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Pierre Carpentier∗, Jean-Philippe Chancelier†, Michel De Lara†,
Thomas Martin†, Tristan Rigaut‡
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Abstract

Multistage stochastic optimization problems are, by essence, complex as their so-
lutions are functions of both stages and uncertainties. Their large scale nature makes
decomposition methods appealing, like dynamic programming which is a sequential
decomposition using a state variable defined at all stages. By contrast, in this paper
we introduce the notion of state reduction by time blocks, that is, at stages that are not
necessarily all the original stages. Then, we prove a dynamic programming equation
with value functions that are functions of a state only at some stages. This equation
crosses over time blocks, but involves a dynamic optimization inside each block. We
illustrate our contribution by showing its potential in three applications in multistage
stochastic optimization: mixing dynamic programming and stochastic programming,
two-time-scale optimization problems, decision-hazard-decision optimization problems.

Keywords: multistage stochastic optimization, dynamic programming, time scales, time
block decomposition, decision-hazard-decision

1 Introduction

Solutions of multistage stochastic optimization problems are functions of both time and
uncertainties. This makes such problems complex. However, their structure makes decom-
position methods appealing to solve them [18]. One of the most common approaches are time
decomposition (state-based resolution methods), like stochastic dynamic programming, in
stochastic optimal control, and scenario decomposition, like progressive hedging, in stochastic
programming. On the one hand, stochastic programming deals with an underlying random
process taking a finite number of values, called scenarios [19]. Solutions are indexed by a
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scenario tree, the size of which increases exponentially with the number of stages (hence gen-
erally a few stages in practice). However, to overcome this obstacle, stochastic programming
takes advantage of scenario decomposition methods (progressive hedging [17]). On the other
hand, stochastic control deals with a state model driven by a white noise, that is, the noise
is made of a sequence of independent random variables. Under such assumptions, stochastic
dynamic programming is able to handle many stages, as it offers reduction of the search for
a solution among state feedbacks (instead of functions of the past noise) [2, 5].

In a word, dynamic programming is good at handling multiple stages — but at the price
of assuming that noises are stagewise independent — whereas stochastic programming does
not require such assumption, but can only handle a few stages. Could we take advantage of
both methods? Is there a way to apply stochastic dynamic programming at a slow time scale
— a scale at which noises could be considered statistically independent — crossing over fast
time scale optimization problems where independence would not hold? This question is one
of the motivations of this paper, and we indeed provide a method to decompose multistage
stochastic optimization problems by time blocks. This decomposition method and the main
result are, mathematically speaking, quite natural, but the main difficulty is notational.
Indeed, the rigorous formulation of multistage stochastic optimization problems on so-called
history spaces requires rather heavy notation.

Although specialists in stochastic optimal control and dynamic programming will find the
results as natural and non surprising, or as part of folklore, the fact is that we have not been
able to find references that treat the case of a state defined only at a subset of stages. This
is why we set out to write this paper, without any real theoretical ambition, but with the
objective that this result be established and can be used for applications using several forms
of decomposition1. This is also why we present three (theoretical) applications in multistage
stochastic optimization: mixing dynamic programming and stochastic programming, two-
time-scale optimization problems, decision-hazard-decision optimization problems.

As there are several ways to tackle the difficulties of dealing with a large number of time
steps, we compare our approach with other ones. In this paper, we propose an exact decom-
position of a multistage stochastic optimization problem by time blocks using a state defined
only at a subset of stages, to be distinguished from either time aggregation or approximate
decomposition by timescales, which both yield approximate problems. We discuss both now.

Time aggregation consists in grouping the time steps, that is, in considering a partition
of the time steps in time blocks and “aggregating” variables and constraints in each time
block. To our knowledge, this approach was initiated in [4] for stochastic linear programs.
For such linear programs, it is indeed easily conceived that, by summing (“aggregating”)
linear constraints, one obtains lower bounds for minimization problems. This approach was
generalized in the paper [25] which puts forward a measure-theoretic framework with coarser
and finer filtrations, and uses linear duality. Then, this was extended in [13] for stochastic
convex programs, using filtrations and convex duality. The main idea can be sketched as

1The starting point of our reflections on this subject were conversations that three of us held with Roger
Wets in Bogota in 2013. We discussed the interest and the way of mixing the techniques of scenario trees
(to be able to take into account correlated noises) with the techniques of dynamic programming (to have a
vision of the optimal future costs by means of value functions).
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follows: the coarser filtration is used to reduce the measurability of the decision variables,
whereas the finer filtration is used to enlarge the measurability of the dual variables associated
with the constraints, so that the optimal value of the problem obtained by using these two
filtrations is an upper bound of the true optimal value; exchanging the role of the filtrations
leads to a lower bound. Thus, with time aggregation, one obtains simpler problems that
are lower and upper bounds for the original minimization stochastic problems, hence are
approximations.

In approximate decomposition by timescales, one identifies several timescales in the orig-
inal multistage stochastic optimization problem and then sets up an optimization problem
for each timescale. It is approximate in that the connexion between the problems formulated
for each timescale and the whole multistage problem is not explicit.

Approximate decomposition by timescales can be done in the context of dynamic pro-
gramming, with the value functions obtained for a given timescale entering the final cost of
the problem at the finer timescale. This approach gives a cascade of easier to solve optimiza-
tion problems, and again corresponds to approximate the original problem. An example of
this approach can be found in [8] where — for a problem involving both the control of the stor-
age of a battery (5 minutes time steps) and the frequency regulation (2 seconds time steps)
— is introduced a first hourly resource model whose resolution by dynamic programming
leads to value functions used in a five minute storage model as final costs. The value func-
tions, obtained by solving by dynamic programming this second model, are themselves used
in a 2 seconds frequency model. Another possibility arises when the considered optimization
problem displays a periodical behavior. In that case, a natural time block decomposition is
given by the period of the system. In [20], by taking into account such a periodical pattern
in the dynamic programming equations, one significantly reduces the computational effort to
solve the problem using a fixed point approach. Finally, [15] presents a preliminary work on
extending the Stochastic Dual Dynamic Programming approach to two-time-scale problems,
such as those encountered in energy systems involving both long-term hydro storages and
short-term battery storages.

Approximate decomposition by timescales can also be done in the framework of stochastic
programming. In [12], the authors introduce a slow scenario tree, that is, a tree involving only
the time stages of the slow time scale; but at each node of this slow scenario tree are attached
fast time scale scenarios, which do not interfere with the other nodes of the slow scenario
tree. The structure allows one to model and solve problems that need to combine strategic
(long term) and operational (short term) uncertainty, without the explosion in the problem
size that would follow from using a standard multistage model. The special situation where
decisions are taken only at the slow time scale (whereas uncertainties occur at each time
stage) is considered in [10]. The authors propose to build a scenario tree branching at the
slow time stages, and designed using the theory of bridge processes between two consecutive
nodes in order to represent the noise at the fast time scale.

The paper is organized as follows. In Sect. 2, we present stochastic dynamic programming
with histories as a way to solve a stochastic optimal control problem formulated in discrete
time. In Sect. 3, we revisit the notion of “state” by defining state reduction by time blocks
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— that is, at time stages that are not necessarily all the original ones — and then we
prove a reduced dynamic programming equation. This is the central contribution. Then,
we illustrate our contribution by showing its potential in three cases. In Sect. 4, we show
how to mix dynamic programming and stochastic programming. In Sect. 5, we detail how
to handle problems with two time scales, and illustrate this with the crude oil procurement
problem. In Sect. 6, we introduce what we call the decision-hazard-decision framework, and
we provide a dynamic programming equation. We relegate technical results and proofs in
Appendix A.

2 Stochastic dynamic programming with histories

In §2.1, we present the setting to formulate multistage stochastic optimization problems
over the so-called history space, with history feedbacks. Then, to prepare the main result in
Sect. 3, we establish in §2.2 a dynamic programming equation when the state is the history,
that is, is made of the uncertainties and the controls prior to the current time (see the
“canonical construction” in [4, p. 15]). Although quite natural, this equation is generally
not written in the literature, as most frameworks in dynamic programming assume the a
priori existence of a state.

