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Abstract

The 3-RPS Cube parallel manipulator, a three-degree-of-freedom parallel manipulator

initially proposed by Huang et al. in 1995, is analysed in this paper with an algebraic

approach, namely Study kinematic mapping of the Euclidean group SE(3) and is described

by a set of eight constraint equations.

A primary decomposition is computed over the set of eight constraint equations and

reveals that the manipulator has only one operation mode. Inside this operation mode,

it turns out that the direct kinematics of the manipulator with arbitrary values of design

parameters and joint variables, has sixteen solutions in the complex space. A geometric

interpretation of the real solutions is given.

The singularity conditions are obtained by deriving the determinant of the Jacobian

matrix of the eight constraint equations. All the singular poses are mapped onto the

joint space and are geometrically interpreted. By parametrizing the set of constraint

equations under the singularity conditions, it is shown that the manipulator is in actuation

singularity. The uncontrolled motion gained by the moving platform is also provided.
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The motion of the moving platform is essentially determined by the fact that three

vertices in the moving platform move in three mutually orthogonal planes. The workspace

of each point of the moving platform (with exception of the three vertices) is bounded by

a Steiner surface. This type of motion has been studied by Darboux in 1897.

Moreover, the 3-dof motion of the 3-RPS Cube parallel manipulator contains a special

one-degree-of-freedom motion, called the Vertical Darboux Motion. In this motion, the

moving platform can rotate and translate about and along the same axis simultaneously.

The surface generated by a line in the moving platform turns out to be a right-conoid

surface.

Keywords: 3-RPS-Cube, parallel manipulators, singularities, operation mode, motion

type, Darboux motion.

1 Introduction

Since the development of robot technology, the lower-mobility parallel manipulators have

been extensively studied. One parallel manipulator of the 3-dof family is the 3-RPS Cube

and was proposed by Huang et al. in 1995 [1]. The 3-RPS Cube parallel manipulator,

shown in Fig. 1, is composed of a cube-shaped base, an equilateral triangular-shaped

platform, and three identical legs. Each leg is composed of a revolute joint, an actuated

prismatic joint and a spherical joint mounted in series.

By referring to the design of the 3-RPS Cube manipulator, the type synthesis of 3-

dof rotational manipulators with no intersecting axes was discussed in [2]. The kinematic

characteristics of this mechanism were studied in [3–5], by identifying the principal screws,

and the authors showed that the manipulator belongs to the general third-order screw

system, which can rotate in three dimensions and the axes do not intersect.

In [6], Huang et al. showed that the mechanism is able to perform a motion along

its diagonal, which is known as the Vertical Darboux Motion (VDM). Several mechanical

generators of the VDM were later revealed by Lee and Hervé [7], in which one point in

the moving platform is compelled to move in a plane.
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Later in [8], the authors showed that the manufacturing errors have little impact

on the motion properties of the 3-RPS Cube parallel manipulator. By analysing the

Instantaneous Screw Axes (ISA), Chen et al. showed in [9] that this mechanism performs

parasitic motions, in which the translations and the rotations are coupled.

By using an algebraic description of the manipulator and the Study kinematic map-

ping, a characterisation of the operation mode, the direct kinematics, the general motion,

and the singular poses of the 3-RPS Cube parallel manipulator are discussed in more

detail in this paper, which is based on [10–14]. The derivation of the constraint equations

is the first essential step to reveal the existence of only one operation mode and to solve

the direct kinematics problem.

In 1897, Darboux [15] studied the 3-dof motion where the vertices of a triangle are

compelled to remain in the planes of a trihedron respectively. The three planes are

mutually orthogonal and this is the case of the 3-RPS Cube parallel manipulator. Darboux

showed that in this 3-dof motion, the workspace of each point of the moving platform

is bounded by a Steiner surface, while the vertices of the moving platform remain in the

planes.

Under the condition that the prismatic lengths remain equal, the moving platform of

the manipulator is able to perform the VDM. It follows from Bottema and Roth [15] that

this motion is the result of a rotation about an axis and a harmonic translation along the

same axis. In this motion, all points in the moving platform (except the geometric center

of the moving platform) move in ellipses and the path of a line in the moving platform is

a right-conoid surface.

The singularities are examined in this paper by deriving the determinant of the Ja-

cobian matrix of the constraint equations with respect to the Study parameters. Based

on the reciprocity conditions, Joshi and Tsai in [16] developed a procedure to express the

Jacobian matrix J of lower-mobility parallel manipulators that comprises both actuation

and constraint wrenches. In this paper, this matrix is named the extended Jacobian ma-

trix (JE) of the lower-mobility parallel manipulators, as explained in [17–21]. The rows

of JE are composed of n linearly independent actuation wrenches plus (6 − n) linearly
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independent constraint wrenches.

In a general configuration, the constraint wrench system, Wc, must be reciprocal to the

twist system of the moving platform of the parallel manipulator. A constraint singularity

occurs when the (6−n) constraint wrench systemWc degenerates. In such a configuration,

at least one of the initial constrained motions will no longer be constrained. As a result,

the mechanism gains one or several dof . This can lead to a change in the motion pattern

of the mechanism, which then can switch to another operation mode.

By locking the actuated joints of the parallel manipulator, the moving platform must

be fully constrained, i.e., the system spanned by the actuation wrench system, Wa, and

constraint wrench system, Wc, must span a 6-system. An actuation singularity hence

occurs when this overall wrench system of the manipulator degenerates, i.e., is not a

6-system any more, while the manipulator does not reach a constraint singularity.

This concept will be applied in this paper to illustrate the singularities of the extended

Jacobian matrix (JE) of the 3-RPS Cube parallel manipulator. It allows us to investigate

the actuation and constraint singularities that occur during the manipulator motion.

This paper is organized as follows: A detailed description of the manipulator architec-

ture is given in Section 2. The constraint equations of the manipulator are expressed in

Section 3. These equations are used to identify the operation mode(s) and the solutions of

the direct kinematics of the manipulator in Section 4. In Section 5, the conditions on the

leg lengths for the manipulator to reach a singularity configuration are presented. Even-

tually, the general motion and the Vertical Darboux Motion (VDM) of the manipulator

are reviewed in Sections 6 and 7.

