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Critical human-machine interfaces are present in many systems including avionics systems and med-

ical devices. Use error is a concern in these systems both in terms of hardware panels and input

devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of but-

tons, knobs and displays is now a key element in the overall safety of the system. New integrated

development environments (IDEs) based on formal methods technologies have been developed by

the research community to support the design and analysis of high-confidence human-machine inter-

faces. To date, little work has focused on the comparison of these particular types of formal IDEs.

This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based develop-

ment and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on

the PVS theorem proving system.

1 Introduction

Use error is a major concern in critical interactive systems. Consider, for example, a pilot calibrating

flight instruments before take-off. When calibrating the barometer used to measure the aircraft’s altitude,

a consistency check should be performed automatically by the cockpit software to help guard against use

errors, such as mistyping a value or selecting the wrong units.

New IDEs based on formal methods have been developed by the research community to support the

design and analysis of high-confidence human-machine interfaces. Each IDE supports different types

of analysis, ranging from functional correctness (e.g., absence of deadlocks and coding errors such as

division by zero) to compliance with usability and safety requirements (e.g., assessing the response to

user tasks, or the visibility of critical device modes). Choosing the right tool is important to ensure

efficiency of the analysis and that the analysis addresses the appropriate safety concerns relating to use.

To date, little work has been done to compare and evaluate different formal IDEs for human-machine

interface design and analysis, and little or no guidance is available for developers to understand which

IDE can be used most effectively for which kind of analysis. This paper describes a first step towards

addressing this gap.

Contribution. We compare and evaluate two state-of-the-art formal verification technologies for the

analysis of human-machine interfaces: CIRCUS [9], a model-based development and analysis tool that

uses Petri net extensions; and PVSio-web [19], a prototyping toolkit based on the PVS theorem prover.



The aim of this work is to provide guidance to developers to understand which tool can be used most

effectively for which kind of analysis of interactive systems. Both tools have their foundations in existing

formal technologies, but are focused towards particular issues relating to the user interface. The capa-

bilities of the two tools are demonstrated in the paper through a common case study based on a critical

subsystem in the cockpit of a large civil aircraft. A taxonomy is developed as a result of the comparison

that can be used to describe the characteristics of other similar tools.

Organisation. The remainder of the paper is organised as follows. Section 2 illustrates typical features of

formal IDEs for the design and analysis of human-machine interfaces, and presents a detailed description

of CIRCUS and PVSio-web. Section 3 introduces the common example for comparison of the selected

tools, as well as the developed models. Section 4 presents the metrics for comparing the IDEs, and

then uses the metrics as a basis for the comparison. Section 5 concludes the paper and presents future

directions in which the tools may evolve.

2 The formal modelling and analysis of user interfaces

Formal tools for the modelling and analysis of human-machine interfaces are designed to support multi-

disciplinary teams of designers from different engineering disciplines, including human factors engi-

neering (to establish usability requirements, run user studies and interpret compliance), formal methods

(to verify compliance of a system design with design requirements), and software engineering (to de-

velop prototypes and software code, e.g., using model-based development methods). Although several

tools provide graphical model editors and automated functions for modelling and analysis of interac-

tive elements of a system, different tools are usually complementary, as they support different levels of

description, and different types of analysis, ranging from micro-level aspects of human-machine inter-

action, e.g., aspect and behaviour of user interface widgets, to the analysis of the wider socio-technical

system within which the interactive system is used.

In the present work, we compare two state-of-the-art formal tools developed by two different research

teams: CIRCUS [9], a toolkit for model-based development of interactive systems; and PVSio-web [19],

a toolkit for model-based development of user interface software. Both build on tools that have been de-

veloped more generally for model based design and software engineering, extending them with features

that are particularly useful when considering the human-machine interface or the wider socio-technical

system.

Other formal tools that could be used (and in some cases have been used) for the analysis of human-

machine interfaces exist. They offer functionalities that complement those of CIRCUS and PVSio-web.

The evaluation of these other tools is not within the scope of this paper, although a brief overview can be

found in Section 2.3.

2.1 CIRCUS

CIRCUS, which stands for Computer-aided-design of Interactive, Resilient, Critical and Usable Systems,

is an IDE for the formal verification of the system’s behaviour as well as the analysis of compatibility

between the user’s task and the system’s behaviour. CIRCUS includes three tools:

• HAMSTERS (Human-centred Assessment and Modelling to Support Task Engineering for Re-

silient Systems) is a tool for editing and simulating task models. The tool can be used to en-

sure consistency, coherence, and conformity between assumed or prescribed user tasks and the

sequence of actions necessary to operate interactive systems [3]. The notation used in the tool



makes it possible to structure users’ goals and sub-goals into hierarchical task trees. Qualitative

temporal relationships among tasks are described by operators. Various notational elements sup-

port modelling of specialised task types, explicit representations of data and knowledge, device

descriptions, genotypes and phenotypes of errors, and collaborative tasks.

• PetShop (Petri Net workshop) is a tool for creating, editing, simulating and analysing system

models using the ICO (Interactive Cooperative Objects) notation [23, 17]. The ICO notation al-

lows developers to specify the behaviour of interactive systems. The notation uses Petri Nets for

describing dynamic behaviours, and uses object-oriented concepts (including dynamic instantia-

tion, classification, encapsulation, inheritance and client/server relationships) to describe structural

or static aspects of the system.