We use the notation Jr, sK = {r, r + 1, . . . , s− 1, s} for any two natural numbers r, s such
that r ≤ s. We will also use the shorter notation r:s = Jr, sK, for example in subscripts as in
hr:s. From now on, time is discrete and runs among the natural numbers t ∈ J0, T K, where
T ∈ N∗ is a positive natural number. Finally, we say that a function is numerical if it takes
its values in R = [−∞,+∞].

2.1 The Bertsekas-Shreve setting [1]

To obtain a stochastic dynamic programming with histories requires technical assumptions.
Indeed, as Bertsekas and Shreve notice at the beginning of [1, §7.6]: “The dynamic program-
ming algorithm is centered around infimization of functions, and this is intimately connected
with projections of sets”; “Unfortunately, the projection of a Borel-measurable set need not
be Borel-measurable. In Borel spaces, however, the projection of a Borel-measurable set is
an analytic set”. They devote [1, §7.6] to the definition and study of analytic sets, and in
[1, §7.7] define universally measurable functions, as well as lower semianalytic functions.

We call Borel space (X,BX) a Borel set X equipped with its Borel σ-field BX [1, Defini-
tion 7.7, p. 118]. By abuse of notation, we often speak of the Borel space X. There exist two
other interesting σ-fields: the analytic σ-field AX [1, Definition 7.19, p. 171]; the universal
σ-field UX [1, Definition 7.18, p. 167]. We have the inclusions BX ⊂ AX ⊂ UX [1, p. 171].

For any Borel space X, subset X ⊂ X and numerical function ϕ : X → R, the function ϕ
is said to be lower semianalytic [1, Definition 7.21] if the subset X is analytic (X ∈ AX) and
if the subset

{
x ∈ X

∣∣ϕ(x) < c
}

is analytic for all c ∈ R. We denote by L0
+(X) the space of

lower semianalytic nonnegative numerical functions over X.
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For a Borel space X (resp. Y) equipped with the Borel σ-field BX (resp. BY), a map-
ping f : X → Y is said to be universally measurable [1, Definition 7.20, p. 171] (resp.
Borel-measurable) if, for all B ∈ BY, f−1(B) ∈ UX (resp. f−1(B) ∈ BX).

Histories and history spaces. For each time t ∈ J0, T−1K, the control ut takes its values
in a Borel space Ut. For each time t ∈ J0, T K, the uncertainty wt takes its values in a Borel
space Wt. For t ∈ J0, T K, we define the history space Ht as the product Borel space [1,
Proposition 7.13, p. 119]

Ht = W0 ×
t∏

s=1

(Us−1 ×Ws) , (1)

with the particular case H0 = W0, H0 = W0. A generic element ht =
(
w0, (us−1, ws)s∈J1,tK

)
=

(w0, u0, w1, u1, w2, . . ., ut−2, wt−1, ut−1, wt) ∈ Ht is called a history at time t. For
1 ≤ r ≤ s ≤ t, we introduce the (r :s)-history subpart hr:s = (ur−1, wr, . . . , us−1, ws) ∈
Hr:s =

∏s
τ=r(Uτ−1 ×Wτ ), so that we have ht = (hr−1, hr:t).

History feedbacks. For 0 ≤ r ≤ t ≤ T − 1, we define a (r : t)-history feedback as a
sequence

{
γs
}
s∈Jr,tK of universally measurable mappings γs : Hs → Us. We call Γr:t the set

of (r : t)-history feedbacks. The history feedbacks reflect the following information structure.
At the end of the time interval [t− 1, t[, an uncertainty variable wt is revealed. Then, at the
beginning of the time interval [t, t+ 1[, a decision-maker chooses a control ut contingent on
no more than the past, giving the chronology

w0  u0  w1  u1  · · · wt  ut  · · · wT−1  uT−1  wT . (2)

Stochastic kernels. In what follows, given a Borel space Y, ∆(Y) denotes the Borel space
of probability measures over Y (see [1, Corollary 7.25.1]). Uncertainty is represented by a
sequence

{
ρt−1:t

}
t∈J1,T K of Borel-measurable stochastic kernels (see [1, Definition 7.12 and

Proposition 7.26, p. 134])

ρt−1:t : Ht−1 → ∆(Wt) , ∀t ∈ J1, T K . (3)

Thus, for any past history ht−1 ∈ Ht−1, we have that ρt−1:t(ht−1) ∈ ∆(Wt), the space of
probability measures over Wt. It is common practice (see [1, Definition 7.12, p. 134]) to use
the notation ρt−1:t( dwt|ht−1) to denote this probability distribution, element of ∆(Wt). So,
the notation |ht is here to evoke a conditional distribution (of the next uncertainty knowing
the past history), but it is not introduced as a conditional distribution, but simply as a way
to express a parametric dependence (as explicitely said in [1, Definition 7.12, p. 134]). We
could have indifferently written ρt−1:t( dwt, ht−1) or ρt−1:t( dwt;ht−1).

We define, for any feedback {γs}s∈Jt,T−1K ∈ Γt:T−1, a new sequence of Borel-measurable

stochastic kernels ργt:T : Ht → ∆(HT ), that capture the transitions between histories when the
dynamics hs+1 =

(
hs, us, ws+1

)
is driven by us = γs(hs) for all s in Jt, T−1K (see Definition 14

in Appendix A for the detailed construction of ργr:t). Note that ργt:T generates a probability
distribution on the space HT of histories over the whole timespan J0, T K.
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Cost function. The cost criterion to be minimized is a nonnegative2 and lower semiana-
lytic numerical function

j : HT → [0,+∞] . (4)

Notice that (4) does not represent a cost at final time, but a cost function of the whole
history hT = (w0, u0, w1, u1, . . . , wT−1, uT−1, wT ) ∈ HT . As hT contains all past controls and
uncertainties, a function j : HT → [0,+∞] covers the most general case. For instance, the
function j can have the special form of a sum of time block costs, like in Equation (16).

2.2 Stochastic dynamic programming equation with histories

Family of optimization problems. We consider the following family of optimization
problems, indexed by t in J0, T−1K and parameterized by the history ht ∈ Ht: for all t in
J0, T−1K, we define the minimum value

Vt(ht) = inf
γt:T−1∈Γt:T−1

∫

HT
j(h′T )ργt:T ( dh′T |ht) , ∀ht ∈ Ht , (5a)

and we also define

VT (hT ) = j(hT ) , ∀hT ∈ HT . (5b)

The numerical function Vt : Ht → [0,+∞] is called the value function at time t.
Next, we show how the sequence {Vt}t∈J0,T K of value functions can be used to solve,

via dynamic programming, the optimization problem of interest, that is, the one starting
at t = 0, whose value is (recall that h0 = w0)

V0(w0) = inf
γ0:T−1∈Γ0:T−1

∫

HT
j(h′T )ργ0:T ( dh′T |w0) . (6)

Bellman operators and dynamic programming. We show that the value functions
in (5) are Bellman functions, in that they are solution of a Bellman or dynamic programming
equation.

Theorem 1 We suppose to be in the setting of §2.1. For t in J0, T−1K, we define the
Bellman operator Bt+1:t by, for all ϕ ∈ L0

+(Ht+1) and for all ht ∈ Ht,

(
Bt+1:tϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ(ht, ut, wt+1)ρt:t+1(dwt+1 |ht) . (7a)

Then, the Bellman operators are such that

Bt+1:t : L0
+(Ht+1)→ L0

+(Ht) , (7b)

2We could also consider a cost criterion j : Ht → R, either bounded function, or uniformly bounded
below function. However, for the sake of simplicity, we will deal in the sequel with nonnegative numerical
functions. The case j(hT ) = +∞ materializes joint constraints between uncertainties and controls in hT .
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and the value functions Vt defined in (5) are lower semianalytic and satisfy the Bellman
equation, or (stochastic) dynamic programming equation,

VT = j , Vt = Bt+1:tVt+1 , for t ∈ J0, T−1K . (8)

The proof is sketched in Appendix A. This theorem is inspired by [1, Chap. 8], with
the feature that the state xt is, in our case, the canonical history ht, with the canonical
dynamics ht+1 =

(
ht, ut, wt+1

)
. This quite general dynamic programming result is the basis

of all future developments in this paper. Although the recalls and statements presented in
this Sect. 2 are mostly straightforward consequences of results already established in the
literature, the developments are indispensable to tackle time block decomposition in the
forthcoming Sect. 3.