2 Manipulator Architecture

The 3-RPS Cube parallel manipulator shown in Fig. 1, is composed of a cube-shaped base,

an equilateral triangular-shaped platform and three identical legs. Each leg is composed

of a revolute joint, an actuated prismatic joint and a spherical joint mounted in series.

The origin O of the fixed frame Σ0 is shifted along σ0 = [h0, h0, h0] from the center of

the base in order to fulfill the identity condition (when the fixed frame and the moving

Paper JMR-14-1262, corresponding author’s last name: CARO 4



frame are coincident), as shown by the large and red dashed box in Fig. 1. Likewise, the

origin P of the moving frame Σ1 is shifted along σ1 = [h1, h1, h1] as described by the small

and blue dashed box in Fig. 1.

The revolute joint in the i-th (i = 1 . . . 3) leg is located at point Ai, its axis being along

vector si, while the spherical joint is located at point Bi, the i-th corner of the moving

platform. The distance between the origin O of the fixed frame Σ0 and point Ai is equal

to h0
√
2. The axes s1, s2 and s3 are orthogonal to each other. The moving platform has

an equilateral triangle shape and its circumradius is equal to d1 = h1
√
6/3.

Each pair of vertices Ai and Bi (i = 1, 2, 3) is connected by a prismatic joint. The

prismatic length is denoted by ri. Since the i-th prismatic length is orthogonal to the

revolute axis si, the leg AiBi moves in a plane normal to si.

As a consequence, there are five parameters, namely r1, r2, r3, h0, and h1. h0 and

h1 are design parameters, while r1, r2, and r3 are joint variables that determine the

manipulator motion.

3 Constraint Equations

In this section, the constraint equations are expressed whose solutions illustrate the pos-

sible poses of the moving platform (coordinate frame Σ1) with respect to Σ0. In the

following, we use projective coordinates to define the position vectors of points Ai and

Bi. The coordinates of points Ai and points Bi expressed in Σ0 and Σ1 are respectively:

r
0

A1
= [1, 0,−h0,−h0]

T , r
1

B1
= [1, 0,−h1,−h1]

T ,

r
0

A2
= [1,−h0, 0,−h0]

T , r
1

B2
= [1,−h1, 0,−h1]

T ,

r
0

A3
= [1,−h0,−h0, 0]

T , r
1

B3
= [1,−h1,−h1, 0]

T

(1)

To obtain the coordinates of pointsB1, B2 andB3 expressed in Σ0, the Study parametriza-

tion of a spatial Euclidean transformation matrix M ∈ SE(3) is used as follows:
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Figure 1: The 3-RPS Cube Parallel Manipulator.

M =







x2
0
+ x2

1
+ x2

2
+ x2

3
0
T
3×1

MT MR






(2)

where MT and MR represent the translational and rotational parts of transformation

matrix M, respectively, and are expressed as follows:
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MT =













2(−x0y1 + x1y0 − x2y3 + x3y2)

2(−x0y2 + x1y3 + x2y0 − x3y1)

2(−x0y3 − x1y2 + x2y1 + x3y0)













,

MR =













x2
0
+ x2

1
− x2

2
− x2

3
2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0
− x2

1
+ x2

2
− x2

3
2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0
− x2

1
− x2

2
+ x2

3













(3)

The parameters x0, x1, x2, x3, y0, y1, y2, y3, which appear in matrix M, are called Study

parameters. These parameters make it possible to parametrize SE(3) with dual quater-

nions. The Study kinematic mapping maps each spatial Euclidean displacement of SE(3)

via transformation matrix M onto a projective point X [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

in the 6-dimensional Study quadric S ∈ P
7 [14], such that:

SE(3) → X ∈ P
7

(x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T 6= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

(4)

Every projective point X will represent a spatial Euclidean displacement, if it fulfills the

following equation and inequality:

x0y0 + x1y1 + x2y2 + x3y3 = 0,

x2
0
+ x2

1
+ x2

2
+ x2

3
6= 0

(5)

Those two conditions will be used in the following computations to simplify the alge-

braic expressions. The coordinates of points Bi expressed in Σ0 are obtained by:

r
0

Bi
= M r

1

Bi
i = 0, . . . , 3 (6)

As the coordinates of all points are given in terms of Study parameters, design pa-

rameters and joint variables, the constraint equations can be obtained by examining the
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manipulator architecture. The leg connecting points Ai and Bi is orthogonal to the axis

si of the i-th revolute joint, expressed as follows:

s1 = [0, 1, 0, 0]T

s2 = [0, 0, 1, 0]T

s3 = [0, 0, 0, 1]T

(7)

Accordingly, the scalar product of vector (r0Bi
− r

0

Ai
) and vector si vanishes, namely:

(r0Bi
− r

0

Ai
)T si = 0 (8)

After computing the corresponding scalar products and removing the common denom-

inators (x2
0
+ x2

1
+ x2

2
+ x2

3
), the following three equations come out:

g1 :− h1x0x2 + h1x0x3 − h1x1x2 − h1x1x3 − x0y1 + x1y0 − x2y3 + x3y2 = 0

g2 : h1x0x1 − h1x0x3 − h1x1x2 − h1x2x3 − x0y2 + x1y3 + x2y0 − x3y1 = 0

g3 :− h1x0x1 + h1x0x2 − h1x1x3 − h1x2x3 − x0y3 − x1y2 + x2y1 + x3y0 = 0

(9)

To derive the constraint equations corresponding to the leg lengths, the joint variables

ri are given and we assume that the distance between points Ai and Bi is constant, i.e.

ri = const. It follows that point Bi has the freedom to move along a circle of center Ai

and the distance equation can be formulated as ‖(r0Bi
− r

0

Ai
)‖2 = r2i . As a consequence,

the following three equations are obtained:
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g4 : 2h
2

