to this

polynomial nonlinearity. The best overall RMSE is obtained by the

NUSAL-2 and NUSAL-3 algorithms with a slightly better values

for NUSAL-3 since it estimates more parameters than NUSAL-2.

Except for the LMM-based algorithms, the data are well fitted by

the algorithms as indicated by the values of SAM. Moreover, it is

important to mention the reduced computational time of the pro-

posed NUSAL-K algorithms. Indeed, Table 1 clearly shows that the

NUSAL-2 and NUSAL-3 algorithms are faster than the NL state-

of-the-art algorithms, i.e., CDA-NL, RNMF and SKhype. The table

also highlights the effect of accounting for the third order nonlinear

interaction terms that improve the unmixing at a price of a higher

computational time. Note that the estimated nonlinearity coefficients

are visually evaluated in the next section when considering a real im-

age. Note also that additional experiments have been conducted in

[23] and are not provided here for brevity.

5. RESULTS ON REAL DATA

This section illustrates the performance of the proposed algorithm

when applied to a real hyperspectral image that has received much

attention in the remote sensing community [7, 31]. The image was

acquired over Moffett Field, CA, in 1997 by AVIRIS. It contains

100 × 100 pixels, L = 152 spectral bands (after removing water

absorption bands) acquired in the interval 0.4 − 2.5µm, has a spa-

tial resolution of 100m and is mainly composed of water, soil, and

vegetation (see Fig. 1 (top-left)). This image is interesting since it is

known to include bilinear scattering effects [7, 11, 14] which makes

it suitable for the assessment of the NUSAL-K algorithm.

Processing this image with the studied algorithms shows a bet-

ter fit for the NL algorithms than the LMM-based ones (the SAM

values are: 12.7 for SUNSAL, 10.7 for CDA-NL, 8.3 for RNMF,

11 for NUSAL-2, and 10.4 for NUSAL-3). Among the NL algo-

rithms, the proposed NUSAL-2, and NUSAL-3 provided the best

performance for the computational cost (177 s for SKhype, 317 s

for CDA-NL, 278 s for RNMF, 13 s for NUSAL-2, and 29 s for

NUSAL-3). All the algorithms generated similar abundance maps

that are not shown here for space limitation. Figs. 1 (top-right)

and (bottom) present the residual maps associated with the NL algo-

rithms (NUSAL-3 provided similar results than NUSAL-2). These

Fig. 1. (top-left) Real hyperspectral Moffett images. (top-right) and

(bottom) Residual maps for the Moffett image obtained with ||ŷn −
Mân||.

figures highlight a good agreement between the NL algorithms that

detect nonlinearity in the coastal region and in presence of vegeta-

tion (as in [7]). In addition to these regions, RNMF detects other

mismodelling effects probably due to endmember variability as al-

ready reported in [11]. Note that the NUSAL algorithm estimates the

nonlinear coefficients associated with high order interactions. For

this real image, the sparse coefficients are mainly due to the second

order interactions. Indeed, the sum of the estimated second order

coefficients of NUSAL-3 represents 95% of the total sum of these

coefficients (including both second and third order terms). To sum-

marize, the obtained results highlight the benefit of NUSAL-K that

not only provides information regarding the high order interactions

but also estimates abundances and residual maps which are in good

agreement with state-of-the-art algorithms, at a lower computational

cost.

6. CONCLUSIONS

This paper introduced a nonlinear model and its supervised unmix-

ing algorithm. Nonlinearity was modeled by considering a residual

term in addition to the linear mixture of endmembers. The residual

term was expressed as a sparse linear combination of the interaction

spectra, thus, the proposed model reduced to a linear combination

with respect to the abundances and the residual coefficients. The un-

known parameters associated with this model were estimated using

an optimization approach that included convex regularization terms.

More precisely, the non-negativity and sum-to-one constraints were

imposed on the abundances and the nonlinear coefficients were as-

sumed to be spatially sparse by considering a collaborative sparse

regression approach. The resulting convex problem was solved us-

ing an alternating direction method of multipliers whose conver-

gence was theoretically ensured. The proposed algorithm showed

good performance when processing synthetic data. Results on real

data confirmed the good performance of the proposed algorithm and

showed its ability to extract different features in the observed scene,

with a reduced computational cost. Future work includes the intro-

duction of a model/algorithm to jointly deal with the endmember

variability and the nonlinearity effects.
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