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Variational calculus is employed to determine the folding behaviour of a single graphene sheet. Both the

elastic and van der Waals energies are taken into account, and from these considerations the shape of

the curve is determined. By prescribing that the separation distance between the folded graphene in the

parallel region is 3.32 Å, an arbitrary constant arising by integrating the Euler–Lagrange equation is

determined, and the full parametric representations for the folding conformation are derived. Using

typical values of the bending rigidity in the range of 0.800–1.60 eV, the shortest stable folded graphene

sheets are required to be at least 6.5–10 nm in length.
1 Introduction

Carbon atoms on a graphene sheet are connected as a planar
hexagonal array of sp2-bonds. This two-dimensional system is
one of the most promisingmaterials for nanoelectromechanical
systems,1–3 and may also be used in biological applications4–6

because its bending stiffness is comparable with that of lipid
bilayers.7 Two graphene layers connected by a continuous fol-
ded curved graphene edge exhibit a number of interesting
electronic,8–12 magnetic,13 thermal14 and mechanical7,15 proper-
ties. Moreover, it has been shown that self-folding graphene is
stable and driven by van der Waals interactions.16–18 Here, by
taking into account both elastic and van der Waals energies, the
calculus of variations is exploited to study the self-folding
property of a graphene sheet or graphitic nano ribbon (GNR).

Cranford et al.19 employed a coarse-grained model where
pseudo-atoms were used to represent groups of atoms to study
the folding behaviour for single- and multi-layers of graphene,
and found that this behaviour depends on the bending rigidity
and the surface energy of the sheets. Both analytical and
numerical methods have been carried out by Rainis et al.13 to
determine the deformation of folded graphene. Further, Lopez-
Bezanilla et al.12 used a density functional theory calculation to
determine the geometric structure of a single- and multi-layer of
folded graphene. This theoretical nding was also conrmed by
their experimental images taken using high-resolution
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transmission electron microscopy, and these authors suggested
that the number of graphene layers is a factor to the folding
prole. Similarly, Meng et al.18 undertook molecular dynamics
simulations and beam theory to investigate the self-folding of a
single-layer graphene, and found that the chirality of the folded
edge does not inuence the folding behaviour. Graphene aero-
gels have high- and super-compressible properties due to the
elasticity of the individual sheets and they have potential appli-
cations for vibrationandshockdamping.Further, graphene folds
are the elementary constituents of graphene aerogels responsible
for the observed unusual compressibility of aerogels.20

In formulating a rst approximation of graphene folding
following,21 we assume that graphitic materials deform as
inperfect elasticity, and rather like theelastica.21Asaconsequence,
we propose an elastic bending energy as being proportional to
the square of the curvature and we employ variational calculus
to determine the folded conformation which minimises the
bending energy while simultaneously maximising the van der
Waals interaction for the folded graphene sheet, noting that both
the curvature effect arising from the elastic deformation and
the inter-spacingbetween twographene layers arising fromthe van
der Waals energy are accommodated. Although this analytical
model is simple, involving only two parameters which are the van
der Waals interaction strength and the bending rigidity, it
successfully describes the folding conformation of graphene
sheets. We comment that the same variational approach to mini-
mise the elastic energy has been adopted by the present authors in
a number of joining problems involving carbon nanostructures.
Thepresent approach is developed fromref. 21–24andwe refer the
reader to the reviewpaperref. 25which includes further references.