3 State reduction by time blocks and dynamic pro-

gramming

In standard approaches to solve, by dynamic programming, a stochastic optimal control
problem formulated in discrete time, either a state is given for all times (as in [1], [4], [5]
and [6]), or no state is given (as in [3],[10]). In this paper, our approach is intermediate,
in that a state is possibly obtained, but only at certain times. Thus, in this section, we
consider the question of reducing the history using a compressed “state” variable. Differing
with traditional practice, such a variable may not be available at any time t ∈ J0, T K, but
at some specified times 0 = t0 < · · · < tN = T . We have recalled in Sect. 2 that the
history ht is itself a state variable with associated canonical dynamics ht+1 =

(
ht, ut, wt+1

)
.

However, the size of this canonical state increases with time t, which is an unpleasant feature
for dynamic programming — quickly leading to the well-known curse of dimensionality —
hence the practical need to introduce a (ideally low dimensional) state space, at least at
some specified times, as done in this paper. As already said in the introduction, the main
difficulty in achieving this goal is notational.

In §3.1, we start by introducing the notion of state reduction on a single time block.
In §3.2, we move to state reduction on multiple consecutive time blocks and we give the
corresponding dynamic programming equations across time blocks. In §3.3, we conclude on
how we obtain reduced optimal feedbacks.

3.1 State reduction on a single time block

We first present the case where the reduction only occurs at two times denoted by r and t,
and such that 0 ≤ r < t ≤ T .

Definition 2 Let Xr and Xt be two Borel state spaces, θr and θt be two Borel-measurable
reduction mappings

θr : Hr → Xr , θt : Ht → Xt , (9a)
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and fr:t be a Borel-measurable dynamics

fr:t : Xr ×Hr+1:t → Xt . (9b)

The triplet (θr, θt, fr:t) is called a state reduction across Jr, tK if we have3

θt
(
(hr, hr+1:t)

)
= fr:t

(
θr(hr), hr+1:t

)
, ∀ht ∈ Ht . (9c)

The state reduction (θr, θt, fr:t) is said to be compatible with the sequence {ρs−1:s}r+1≤s≤t of
Borel-measurable stochastic kernels (3) if

• there exists a Borel-measurable reduced stochastic kernel ρ̃r:r+1 : Xr → ∆(Wr+1),
such that the stochastic kernel ρr:r+1 in (3) can be factored, for all hr ∈ Hr, as
ρr:r+1( dwr+1 |hr) = ρ̃r:r+1

(
dwr+1

∣∣ θr(hr)
)
,

• for all s in Jr+2, tK, there exists a Borel-measurable reduced stochastic kernel ρ̃s−1:s :
Xr × Hr+1:s−1 → ∆(Ws), such that the stochastic kernel ρs−1:s can be factored, for all
hs−1 ∈ Hs−1, as ρs−1:s

(
dws

∣∣ (hr, hr+1:s−1)
)

= ρ̃s−1:s

(
dws

∣∣ (θr(hr), hr+1:s−1

))
.

The above definition is similar to the sufficient statistics idea in stochastic control: the
state variable, which summarizes the history, is sufficient for the controller to design its
control policy ([23, p. 19], [1, Definition 10.6], [22]). However, sufficient statistics in the
stochastic control literature are defined at the original time stages. By contrast, Definition 2
— and the coming Definition 4 — consider a notion of sufficient statistics only for a subset
of time stages.

According to Definition 2, the triplet (θr, θt, fr:t) is a state reduction across Jr, tK if and
only if the diagram in the left part of Figure 1 is commutative; it is compatible if and only
if the diagram in the middle part of Figure 1 is commutative.

Hr ×Hr+1:t Ht

Xr ×Hr+1:t Xt

θr Id

Id

θt

fr:t

Hr ×Hr+1:s−1 ∆(Ws)

Xr ×Hr+1:s−1

θr Id

ρs−1:s

ρ̃s−1:s

L0
+(Ht) L0

+(Hr)

L0
+(Xt) L0

+(Xr)

Bt:r

θ⋆t

B̃t:r

θ⋆r

1

Figure 1: Commutative diagrams in case of state reduction

The following proposition is the key ingredient to formulate dynamic programming equa-
tions with a reduced state.

3Notice that, if only the couple (θr, fr:t) is given, we can define the reduction mapping θt by (9c), and
thus obtain a triplet (θr, θt, fr:t) which is a state reduction across Jr, tK.
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Proposition 3 Under the assumptions of §2.1, we define the Bellman operator across Jt, rK,
Bt:r : L0

+(Ht)→ L0
+(Hr) by

Bt:r = Br+1:r ◦ · · · ◦ Bt:t−1 , (10)

where the one time step operators Bs:s−1, for s in Jr+1, tK are defined in (7a).
Suppose that there exists a state reduction (θr, θt, fr:t) that is compatible with the sequence

{ρs−1:s}s∈Jr+1,tK of stochastic kernels (3). Then, there exists a reduced Bellman operator

across Jt, rK, B̃t:r : L0
+(Xt)→ L0

+(Xr), such that

(
B̃t:rϕ̃t

)
◦ θr = Bt:r(ϕ̃t ◦ θt) , ∀ϕ̃t ∈ L0

+(Xt) . (11)

For any ϕ̃t ∈ L0
+(Xt) and for any xr ∈ Xr, we have that

(
B̃t:rϕ̃t

)
= inf

ur∈Ur

∫

Wr+1

ρ̃r:r+1( dwr+1 |xr)

inf
ur+1∈Ur+1

∫

Wr+2

ρ̃r+1:r+2( dwr+2 |xr, ur, wr+1) · · ·

inf
ut−1∈Ut−1

∫

Wt

ρ̃t−1:t( dwt |xr, ur, wr+1, . . . , ut−2, wt−1)

ϕ̃t
(
fr:t(xr, ur, wr+1, . . . , ut−1, wt)

)
. (12)

The formula (12) represents a nested sequence of infima of integrals (with respect to different
stochastic kernels).

The proof of Proposition 3 is given in Appendix A. Proposition 3 can be interpreted as
follows. Denoting by θ?t : L0

+(Xt)→ L0
+(Ht) the operator defined by θ?t (ϕ̃t) = ϕ̃t ◦ θt for any

ϕ̃t ∈ L0
+(Xt), the relation (11) rewrites as θ?r ◦ B̃t:r = Bt:r ◦ θ?t , that is, Proposition 3 states

that the diagram in the right part of Figure 1 is commutative.

3.2 State reduction on multiple consecutive time blocks and dy-
namic programming equations

Proposition 3 can easily be extended to the case of multiple consecutive time blocks Jti, ti+1K,
with N ∈ N∗, i ∈ J0, N−1K and 0 = t0 < · · · < tN = T .

Definition 4 Let {Xti}i∈J0,NK be a family of Borel state spaces, {θti}i∈J0,NK be a family of

Borel-measurable reduction mappings θti : Hti → Xti, and {fti:ti+1
}
i∈J0,N−1K be a family of

Borel-measurable dynamics

fti:ti+1
: Xti ×Hti+1:ti+1

→ Xti+1
.