0x
2

0 + 2h20x
2

1 + 2h20x
2

2 + 2h20x
2

3 − 4h0h1x
2

0 + 4h0h1x
2

1 + 2h21x
2

0

+ 2h21x
2

1 + 2h21x
2

2 + 2h21x
2

3 − 8h0h1x2x3 − r21x
2

0 − r21x
2

1 − r21x
2

2

− r21x
2

3 − 4h0x0y2 − 4h0x0y3 − 4h0x1y2 + 4h0x1y3 + 4h0x2y0

+ 4h0x2y1 + 4h0x3y0 − 4h0x3y1 + 4h1x0y2 + 4h1x0y3 + 4y20

− 4h1x1y2 + 4h1x1y3 − 4h1x2y0 + 4h1x2y1 − 4h1x3y0 + 4y21

− 4h1x3y1 + 4y22 + 4y23 = 0

g5 : 2h
2

0x
2

0 + 2h20x
2

1 + 2h20x
2

2 + 2h20x
2

3 − 4h0h1x
2

0 + 4h0h1x
2

2 + 2h21x
2

0

+ 2h21x
2

1 + 2h21x
2

2 + 2h21x
2

3 − 8h0h1x1x3 − r22x
2

0 − r22x
2

1 − r22x
2

2

− r22x
2

3 − 4h0x0y1 − 4h0x0y3 + 4h0x1y0 − 4h0x1y2 + 4h0x2y1

− 4h0x2y3 + 4h0x3y0 + 4h0x3y2 + 4h1x0y1 + 4h1x0y3 + 4y20

− 4h1x1y0 − 4h1x1y2 + 4h1x2y1 − 4h1x2y3 − 4h1x3y0 + 4y21

+ 4h1x3y2 + 4y22 + 4y23 = 0

g6 : 2h
2

0x
2

0 + 2h20x
2

1 + 2h20x
2

2 + 2h20x
2

3 − 4h0h1x
2

0 + 4h0h1x
2

3 + 2h21x
2

0

+ 2h21x
2

1 + 2h21x
2

2 + 2h21x
2

3 − 8h0h1x1x2 − r23x
2

0 − r23x
2

1 − r23x
2

2

− r23x
2

3 − 4h0x0y1 − 4h0x0y2 + 4h0x1y0 + 4h0x1y3 + 4h0x2y0

− 4h0x2y3 − 4h0x3y1 + 4h0x3y2 + 4h1x0y1 + 4h1x0y2 + 4y20

− 4h1x1y0 + 4h1x1y3 − 4h1x2y0 − 4h1x2y3 − 4h1x3y1 + 4y21

+ 4h1x3y2 + 4y22 + 4y23 = 0

(10)

The Study equation in Eq. (5) is added since all solutions have to be within the Study

quadric, i.e.:

g7 : x0y0 + x1y1 + x2y2 + x3y3 = 0 (11)

Under the condition (x2
0
+ x2

1
+ x2

2
+ x2

3
6= 0), we can find all possible points in P

7 that

satisfy those seven equations. To exclude the exceptional generator (x0 = x1 = x2 = x3 =

0), we add the following normalization equation:
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g8 : x
2

0 + x21 + x22 + x23 − 1 = 0 (12)

It assures that there is no point of the exceptional generator that appears as a solution.

However, for each projective solution point, we obtain two affine representatives. This

has to be taken into account for the enumeration of the number of solutions.

4 Solving the System

Solving the direct kinematics means finding all possible points in P
7 that fulfill the set of

equations {g1, ..., g8}. Those points are the solutions of the eight constraint equations that

represent all feasible poses of the 3-RPS Cube parallel manipulator. They also depend on

the design parameters (h0, h1) and the joint variables (r1, r2, r3).

The set of eight constraint equations are always written as a polynomial ideal with

variables {x0, x1, x2, x3, y0, y1, y2, y3} over the coefficient ring C[h0, h1, r1, r2, r3]. Although

the solutions of the direct kinematics can be complex, they are still considered as solutions.

To apply the method of algebraic geometry, the ideal is now defined as:

I =< g1, g2, g3, g4, g5, g6, g7, g8 > (13)

The vanishing set V(I) of the ideal I comprises all points in P
7 for which all equations

vanish, namely all solutions of the direct kinematic problem. At this point, the following

ideal is examined, which is independent of the joints variables r1, r2 and r3:

J =< g1, g2, g3, g7 > (14)

The primary decomposition is computed to verify if the ideal J is the intersection of

several smaller ideals. The primary decomposition returns several Ji in which J =
⋂

i Ji.

In other words, the vanishing set is given by V(J ) =
⋃

iV(Ji). It expresses that the

variety V(J ) is the union of some other or simpler varieties V(Ji).

The primary decomposition geometrically tells us that the intersection of those equa-
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tions will split into smaller parts. Indeed, it turns out that the ideal J is decomposed

into two components Ji as:

J =

2
⋂

i=1

Ji (15)

with the results of primary decompositions1 as follows:

J1 = < x0y0 + x1y1 + x2y2 + x3y3, ... >

J2 = < x0, x1, x2, x3 >

(16)

An inspection of the vanishing set V(J2 ∪ g8) yields an empty result, since the set of

polynomials {x0, x1, x2, x3, x20+x2
1
+x2

2
+x2

3
−1 = 0} can never vanish simultaneously over

R or C. Therefore, only one component is left and as a consequence, the manipulator has

only one operation mode, which is defined by J1. To complete the analysis, the remaining

equations have to be added by writing:

Ki = Ji∪ < g4, g5, g6, g8 > (17)

Since there is only one component, the vanishing set of I is now defined by:

V(I) = V(K1) (18)

From the primary decomposition, it is shown that the ideal I cannot be split and K1

is named I hereafter.

4.1 Solutions for arbitrary design parameters

The 3-RPS Cube manipulator generally has only one operation mode, which is described

by the ideal I. The solutions of the direct kinematic problem in this operation mode

will be given for arbitrary values of design parameters (h0, h1). To find out the Hilbert

dimension of the ideal I, the certain values of design parameters are chosen as h0 = 2 m

1For complete results of the primary decomposition, the reader may refer to:
http://www.irccyn.ec-nantes.fr/~caro/ASME_JMR/JMR_14_1262/Appendix_3RPSCube.pdf
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and h1 = 1 m. It turns out that:

dim(I) = 0 (19)

The dim denotes the dimension over C[h0, h1, r1, r2, r3] and shows that the number

of solutions to the direct kinematic problems is finite in this general mode. The number

of solutions and the solutions themselves were computed via an ordered Gröbner basis,

which led to a univariate polynomial of degree 32. As two solutions of a system describe

the same pose (position and orientation) of the moving platform, the number of solutions

has to be halved into 16 solutions.

| V(I) |= 16 (20)

Therefore, there are at most 16 different solutions for given general design parameters

and joint variables, i.e., there are theoretically 16 feasible poses of the moving platform

for given joint variables. Notably, for arbitrarily values of design parameters and joint

variables, some solutions might be complex.