In the following section, the proposed mathematical model
is formulated and the variational formulations are described in
Sections 3 and 4. Further, a full parametric solution involving
the bending rigidity is given in Section 5, and nally some
concluding remarks are made in Section 6.
RSC Adv., 2015, 5, 57515–57520 | 57515
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2 Conformation model

Here we propose to model the curve formed by a single sheet of
graphene folding over onto itself. In this conguration we
suggest that the two dominant forces are those originating from
the elastic folding deformation of the graphene sheet and the
van der Waals interactions between the sheet. With reference to
Fig. 1, we assume a rectangular graphene sheet for which one
edge folds uniformly over onto the sheet and that the conse-
quent folding geometry both symmetric with respect to the
x-axis and two-dimensional in the sense that there are no vari-
ations in the perpendicular z-direction. Furthermore, assuming
a reective symmetry in the folded geometry, we need only
consider the top half of the problem. The shown curve may be
divided into three parts, which are denoted by Cn where n ¼
{1, 2, 3}. C1 is the curve from (0, 0) to (x0, y0) where the line
curvature of the fold is negative, C2 is the curve from (x0, y0) to
(x1, d) where the corresponding line curvature is positive and C3

is the straight line from (x1, d) to (x2, d) where the line curvature
is zero. We will denote the concatenation of these three regions
as C ¼ C1 + C2 + C3.

We assume that the elastic energy Ee may be calculated by
integrating the square of the curvature k over the length of the
total curve multiplied by a scaling constant g, which is the
bending rigidity of graphene. Therefore, we may write

Ee ¼ g

ð
C

k2ds;

where k denotes the line curvature of the curve y ¼ y(x) and is
given by

k ¼ y00

ð1þ y02Þ3=2
: (1)

We now assume that the region dominated by van der Waals
interactions comprises only the C3 portion of the solution curve
and we model the van der Waals energy Ev using the
formulation

Ev ¼ �e

ð
C

uðx� x1Þds;
Fig. 1 Geometry for folded graphene with total half length L.

57516 | RSC Adv., 2015, 5, 57515–57520
where e is a positive constant giving the van der Waals inter-
action energy per area length and u(x � x1) is the Heaviside unit
step function. We now consider the total energy normalised by
the magnitude of the bending rigidity g which we denote by E,
therefore

E ¼ Ee þ Ev

g
¼
ð
C

�
k2 � auðx� x1Þ

�
ds;

where we have introduced the constant a ¼ e=g, the ratio of van
der Waals interaction strength to the bending rigidity, both of
which are material characteristics of graphene and therefore
prescribed.
3 Variational formulation

We now employ calculus of variations to determine the shape of
the curve C1 + C2, treating the quantity E as a functional of a
conformation prole y¼ y(x) and the particular solution that we
seek is the one for which E takes the minimum value. We also
impose an isoperimetric constraint on the total arclength of C,
namely ð

C

ds ¼ L;

which we incorporate into the variational principle using a
Lagrange multiplier l. Therefore, the functional under consid-
eration here is given by

Ffyg ¼
ð
C

�
k2 � a$uðx� x1Þ þ l

�
ds:

Noting that both the curvature effect and the van der Waals
contribution are taken into account.

Now considering the arclength constraint we comment that
for C3 then y0 ¼ 0 and ds ¼ dx, and thereforeð

C

ds ¼
ð
C1þC2

dsþ
ðx2
x1

dx ¼
ð
C1þC2

dsþ x2 � x1 ¼ L;

and hence

x2 � x1 ¼ L�
ð
C1þC2

ds:

We note that L is a curved half length of the graphene sheet.
Moreover, we comment that u(x � x1) ¼ 0 for C1 + C2 and k ¼
0 for C3 then

Ffyg ¼
ð
C1þC2

�
k2 þ l

�
dsþ

ð
C3

ðl� aÞds

¼
ð
C1þC2

�
k2 þ l

�
dsþ ðl� aÞ

ðx2
x1

dx

¼
ð
C1þC2

�
k2 þ l

�
dsþ ðl� aÞ

0
B@L�

ð
C1þC2

ds

1
CA

¼
ð
C1þC2

�
k2 þ a

�
dsþ ðl� aÞL:
This journal is © The Royal Society of Chemistry 2015
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We further comment here that F depends linearly on the
Lagrange multiplier l and it takes no part in determining the
shape of y ¼ y(x) which minimises the value of F. Therefore, we
are justied in choosing any value for l and for convenience we
choose l ¼ a. Hence, the functional we wish to minimise is
given by