The family
(
{Xti}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K

)
is called a state reduction across the

consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K if every triplet (θti , θti+1
, fti:ti+1

) is a state
reduction across Jti, ti+1K, for i in J0, N−1K.
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The state reduction across the consecutive time blocks Jti, ti+1K is said to be compatible
with the family {ρs−1:s}s∈J1,T K of stochastic kernels given in (3) if every triplet (θti , θti+1

, fti:ti+1
)

is compatible with the family {ρs−1:s}s∈Jti+1,ti+1K, for i in J0, N−1K.

Remark 5 (Composed state dynamics as a reduction mapping)
There is a practical case where state reductions can readily be obtained, namely, when the

model is given by controlled state dynamics driven by noises. In that case, we are given a
sequence {Xs}s∈J0,T K of Borel state spaces and a sequence {fs:s+1}s∈J0,T−1K of Borel-measurable
dynamics

fs:s+1 : Xs × Us ×Ws+1 → Xs+1 . (13)

For any time s ∈ J0, T−1K, we define the composition f0:s+1 = fs:s+1 ◦ fs−1:s ◦ . . . ◦ f0:1

with the abuse of notation that the composition is performed on the state argument. Setting
W0 = X0, we obtain that f0:s+1 : Hs+1 → Xs+1 is a Borel-measurable mapping from the
history space Hs+1 taking values in the state space Xs+1.

Now, given a natural number N > 0 and an increasing sequence 0 = t0 < · · · < tN = T
of times, we define the sequence

{
θti
}
i∈J0,NK of Borel-measurable reduction mappings by θti =

f0:ti : Hti → Xti for i > 0, and by θ0 = Id (the identity mapping on W0) for i = 0. Moreover,
given i and j ∈ J0, NK, with i < j we obtain, for all htj ∈ Htj , that

θtj(htj) = θtj
(
(hti , hti+1:tj)

)
= fti:tj

(
θti(hti), hti+1:tj

)
, (14)

with fti:tj = ftj−1:tj ◦ ftj−2:tj−1 ◦ . . . ◦ fti:ti+1 which gives the state reduction Equation (9c).

Remark 6 (Block independent exogenous noises and stochastic kernels)
There is a practical case where compatible state reductions can readily be obtained. As-

sume that the sequence {ρs−1:s}s∈J1,T K of stochastic kernels in (3) are mappings whose ar-
guments do not include the control part (that is, depend at most on the history uncertainty
part (see (44a)). If we interpret stochastic kernels as (conditional) distributions of noises
(random process), this means that the system dynamics are driven by an exogenous noise
process, say {Wt}t∈J1,T K.

Assume moreover that the stochastic kernels give rise to noises that are independent
block by block, in the sense that the random vectors W0, (Wt)t∈J1,t1K, (Wt)t∈Jt1+1,t2K, . . . ,
(Wt)t∈Jti+1,ti+1K, . . . , (Wt)t∈JtN−2+1,tN−1K, (Wt)t∈JtN−1+1,tN K are stochastically independent.
Then, from Definitions 2 and 4, we deduce that any state reduction across the same time
blocks is compatible with the stochastic kernels.

Assuming the existence of a state reduction across the consecutive time blocks Jti, ti+1K
compatible with the sequence of stochastic kernels (3), we obtain the existence of a se-
quence of reduced Bellman operators across the time blocks Jti, ti+1K as an immediate con-

sequence of multiple applications of Proposition 3, that is, B̃ti+1:ti : L0
+(Xti+1

) → L0
+(Xti),

i ∈ J0, N−1K, such that, for any function ϕ̃ti+1
∈ L0

+(Xti+1
), we have that

(
B̃ti+1:tiϕ̃ti+1

)
◦θti =

Bti+1:ti(ϕ̃ti+1
◦ θti+1

). We now consider the family of optimization problems defined by the

10



associated value functions (5). Thanks to the state reductions, we can enounce the follow-
ing two theorems which establish dynamic programming equations across consecutive time
blocks. The first one, Theorem 7, states a dynamic programming equation for an optimiza-
tion problem in Mayer form (that is, just involving a final cost). The second one, Theorem 8,
is more general as it involves both instantaneous costs and a final cost. As it is well known
that the second case can be reduced to a Mayer form through a state augmentation, the
proof of Theorem 8 easily follows from the proof of Theorem 7.

Theorem 7 (Time block decomposition for the Mayer form) We assume to be in the
setting of §2.1. Suppose that a state reduction

(
{Xti}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K

)
ex-

ists across the consecutive time blocks {Jti, ti+1K}i∈J0,N−1K, satisfying 0 = t0 < · · · < tN = T ,
which is compatible with the sequence {ρs−1:s}s∈J1,T K of stochastic kernels given in (3).

Suppose that there exists a reduced cost criterion ̃ : XT → [0,+∞], which is a non-
negative lower semianalytic function and is such that the cost function j in (4) can be fac-
tored as j = ̃ ◦ θT . We define the sequence of reduced value functions {Ṽti}i∈J0,NK, where

Ṽti : Xti → [0,+∞] for i ∈ J0, NK, by

ṼtN = ̃ and Ṽti = B̃ti+1:tiṼti+1
, ∀i ∈ J0, N−1K , (15)

where the reduced Bellman operators {B̃ti+1:ti}i∈J0,N−1K across the intervals {Jti, ti+1K}i∈J0,N−1K

are given in (12). Then, the sequence {Vti}i∈J0,NK in (5) satisfies Vti = Ṽti ◦ θti, for all
i ∈ J0, NK.

Proof. The proof is an immediate consequence of multiple applications of Theorem 1 and Propo-

sition 3. �

Finally, we consider the special case where the criterion j : HT → [0,+∞] is factored as

j(hT ) =
N−1∑

i=0

`ti
(
θti(hti), hti+1:ti+1

)
+ `tN

(
θtN (htN )

)
, (16)

where the numerical functions {`ti}i∈J0,NK are nonnegative lower semianalytic, with `ti :

Xti ×Hti+1:ti+1
→ [0,+∞] for i ∈ J0, NK. The associated optimization problems, indexed by

i ∈ J0, N−1K and parameterized by hti ∈ Hti , are given by

Vti(hti) = inf
γti:T−1∈Γti:T−1

∫

HT

(N−1∑

j=i

`tj
(
θtj(h

′
tj

), h′tj+1:tj+1

)
+ `tN

(
θtN (h′tN )

))
ργti:T ( dh′T |hti) ,

(17a)

and, for i = N ,

VtN (htN ) = `tN
(
θtN (htN )

)
. (17b)

11



These Bellman equations are a special case of Equations (5) when the cost criterion j is
given by (16). It is left to the reader to prove that the following theorem holds true4.

Theorem 8 (Taking care of instantaneous costs in addition to final cost)
Suppose that the assumptions of Theorem 7 are satisfied, but for the cost criterion j :

HT → [0,+∞] defined by Equation (16).
We define the sequence of reduced value functions {Ṽti}i∈J0,NK, where Ṽti : Xti → [0,+∞]

for i ∈ J0, NK, by

ṼtN = `tN and Ṽti = Bti+1:tiṼti+1
, ∀i ∈ J0, N−1K , (18)

where the reduced Bellman operator Bti+1:ti across Jti, ti+1K are given, for any i ∈ J0, N−1K,
for any ϕ̃ti+1

∈ L0
+(Xti+1

) and for any xti ∈ Xti, by

(
Bti+1:tiϕ̃ti+1

)
(xti) = inf

uti∈Uti

∫

Wti+1

ρ̃ti:ti+1( dwti+1 |xti)

inf
uti+1∈Uti+1

∫

Wti+2

ρ̃ti+1:ti+2( dwti+2 |xti , uti , wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρ̃ti+1−1:ti+1

( dwti+1
|xti , uti , wti+1, . . . , uti+1−2, wti+1−1)(

`ti(xti , uti , wti+1, . . . , uti+1−1, wti+1
)

+ ϕ̃ti+1

(
fti:ti+1

(xti , uti , wti+1, . . . , uti+1−1, wti+1
)
))

. (19)

Then, the sequence {Vti}i∈J0,NK in Equations (17) satisfies Vti = Ṽti ◦ θti, for all i ∈ J0, NK.