4.2 Solutions for equal leg lengths

In the following subsection, it is assumed that all legs have the same length. The corre-

sponding prismatic lengths are r1 = r2 = r3 = r. Similar computations can be performed

which were done in the previous subsection to enumerate the Hilbert dimension of the

ideal. The Hilbert dimension is calculated and it follows that:

dim(I) = 0 (21)

This shows that the solutions of the direct kinematics problem with equal leg lengths are

finite. When the number of solutions is computed for the system, it has to be halved and

the following result is obtained:
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| V(I) |= 16 (22)

The number of solutions for equal leg lengths is the same number as the solutions

for arbitrary design parameters. Due to the fact that there are fewer parameters, the

Gröebner basis can be computed without specifying any value. The solutions of Study

parameters in the case of equal leg lengths are x1 = x2 = x3 and y1 = y2 = y3. One

manipulator pose with equal prismatic lengths leads to the following solutions of Study

parameters:

x0 =
1
2

√

−h1

(
√

3h2
0
− 2h2

1
+ 3r2 − 3h0 − 2h1

)

h1

x1 =
1
6

√
3

√

h1

(
√

3h2
0
− 2h2

1
+ 3r2 − 3h0 + 2h1

)

h1

y0 =
1
12

√
3
(

h1
(

√

3h2
0
− 2h2

1
+ 3r2 − 3h0 + 2h1

)

)3/2

h12

y1 = − 1
12h1

√

−h1

(

√

3h2
0
− 2h2

1
+ 3r2 − 3h0 − 2h1

)(

2h1

−3h0 +
√

3h2
0
− 2h2

1
+ 3r2

)

x1 = x2 = x3

y1 = y2 = y3

(23)

4.3 Operation mode analysis

In the previous section, the joint variables (r1, r2, r3) were fixed. In this section, they

can change, i.e., the behaviour of the mechanism is studied when the prismatic joints are

actuated. The joint variables (r1, r2 and r3) are used as unknowns and the computation

of the Hilbert dimension shows that:

dim(I) = 3 (24)
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where dim denotes the dimension over C[h0, h1] and shows that the manipulator has 3

dof in general motion.

The matrix M ∈ SE(3) in Eq. (2) represents a discrete screw motion from the pose

corresponding to the identity condition, where Σ0 and Σ1 are coincident, to the trans-

formed pose of Σ1 with respect to Σ0. A discrete screw motion is the concatenation of a

rotation about an axis and a translation along the same axis. The axis A, the translational

distance s, and the rotational angle ϕ of the discrete screw motion can be computed from

the matrix M. This information can also be obtained directly from the Study param-

eters, as they contain the information on the transformation. The Plücker coordinates

L = (p0 : p1 : p2 : p3 : p4 : p5) of the corresponding discrete screw motion are expressed

as:

p0 = (−x2
1
− x2

2
− x2

3
)x1,

p1 = (−x2
1
− x2

2
− x2

3
)x2,

p2 = (−x2
1
− x2

2
− x2

3
)x3,

p3 = x0y0x1 − (−x2
1
− x2

2
− x2

3
)y1,

p4 = x0y0x2 − (−x2
1
− x2

2
− x2

3
)y2,

p5 = x0y0x3 − (−x2
1
− x2

2
− x2

3
)y3.

(25)

The unit vector of an axis A of the corresponding discrete screw motion is given by

[p0, p1, p2]
T . The Plücker coordinates of a line should satisfy the following condition [22]:

p0p3 + p1p4 + p2p5 = 0 (26)

The rotational angle ϕ can be enumerated directly from cos
(

ϕ
2

)

= x0, whereas the

translational distance s of the transformation can be computed from the Study parame-

ters, as follows:
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s =
2y0

√

x2
1
+ x2

2
+ x2

3

(27)

The following example shows the manipulator poses by solving the direct kinematic

problem. Arbitrary values are assigned to the design parameters and joint variables as

follows: h0 = 2 m, h1 = 1 m, r1 = 1.2 m, r2 = 2 m, and r3 = 1.5 m. By considering

only the real solutions, the manipulator has two solutions for those design parameters and

joint variables.

The first solution of the direct kinematics is depicted in Fig. 2(a), with (x0 : x1 : x2 :

x3 : y0 : y1 : y2 : y3) = (−0.961 : −0.189,−0.153 : 0.128 : −0.007 : 0.304 : −0.250 : 0.089).

The discrete screw motion of the moving platform from identity into the actual pose in

Fig. 2(a) is along the axis A1. In Plücker coordinates, it is given by (p0 : p1 : p2 : p3 :

p4 : p5) = (0.014 : 0.011 : −0.009 : 0.021 : −0.020 : 0.007). The rotational angle and

translational distance along the screw axis A1 are ϕ1 = 5.725 rad and s1 = −0.057 m,

respectively.

Figure 2(b) illustrates the second solution of the direct kinematic problem, with (x0 :

x1 : x2 : x3 : y0 : y1 : y2 : y3) = (0.962 : 0.056 : −0.021 : −0.265 : 0.001 : −0.293 : 0.232 :

−0.076). The moving platform is transformed from the identity into the final pose via

the axis A2 in Fig. 2(b), with rotational angle ϕ2 = 0.552 rad and translational distance

s2 = 0.01 m. The Plücker coordinate vector of the discrete screw motion is defined by

(p0 : p1 : p2 : p3 : p4 : p5) = (−0.004 : 0.001 : 0.019 : −0.021 : 0.017 : −0.006).

