
HAL Id: hal-01757342
https://hal.science/hal-01757342

Submitted on 3 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3DEvent: a framework using event-sourcing approach
for 3D web-based collaborative design in P2P

Caroline Desprat, Jean Pierre Jessel, Hervé Luga

To cite this version:
Caroline Desprat, Jean Pierre Jessel, Hervé Luga. 3DEvent: a framework using event-sourcing ap-
proach for 3D web-based collaborative design in P2P. 21st International Conference on Web3D Tech-
nology (Web3D 2016), Jul 2016, Anaheim, CA, United States. pp.73-76, �10.1145/2945292.2945310�.
�hal-01757342�

https://hal.science/hal-01757342
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18920

The contribution was presented at Web3D 2016 : http://web3d2016.web3d.org/

To link to this article URL :
 http://dx.doi.org/10.1145/2945292.2945310

To cite this version : Desprat, Caroline and Jessel, Jean-Pierre and
Luga, Hervé 3DEvent: a framework using event-sourcing approach
for 3D web-based collaborative design in P2P. (2016) In: 21st
International Conference on Web3D Technology (Web3D 2016), 22
July 2016 - 24 July 2016 (Anaheim, CA, United States).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

3DEvent: A Framework Using Event-Sourcing Approach For 3D Web-Based

Collaborative Design in P2P

Caroline Desprat∗

University of Toulouse

Jean-Pierre Jessel†

University of Toulouse

Hervé Luga‡

University of Toulouse

Abstract

Despite recent advances, especially in web-based Collaborative
Virtual Environments (CVEs) using real-time 3D content, Web
technology still requires an efficient way to distribute and stream
large-scale 3D data. In this paper, we present 3DEvent: an event-
driven framework to collaboratively manipulate predesigned 3D
content in real-time on a web-based platform. This work introduces
a new approach in achieving 3D object manipulation tasks during
collaborative design stages using event-sourcing. Usually, a client-
server architecture supports updates to the 3D environment state.
Peer-to-peer (P2P) allows direct communication between team-
mates reducing response times during collaboration and decreasing
server load, reducing the costs of providers. 3DEvent enables P2P-
assisted delivery of 3D dynamic content in a web browser via Web-
RTC. By combining concepts from distributed event-processing
and mesh-processing, 3D independent rendering and event-based
synchronization, we present 3DEvent framework and potential uses
associated that support history-aware 3D applications into a unified
distributed processing solution for 3D web-based CVEs.

Keywords: collaborative manipulation, distributed application,
event-driven architecture, Web 3D, WebRTC.

Concepts: •Human-centered computing → Web-based inter-
action; Asynchronous editors; •Software and its engineering →

Publish-subscribe / event-based architectures; •Computer sys-
tems organization → Distributed architectures;

1 Introduction

In recent years, many technology companies have transferred a si-
gnificant portion of their software solutions to the web. This is the
result of the increasing need for mobility of collaborators and the
geographic distance between them. A good example of this trend
is the market’s development of web-based solutions for 3D content
editing (Clara.io [Houston et al. 2013], GrabCAD, Verold Studio).
The increasing size and complexity of datasets (such as CAD data)
make them more difficult to transmit over the Internet and render
in web browsers. In a collaborative domain, a lot of concurrent
users are involved; data update conflicts are more likely to occur
because the update operations take place on a single datum. Un-
less there is an additional auditing mechanism, which records the

∗e-mail:desprat@irit.fr
†e-mail:jessel@irit.fr
‡e-mail:luga@irit.fr

DOI: http://dx.doi.org/10.1145/2945292.2945310

details of each operation in a separate log, the history is lost. In in-
dustrial and learning context, data manipulations (import, transfor-
mations...) need history-tracking feature to prevent losing informa-
tion. History-awareness concept embeds not only undo/redo com-
mands (short-term history) but also long-term versioning system to
offer real-time monitoring and past collaborations reviewing to bet-
ter understand the construction of the content in a scene. The Col-
laborative Virtual Environment (CVE) needs to be robust, scalable,
and consistent for all clients. These conditions can be hard to han-
dle with traditional methods (client-server or saving the complete
object’s state after modification. . .). Consequently, remote collab-
oration in interactive environments have to be adapted to handle
size complexity of 3D content (reactivity, update-on-demand) and
alleviate the load on the server. While classic client-server com-
munication can easily manage dozens of client editing in a virtual
world, servers can become a bottleneck (massive data generation of
3D collaboration, crashes). Also, the development of the area of
event-processing [Chandy et al. 2011] provides relevant opportuni-
ties with real or near-real time reactivity for ressource management.
Coupling the client-server architecture with a P2P network should
facilitate collaboration between users, keep the environment con-
sistent and detect collaboration conflicts, providing robustness by
distributing and replicating relevant data horizontally. In this work,
we consider high bandwidth and reliable network. The types of data
processed are 3D geometry meshes without texture.