Here again, Formula (19) represents a nested sequence of infima of integrals (with respect
to different stochastic kernels).

Of course, solving Equation (15) or Equation (19) can be as difficult as solving the original
Bellman equation. However, the interest of such time block decomposition will be illustrated
on different applications in Sect. 4, Sect. 5 and Sect. 6.

3.3 State reduction on multiple consecutive time blocks and re-
duced optimal feedbacks

As in the classical dynamic programming framework [1, p. 190], we recover the property that
the search of an optimal policy among all policies (history feedbacks) can be limited to the
search of an optimal state feedback. This is the most important result in practice.

4The proof uses [1, Lemma 7.30 (3,4)] on the stability of lower semianalytic numerical functions under
addition and under right composition with a Borel-measurable mapping.
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Proposition 9 Under the assumptions of Theorem 7, the reduced value functions {Ṽti}i∈J0,NK

defined in (15) are equal to the minimum value of the following optimization problems, pa-
rameterized by the reduced history (state) xti ∈ Xti

Ṽti(xti) = inf
γti:T−1∈Γ

xti
ti:T−1

∫

Hti+1:T

(xti , h
′
ti+1:T )%̃γti:T ( dh′ti+1:T |xti , hti+1:t) , ∀xti ∈ Xti ,

(20a)

and ṼT (xT ) = ̃(xT ) , ∀xT ∈ XT , (20b)

where the mapping  is given by  = ̃◦ftN−1:tN ◦ftN−2:tN−1
◦. . .◦fti:ti+1

(with, as already noted,
the abuse of notation that the composition is performed on the state argument), where %̃γti:T
is the reduced stochastic kernel (see Definition 2) associated with the kernel %γti:T , the kernel
%γti:T being given in the factorization of the kernel ργr:t, namely ργr:t( dh′t |hr) = δhr( dh′r) ⊗
%γr:t( dh′r+1:t |hr) given by (48), δ being the Dirac measure, and where Γ

xti
ti:T−1 is the set of

(ti:T−1)-reduced history feedbacks, that is, the set of sequences
{
γs
}
s∈Jti,T−1K of universally

measurable mappings γs : Xti ×Hti+1:s → Us.

Proof. Using Theorem 7, we have that, for all i ∈ J0, NK, Vti = Ṽti ◦ θti , with Ṽti satisfying the
Bellman equation (15). For establishing that Ṽti is a value function satisfying Equation (20), we
now prove that, in the definition of Vti in Equation (5), we can replace the space Γti:T−1 of history
feedbacks by the space Γ

xti
ti:T−1 state feedbacks. We proceed as follows. Following [1, Chapter 8],

we use the Bellman equation (19) to obtain ε-minimizers for each problem (5). As ε-minimizers are
obtained by recursively solving Equations (19), they are obtained by solving (up to ε) parametric
optimization problems. Thus, we easily get, using [1, Proposition 8.3, p. 200], that an ε-minimizer
at time t ∈ Jti, ti+1K is a universally measurable function of (θ(hti), hti+1:t). From this last fact, we
get that — in the value function definition of Vti given in Equation (5) — the space Γ0:T−1 can be
replaced by the space of feedbacks given by universally measurable functions of the ordered pair
(θ(hti), hti+1:t) without changing the value function.

Finally, when considering Equation (5) — with this restricted space of state feedbacks, and

considered at time ti for i ∈ J0, NK — we obtain that the cost to be minimized is now parameterized

by θ(hti) — as it is the case for the cost to be integrated and also for the stochatic kernels induced

by the state feedbacks. By setting xi = θ(hti), the obtained optimization problem is the right hand

side of (20), that we call ˜̃Vti(xti), and we have that, for all i ∈ J0, NK, Vti = ˜̃Vti ◦ θti . It remains

to prove that Ṽti = ˜̃Vti , for all i ∈ J0, NK. By a proof similar to the one of Theorem 7, we show

that the sequence { ˜̃Vti}i∈J0,NK satisfies the Bellman equation (15). By uniqueness, the sequence

{ ˜̃Vti}i∈J0,NK coincides with the sequence {Ṽti}i∈J0,NK. �

4 Mixing dynamic programming and stochastic pro-

gramming

As a first application of the formalism developed in §3.2, we show how dynamic programming
and stochastic programming can be mixed (which was the original motivation for the paper,
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see Footnote 1). The proof of the following proposition is a straightforward application of
Theorem 8 combined with Remark 6.

Proposition 10 Suppose that the assumptions of Theorem 7 are satisfied. We consider
multiple consecutive time blocks Jti, ti+1K, with N ∈ N∗, i ∈ J0, N−1K and 0 = t0 < · · · <
tN = T , and we assume that

• a state reduction
(
{Xti}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K

)
exists across the consec-

utive time blocks {Jti, ti+1K}i∈J0,N−1K,

• the noises are exogeneous and time block independent, that is, the elements of the
sequence {ρs−1:s}s∈J1,T K in (3) are, for all i ∈ J0, N−1K and r ∈ [ti, ti+1), of the form

ρr:r+1 : Wti × · · · ×Wr → ∆(Wr+1) , (21)

which means that the distribution of the uncertainty wr+1 is only function of the past
uncertainties (wti , . . . , wr) within the time block,

• the cost criterion j : HT → [0,+∞] can be factored as

j(hT ) =
N−1∑

i=0

`ti
(
θti(hti), hti+1:ti+1

)
+ `tN

(
θtN (htN )

)
, (22)

where the numerical functions {`ti}i∈J0,NK are nonnegative lower semianalytic, with

`ti : Xti ×Hti+1:ti+1
→ [0,+∞] for i ∈ J0, NK.

Then, the multistage stochastic optimization problem (6) can be solved by the following al-
gorithm.

Initialization. Define ṼtN = `tN : XT → [0,+∞].

Backward recursion. Suppose that the function Ṽti+1
: Xti+1

→ [0,+∞] is known at index
i+1 ∈ J1, NK. Then, for each state xti ∈ Xti (for instance on a grid approximating the
set Xti, or on Xti itself when finite and small enough), compute the previous Bellman
value function Ṽti at index i as

Ṽti(xti) = inf
uti∈Uti

∫

Wti+1

ρti:ti+1( dwti+1 |wti)

inf
uti+1∈Uti+1

∫

Wti+2

ρti+1:ti+2( dwti+2 |wti , wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρti+1−1:ti+1
( dwti+1

|wti , wti+1, . . . , wti+1−1)

(
`ti(xti , uti , wti+1, . . . , uti+1−1, wti+1

)

+ Ṽti+1

(
fti:ti+1

(xti , uti , wti+1, . . . , uti+1−1, wti+1
)
))

. (23)
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Final step. Compute V0(w0) = Ṽt0
(
θt0(wt0)

)
.

In many practical situations, all the uncertainty sets W0, . . . , WT are finite and the
computation in (23) is tractable by using stochastic programming and scenario tree tech-
niques, which do not require stagewise independence of the noises. We are thus able to take
advantage of both the dynamic programming world and the stochastic programming world:

• use dynamic programming at a selection of time stages (for instance, at those of the slow
time scale) and across the corresponding time blocks (for instance, across consecutive
slow time stages), when noises are stochastically independent block by block; that yields
Bellman value functions only for the chosen selection of time stages (for instance, at
the slow time scale);

• use stochastic programming inside time blocks (for instance, at fast time scale, within
two consecutive slow time stages); the fast time scale final cost function of a block is
given by the Bellman value function computed at the slow time scale which corresponds
to the terminal time stage of the block; no stagewise independence assumption is
required within time blocks (for instance, for the short time scale noises).