• SWAN (Synergistic Workshop for Articulating Notations) is a tool for the co-execution of PetShop

models and HAMSTERS models [3]. The tool allows developers to establish correspondences

between system behaviours and tasks, and perform automated system testing by means of co-

execution [5].

2.2 PVSio-web

PVSio-web is a toolkit for model-based development of user interface software. The toolkit is based

on and extends an established theorem prover, PVS [24], providing a graphical environment for con-

structing, visualising and analysing formal models of user interface software. PVSio-web has three main

components:

• Prototype Builder and Simulator. This tool allows developers to create device prototypes based

on formal models, and run them within a Web browser. The visual aspect of the prototype uses

an interactive picture of the device. Developers create programmable areas over the picture to

identify input widgets (e.g., buttons) and output widgets (e.g., displays, LEDs). The tool automat-

ically translates user actions over input widgets (e.g., button presses) into PVS expressions that

can be evaluated within PVSio [22], the native PVS component for animating executable PVS

models. The Simulator tool executes PVSio in the background, and the effects of the execution

are automatically rendered using the output widgets of the prototype to closely resemble the visual

appearance of the real system in the corresponding states.

• Emucharts Editor. This tool facilitates the creation of formal models using visual diagrams

known as Emucharts. These diagrams are based on Statecharts [14]. The tool allows developers

to define the following design elements: states, representing the different modes of the system;

state variables, representing the characteristics of the system state; and transitions, representing

events that change the system state. The tool incorporates a model generator that translates the

Emucharts diagram into executable PVS models automatically. The model generator also supports

the generation of other different formal modelling languages for interactive systems, including

VDM [18], MAL [6], and PIM [4], as well as executable code (MISRA-C).

• The PVS back-end. This includes the PVS theorem prover and the PVSio environment for model

animation. The back-end is used for formal analysis of usability-related properties of the human-

machine interface model, such as consistency of response to user actions and reversibility of user

actions.



2.3 Other tools

MathWorks Simulink [20] is a commercial tool for model-based design and analysis of dynamic systems.

It provides a graphical model editor based on Statecharts, and functions for rapid generation of realistic

prototypes. SCR [13] is a toolset for formal analysis of system requirements and specifications. Using

SCR, it is possible to specify the behaviour of a system formally, use visual front-ends to demonstrate the

system behaviour based on the specifications, and use a set of formal methods tools for the analysis of

system properties. SCADE and IBM’s Rational Statemate are two commercial tool sets for model-based

development of interactive systems. The tool sets provide, among other features, rapid prototyping, co-

simulation, and automated testing. Formal verification is supported by these tools, but is limited to the

analysis of coding errors such as division-by-zero. Use-related requirements and tasks can be analysed

only using simulation and testing. IVY [7] is a workbench for formal modelling and verification of

interactive systems. The tool provides developers with standard property templates that capture usability

concerns in human-machine interfaces. The core of the IVY verification engine is the NuSMV model

checker. A graphical environment isolates developers from the details of the underlying verification tool,

thereby lowering the knowledge barriers for using the tool. The particular tools that are of interest in

the design and analysis of interactive systems enable the analysis of user activities, with a focus on what

users do in terms of what they perceive about the systems and the actions they perform. Furthermore an

important requirement for such tools is that the means of analysis and their results should be accessible

to team members without a background in formal techniques, or even software development techniques.

3 Case study and IDE showcase

The case study for comparing the selected tools is based on a subsystem of the Flight Control Unit (FCU)

of the Airbus A380. It is an interactive hardware panel with several different buttons, knobs, and displays.

The FCU has two main components: the Electronic Flight Information System Control Panel (EFIS CP),

for configuring the piloting and navigation displays; and the Auto Flight System Control Panel (AFS

CP), for setting the autopilot state and parameters.

In future cockpits, the interactive hardware elements of the FCU panel might be replaced by an

interactive graphical application rendered on displays. This graphical software (hereafter, referred to

as FCU Software) will provide the same functionalities as the corresponding hardware elements. This

graphical software will be displayed on one of the screens in the cockpit. Pilots will interact with the

FCU Software via the Keyboard and Cursor Control Unit (KCCU) that integrates keyboard and track-ball

(see Figure 1).

The present paper illustrates how CIRCUS and PVSio-web can be used to create models and proto-

types of the FCU Software. Developers can explore design options and analyse requirements for these

future generation FCUs using these formal IDEs for model-based development of human-machine inter-

faces. To keep the example simple, we focus further and analyse the EFIS CP. This component includes

most of the fundamental interactive elements of the FCU.

3.1 Description of the system and its use

A close up view of the EFIS CP is shown in the rightmost picture of Figure 1. The left panel of the

EFIS CP window is dedicated to the configuration of the barometer settings (upper part) and of the

Primary Flight Display (lower part). The right panel is dedicated to the configuration of the Navigation

Display. The top part provides buttons for displaying navigation information on the cockpit displays.