5 Singularity Conditions of the Manipulator

The manipulator reaches a singular configuration when the determinant of the Jacobian

matrix vanishes. The Jacobian matrix is the matrix of all first order partial derivatives of

eight constraint equations {g1, g2, g3, g4, g5, g6, g7, g8} with respect to {x0, x1, x2, x3, y0, y1, y2, y3}.

Since the manipulator has one operation mode, the singular configurations occur within

this operation mode only. In the kinematic image space, the singular poses are computed

by taking the Jacobian matrix from I:
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(a) (b)

Figure 2: Solutions of the Direct Kinematics.

J =

(

∂gj
∂xk

,
∂gj
∂yk

)

, j = 1, . . . , 8 , k = 0, . . . , 3 (28)

The vanishing condition det(J) = 0 of the determinant J is denoted by S. The factoriza-

tion of the equation of the Jacobian determinant splits it into two components, namely

S1 : det1(J) = 0 and S2 : det2(J) = 0.

det(J) = 0

det1(J) det2(J) = 0

(29)

It shows that the overall determinant will vanish if either S1 or S2 vanishes or both

S1 and S2 vanish simultaneously. By adding the expression of the Jacobian determinant

into the system I, the new ideal associated with the singular poses can be defined as:

Li = I ∪ Si i = 1, 2 (30)

The ideals now consist of a set of nine equations Li =< g1, g2, g3, g4, g5, g6, g7, g8, g9 >.

The ninth equation is the determinant of the Jacobian matrix.
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In mechanics, the singularity surface is desirable also in the joint space R, where R is

the polynomial ring over variables r1, r2 and r3. To obtain the singularity surface in R,

the following projections are determined from ideals Li:

Li → R i = 1, 2 (31)

Algebraically, each projection is an elimination of Study parameters from the ideal

Li and is mapped onto one equation generated by r1, r2 and r3. It was not possible to

compute the elimination in general, thus we assigned some values to the design parameters,

namely h0 = 2 m and h1 = 1 m. The eight Study parameters x0, x1, x2, x3, y0, y1, y2, y3

were eliminated to obtain a single polynomial in r1, r2 and r3.

For the system L1, the elimination yields a polynomial of degree four in r1, r2 and r3

in Eq. (32) and its zero set of polynomial is plotted in Fig. 3. By taking a point on this

surface, we are able to compute the direct kinematics of at least one singularity pose.

r41 − r21r
2

2 + r42 − r21r
2

3 − r22r
2

3 + r43 − 2r21 − 2r22 − 2r23 − 20 = 0 (32)

Due to the heavy elimination process of Study parameters from ideal L2, some arbi-

trary values have been assigned to the joint variables r1 = 2 m and r2 = 1.7 m. Then the

elimination can be carried out and the result is a univariate polynomial of degree 64 in

r3.

Let us consider one singularity configuration of the manipulator when the moving

frame Σ1 coincides with the fixed frame Σ0 and all joint variables have the same values.

The system L2 is now solved by assigning the joint variables as r1 = r2 = r3. The

elimination process returns a univariate polynomial of degree 24 in r3. The real solutions

of joint variables in this condition is r1 = r2 = r3 =
√
2 m.

The coordinates of points B1, B2 and B3 can be determined by solving the direct kine-

matics. Accordingly, we can form the extended Jacobian matrix (JE) of the manipulator,

which is based on the screw theory. The rows of the extended Jacobian matrix JE are

composed of n actuation wrenches Wa and (6 − n) constraint wrenches Wc. Since the
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Figure 3: Singularity Surface of L1.

manipulator has 3 dof (n = 3), the first three rows of JE comprise actuation wrenches

and the last three rows are constraint wrenches.

By considering that the prismatic joints are actuated, each leg applies one actuation

force whose axis is along the direction of the corresponding actuated joint ui, as follows:

Fa1 = [ u1 , r
0

B1
× u1 ]

Fa2 = [ u2 , r
0

B2
× u2 ]

Fa3 = [ u3 , r
0

B3
× u3 ]

Wa = span( Fa1,Fa2,Fa3 )

(33)

Due to the manipulator architecture, each leg applies one constraint force, which is

perpendicular to the actuated prismatic joint and parallel to the axis si of the revolute
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joint, written as:

Fc1 = [ s1 , r
0

B1
× s1 ]

Fc2 = [ s2 , r
0

B2
× s2 ]

Fc3 = [ s3 , r
0

B3
× s3 ]

Wc = span( Fc1,Fc2,Fc3 )

(34)

By collecting all components of the extended Jacobian matrix, we obtained:

J
T
E =

[

Fa1 Fa2 Fa3 Fc1 Fc2 Fc3

]

(35)

The degeneracy of matrix JE indicates that the manipulator reaches a singularity

configuration. We can observe the pose of the manipulator when r1 = r2 = r3 =
√
2 m,

the matrix JE in this pose is rank deficient, while neither the constraint wrench system

nor the actuation wrench system degenerates, i.e. rank(JE) = 5, rank(Wa) = 3, and

rank(Wc) = 3. This means that the manipulator reaches an actuation singularity.

By examining the null space of the degenerate matrix JE , the uncontrolled motion

(infinitesimal gain motion) of the moving platform can be obtained. This uncontrolled

motion is characterized by a zero-pitch twist that is reciprocal to all constraint and actu-

ation wrenches. It is denoted by sλ and is described in Eq. (36). This singularity posture

is depicted in Fig. 4, the uncontrolled motion of the moving platform is along the purple

line.

s
T
λ =

[

1 1 1 0 0 0

]

(36)

6 General Motion

The set of eight constraint equations is written as a polynomial ideal I with variables

x0, x1, x2, x3, y0, y1, y2, y3 over the coefficient ring C[h0, h1, r1, r2, r3].
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Figure 4: Singularity Pose at the Identity Condition.