Remark 11 As a special case, it is straightforward to check that the triplet
(
{Wti}i∈J0,NK,

{θti}i∈J0,NK, {fti:ti+1
}
i∈J0,N−1K

)
, with

• the reduction mapping θti given by θti(hti) = wti for all i ∈ J0, NK,

• the dynamics fti:ti+1
given by fti:ti+1

(wti , hti+1:ti+1
) = wti+1

, for all i ∈ J0, N − 1K.

is a state reduction across the consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K which is com-
patible with the sequence of stochastic kernels given by Equation (21). Thus, Proposition 10
applies.

But, in this special case, the optimal controls can be computed in parallel with respect to
time blocks, as the term Ṽti+1

(wti+1
) is a constant in (23). What is interesting in (23) is the

added fact that the optimal strategy which was, a priori, searched as feedbacks depending on
the whole history is in fact made up of independent strategies, each defined on a single time
block and made up of feedbacks depending only on the block history (the history within the
block).

Numerical illustration. To numerically illustrate the mixing between dynamic program-
ming and stochastic programming, we consider a toy optimization problem over a time
span J0, T K, where T is an even natural number (for instance T = 24 for an hourly period
problem during a day). The problem involves a storage, the state xt of which is driven by
a dynamics involving a control variable ut and a noise variable wt+1. We assume that the
noises during the first half time span, that is, for t ∈ J1, T/2K, are independent of the noises
during the second half time span, that is, for t ∈ JT/2, T K. We also assume that each noise
variable wt can only take two possibles values, so that the whole uncertainty process can be
represented by a binary tree.
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In this problem, we consider the two consecutive time blocks J0, T/2K and JT/2, T K, and
the state reduction is given in a straightforward manner by the variable xt (as explained
in Remark 5). Thus, we are able to compute Bellman functions by the algorithm given in
Proposition 10. We illustrate the algorithm for the horizon T = 24.

• The Bellman function Ṽ24 is given by the final cost function of the problem.

• The Bellman function Ṽ12 is approximated by discretization and it is computed on a
grid involving n points (x1, . . . , xn). For i ∈ J1, nK, each value Ṽ12(xi) is obtained by
solving a stochastic programming problem on the time span J12, 24K, that is, on a tree
involving 212 leaves (as each noise variable wt can only take two possibles values).

• The optimal cost of the optimization problem is Ṽ0(x0), obtained again by stochastic
programming on the time span J0, 12K, that is, by solving a stochastic optimization
problem on a tree involving 212 leaves, the final cost being given by the function Ṽ12.

Gathering the calculations performed by this algorithm, we obtain that solving the global
problem by mixing dynamic programming and stochastic programming is done by solving
(n + 1) stochastic optimization programs on scenario trees, each involving 212 leaves. The
total number of leaves to explore — when solving the problem by this mixing method — is
(n+ 1)212 ≈ 4(n+ 1) 103, which gives an estimation of the algorithm computational effort.

This mixing method is to be compared with a pure scenario tree method, that is, when
the problem is solved by a stochastic optimization program on a scenario tree over the whole
time horizon on 24 hours, the total number of leaves to explore being 224 ≈ 1.6 107. Even
using a fairly fine state discretization grid, for example a grid containing 100 points, the
resolution by mixing dynamic programming and stochastic programming — when compared
to the pure stochastic programming approach — leads to a quite significant gain, namely a
factor 1.6× 107/4(100 + 1)× 103 ≈ 40 in our case.

We performed numerical experiments with a single computer equipped with 12 Intel
Core i5-10500 CPU and 16 GB of RAM. We used the LP package of the solver Gurobi
9.51. Apart from the solver, all our code has been implemented with the Julia language
and the JuMP modeler. As we failed to obtain a solution for the original problem on a
tree for the horizon T = 24, we performed numerical tests for shorter horizons, hence for
smaller numbers of time steps. For every T ∈ {12, 14, 16, 18, 20, 24}, we considered that a
state reduction existed at time T/2. The results are gathered in Table 1, and show that the
computational time — that is, the CPU time needed to create the LP model by JuMP and to
solve it by Gurobi — needed by the pure scenario tree method is very rapidly increasing with
the number of time steps, whereas the computational time needed by the mixing method
grows very slowly with the number of time steps, at least for the different horizons under
consideration. Finally, note that the mixing method can be easily parallelized since the
computation of the n values

{
ṼT/2(xi)

}
i∈J1,nK of the Bellman function ṼT/2 can be performed

in parallel, reducing the CPU time by a factor (n + 1)/2, that is, approximately 50 in our
case.
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Horizon T Mixing method Pure scenario tree method
12 6.5 s 0.5 s
14 6.5 s 5.0 s
16 6.6 s 71.2 s
18 6.8 s 1009.5 s
20 6.8 s 137,296.0 s
24 7.2 s optimization failed

Table 1: Computational time (in seconds) needed for solving the problem by both the mixing
method and the pure scenario tree method, for different horizons

5 Two-time-scale optimization problems

As a second application of the formalism developed in §3.2, we show how to tackle a class
of two-time-scale optimization problems. Indeed, some decisions problems naturally involve
two different time scales, because of the timing of decisions — as for example long term
investment decision and short term monitoring of physical devices.

In §5.1 and §5.2 we detail the structure and we formulate the two-time-scale optimization
problems that we consider. In §5.3, we show how to decompose such problems by time blocks.
In §5.4, we illustrate the approach on a crude oil procurement problem.

5.1 Structure of a two-time-scale optimization problem

We provide the data for a two-time-scale multistage optimization problem.

Two time scales. The slow time scale is represented by a finite totally ordered set (S,�)
as follows — where s+ denotes the successor of s ∈ S and s− its predecessor, and where we
use the notation t ≺ t′ for t � t′ and t 6= t′ —

min S = s ≺ · · · ≺ s− ≺ s ≺ s+ ≺ · · · ≺ s̄ = max S , (24a)

and the fast time scale by a finite totally ordered set (F,�):

minF = f ≺ · · · ≺ f− ≺ f ≺ f+ ≺ · · · ≺ f̄ = maxF . (24b)

In a sense to be made more rigorous later (once a unified timeline will have been defined),
each slow time interval [s, s+[ is made up of |F| (cardinality of F) fast time steps, hence the
denomination “two-time-scale”. For instance, S = {Mo, Tu, We, Th, Fr, Sa, Su} may
represent days, whereas F = J1, 24K may represent hours within a day. In some problems,
we might even take F = J0, 24K to handle the fact that two decisions (one slow and one fast)
are taken at midnight, hence an additional fast time step 0.
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Unified timeline. We define the unified timeline of the decision problem in two steps.
First, we equip the product set S× F with the following lexicographic order:

(s, f) ≺ · · · ≺ (s−, f̄) ≺ (s, f) ≺ (s, f+) ≺ · · · (25)

· · · ≺ (s, f̄−) ≺ (s, f̄) ≺ (s+, f) ≺ · · · ≺ (s̄, f̄) .

More formally, we denote by (s, f)+ the successor of (s, f) in S× F \ {(s̄, f̄)}, with

(s, f)+ =

{
(s, f+) if f 6= f̄ ,

(s+, f) if f = f̄ .
(26a)

Similarly, we denote by (s, f)− the predecessor of (s, f) in S× F \ {(s, f)}, with

(s, f)− =

{
(s, f−) if f 6= f ,

(s−, f̄) if f = f .
(26b)

In the product set S×F, the first time (s, f) does not coincide with a slow time (the couple
(Mo, 0) does not correspond to Monday in our running example in §5.4). Thus, we add
to the product set S×F an extra time denoted by (s−, f̄), corresponding to the extra slow
time s−, which is such that (s, f)− = (s−, f̄). We denote by S the set {s−} ∪ S and by S×F
the set (s−, f̄)∪ (S×F), also called the extended timeline when equipped with an order � as
follows (where we use the notation (s, f) ≺ (s′, f ′) for (s, f) � (s′, f ′) and (s, f) 6= (s′, f ′))

(s−, f̄) ≺ (s, f) ≺ · · · ≺ (s−, f̄) ≺ (s, f) ≺ (s, f+) ≺ · · ·
· · · ≺ (s, f̄−) ≺ (s, f̄) ≺ (s+, f) ≺ · · · ≺ (s̄, f̄) . (27)

The two-time-scale optimization problem will be formulated on the extended timeline S×F,
which we trivially identify with the time set J0, T K, where T = |S| × |F|.