Figure 1: Keyboard and Cursor Control Unit and Flight Control Unit Software.

The ComboBoxes at the bottom allow the pilot to choose display modes and scale.

In this work, we focus more particularly on the configuration of the barometric settings (upper part

of the left panel). This panel is composed of several widgets: two CheckButtons enable pilots to select

either Standard (STD) or Regional Pressure Settings (QNH) mode. When in QNH mode, a number entry

widget (EditBoxNumeric) enables pilots to set the barometric reference. Finally, a button (PushButton)

enables pilots to switch the barometer units between inches of mercury (inHg) and hectopascal (hPa).

When switching from one unit to the other, a unit conversion is triggered, and the barometer settings

value on the display is updated accordingly. When the barometer unit is inHg, the valid range of values

is [22, 32.48]. When the unit is hPa, the valid range is [745, 1100]. If the entered value exceeds the valid

value range limits, the software automatically adjusts the value to the minimum (when over-shooting the

minimum valid value) or the maximum (when overshooting the maximum valid value).

When starting the descent (before landing), pilots may be asked to configure the barometric pressure

to the one reported by the airport. The barometric pressure is used by the altimeter as an atmospheric

pressure reference in order to process correctly the plane altitude. To change the barometric pressure,

pilots select QNH mode, then select the pressure unit (which depends on the airport), and then edit the

pressure value in the EditBoxNumeric.

3.2 Modelling and analysis using CIRCUS

A prototype user interface was developed in CIRCUS that captures the functionalities of the FCU Soft-

ware. The workflow for the modelling and analysis of this interactive system includes six main steps that

are briefly detailed below.

Step 1: Task analysis and modelling. This step describes user activities. It identifies goals, tasks,

and activities that are intended to be performed by the operator. For example, the task “Perform descent

preparation”, is decomposed into several HAMSTERS models represented as subroutines, components

and instances of components [10]. Due to space constraints, we only describe an extract of the model in

Figure 2.



Figure 2: Extract of the task model for the task “Perform descent preparation”.

A simplified version of the task model is described as the abstract task “Perform descent prepara-

tion” in the first row of Figure 2. The second row refines this task into several abstract sub-tasks (e.g.,

“Obtain weather and landing information”). Each one of these abstract tasks corresponds to a step of

the operational procedure that is intended to be performed by the flight crew when preparing the descent

phase [1].

In the present paper, we focus on the “Set barometric reference” abstract task, refined in the third

row. The task is decomposed as follows: the pilot receives the new barometric target (“Receive baromet-

ric target” abstract task) and remembers the corresponding information (“Barometric pressure target”).

The pilot then needs to gather information about the current barometer settings (“Gather information

about current barometric settings”), thus remembering a new piece of information (“Current barometric

pressure”). The pilot then needs to compare the two values that have been received in the previous two

steps (“Interpret and analyse barometric pressure” cognitive analysis task) creating the “Current pressure

== Targeted pressure” information. If the targeted pressure is different from its current value the pilot

decides to change the pressure (“Decide to change barometric pressure” cognitive decision task) and

change it (“Change barometric pressure” abstract task).

The fourth row of Figure 2 refines the “Change barometric pressure” abstract task as follows: the

pilot must first check the pressure mode (“Check pressure mode” abstract task), switch to QNH mode if

the current mode is STD (“Change pressure mode to QNH” abstract task), check the unit and change it if

needed (“Check barometric pressure unit” and “Change pressure unit” abstract tasks) and finally set the

new pressure value (“Set target pressure value” abstract task).

Finally, the fifth row refines the “Change pressure mode to QNH” abstract task. This task is per-

formed by the pilot if the current mode is STD. In this task, the pilot first reaches the QNH checkButton

(“Reach QNH CheckButton” abstract task). Then s/he clicks on it (“Click on QNH CheckButton” inter-

active input task). The system then changes the mode and displays the new state (“Change mode” system

task and “Display QNH mode” interactive output task). The pilot can then check that the new pressure



Figure 3: ICO model of the barometer settings behaviour.

mode is the good one (“Check pressure mode” abstract task and “Decide that barometric pressure mode

is OK” cognitive decision task). It is important to note that this task model is detailed both in terms of

user task refinement (e.g., cognitive task analysis) to allow the analysis of workload and performance

(see Step 3 below); and in terms of interactive task refinement (see, for instance, the refinement of the

“Change pressure mode to QNH” abstract task which includes the “Click on QNH Checkbutton” interac-

tive input task) to allow the compatibility assessment between the task model and the behavioural model

of the system (see Step 6 below).

Step 2: Workload and performance analysis. As presented in Figure 2, the HAMSTERS notation and

tool enable human task refinement. It makes it possible to differentiate between cognitive, motor, and

perception tasks as well as representing the knowledge and information needed by the user to perform

a task. The refinement allows the qualitative analysis of user tasks, workload and performance. For

example, the number of cognitive tasks and information that pilots need to remember may be effective

indicators for assessing user workload [9]. This kind of analysis can be used to reason about automation

design [16].

Step 3: User interface look and feel prototyping. This step aims at developing the user interface

look and feel. A result of this step is described in the screen-shot of the EFIS CP presented in Figure 1.