I =< g1, g2, g3, g4, g5, g6, g7, g8 > (37)

The general motion performed by the 3-RPS Cube parallel manipulator is charac-

terized by solving the ideal I. The equations g1, g2, g3, g4, g5, g6, g7 from ideal I can be

solved linearly for variables y0, y1, y2, y3, R1, R2, R3 [12], Ri being the square of the pris-

matic lengths, i.e., Ri = r2i , and δ = x2
0
+ x2

1
+ x2

2
+ x2

3
. Hence, the Study parameters

become:
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y0 =
h1(x

2

1x2 + x21x3 + x1x
2

2 + x1x
2

3 + x22x3 + x2x
2

3)
δ

y1 = −h1(x
2

0x2 − x20x3 + x0x
2

2 + x0x
2

3 − x22x3 + x2x
2

3)
δ

y2 =
h1(x

2

0x1 − x20x3 − x0x
2

1 − x0x
2

3 − x21x3 + x1x
2

3)
δ

y3 = −h1(x
2

0x1 − x20x2 + x0x
2

1 + x0x
2

2 − x21x2 + x1x
2

2)
δ

(38)

The terms Ri
2 are also expressed in terms of x0, x1, x2, x3. The remaining Study

parameters are still linked in equation g8 : x
2
0
+ x2

1
+ x2

2
+ x2

3
− 1 = 0, which amounts to a

hypersphere equation in space (x0, x1, x2, x3). Accordingly, the transformation matrix is

obtained. However, only the translational part of the transformation matrix depends on

parameters (x0, x1, x2, x3).

MT =













2h1(x0x2 − x0x3 + x1x2 + x1x3)

−2h1(x0x1 − x0x3 − x1x2 − x2x3)

2h1(x0x1 − x0x2 + x1x3 + x2x3)













(39)

This parametrization provides us with an interpretation of the general motion per-

formed by the manipulator. The moving platform of the manipulator is capable of all

orientations determined by (x0, x1, x2, x3). The translational motion is coupled to the

orientations via Eq. (39).

The position of any point in the moving platform ([1, x, y, z]T ) with respect to the

fixed frame Σ0 ([1, X, Y, Z]T ) during the motion is determined by:

2The expressions are very lengthy and the reader may refer to
http://www.irccyn.ec-nantes.fr/~caro/ASME_JMR/JMR_14_1262/Appendix_3RPSCube.pdf
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δ = x2
0
+ x2

1
+ x2

2
+ x2

3

X = 1
δ

(

(x2
0
+ x2

1
− x2

2
− x2

3
)x+ (−2x0x3 + 2x1x2)y + (2x0x2 + 2x1x3)z

+2h1(x0x2 − x0x3 + x1x2 + x1x3)
)

Y = 1
δ

(

(2x0x3 + 2x1x2)x+ (x2
0
− x2

1
+ x2

2
− x2

3
)y + (−2x0x1 + 2x2x3)z

+2h1(−x0x1 + x0x3 + x1x2 + x2x3)
)

Z = 1
δ

(

(−2x0x2 + 2x1x3)x+ (2x0x1 + 2x2x3)y + (x2
0
− x2

1
− x2

2
+ x2

3
)z

+2h1(x0x1 − x0x2 + x1x3 + x2x3)
)

(40)

Let us consider a point Q of coordinates r1Q = [1,−h1,−h1,−h1]
T , which is a special

point in the cube of a moving frame Σ1 as shown in Fig. 5. Then, its positions with

respect to the fixed frame Σ0 according to Eq. (40) are:

δ = x2
0
+ x2

1
+ x2

2
+ x2

3

X = −h1(x
2
0
+ x2

1
− x2

2
− x2

3
)/δ

Y = −h1(x
2
0
− x2

1
+ x2

2
− x2

3
)/δ

Z = −h1(x
2
0
− x2

1
− x2

2
+ x2

3
)/δ

(41)

The coordinates of point Q depend on (x0, x1, x2, x3). There are four possible positions

corresponding to the three parameters (among four parameters xi, i = 0, 1, 2, 3) are equal

to zero. These corresponding positions of Q are:
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Figure 5: Tetrahedron C.

x0 = 1, x1 = x2 = x3 = 0 : r
0

C0
= [1,−h1,−h1,−h1]

T

x1 = 1, x0 = x2 = x3 = 0 : r
0

C1
= [1,−h1, h1, h1]

T

x2 = 1, x0 = x1 = x3 = 0 : r
0

C2
= [1, h1,−h1, h1]

T

x3 = 1, x0 = x1 = x2 = 0 : r
0

C3
= [1, h1, h1,−h1]

T

(42)

C0, C1, C2 and C3 are the vertices of a tetrahedron C as shown in Fig. 5. Those points

correspond to the poses of the moving platform subjected to the actuation singularities.

The uncontrolled motions of the moving platform are characterized by zero-pitch twists

that intersect the geometric center of the moving platform and the corresponding vertices.

If two parameters are null, for instance x2 = x3 = 0, the motion of point Q will be

determined by:
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X = −h1

Y = −h1(x
2
0
− x2

1
)/(x2

0
+ x2

1
)

Z = −h1(x
2
0
− x2

1
)/(x2

0
+ x2

1
)

(43)

This means that point Q moves along the edge C0C1, covering the closed interval between

the two vertices. If only one parameter is zero, for instance if x0 = 0, the point Q will

occupy the closed triangle C1C2C3. Eventually, if none of the parameters is null, then

point Q will move inside the tetrahedron C.

Let us consider an arbitrary point R in the moving platform such that:

(x+ h1)(y + h1)(z + h1) 6= 0 (44)

For example, take a point at the geometric center of the triangular-shaped platform, of

coordinates r
1

R = [1,−2
3h1,−

2
3h1,−

2
3h1]

T . If any of the three parameters is zero, then

the corresponding positions of point R will become:

x0 = 1, x1 = x2 = x3 = 0 : r
0

D0
= [1,−2

3h1,−
2
3h1,−

2
3h1]

T

x1 = 1, x0 = x2 = x3 = 0 : r
0

D1
= [1,−2

3h1,
2
3h1,

2
3h1]

T

x2 = 1, x0 = x1 = x3 = 0 : r
0

D2
= [1, 23h1,−

2
3h1,

2
3h1]

T

x3 = 1, x0 = x1 = x2 = 0 : r
0

D3
= [1, 23h1,

2
3h1,−

2
3h1]

T

(45)

D0, D1, D2 and D3 are the vertices of a pseudo-tetrahedron D as shown in Fig. 6

and it was verified that these vertices amount to the singularities of the 3-RPS Cube

manipulator. If two parameters are equal to zero, for instance x2 = x3 = 0, the point Q

will move along the edge C0C1, while the path of point R will be given by:
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Figure 6: Pseudo-tetrahedron D.