Contribution We propose an hybrid communication architecture
for web-based CVE applications. Our framework provides a strong
history-aware usability through P2P-assisted 3D dynamic content
delivery in the form of events in a lightweight environment to allevi-
ate the load on server during collaboration. Event-sourcing pattern
used in 3DEvent permits an homogeneous data lifecycle manage-
ment allowing pertinent collaborative features such as semantics,
versioning, and conflict detection. By exploiting exclusively client
resources for networking, 3D data processing, and visualization,
we ensure user’s autonomy in collaborative 3D content creation by
deporting business expertise in the browser (offline working) and
provide robustness in case of server issues.

This paper is organized as follows: Section 2 considers related
works in web-based CVEs and event-based (EB) architectures. Sec-
tion 3 presents the 3DEvent framework and a co-design application
as illustration. Section 4 discusses our methodology and current
limitations while Section 5 concludes the paper with ongoing works
optimizations for larger contents.

2 Related works

Web-based collaborative environments With the rise of
HTML5 and more powerful clients, pluginless solutions are now
well supported on the web (WebGL, X3D). Many academic works
[Brown et al. 2003][Grasberger et al. 2013][Mouton et al. 2014] and
commercial solutions (Onshape, GrabCAD) using elaborate ver-
sioning systems for web-based CVEs have been proposed. How-
ever, these popular systems were client-server based and relied on
full transfer of large 3D data for each client. This architecture can
provoke a bottleneck at the server (or required flexible server-side
scalability that can be expensive) and were not usable offline. To al-

leviate the server load, low cost solutions using P2P communication
with WebRTC [Jennings et al. 2014] have emerged to decentralize
distribution for large amount of data [Zhang et al. 2013]. [Li et al.
2015] and [Koskela et al. 2015] have shown that crowd comput-
ing using hybrid architecture benefit collaborative visual analysis
or 3D static asset delivery but the server’s role was still prominent.
[Desprat et al. 2015] proposed dynamic content distribution system
with a costly data transmission and no history/versioning features.

Event-driven architectures for collaboration Conventional ap-
plications alter states by replacing values. The effective state only
shows the latest version of the application and omits previous mod-
ifications. Moreover, states are overwritten and lost at each change.
During conception in CAD, the history is equally important as the
3D model itself. The benefits of EB architectures have been proven
in distributed architectures with loose-coupled and non-monolithic
design, openness and scalability properties [Hohpe 2006]. Event-
sourcing approach consists of ensuring the capture of every state’s
change of an application in an event object [Fowler 2003]. These
event objects are stored in sequence for the same lifetime as the ap-
plication state itself. The application uses an append-only store to
record it in an ordered event log instead of updating states. This
event log allows the system to be aware of the current state of
an object but also of its entire history. Each event is autonomous
(holds all it needs) and has semantics related to the expert do-
main. For instance, CoDesign [Bang et al. 2010] was an EB con-
flict detection framework for collaborative modeling applying rules
(given/when/then) on the server-side. In this centralized approach
the creation of expert content in offline situations is not possible.
[Xhafa and Poulovassilis 2010] showed the benefits of decentrali-
zed collaborative systems for EB awareness in groupware systems.

3 3DEvent Framework

In this section, we will describe the parts of our framework: the
communication architecture, the client architecture, the network
synchronization between clients, and persistences (short-term and
long-term). The data distribution is event-based, meaning that each
action done is translated into domain event instances and sent into
a packet through the network. Events are used to instantiate 3D
domain-related objects, send information for updating objects and
provide other meta-information (conflict detection, triggered pro-
cess. . .). The content distribution cinematic in 3DEvent is shared
between two levels: network communication architecture and client
architecture. We will detail each bridge components, from users ac-
tions to 3D rendering. Then, synchronization mechanisms between
peers and long-term persistence will be explained. Finally, we will
present a co-design application example to validate our framework.