The widgets are organised in a style that is compatible with the library defined by the ARINC 661

standard [2].

Step 4: User interface formal modelling. The behaviour of the user interface is specified using ICO

models. The behaviour of the barometer settings part of the EFIS CP user interface is represented by

the ICO model presented in Figure 3. The left part of this model (that has been enlarged) is dedicated

to the pressure mode. As described in Section 3.1, the pressure mode can be in two different mutually

exclusive states: STD and QNH. The user can switch from one mode to the other one by clicking either

STD or QNH CheckButton (clicking on a CheckButton while already in the corresponding mode is

also possible but will have no impact on the pressure mode). This behaviour is defined by the enlarged

part of the ICO model presented in Figure 3. The state of the pressure mode is represented by the

presence of a token within “QNH” or “STD” places (in Figure 3, place “STD” holds a token meaning that

the current pressure mode is STD). Transitions “changePressureMode 1” and “changePressureMode 2”

(resp. “changePressureMode 3” and “changePressureMode 4”) correspond to the availability of the

“qnhClick” (resp. “stdClick”) event: when one of these two transitions is enabled, the “qnhClick” event

is available (thus enabling the QNH CheckButton). The “changePressureMode 1” transition therefore

makes it possible to switch from STD pressure mode to QNH pressure mode as a result of clicking on



the QNH CheckButton. The “changePressureMode 2” transition allows the user to click on the QNH

CheckButton while in QNH pressure mode without any impact on the pressure mode. The right part

of the ICO model presented in Figure 3 (behind the enlarged part of the model) allows pressure to be

changed. While we only present here a part of the ICO model describing the behaviour of the EFIS user

interface, it is important to note that the ICO notation has also been used to describe the behaviour of the

widgets and the window manager. The ICO models can be validated using the simulation feature.

Step 5: Formal analysis. The PetShop tool provides the means to analyse ICO models by the underlying

Petri net model [26] using static analysis techniques as supported by the Petri net theory [25]. The ICO

approach is based on high level Petri nets. As a result the analysis approach builds on and extends

these static analysis techniques. Analysis results must be carefully taken into account by the analyst

as the underlying Petri net model can be quite different from the ICO model. Such analysis has been

included in CIRCUS and can be interleaved with the editing and simulation of the model, thus helping

to correct it in a style that is similar to that provided by spell checkers in modern text editors [8]). It is

thus possible to check well-formedness properties of the ICO model, such as absence of deadlocks, as

well as user interface properties, either internal properties (e.g., reinitiability) or external properties (e.g.,

availability of widgets). Note that it is not possible to express these user interface properties explicitly

— the analyst needs to express these properties as structural and behavioural Petri net properties that can

be then analysed automatically in PetShop.

The analysis of the enlarged part of the ICO model presented in Figure 3 allows developers to check

that, whatever action is taken, the pair of places “STD” and “QNH” will always hold one (and only

one) token, exhibiting the mutual exclusion of the two states. Transitions connected to these places

correspond to the availability of two events “qnhClick” and “stdClick”, and therefore it can be demon-

strated that these events will remain available whatever action is triggered. Lastly, there are two tran-

sitions in the model that correspond to the event “qnhClick” (transitions “changePressureMode 1” and

“changePressureMode 2”). This could potentially lead to non-determinism in the model. However, as

“changePressureMode 1” has place “STD” as input place and “changePressureMode 2” has “QNH”

place as input place, non-determinism is avoided due to the mutual exclusive marking of these places.

Step 6: Compatibility assessment between task models and user interface models. This step aims at

guaranteeing that the task model and the formal model of the user interface behaviour are complete and

consistent together (thus helping to guarantee that procedures followed by the operators are correctly

supported by the system). A correspondence editing panel is used to establish the matching between

interactive input tasks (from the task model) with system inputs (from the system model) and between

system outputs (from the system model) with interactive output tasks (from the task model). The co-

execution part of the SWAN tool provides support for validation as it makes it possible to find incon-

sistencies between the two models, e.g., sequences of user actions allowed by the system model and

forbidden by the task model, or sequences of user actions that should be available but are not because of

inadequate system design. The SWAN tool also provides support for automated scenario-based testing

of an interactive application [5]

3.3 Modelling and analysis using PVSio-web

The focus of the PVSio-web analysis is the interaction logic of the EFIS data entry software. Here, we

describe the modelling and analysis workflow supported by the tool, and highlight the main characteris-

tics of the developed models (the full description is included as an example application in the PVSio-web

tool distribution [19]).



Figure 4: FCU Software prototype developed in the PVSio-web Prototype Builder. Shaded areas over

the picture identify interactive system elements.

Step 1: Define the visual appearance of the prototype. The visual aspect of the prototype is based on

a picture of the EFIS panel. The PVSio-web Prototype Builder is used to create the visual appearance

of the prototype and is defined using the Prototype Builder. A picture of the EFIS panel and KCCU

are loaded in the tool, and interactive areas are created over relevant buttons and display elements (see

Figure 4). Fifteen input areas were created over the picture of the Keyboard and Cursor Control Unit,

to capture user actions over the number pad keys, as well as over other data entry keys (ENT, CLR,

ESC, and the units conversion button). Four display elements were created for rendering relevant status

variables of the PVS model: a touchscreen display element handles user input on the EditBoxNumeric

for entering the barometer pressure value; two display elements render the STD and QNH CheckButtons;

an additional display element renders the pressure units.