Ffyg ¼
ð
C1þC2

�
k2 þ a

�
ds

¼
ðx1
0

 
y00

2

ð1þ y02Þ3 þ a

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
dx;

(2)

subject to the endpoint conditions y(0) ¼ 0, and y0(0)/N, and
at x ¼ x1 we have a natural boundary condition on x which for a
second order variational problem requires that�

f � y0
�
fy0 � d

dx
fy00

�
� y00fy00

�
x¼x1

¼ 0; (3)

where the subscripts denote partial differentiation and f is the
integrand of the functional F{y} given by

f ðy0; y00Þ ¼ y00
2

ð1þ y02Þ5=2
þ a

	
1þ y0

2

1=2

: (4)

Also on the endpoint x ¼ x1, we have that y(x1) ¼ d and
y0(x1) ¼ 0.
4 Solution to the variational problem

Since the function contains no explicit dependence on y, we
may integrate the Euler–Lagrange equation once to obtain

fy0 � d

dx
fy00 ¼ b; (5)

where b is an arbitrary constant of integration. Furthermore, the
function is also independent of x, and therefore we have

f � y0
�
fy0 � d

dx
fy00

�
� y00fy00 ¼ H;

where H is a constant. However, we know from the natural
boundary condition (3) that H must equal zero at x ¼ x1 and
since H is a constant then H ¼ 0 throughout the domain, and
therefore we may deduce

f � y0
�
fy0 � d

dx
fy00

�
� y00fy00 ¼ 0:

We also note that the term in parentheses is precisely the rst
integral of the Euler–Lagrange equation given in (5) and it is a
constant, so that the solution must satisfy

f � by0 � y00fy00 ¼ 0.

Now on substituting f(y0, y00) given in (4) into this equation, we
obtain

y00
2

ð1þ y02Þ5=2
þ a

	
1þ y0

2

1=2

� by0 � 2y00
2

ð1þ y02Þ5=2
¼ 0;
This journal is © The Royal Society of Chemistry 2015
and aer some rearrangement, we may deduce

y00
2

ð1þ y02Þ3
¼ a� by0

ð1þ y02Þ1=2

k ¼ �
 
a� by0

ð1þ y02Þ1=2
!1=2

;

(6)

where again k is the line curvature dened by (1).
We now seek a parametric solution using the substitution

y0 ¼ tan q to obtain

k ¼ cos q
dq

dx
¼ sin q

dq

dy
¼ �ða� b sin qÞ1=2;

and hence parametrically we obtain the rst order equations

dx

dq
¼ � cos q

ða� b sin qÞ1=2
;

dy

dq
¼ � sin q

ða� b sin qÞ1=2
:

For convenience, we now make the substitution q ¼ 2f � p/2,
and aer some rearrangement we have

dx

df
¼ � 4 sin f cos f

ðaþ b� 2b sin2
fÞ1=2

;

dy

df
¼ H

2� 4 sin2
f

ðaþ b� 2b sin2
fÞ1=2

:

(7)

The differential equation for x(f) given in (7)1 can be inte-
grated immediately giving

xðfÞ ¼ c1H
2ðaþ bÞ1=2

b

�
1� 2b

aþ b
sin2

f

�1=2

; (8)

where c1 is an arbitrary constant.
The differential equation for y(f) given in (7)2 may be rear-

ranged as follows

dy

df
¼ H

2

b

 
aþ b� 2b sin2

f� a

ðaþ b� 2b sin2
fÞ1=2

!