3.1 Hybrid communication architecture

The communication architecture for adaptive 3D entities is illus-
trated in Figure 1. This full-web hybrid architecture was previ-
ously proposed in [Desprat et al. 2015]. Here, we revise their
client architecture to integrate event-sourcing in the collaboration
layer. Components of our communication architecture are clients,
server and database. Each client should implement the WebGL
standard, the WebSocket protocol for client-server communication
(long-term persistence), the WebRTC DataChannel [Grigorik 2013]
protocol for asynchronous synchronization, and a short-term per-
sistence storage. The server handles the communication with long-
term persistence storage (database) synchronized, with content cre-
ation when clients are online, and queried when a user needs a con-
tent that is not present in the collaboration network. The communi-
cation between clients and server uses WebSocket protocol.

Figure 1: Hybrid client-server and P2P architecture

3.2 Client platform architecture

The main part of the framework is represented in both Figure 2
and Figure 3: event’s representation and the client architecture.
To avoid event-sourcing implementation over client-server archi-
tecture, we embed it only on the client side to have offline access
to the expertise in the browser. As in P2P a peer is both client and
server, this approach is adapted to counter sudden disconnection,
server crash. . . . We investigated the description of an event [Tomin-
ski 2006] illustrated in Figure 2 and adapted its properties for 3D
content. Event domain (ED) is the bounded context in which events
occur. It contains entities with respect of specified event type (ET).
An ET is used to express a concrete interest regarding the entities
of an ED –abstract events (aet) are ET compatible with ED–. Event
instances (EI) (or short event) is composed of the triple ED,ET, and
EP. EP denotes event parameters assigned to an EI. Event specifi-
cation requires compiling several types of events that are interest-
ing for manipulation tasks. Event detection retrieves an instance of
specified event types to be visualized. In this work, we evaluate
conditions to trigger the appropriate event. Event representation is
the reflection on the application of the triggered events behavior.

Figure 2: Illustration of the notions event domain, event type, and
event instance.

In our system, the domain is the representation of 3D objects from
an expert’s point of view. The domain objects represents 3D data in
an abstracted format (geometry, position), independent of rendering
needs (lighting, material...). 3DEvent integrates an event generator:
a programming component designed to provide allow the creation
of event types adapted to 3D user’s interests (semantics).

In the schema of Figure 3, we represented the data’s lifecycle in our
framework inside a web-browser. User actions are issued from the
task-based UI described in Section 3.4. When the user does actions,
the domain validates their parameters and generates new version of
aggregates. An aggregate is an encapsulation that bounds a trans-
action. It handles commands, applies events and has a state model
encapsulated within it. Thus, the aggregate can apply the required
validation of command and uphold its invariants (business rules).
In our system, aggregates are have Scene, Mesh, and Geometry.

Figure 3: Client architecture model: data lifecycle management
with event-sourcing in a web-browser from user’s actions to visuali-
zation through network synchronization.

The event store records the events according to the aggregates pro-
cessed and external events received from the network (short-term
persistence). It synchronizes itself with other clients and the server
database (long-term persistence). Then events are sent to the event
dispatcher that delivers asynchronously events according to the reg-
istered services on it. We propose two projection services: 3D ren-
dering with Three.JS and monitoring. A projection derives from a
stream of events to provide (filter, enrich) adapted objects for the
view. The rendering pipeline is responsible for the re-ordering of
the received events from the event bus: if the Mesh event arrives
before the creation of the Geometry, it is pushed on the waiting list
until the needed events come. Therefore, the out-of-order nature of
WebRTC and asynchronous communication is no longer an issue.

3.3 Store synchronization during collaboration

The P2P network is a partial mesh topology graph; the peer con-
nectivity policy is defined by the server and adaptable according to
the needs. The P2P mesh is automatically built when the client is
connecting to the server. The server provides Ids to each client with
the Ids of collaborator to connect with. Then, the client initiates the
P2P connection. Once connected, collaborators can exchange data
via a bidirectional data connections (WebRTC DataChannel) avoid-
ing passing through the server again. In case of crash and recovery
of the server, the collaboration can continue. Each event created by
a user’s command is pushed into a message and spread to other col-
laborators through the channels: if the event has not been applied
yet, the message is processed and spread to next P2P neighbors;
otherwise, the message dies silently. Each message contains a set
of events, each one containing its Id, its version and a timestamp
that will be checked at the reception to order events if necessary.

The conflict detection component allows the developer to imple-
ment its own conflict resolution rules. It triggers a flag if versions
between the received aggregate and the current one are equal (see
Figure 4). According to the business logic rules defined, the event
is rejected, accepted with or without modifications. From this pro-
cess, new events can be generated during the resolution.