X = −2
3h1

Y = −2
3
h1(x

2

0 + x0x1 − x21)

x20 + x21

Z = −2
3
h1(x

2

0 − x0x1 − x21)

x20 + x21

(46)

This represents an ellipse e01 that passes through the vertices D0 and D1 and lies in the

plane X = −2
3h1. Accordingly, the four vertices of the pseudo-tetrahedron D are joined

by six ellipses, as shown in Fig. 6.

When only one parameter is equal to zero, for instance x0 = 0, the trajectory of point

R will follow a particular surface, called the Steiner surface F0
3. It passes through the

3The motion animation of point R that is bounded by the Steiner surface, is shown in:
http://www.irccyn.ec-nantes.fr/~caro/ASME_JMR/JMR_14_1262/animation_steiner.gif
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Figure 7: Steiner Surface F0.

vertices D1, D2, D3 and the ellipses e12, e13, e23, which is illustrated in yellow in Fig. 7.

Then the expressions of the trajectory of point R are given by:

X = −2
3
h1(x

2

1 − x1x2 − x1x3 − x22 − x23)

(x21 + x22 + x23)

Y = 2
3
h1(x

2

1 + x1x2 − x22 + x2x3 + x23)

(x21 + x22 + x23)

Z = 2
3
h1(x

2

1 + x1x3 + x22 + x2x3 − x23)

(x21 + x22 + x23)

(47)

Therefore, the trajectory of an arbitrary point of the moving platform forms the shape

of pseudo-tetrahedron D and contains four vertices Di (i = 0, 1, 2, 3). These vertices are
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joined by six ellipses and any three of the vertices are linked by a Steiner surface Fj

(j = 0, 1, 2, 3). Any two Steiner surfaces (Fi and Fj) share one ellipse eij in common.

Let us analyse the motion of a special point S that does not fulfill Eq. (44). For

instance, the point S is at one vertex of the triangular-shaped platform, B3 (Fig. 1). If

three parameters (among four parameters xi, i = 0, 1, 2, 3) are equal to zero, the positions

of the point S are determined by:

x0 = 1, x1 = x2 = x3 = 0 : r
0

E0
= [1,−h1,−h1, 0]

T

x1 = 1, x0 = x2 = x3 = 0 : r
0

E1
= [1,−h1, h1, 0]

T

x2 = 1, x0 = x1 = x3 = 0 : r
0

E2
= [1, h1,−h1, 0]

T

x3 = 1, x0 = x1 = x2 = 0 : r
0

E3
= [1, h1, h1, 0]

T

(48)

Those points are coplanar and are the vertices of a rectangle as shown in Fig. 8. If two

parameters are zero, for example x2 = x3 = 0, the path of point S is along the edge E0E1.

Accordingly, in a general configuration the point S always moves in the plane Z = 0.

Another special point which does not fulfill Eq. (44) is the origin of the moving frame

P . According to Eq. (40), the positions of point P are given by:

δ = x2
0
+ x2

1
+ x2

2
+ x2

3

X = 1
δ
2h1(x0x2 − x0x3 + x1x2 + x1x3)

Y = 1
δ
2h1(−x0x1 + x0x3 + x1x2 + x2x3)

Z = 1
δ
2h1(x0x1 − x0x2 + x1x3 + x2x3)

(49)

If three parameters (among four parameters xi, i = 0, 1, 2, 3) are equal to zero, the

positions of the point P will be always coincident with the origin of the fixed frame O.
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Figure 8: Rectangle E.
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Figure 9: Steiner Surface G0.

If two parameters are zero, for example x0 = x1 = 0, the point P will move along a

line l01 that passes through the point O and lies on the plane X = 0. Its endpoints are

[0,−1,−1]T and [0, 1, 1]T . For x2 = x3 = 0, the point P moves along a line l23 that also

lies on the plane X = 0.

If only one parameter is equal to zero, for example x0 = 0, the point P moves on the

Steiner surface G0. Unlike the Steiner surface F0 generated by the motion of point R,

the Steiner surface G0 is elongated as illustrated in yellow in Fig. 9. The Steiner surface

G0 contains the point O and three lines l01, l02, l03, shown as purple lines in Fig. 9.
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7 Vertical Darboux Motion

The condition for the manipulator to generate the VDM is that all prismatic lengths

are equal, i.e., r1 = r2 = r3. By solving the direct kinematics of the manipulator with

the same prismatic lengths, the Study parameters obtained to perform the VDM yield

x1 = x2 = x3 and y1 = y2 = y3. By substituting those values into the ideal I, the set of

eight constraint equations becomes:

I : {−x0y1 − 2x2
1
+ x1y0 = 0,−x0y1 − 2x2

1
+ x1y0 = 0,−x0y1 − 2x2

1
+ x1y0 = 0,

−R1x
2
0
− 3R1x

2
1
+ 2x2

0
− 8x0y1 + 22x2

1
+ 8x1y0 + 4y2

0
+ 12y2

1
= 0,

−R2x
2
0
− 3R2x

2
1
+ 2x2

0
− 8x0y1 + 22x2

1
+ 8x1y0 + 4y2

0
+ 12y2

1
= 0,

−R3x
2
0
− 3R3x

2
1
+ 2x2

0
− 8x0y1 + 22x2

1
+ 8x1y0 + 4y2

0
+ 12y2

1
= 0,

y0x0 + 3y1x1 = 0, x2
0
+ 3x2

1
− 1 = 0}

(50)

It follows from Eq. (50) that the first three constraint equations are the same. Likewise,

the next three equations are identical. Mathematically, one has to find the case of 1-dof

motion, as known as cylindrical motion, with one parameter that describes the VDM.