¼ H
2ðaþ bÞ1=2

b

"�
1� 2b

aþ b
sin2

f

�1=2

� a

aþ b

�
1� 2b

aþ b
sin2

f

��1=2
#
;

where the terms involving f can be integrated as elliptic inte-
grals of the rst and second kinds, therefore we have

yðfÞ ¼ c2H
2ðaþ bÞ1=2

b

�
Eðf; kÞ � a

aþ b
Fðf; kÞ

�
; (9)

where c2 is an arbitrary constant of integration, F and E denote
the incomplete elliptic integrals of the rst and second kinds,
respectively, and the elliptic modulus k ¼ [2b/(a + b)]1/2.
5 Full parametric solution

Critical to the parametric solution is the point (x0, y0), where the
curvature changes sign and it is also the boundary point
RSC Adv., 2015, 5, 57515–57520 | 57517
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between the two curves C1 and C2. This point corresponds to the
parameter value f ¼ f0, where f0 ¼ sin�1(1/k).

On the curve C1, the solution varies over the range f¼ [0, f0]
starting at the origin and having a trajectory that is upward and
bending to the right half of the plane. To satisfy these
requirements we require

xC1
ðfÞ ¼ 2ðaþ bÞ1=2

b

h
1� �1� k2 sin2

f
�1=2i

;

yC1
ðfÞ ¼ 2ðaþ bÞ1=2

b

�
Eðf; kÞ � a

aþ b
Fðf; kÞ

�
;

where the starting point (0, 0) has been used to determine that
c1 ¼ 2(a + b)1/2/b and c2¼ 0. This means the critical point (x0, y0)
is given by

ðx0; y0Þ ¼ 2ðaþ bÞ1=2
b

�
1; Eðf0; kÞ �

a

aþ b
Fðf0; kÞ

�
:

For C2 we change the signs adopted from the general solu-
tions (8) and (9), and we require that the solution for C1 and C2

are continuous at (x0, y0), which leads to the solution given by

xC2
ðfÞ ¼ 2ðaþ bÞ1=2

b

h
1þ �1� k2 sin2

f
�1=2i

;

yC2
ðfÞ ¼ 2y0 � 2ðaþ bÞ1=2

b

�
Eðf; kÞ � a

aþ b
Fðf; kÞ

�
;

where f ˛ [p/4, f0], and again F and E are the incomplete
elliptic integrals of the rst and second kinds, respectively.

The parameter value a corresponds to the material charac-
teristics where it is dened as the ratio of the van der Waals
interaction 3, to the bending rigidity g. For the graphene, it was
estimated by Spanu et al.26 that 3z 0.0214 eV Å�2. Following the
work by Wei et al.,7 the possible values of g range from 0.800 to
1.60 eV. Therefore, we have the corresponding values of a in the
range of 0.0268 to 0.0134 Å�2. In fact, the shape function or the
folding conformation is a function of g, and it can depend on
the number of defects and the number of dopings. Indirectly,
Fig. 2 Fold region for various values of bending rigidity g.

57518 | RSC Adv., 2015, 5, 57515–57520
the folding conformation could therefore indicate the presence
of defects and dopings.

To determine the remaining unknown b, we use the

endpoint yC2

	p
4



¼ d, where d is a half of the separation

distance between the folded graphene in the parallel region,
and we adopt the value d z 1.66 Å.27 Solving this equation
numerically, the value of b can be determined. A plot of ve
possible folded graphenes is shown in Fig. 2, and the numerical
values are presented in Table 1.

By integrating ds over both of the curves C1 + C2, we may
determine the arclength of the extremal curve and this provides
a lower bound to L for this solution to be physically meaningful,
and we may deduce

Lmin ¼ L� ðx2 � x1Þ ¼
Ð

C1þC2

ds

¼
ð ​ f0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx

df

�2

þ
�
dy

df

�2
s

df

þ
ð ​ p=4

f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx

df

�2

þ
�
dy

df

�2
s

df;

where dx/df and dy/df are given in (7). Finally, we have

Lmin ¼ 2

ðaþ bÞ1=2
½2Fðf0; kÞ � Fðp=4; kÞ�; (10)

where Lmin is a lower bound to the half length L.
The total energy for the folded graphene is