Step 2: Define the behaviour of the prototype. The prototype is driven by a PVS model that includes

an accurate description of the following features of the system: the modal behaviour of the data entry

system; the numeric algorithm for units conversion; the logic for interactive data entry; and the data types

used for computation (double, integer, Boolean). Modelling patterns were used to guide the development

of the models (some of these patterns are described in [11]). The model was developed using, in com-

bination, the PVSio-web Emucharts Editor and the Emacs-based model editor of PVS. The Emucharts

editor allowed us to create a statechart-based diagram that can be automatically translated into PVS mod-

els. The Emacs-based model editor was used to build a library function linked to the Emucharts diagram

to improve modelling efficiency. The developed Emucharts (shown in Figure 5) includes the following

elements: 3 states (STD, QNH, and EDIT PRESSURE) representing three different modes of operation;

25 transitions, representing the effect of user actions on the Keyboard and Cursor Control Unit when ad-

justing the barometer settings, and internal timers handling timeouts due to inactivity during interactive



Figure 5: Emucharts model of the FCU Software created in the Emucharts Editor.

data entry; and 9 status variables, representing the state of the system (units, display value, programmed

value, etc.). The library function, ProcessKey, is used within the Emucharts diagrams to define the effect

on state variables of transitions associated with key presses.

Step 3: Model validation. This analysis ensures internal consistency of the model, as well as checking

accuracy with respect to the real system. Internal consistency is assessed by discharging proof obliga-

tions (called type-check-conditions) automatically generated by the PVS theorem prover. These proof

obligations check coverage of conditions, disjointness of conditions, and correct use of data types. For

the developed Emucharts model, PVS generated 22 proof obligations, all of which were discharged au-

tomatically by the PVS theorem prover. Accuracy of the model is assessed by using the prototype to

engage with Airbus cockpit experts. Experts can press buttons of the prototype, and watch the effect of

interactions on the prototype displays. By this means it is possible to check that the prototype behaviour

resembles that of the real system.

Step 4: Formal analysis. The prototype and the PVS theorem prover are used in combination to analyse

the model. The prototype is used to perform a lightweight formal analysis suitable to establish a common

understanding within a multidisciplinary team of the correct interpretation of safety requirements and

usability properties. This analysis consists in the execution of sample input key sequences demonstrating

scenarios where a given requirement is either satisfied or fails. This initial lightweight analysis based on

test cases is extended to a full formal analysis using the PVS theorem prover, to check that requirements

and properties of the model are satisfied for all input key sequences in all reachable model states. To

perform this full analysis, PVS theorems need to be defined that capture the requirements and properties.

They are expressed using structural induction and a set of templates described in [12]. An example



property that can be analysed is consistency of device response to user actions. The consistency property

is motivated by the fact that users quickly develop a mental model that embodies their expectations of

how to interact with a user interface. Because of this, the overall structure of a user interface should

be consistent in its layout, screen structure, navigation, terminology, and control elements. Example

consistency properties are: a designated set of function buttons always change the mode; a further set

of keys, for example concerned with number entry, will always change the barometric variable relevant

to the mode but do not change the mode; an enter key always changes the relevant parameter when in

the relevant mode; an escape key ensures that the value set in the mode is discarded and the barometric

value reverts to the value it had when it entered the mode.

In PVS, the consistency template is formulated as a property of a group of actions Ac ⊆℘(S → S),
or it may be the same action under different modes, requiring that all actions in the group have similar

effects on specific state variables selected using a filter. The relation consistent : C×C → T connects a

filtered state, before an action occurs (captured by f ilter pre : S×MS → C), with a filtered state after the

action (captured by f ilter post : S×MS → C). The description of the filters and the consistent relation

specify the consistency across states and across actions. Here MS is defined to be a set of modes. Two

modes are relevant here. A set of modes not defined includes the mode that allows the entry of the

barometer value. Within the barometer entry mode are two modes that relate to the different units that

can be used to enter the barometric values, defined as: inHg and hPa. A general notion of consistency

assumes that the property is restricted to a set of states focused by a guard: guard : S×MS → T . This

guard may itself be limited by a mode. The general consistency template can therefore be expressed as:

Consistency

∀a ∈ Ac ⊆℘(S → S),s ∈ S,m ∈ MS :

guard(s,m) ∧ consistent( f ilter pre(s,m), f ilter post(a(s),m))

Two examples are now used to illustrate the use of the consistency template. The first is that a set

of actions never change the barometric entry mode. The pre f ilter and post f ilter both extract the

barometric entry mode, and are of the form filter baro(st: state): UnitsType = Units(st).