Decisions. We suppose given

• a family {Us
s}s∈S\{s̄} of slow time scale decision Borel spaces, and a family {Ws

s}s∈S of
slow time scale uncertainty Borel spaces,

• a family {Usf
(s,f)}(s,f)∈S×(F\{f̄})

of fast time scale decision Borel spaces, and a family

{Wsf
(s,f)}(s,f)∈S×(F\{f})

of fast time scale uncertainty Borel spaces.

Dynamics. We suppose given a family {Xsf
(s,f)}(s,f)∈S×F

of fast time scale state Borel spaces.

For the sake of simplicity, we set Xs
s = Xsf

(s,f̄)
for all s ∈ S. Thus, the slow time s ∈ S is

identified with the two scale time (s, f̄), as illustrated in Figure 2. We also suppose given
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s− s s+ s̄− s̄

(s−, f̄) (s, f) (s, f̄) (s+, f) (s+, f̄) (s̄−, f̄) (s̄, f) (s̄, f̄)

S

· · ·

· · ·
{s}×F

S×F

· · ·

{s+}×F

· · · · · ·
{s̄}×F

1

Figure 2: The product timeline with an extra starting point (s−, f̄)

a family {Gss}s∈S\{s̄} of slow time scale dynamics Borel-measurable mappings, that represent

the evolution “driven at the slow time scale” given, for s ∈ S \ {s̄}, by5

Gss : Xs
s×Us

s×Ws
s+ → Xsf

(s+,f) ,(
xss, u

s
s, w

s
s+

)
7→ xsf(s+,f) = Gss

(
xss, u

s
s, w

s
s+

)
. (28a)

We suppose given a family {Gsf(s,f)}(s,f)∈S×(F\{f̄})
of fast time scale dynamics Borel-measurable

mappings, that represent the evolution “driven at the fast time scale” given, for all s ∈ S
and f ∈ F \ {f̄}, by

Gsf(s,f) : Xsf
(s,f)×Usf

(s,f)×Wsf
(s,f)+ → Xsf

(s,f)+ ,
(
xsf(s,f), u

sf
(s,f), w

sf
(s,f)+

)
7→ xsf

(s,f)+ = Gsf(s,f)

(
xsf(s,f), u

sf
(s,f), w

sf
(s,f)+

)
. (28b)

Cost functions. We suppose given a family {Λs}s∈S\{s̄} of slow time scale nonnegative
lower semianalytic cost functions, with

Λs− : Xs
s−×Us

s−×Ws
s×

∏

f∈F\{f̄}

(
Xsf

(s,f)×Usf
(s,f)×Wsf

(s,f)+

)

︸ ︷︷ ︸
interval ]s−,s[={(s,f),...,(s,f̄−)}

→ [0,+∞] ,

for s ∈ S, and a slow time scale nonnegative lower semianalytic final cost function Λs̄

Λs̄ : Xs
s̄ → [0,+∞] ,

5We stress that the slow time scale dynamics (28a) yields as output the first fast state of the slow period
(and not the next slow state). Thus, the slow time scale dynamics (28a) is not a dynamics from one slow
state to the next slow state.
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that make up, by summation, an intertemporal cost

∑

s∈S

Λs−

(
xss− , u

s
s− , w

s
s, (x

sf
(s,f), u

sf
(s,f), w

sf
(s,f)+)

f∈F\{f̄}

)
+ Λs̄

(
xss̄
)
. (30)

Stochastic kernels. Finally, we suppose given a family of constant slow time scale Borel-
measurable stochastic kernels {ρss:s+}s∈S\{s̄}

ρss:s+ ∈ ∆(Ws
s+) , ∀s ∈ S \ {s̄} , (31a)

and, for each s ∈ S, a family {ρsf
(s,f):(s,f)+}

f∈F\{f̄}
of fast time scale Borel-measurable stochastic

kernels

ρsf
(s,f):(s,f)+ : Ws

s ×
f∏

f ′=f+

Wsf
(s,f ′)

︸ ︷︷ ︸
in interval [s−,s[

−→ ∆(Wsf
(s,f)+) , ∀s ∈ S , ∀f ∈ F\{f̄} , (31b)

with the convention that the Cartesian products of spaces in Equations (31a) and (31b)
reduce to nothing when the upper index of the Cartesian product is strictly lower that the
corresponding lower index. Note that, for a given s ∈ S, each fast time scale stochastic kernel
ρsf

(s,f):(s,f)+ , only depends on the noises of the slow time interval [s−, s[= {(s−, f̄), (s, f), . . . , (s, f̄−)}.
The (constant) assumption (31a) and the (single block) assumption (31b) correspond to
stochastic independence between time blocks, and will be useful in the proof of Proposi-
tion 12.

5.2 Formulation of a two-time-scale optimization problem on the
product timeline

To apply Theorem 7, we introduce sets associated with the extended timeline (27) by

X(s,f) =

{
Xs
s if f = f̄

Xsf
(s,f) if f 6= f̄

, ∀(s, f) ∈ S×F , (32a)

U(s,f) =

{
Us
s if f = f̄

Usf
(s,f) if f 6= f̄

, ∀(s, f) ∈ S×F \ {(s̄, f̄)} , (32b)

W(s,f) =

{
Ws

s if f = f

Wsf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F , (32c)

with the particular case of the extra initial slow time

W(s−,f̄) = Xs
s− , (32d)
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and a family of state dynamics G(s,f) : X(s,f)×U(s,f)×W(s,f)+ → X(s,f)+ defined by

G(s,f) =

{
Gss if f = f̄

Gsf(s,f) if f 6= f̄
, ∀(s, f) ∈ S×F \ {(s̄, f̄)} . (33)

s s+

(s, f̄) (s+, f) (s+, f+) (s+, f̄−) (s+, f̄)




Xs
s(= Xsf

(s,f̄)
)

×Us
s

×Ws
s+







Xsf
(s+,f)

×Usf
(s+,f)

×Wsf
(s+,f)+







Xsf
(s+,f+)

×Usf
(s,f+)

×Wsf
(s+,f+)+







Xsf
(s+,f̄−)

×Usf
(s+,f̄−)

×Wsf
(s+,f̄)







Xsf
(s+,f̄)

(= Xs
s+)

×Us
s+

×Ws
(s+)+







X(s,f̄)

×U(s,f̄)

×W
(s,f̄)+







X(s+,f)

×U(s+,f)

×W
(s+,f)+







X(s+,f+)

×U(s,f+)

×W
(s+,f+)+







X(s+, f̄−)
×U(s+,f̄−)

×W
(s+,f̄)







X(s+,f̄)

×U(s+,f̄)

×W
(s+,f̄)+




· · ·

Gs
s

Gsf
(s+,f) · · ·

Gsf
(s+,f̄−)

G(s,f̄) G(s+,f) · · ·
G(s+,f̄−)

1

Figure 3: Original dynamics and their reformulation on the product timeline on the slow
time interval [s, s+[= {(s, f̄), (s+, f), . . . , (s+, f̄−)}

From these spaces, we deduce the history spaces and the histories for all (s, f) ∈ S×F

H(s,f) = W(s−,f̄) ×
∏

(s,f)�(s′,f ′)�(s,f)

(
U(s′,f ′)− ×W(s′,f ′)

)
, (34a)

h(s,f) =
(
w(s−,f̄),

(
u(s′,f ′)− , w(s′,f ′)

)
(s,f)�(s′,f ′)�(s,f)

)
, (34b)

and, for suitable indices, the partial history sets and the partial histories

H(s,f):(s′,f ′) =
∏

(s,f)�(s′′,f ′′)�(s′,f ′)

(U(s′′,f ′′)− ×W(s′′,f ′′)) , (35a)

h(s,f):(s′,f ′) =
(
(u(s′′,f ′′)− , w(s′′,f ′′))(s,f)�(s′′,f ′′)�(s′,f ′)

)
. (35b)

The cost criterion formulated in Equation (30) combined with state dynamics leads to a
(nonnegative lower semianalytic) cost criterion j : H

(s̄,f̄)
→ [0,+∞].