Etot ¼ Ee þ Ev ¼ g

0
B@ð

C1

k2dsþ
ð
C2

k2ds

1
CA� eðx2 � x1Þ;

and on changing the integration variable using y0 ¼ tan q, we
may deduce

Etot ¼ g
	 ðq1

q0

ðaþ b sin qÞ1=2dq�
ðq2
q1

ðaþ b sin qÞ1=2dq
�

� eðx2 � x1Þ:

Again, we use q ¼ 2f � p/2 so that Etot can be evaluated in
terms of elliptic integrals of the second kind and the nal
expression becomes

Etot ¼ 2g
ffiffiffiffiffiffiffiffiffiffiffiffi
aþ b

p
½2Eðf0; kÞ � Eðp=4; kÞ� � eðx2 � x1Þ: (11)

We note that E(0, k)¼ 0 and (x2� x1)¼ L� Lmin. Fig. 3 shows the
relation between the total energy Etot of the folded graphene and
Table 1 Numerical values for graphene folding using van der Waals
interaction 3 to be 0.0214 eV Å�2 (ref. 26)

g (eV) x0 (Å) y0 (Å) Lmin (Å)

0.800 7.88 2.50 13.7
1.00 9.19 2.74 16.2
1.20 10.3 2.95 18.3
1.40 11.4 3.15 20.2
1.60 12.3 3.32 22.0

This journal is © The Royal Society of Chemistry 2015
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Fig. 3 Relation between total energy Etot and total half length Lwhere
L for L $ Lmin.
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the total half length L, and the system is stable provided that the
total energy is negative. For a bending rigidity g ¼ 1.40 eV, we
require that the graphene sheet have a half length of at least 45
Å for the folding behaviour to occur and this is in agreement
with Meng et al.18

Furthermore, the folding conformations obtained by this
model are also adopted to compare with the folding images
Fig. 4 Folding conformations obtained by present model super-
imposed upon the images taken by high-resolution transmission
electron microscopy12 where the proposed model perfectly matches
with (top) g ¼ 1.00 eV represented by the navy line and (bottom)
g ¼ 1.60 eV represented by the purple line (adapted with permission
from Lopez-Bezanilla et al.12 Copyright 2012 American Chemical
Society).

This journal is © The Royal Society of Chemistry 2015
taken by Lopez-Bezanilla et al.12 and they are as shown in Fig. 4.
We observe that the best t proles shown in Fig. 4 (top) and
(bottom) are obtained by using different bending rigidity values
which are g ¼ 1.00 eV (navy colour) and g ¼ 1.60 eV (purple
colour), respectively. Note that the model presented here is
derived only for a single layer of graphene, and the different
values for g are due to the increased bending rigidity for multi-
layers. Moreover, the ve folding conformations in each gure
are obtained independently but they are plotted on the same
coordinates for the purpose of comparison. Overall, the folding
geometry of graphene as determined here by the variational
calculus provides a simple model but correctly describes the
folding prole observed in experiments.
6 Summary

In this paper, we use a calculus of variations approach to
determine the shape of folded graphene sheets. The calculus of
variations is utilised to minimise the elastic energy arising from
the curvature squared while maximising the van der Waals
energy in the parallel region. In addition, the fold is assumed to
have a translational symmetry along the fold, so that the
problem may be reduced to a two dimensional problem with
reective symmetry across the fold. Here, the van der Waals
interaction is assumed to be 0.0214 eV Å�2 and with a separa-
tion distance in the parallel region xed to be 1.66 Å. However,
the bending rigidity of graphene is selected in the range from
0.800 to 1.60 eV. An analytical parametric solution is obtained
and numerical values for the critical points where the curvature
changes the sign and where the folded graphene assumes a
parallel orientation are determined. Furthermore, the model
predicts the critical length of a graphene sheet needed to adopt
an energetically stable folded conformation that depends on the
actual value of the bending rigidity adopted for the graphene
sheet.
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