This property relates directly to modes and therefore the mode parameter can be omitted in the filter

definition. The set of actions determined by state transitions actions which encompasses the set

of transitions as determined by the enabled actions in the barometric mode. In summary, the consistent

relation in this case is equality and the theorem that instantiates the consistency template is:

modeinvariant: THEOREM FORALL (pre, post: state):

state_transitions_actions(pre, post) => (filter_baro(pre) = filter_baro(post))

On the other hand the action clickhPa always changes the entry mode. So here consistent is inequality.

alwayschgmode: THEOREM

FORALL (pre, post: state):

(post = click_hPa(pre) AND guard_baro(pre))

=> filter_baro(pre) /= filter_baro(post)

4 Tool comparison

In this section, we first present the criteria that were identified to compare the characteristics and func-

tionalities of the two tools. These criteria form a basis for the comparison of these two tools.



4.1 Comparison criteria

We identified 22 criteria suitable to compare the characteristics and functionalities of the two tools. These

criteria are general, and can be used as a reference to define a taxonomy suitable to classify and compare

other similar formal IDEs for user interface modelling and analysis. These criteria are divided in four

categories:

• General aspects of the tools

1. Scope/purpose of the tool within the development process, e.g., requirements analysis, pro-

totyping, verification.

2. Tool features, e.g., modelling of user tasks and goals, analysis of usability properties, simu-

lation of user tasks.

3. Tool extensibility, e.g., to model systems from different application domains, or to perform a

different type of analysis

4. Prerequisites and background knowledge, e.g., distributed systems, object oriented languages,

Petri Nets, task modelling, PVS.

5. IDE instance and principle, e.g., Eclipse plugin, Web, Netbeans API

6. IDE availability, e.g., snapshot, demo, downloadable, open source.

• Modelling features

7. Notation names, e.g., ICO, HAMSTERS, Emucharts, PVS.

8. Notation instance, e.g., Petri Net, state machines, higher-order logic.

9. Notation paradigm, e.g., event-based, state-based, declarative.

10. Structuring models, e.g., object-oriented, functional, component-based.

11. Model editing features, e.g., textual, visual, autocompletion support.

12. Suggestions for model improvements, e.g., strengthening of pre-conditions.

• Prototyping features

13. Support for prototype building, e.g., visual editor, library of widgets.

14. Execution environment of the prototype, e.g., Java virtual machine, Javascript execution en-

vironment.

15. User interface testing, e.g., automatic generation of input test cases.

16. Human-machine interaction techniques, e.g., Pre-WIMP (input dissociated from output),

WIMP, post-WIMP, tangible, multimodal.

17. Code generation, e.g., C, C++, Java.

• Analysis of human-machine interaction

18. Verification type, e.g., functional verification, performance analysis, hierarchical task analy-

sis;

19. Verification technology, e.g., theorem proving, static analysis.

20. Scalability of the analysis, e.g., illustrative examples, industrial size.

21. Support for the analysis of the wider socio-technical system.

22. Related development process, e.g., user centered design, waterfall development process, agile

development.



4.2 CIRCUS and PVSio-web comparison

In this section, we discuss, following the four categories of criteria identified above, the comparison of

CIRCUS and PVSio-web. A detailed assessment of all the criteria presented above is presented in tabular

form in the Appendix.

General aspects of the tools. From a high-level perspective, the scope of CIRCUS and PVSio-web

is the formal development of user interfaces. Both tools support modelling and analysis of the interac-

tion logic of the user interface software. However, the two tools offer different modelling and analysis

technologies that are tailored to support two different (and complementary) styles of assessment of user

interfaces. CIRCUS supports explicit modelling of user tasks and goals, allowing developers to simulate

user tasks and check their compatibility with the interactive behaviour of the system. PVSio-web, on

the other hand, supports explicit modelling of general usability and safety properties, facilitating the as-

sessment of compliance of a user interface design with design guidelines and best design practices (e.g.,

according to standards or regulatory frameworks). Whilst a certain level of background knowledge is

needed to use the tools effectively, basic knowledge about Petri nets and task models (for CIRCUS) and

state machines and state charts (for PVSio-web) is already sufficient to get started with illustrative exam-

ples. This is extremely useful to reduce the typical knowledge barriers faced by novice users. The two

IDEs are developed using standard technologies supported by multiple platforms (Netbeans Visual API

for CIRCUS, Web technologies for PVSio-web), and can be executed on any standard desktop/laptop

computer.

Modelling features. Both tools provide powerful graphical IDEs designed to assist developers in the

creation of formal models. CIRCUS uses specialised graphical notations and diagrams: the ICO no-

tation is used for building system models; the HAMSTERS notation is used for describing user tasks.

ICOs are based on object-oriented extensions to Petri nets, and support both event-based and state-based

modelling. HAMSTERS is a procedural notation. The complexity of models is handled using infor-

mation hiding (as in object-oriented programming languages), and component-based model structures.