3.4 3D environment

The client hosts a 3D environment to visualize, upload, and mani-
pulate data with basic transformations (translation, rotation, and

Figure 4: Collaborative editing example where User A is connected
to User B, itself connected to User C. The cycle shows the steps from
the triggered action to event generation, store synchronization and
impact on users’ rendering for a cube translation.

scale) and navigation through the scene. New technologies and
standards such as WebGL and Web Workers have made recent web
browsers to support 3D rendering and parallel computing. Thus,
the 3D mesh processing is dedicated to the GPU for a full use of
the CPU capacity. As the 3D rendering projection is mandatory in
3DEvent, Three.JS library is proposed by default.

Our framework proposes first-come-first-serve (FCFS) conflict res-
olution model by default. If two users are trying to edit the same
object, the conflict is avoided by creating a clone of the “real” object
on selection. During transformation, the user manipulates the clone
until deselection. Thus, the other user can simultaneously manipu-
late another clone of the same object without conflict. The first user
to unselect the object will trigger the move the “real” object, allow-
ing the second user to cancel or finish its own action. Each user
is assigned a color to show which object is manipulated by whom,
and a cone as its point of view to express its presence in the scene.

3.5 3D editor application example

To validate our approach, we designed a lightweight and cross-
platform prototype using isomorphic JavaScript: a 3D editor with
a geometry library. We chose to use Node.js as a runtime envi-
ronment, PeerJS as P2P communication channels and ThreeJS as
3D WebGL engine. Messages contain the event data in JSON. The
persistence is computed from the JSON delta diffs out of the old
and new states so the 3D can be rendered to the user. The proto-
type uses an in-memory event store. The application provides high
level 3D interactions that can be designed as an event (9 events in
total) such as create/delete scene, import geometry into the library,
create mesh (by dropping to a specific position or clicking on the
item), delete meshes, use mesh translation, rotation or scale. Figure
4 describes how the system executes a translation action triggered
by a user and how it’s broadcasted to his/her collaborators (scene,
cube geometry, and cube mesh should be created before). During
the sessions, until five (fake) collaborators in LAN in partial mesh
connectivity were set up to test the online co-design features and
server or client crashes to observe the system behavior. As a result,
clients can interact in easily with 3D objects in the scene and see

others’ modifications. They are able to recover new events after
offline working or disconnection. A server crash does not impact
current collaboration because new users can work offline, and ses-
sion collaborators are not disconnected from each other.

4 Discussion

We have structured our methodology analyzing and evaluating re-
lated concepts and approaches of existing systems. We have de-
fined a computational model to address our requirements and unify
different concepts. Then, we have derived a framework and a cor-
responding environment adapted to our network constraints. This
work is intended to improve the next prototype proposing an ab-
straction of the application model by incorporating event-sourcing
for the computational and programming model. As a result, we im-
plemented a 3D editor prototype application to show how one 3D
application would work in practice. The framework provides inde-
pendent, scalable, and robust components (data management, net-
work architecture). 3DEvent framework eases implementation of
expert systems using 3D CVE. Also, web-based solution allows a
single implementation for a cross platform application using adap-
tive rendering (projections) in a lightweight environment.

Limitations Our framework is based on young technologies;
WebRTC Datachannel protocol is still a draft standard thus it can
only run on Chrome and Firefox latest versions. 3DEvent can han-
dle scenes with dozens of small models (<15MB) and their ver-
sions. When come bigger models, the choice of the granularity
(vertex granularity vs. geometry granularity) may introduce more
processing if not adapted by the developer. Still, P2P eases the ab-
sorption of traffic compared to client-server application. Because
we framed our context on small team collaboration, the conflict
resolution system is currently very simple. For more complex man-
agements, adding expert rules using the expected version of the ag-
gregate is needed. The update or recovery of events is executed
from all past events that can be costly at long term without using
event-sourcing’s snapshot concept when the sum of events is big-
ger than a state. To fulfill our validation, a quantitative evaluation
of the framework should integrate throughput, latency, number of
users collaborating, and model’s size criteria.

5 Conclusion

3DEvent framework introduces an original event-based approach
for generating 3D web-based CVEs for object manipulation. The
full-web hybrid architecture allows a better transmission of up-
dates between collaborators without overloading server’s chan-
nels. Event-sourcing pattern shows several benefits for this solution
needing : history, lightweight update messages, and analytics. Our
framework can supply the adaptation and personalization of com-
plex visualizations thanks to the event-based approach. Because
of this flexibility, the plasticity of the 3D CVEs’ interfaces will be
easier to integrate later. 3DEvent is a response to the impact of geo-
graphical mobility of experts and widespread adoption of more and
more performant mobile solutions that can be used in 3D collabo-
rative visualization, manipulation and editing needs.