Equation (50) can be solved linearly for the variables Ri, y0, y1 in terms of x0, x1, as

follows:

y0 =
6x31

(x20 + 3x21)
, y1 = − 2x0x

2

1

(x20 + 3x21)

R1 = R2 = R3 = −(−2x40 − 44x20x
2

1 − 162x41)

(x40 + 6x20x
2

1 + 9x41)

(51)

From Eq. (51), it is apparent that the manipulator can perform the VDM if and only

if all prismatic lengths are the same. The remaining Study parameters x0 and x1 are still
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linked to the eighth equation in x2
0
+ 3x2

1
− 1 = 0, which is simply an ellipse equation

in the space x0 and x1. This ellipse equation can be parametrized by x0 = cos(u) and

x1 =
1
3 sin(u)

√
3.

As a result, the workspace of the manipulator performing the VDM is parametrized

by the parameter u. Hence, the Study parameters are expressed as:

x0 = c(u) x1 =
1

3
s(u)

√
3 y0 =

2

3
s(u)3

√
3 y1 = −2

3
c(u)s(u)2

x2 =
1

3
s(u)

√
3 x3 =

1

3
s(u)

√
3 y2 = −2

3
c(u)s(u)2 y3 = −2

3
c(u)s(u)2

(52)

where s(u) = sin(u), c(u) = cos(u).

Therefore, the possible poses of the moving platform can be expressed by the following

transformation matrix:

T =

































1 0 0 0

a 4
3c(u)

2 − 1
3 −2

3s(u)(c(u)
√
3− s(u)) −2

3s(u)(c(u)
√
3− s(u))

a −2
3s(u)(c(u)

√
3− s(u)) 4

3c(u)
2 − 1

3 −2
3s(u)(c(u)

√
3− s(u))

a −2
3s(u)(c(u)

√
3− s(u)) −2

3s(u)(c(u)
√
3− s(u)) 4

3c(u)
2 − 1

3

































(53)

where a = 4

3
sin(u)2.

7.1 Trajectory of the moving platform performing the Ver-

tical Darboux Motion

Let us consider the point B1 moving in the plane X = 0 and the geometric center R of the

moving platform as shown in Fig. 1. The paths followed by those two points are obtained

by setting u = −π
2 . . . π2 by using the transformation matrix T defined in Eq. (53).

It appears that those two paths are different as shown in Fig. 104. Point R moves

4The animation of the trajectories is shown in:
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Figure 10: Trajectories of points B1 and R.

along a straight line denoted as τR, whereas point B1 moves along a planar ellipse τB1

that is parallel to the plane X = 0.

Let us take all segments joining point B1 to any point of segment B2B3 and plot the

paths of all points on those segments. All those paths are planar ellipses, except the

path followed by point R. Accordingly, the set of all paths forms a ruled surface called

Right-conoid surface, which is illustrated in yellow in Fig. 115.

This type of ruled surfaces is generated by moving a straight line such that it intersects

perpendicularly a fixed straight line, called the axis of the Right-conoid surface. The fixed

straight line followed by point R is the axis of the Right-conoid surface.

http://www.irccyn.ec-nantes.fr/~caro/ASME_JMR/JMR_14_1262/animation_trajectories.gif
5The animation of the right-conoid surface is shown in:

http://www.irccyn.ec-nantes.fr/~caro/ASME_JMR/JMR_14_1262/animation_rightconoid.gif
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Figure 11: Right-conoid Surface of the VDM.

7.2 Axodes of the manipulator performing the Vertical Dar-

boux Motion

Having the parametrization of the VDM performed by the 3-RPS Cube parallel manipu-

lator in terms of Study parameters, it is relatively easy to compute the ISA. The possible

poses of the moving platform as functions of time in this special motion only allow the

orientations that are given by one parameter u. The ISA are obtained from the entries of

the velocity operator:

A = Ṫ T
−1 (54)

By setting u = t, matrix A becomes:
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A =

































0 0 0 0

8
3 c(t) s(t) 0 −2

3

√
3 2

3

√
3

8
3 c(t) s(t) 2

3

√
3 0 −2

3

√
3

8
3 c(t) s(t) −2

3

√
3 2

3

√
3 0

































(55)

The instantaneous screw axis of the moving platform is obtained from the components

of matrix A as explained in [13], after normalization:

ISA =

[

1√
3

1√
3

1√
3

4
3 c(t)s(t) 4

3 c(t)s(t) 4
3 c(t)s(t)

]T

(56)

All twists of the manipulator are collinear. As a consequence, the fixed axode generated

by the ISA is a straight line of unit vector [1/
√
3, 1/

√
3, 1/

√
3]T . In the moving coordinate

frame, the moving axode corresponding to this motion is congruent with the fixed axode as

depicted in Fig. 12. However, the moving axode does not appear clearly as it is congruent

with the fixed axode. Indeed, the moving axode internally slides and rolls onto the fixed

axode.

8 Conclusions

In this paper, an algebraic geometry method was applied to analyse the kinematics and

the operation mode of the 3-RPS Cube manipulator. Primary decomposition of an ideal of

eight constraint equations revealed that the manipulator has only one general operation

mode. In this operation mode, the direct kinematics was solved and the number of

solutions was obtained for arbitrary values of design parameters and joint variables. The

singularity conditions were computed and represented in the joint space. It turns out that

the manipulator reaches the singularity when the moving frame coincides with the fixed

frame and all joint variables are equal. The uncontrolled motion of the moving platform

in this singularity configuration was investigated and geometrically interpreted.
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Figure 12: ISA Axodes of VDM.

The 3-dof motion of the 3-RPS Cube manipulator was discussed in this paper. The

trajectory of each point in the moving platform, except the vertices of the moving platform,

in general belongs to a special surface named the Steiner surface. The vertices of the

triangular-shaped platform always move in the planes of a trihedron. By keeping all

leg parameters the same, the 3-RPS Cube manipulator is able to generate the Vertical

Darboux Motion (VDM). In this VDM the moving platform rotates about an axis and

translates along the same direction. The paths followed by all points belonging to the

moving platform, with the exception of its geometric center, are ellipses that form a ruled

surface called a right-conoid surface. The geometric center of the moving platform moves

along a straight line. Finally, since the 3-RPS Cube has only one operation mode, the

general motion and the VDM occur inside the same operation mode. The investigation

of collisions for workspace analysis or trajectory planning purposes will be the subject of
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future work.

Acknowledgments

The authors would like to acknowledge the support of the Österreichischer Austausch-
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