This facilitates the creation of complex models, as well as the implementation of editing features that are

important for developers, such as auto-completion of models and support for parametric models. The

use of specific notations, however, limits the ability of developers to import external models created with

other tools, or export CIRCUS models to other tools. PVSio-web, on the other hand, uses modelling

patterns to support the modelling process. Developers can use either a graphical notation (Emucharts

diagrams, or a textual notation (PVS higher-order logic), or a combination of both, to specify the system

model. This has many benefits: software developers that are familiar with Statecharts can build models

using a language that is familiar for them, and gradually learn PVS modelling by examples, checking

how the Emucharts model translates into PVS; Emucharts models can be translated into popular formal

modelling languages different than PVS (e.g., VDM); expert PVS users can still develop entire models

using PVS higher-order logic only, and software developers can import these PVS models as libraries,

thus facilitating model re-use. The main drawback is that the current implementation of Emucharts lacks

mechanisms for model optimisation (e.g., a battery of similar PVS functions is generated instead of a

single function with a parameter), and technical skills are necessary to understand model improvements

suggested by the tool (through the PVS type-checker).

Prototyping features. Both IDEs provide a visual editor for rapid generation of prototypes supporting a

range of interaction styles, including: graphical user interfaces with windows, icons, menus, and pointer

(WIMP); user interfaces with physical buttons (pre-WIMP); touchscreen-based user interfaces (post-

WIMP); and multi-modal user interfaces (e.g., providing both visual and auditory feedback). Both tools

promote the use of the Model-View-Controller (MVC [15]) paradigm, with a clear separation between



the visual appearance of the prototype and the logic behaviour. Whilst prototypes developed with the

two IDEs share these similarities, prototype building and implementation is substantially different in the

two IDEs. CIRCUS prototypes are developed in Java (for their visual appearance) and in ICO models

(for their behaviour). Developers can define their own widgets library. For example, for the case study

presented in Section 3, we created a library of widgets whose visual aspect and behaviour is compatible

with that described in the ARINC 661 standard. PVSio-web prototypes are developed in JavaScript, and

their behaviour is defined by a PVS executable model. Rapid prototyping is enabled by a lightweight

building process where the visual aspect of the prototype is defined by a picture of the real device,

virtually reducing to zero the time and effort necessary to define the visual appearance of the prototype.

Initial support for code generation is also available for MISRA-C, for behavioural models developed

using Emucharts [21]. A specialised tool (Prototype Builder) is provided with the IDE, to facilitate the

identification of interactive areas over the picture, and to link these areas to the PVS model. The current

implementation of the Prototype Builder supports only the definition of push buttons and digital display

elements, and developers need to edit a JavaScript template manually to introduce more sophisticated

widgets (e.g., knobs, graphical displays, etc.). Integration of these more sophisticated widgets in the

Prototype Builder is currently under development.

Analysis of human-machine interaction. Multiple verification technologies are used in the two IDEs

to enable the efficient analysis of human-machine interaction. Both tools build on established formal

methods technologies, and enable lightweight formal analysis based on simulation and testing. CIR-

CUS implements static analysis techniques from Petri nets theory to perform automatic analysis of well-

formedness properties of the model (absence of deadlocks, token conservation), and of basic aspects of

the interactive system design (e.g., reinitiability of the user interface and availability of widgets). Simu-

lation is used for functional analysis and quantitative assessment of the system. Either direct interaction

with the prototype and automated execution of task models can be used during simulations. Properties

verified by this means include: compliance with task models; statistics about the total number of user

tasks, and estimation of the cognitive workload of the user based on the types of human-machine inter-

actions necessary to operate the system. PVSio-web uses the standard PVS theorem proving system to

analyse well-formedness properties of the model (coverage of conditions, disjointness of conditions, and

correct use of data types). Usability and safety requirements can be verified using both lightweight for-

mal verification and full formal verification. Lightweight verification is based on interactive simulations

with the prototypes. User interactions can be recorded and used later as a basis for automated testing

in a way similar to the way task models are used in CIRCUS. Full formal verification is carried out in

the PVS theorem prover, and is partially supported by property templates capturing common usability

and safety requirements described in the ANSI/AAMI/IEC HF75 usability standard. Although the full

formal analysis is in general not fully automatic, the combined use of property templates and modelling

patterns usually leads to proof attempts where minimal human intervention is necessary to guide the

theorem prover (typically, for case-splitting and instantiation of symbolic identifiers). Proof tactics for

full automatic verification of a standard battery of property templates are currently under development.

Dedicated front-ends presenting verification results in a form accessible to human factors specialists are

also being investigated.

5 Conclusion and perspectives

In this paper, we presented a first step towards providing guidance to developers to understand which

formal tool can be used most effectively for which kind of analysis of interactive systems. This is



achieved through the identification of 22 criteria enabling the characterisation of IDEs for interactive

systems formal prototyping and development. These criteria have been used to compare two state-of-

the-art formal tools developed by two different research teams: CIRCUS, a toolkit for model-based

development of interactive systems; and PVSio-web, a toolkit for model-based development of user

interface software based on the PVS theorem proving system. In order to assess all the criteria, we

modelled and analysed a case study from the avionics domain using these two tools. The result of this

comparison led to the conclusion that the two studied tools are complementary rather than competitive

tools. Whilst they have roughly the same scope (formal development of user interfaces), these two tools

enable different kinds of modelling and analysis. For instance, CIRCUS supports explicit modelling of

user tasks and goals, allowing developers to simulate user tasks and check their compatibility with the

interactive behaviour of the system while PVSio-web supports explicit modelling of general usability

and safety properties, facilitating the assessment of compliance of a user interface design with design