In the future, we will aim to enhance P2P 3D data streaming us-
ing compression for collaborative and 3D content in real network
conditions. In a 3D design environment with preconceived objects
allowing high-level transformations, we want to address streaming
issues for larger objects containing thousands of connected compo-
nents using progressive meshes. This would alleviate transmission
load without degrading user experience by personalizing the pro-
jection (view). It would generates the adapted content for users in a

3D responsive environment (view-dependent and multi-resolution
parts of the object) while integrating a load balancing method as
shown in [Li et al. 2015] since our events are not ordered.

References

BANG, J. Y., POPESCU, D., EDWARDS, G., MEDVIDOVIC, N.,
KULKARNI, N., RAMA, G. M., AND PADMANABHUNI, S.
2010. CoDesign: a highly extensible collaborative software
modeling framework. 2010 ACM/IEEE 32nd Int. Conf. Softw.
Eng. 2, 243–246.

BROWN, D., JULIER, S., BAILLOT, Y., AND LIVINGSTON, M.
2003. An event-based data distribution mechanism for collabo-
rative mobile augmented reality and virtual environments. IEEE
Virtual Reality, 2003. Proceedings. 2003.

CHANDY, M. K., ETZION, O., AND AMMON, R. V. 2011. The
event processing manifesto. Event Process., 10201, 1–60.

DESPRAT, C., LUGA, H., AND JESSEL, J.-P. 2015. Hybrid client-
server and P2P network for web-based collaborative 3D design.
WSCG 2015 Conf. Comput. Graph. Vis. Comput. Vis., 229–238.

FOWLER, M. 2003. Patterns of Enterprise Application Architec-
ture, vol. 23. Addison-Wesley Longman Publishing Co., Inc.

GRASBERGER, H., SHIRAZIAN, P., WYVILL, B., AND GREEN-
BERG, S. 2013. A data-efficient collaborative modelling method
using websockets and the BlobTree for over-the air networks.
Proc. 18th Int. Conf. 3D Web Technol. - Web3D ’13, 29.

GRIGORIK, I. 2013. High Performance Browser Networking.
O’Reilly Media, Inc.

HOHPE, G. 2006. Programming Without a Call Stack Event-driven
Architectures. Enterp. Integr. Patterns.

HOUSTON, B., CHEN, R., MCKENNA, T., LARSEN, W.,
LARSEN, B., CARON, J., NIKFETRAT, N., LEUNG, C., SIL-
VER, J., KAMAL-AL-DEEN, H., AND CALLAGHAN, P. 2013.
Clara.io. ACM SIGGRAPH 2013 Stud. Talks - SIGGRAPH ’13,
1–1.

JENNINGS, C., NARAYANAN, A., BURNETT, D., AND

BERGKVIST, A. 2014. WebRTC 1.0: Real-time communica-
tion between browsers. W3C, W3C Ed. Draft. Aug.

KOSKELA, T., HEIKKINEN, A., HARJULA, E., LEVANTO, M.,
AND YLIANTTILA, M. 2015. RADE : Resource-aware Dis-
tributed Browser-to- browser 3D Graphics Delivery in the Web.
IEEE Wirel. Mob., 500–508.

LI, J., CHOU, J.-K., AND MA, K.-L. 2015. High performance
heterogeneous computing for collaborative visual analysis. SIG-
GRAPH Asia 2015 Vis. High Perform. Comput. - SA ’15, 1–4.

MOUTON, C., PARFOURU, S., JEULIN, C., DUTERTRE, C., GOB-
LET, J.-L., PAVIOT, T., LAMOURI, S., LIMPER, M., STEIN,
C., BEHR, J., AND JUNG, Y., 2014. Enhancing the Plant Lay-
out Design Process using X3DOM and a Scalable Web3D Ser-
vice Architecture.

XHAFA, F., AND POULOVASSILIS, A. 2010. Requirements for dis-
tributed event-based awareness in P2P groupware systems. 24th
IEEE Int. Conf. Adv. Inf. Netw. Appl. Work. WAINA 2010, Octo-
ber, 220–225.

ZHANG, L., ZHOU, F., MISLOVE, A., AND SUNDARAM, R. 2013.
Maygh: Building a CDN from client web browsers. Proc. 8th
ACM Eur. Conf. Comput. Syst. EuroSys 2013, 281–294.