guidelines and best design practices. These two analysis styles are complementary, and both provide

important insights about how to develop high-confidence user interfaces. Based on this understanding,

we are now developing means to integrate the two IDEs, to enable new powerful analysis features, such

as automated scenario-based testing of user interfaces [5]. The envisioned integration is introduced at two

levels: at the modelling level, developing PVSio-web extensions for importing/translating HAMSTERS

task models into PVS models and properties; and at the simulation level, building CIRCUS extensions

for co-execution of task models and PVSio-web prototypes. Additional extensions under development

for the two toolkits include: modelling patterns for describing human-machine function allocation; proof

tactics and complementary use of different verification technologies for improved automation of usability

and safety properties; innovative front-ends for inspecting formal proofs supporting safety and usability

claims of user interfaces; and widgets libraries for different application domains.
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Appendix

Formal IDE CIRCUS PVSio-web

1. Scope/purpose Interactive system prototyping, development, and analysis. User interface software prototyping and analysis.

2. Tool features User task and goals description, interaction logic (dialog) and interac-

tion techniques modelling, interactive system prototyping, support for

verification of properties, assessment of compatibility between user

tasks and interactive system prototype.

Interaction logic modelling, rapid prototyping of user interface soft-

ware, verification of safety requirements and usability properties, code

generation and documentation.

3. Tool extensibility Each tool within CIRCUS offers an API supporting connection to other

computing systems. For instance, connecting PetShop execution en-

gine to cockpit software simulators or connecting Petri net analysis

tools to PetShop analysis module.

PVSio-web has a plug-in based architecture that enables the rapid in-

troduction of new modelling, prototyping, and analysis tools; support

for new widgets types and widgets libraries can be introduced in Pro-

totype Builder; Emucharts Editor can be extended with new model

generators and code generators.

4. Background knowledge Object-Oriented Petri Nets (for Petshop), Java programming, dis-

tributed systems, hierarchical task modelling.

State machines, PVS higher order logic and PVS theorem proving

(only required for full formal verification).

5. IDE principles Netbeans Visual API Web

6. IDE availability Available upon request for collaborations only. Open source, downloadable at http://www.pvsioweb.org

7. Notation names ICO, HAMSTERS. Emucharts, PVS.

8. Notation instance Petri Net, task models. Statecharts, higher-order logic.

9. Notation paradigm Event-based, state-based, procedural. Event-based, state-based, functional.

10. Structuring models Object-oriented, component-based. Module-based.

11. Model editing features Graphical editing of task models, ICO models and their correspon-

dences, auto-completion features of models, visual representation of

properties on models, simulation of models at editing time.

Graphical and textual editing of models, automatic generation of PVS

models.

12. Suggestions for model

improvement

Suggestions for model correction by real time analysis of models and

continuous visualization of analysis results.

Strengthening of pre- and post- conditions of transition functions

(based on proof obligations generated by PVS).

continues on next page...



Formal IDE CIRCUS PVSio-web

13. Prototype building Use of graphical user interface editor of NetBeans for standard inter-

actions (e.g. WIMP), possible to create interactive components and

assemble them for non standard intereactions (e.g. multitouch).

Visual editing, based on a picture of the real system.

14. Prototype execution Java Virtual Machine. Javascript execution environment, Lisp.

15. User interface testing Automatic execution of test sequences based on a task model Automated execution of input test sequences recorded during interac-

tions with the prototype.

16. Human-machine

interaction techniques

Pre-WIMP, WIMP, post-WIMP, multimodal, multi-touch. Run-time

re-configuration of interaction techniques.

Pre-WIMP, WIMP, post-WIMP, multimodal.

17. Code generation Run-time execution of ICO models (to support prototyping and co-

execution of task and system models).

Run-time execution of PVS executable models through the PVS

ground evaluator (to support rapid prototyping), and automatic gen-

eration of production code compliant to MISRA-C (only for formal

models developed using Emucharts diagrams).

18. Verification types Well-formedness of the model: absence of deadlocks, token conserva-

tion. Functional analysis: reinitiability; availability of widgets; com-

pliance with task models. Quantitative analysis: statistics about the

total number of user tasks; estimation of the cognitive workload of the

user based on the types of human-machine interactions necessary to

operate the system. Simulation-based analysis through model anima-

tion.

Functional analysis, including: coverage of conditions, disjointness of

conditions, correct use of data types, compliance with design require-

ments. Simulation-based analysis through model animation.

19. Technology Static analysis of Petri Nets; interactive simulation of task and system

models. Proofs and properties verification left to the analyst.

Theorem proving; interactive simulations.

20. Scalability Applied to very large scale (industrial) applications (more than 200

models).

User interface prototype of stand-alone devices.

21. Analysis of the wider

socio-technical system

Modelling of integrated views of the three elements of socio-technical

systems (organization, human and interactive systems); however,

FRAM-based description of organization and variability of perfor-

mance has only be addressed at model level and not a tool level.

Modelling patterns based on distributed cognition theory have been

explored in PVS but are not currently integrated in the IDE.

22. Related development

process

User centered design (task-based design), iterative development,

model-based engineering.

User centered design, agile development, model-based engineering.