Based on the stochastic kernels (31a) and (31b), we introduce stochastic kernels ρ(s,f):(s,f)+

associated with the extended timeline (27), for each (s, f) ∈ S×F \ {s̄, f̄}, by ρ(s,f):(s,f)+ :
H(s,f) −→ ∆(W

(s,f)+) with

ρ(s,f):(s,f)+

(
dw

(s,f)+

∣∣h(s,f)

)
=

{
ρss:s+( dws

s+) if f = f̄ ,

ρsf
(s,f):(s,f)+

(
dwsf

(s,f+)

∣∣ws
s, w

sf
(s,f+)

, · · · , wsf
(s,f)

)
if f 6= f̄ .
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Note that, for f 6= f̄ , the stochastic kernels ρ(s,f):(s,f)+ : H(s,f):(s,f) → ∆(W
(s,f)+), only depend

on the partial history uncertainty part from (s, f) to (s, f), and not on the (past) controls.

The components of the problem are now formulated on the extended timeline S×F,
already identified with the time set J0, T K. Thus, we are in the framework of §2.1 and we
aim at solving an optimization problem as formulated in Equation (6).

5.3 Two-time-scale decomposition

The existence of Bellman equations for a two-time-scale optimization problem is given by
the following proposition.

Proposition 12 Consider a two-time-scale optimization problem as formulated in §5.1 and
§5.2. The optimization problem (6) has a solution given by a dynamic programming equation
at the slow scale. More precisely, let {Vs}s∈S be given by Vs̄ = Λs̄ and, for s ∈ S \ {s̄}, by the
backward induction6

Vs(x
s
s) = inf

uss∈Us
s

∫

Ws
s+

ρss:s+( dws
s+)

inf
usf

(s+,f)
∈Usf

(s+,f)

∫

Wsf
(s+,f+)

ρsf(s+,f):(s+,f+)( dwsf
(s+,f+) |ws

s+) · · ·

inf
usf

(s+,f̄−)
∈Usf

(s+,f̄−)

∫

Wsf
(s+,f̄)

ρsf(s+,f̄−):(s+,f̄)( dwsf
(s+,f̄) |ws

s+ , w
sf
(s+,f+), · · · , wsf

(s+,f̄−))

(
Λs(x

s
s, u

s
s, w

s
s+ , . . . , u

sf
(s+,f̄−), w

sf
(s+,f̄))

+ Vs+
(
Gs:s+(xss, u

s
s, w

s
s+ , . . . , u

sf
(s+,f̄−), w

sf
(s+,f̄))

))
, (36)

where Gs:s+ is the composition Gs:s+ = Gsf
(s+,f̄−)

◦ · · · ◦ Gsf(s+,f) ◦ Gss associated with the state dy-

namics defined in (28). Then, the value of the optimization problem (6) is given by Vs−(xss−),
where the initial condition xss− corresponds to w0 in (6), as stated by (32d).

Proof. The proof is an application of Theorem 8 with the help of Remarks 5 and 6. First, we

have re-framed in §5.2 the two-time-scale optimization problems described in §5.1 in the formalism

of §2.1 with the help of the extended timeline (27). Second, as we are given state dynamics (33)

on the extended timeline and thanks to Remark 5, we obtain a state reduction at times {(s, f̄)}s∈S
by composition of the state dynamics. Moreover, as the slow time scale stochastic kernels given by

Equation (31a) are constant, the state reduction across the slow time scale is compatible with the

stochastic kernels (see Remark 6). We are thus able to apply Theorem 8 and obtain the slow time

scale Bellman recursion (36) as a special case of Equation (19). �

6Here again, the formula (36) represents a nested sequence of infima of integrals (with respect to different
stochastic kernels).
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The slow time scale Bellman equation (36) is as difficult to solve as the Bellman equation
on the extended timeline. However, the interest of (36) lies elsewhere. Imagine that one is
able to obtain, in a relatively easy way, lower Vs and upper Vs approximations of Vs in (36).
Then, in order to obtain optimal controls for the optimization problem (6), one can proceed
as follows. By replacing the last term Vs+ of (36) by either Vs+ or Vs+ , one can now solve a

(lower or upper) surrogate of Equation (36) and thus obtain the optimal controls on the time
interval [s, s+[= {(s, f̄), (s+, f), . . . , (s+, f̄−)}. For instance, one could use scenario decompo-
sition methods, like progressive hedging [17], that do not require statistical independence of
noises within the slow time interval [s, s+[. Thus, the two-time-scale stochastic optimization
problem as formulated in §5.1 and §5.2 can be approximatively solved, from below and from
above, by a mix of slow time scale dynamic programming and of (for example) progressive
hedging (or any other method, including dynamic programming).

5.4 Illustration with the crude oil procurement problem

This illustration stems from a research work done in partnership with TotalEnergies, in the
context of a PhD thesis [14]. Crude oil procurement is the part of the oil supply chain
that sits between the production of crude oil and its processing in a refinery. The goal of
procurement is to purchase crude oil from various suppliers around the world and having it
delivered in time to the refinery to be processed. As illustrated in Figure 4, every month
(on the bottom line) a refinery receives crudes that have been bought during the 8 previous
weeks (on the upper line).

usf
(M1,1)

usf
(M1,2)

usf
(M1,3)

usf
(M1,4)

usf
(M2,1)

usf
(M2,2)

usf
(M2,3)

usf
(M2,4)

usf
(M3,1)

usf
(M3,2)

usf
(M3,3)

usf
(M3,4)

us
M0

us
M1

us
M2

M0 M1

1 2 3 4

M2

1 2 3 4

M3

1 2 3 4 12 3 4

refinery
stocks

crude oil shipments purchased every week

refinery stock consumption every month

Figure 4: Procurement of crude oil over 3 months M1, M2 and M3, where a circle ◦ denotes
purchase decisions and a square � denotes consumption decisions

The problem naturally displays two time scales. On the one hand, deliveries to the
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Notations from §5.1 Crude oil procurement

S set of months during which we manage the refinery;
in Figure 4, S = {M1,M2,M3}

F set of weeks in each month;
in Figure 4, F = {1, 2, 3, 4, 5}

Us
s set of crude oil consumptions during the month s+

Ws
s+ set of product prices for the month s+

Usf
(s,f) set of crude shipments purchased in week (s, f)

Wsf
(s,f)+ set of crude oil prices in week (s, f)

Gsf(s,f) accumulation of shipments purchased in (s, f)

Gss delivery of orders and consumption of crude oil for the month s+

Λs operational costs during the month s
(crude oil purchases during s - earnings from production)

ΛM4
end cost associated with the state xsM3

= xsf(M3,5)

valuation of the buffers and stocks in the refinery
before the beginning of the month M4

Table 2: Identification of the elements introduced in §5.1 with elements of the crude oil
procurement problem

refinery are made at the beginning of each month, and crude consumption is set once a
month. On the other hand, crude oil shipments can be purchased at the frequency of the
week; every week, a selection of shipments is presented to the decision-maker who must
decide which shipments to purchase. Following the construction of the extended timeline
in (27), we represent by the sequence

(M0, 5) ≺ (M1, 1) ≺ (M1, 2) ≺ (M1, 3) ≺ (M1, 4) ≺ (M1, 5)

≺ (M2, 1) ≺ (M2, 2) ≺ (M2, 3) ≺ (M2, 4) ≺ (M2, 5) (37)

≺ (M3, 1) ≺ (M3, 2) ≺ (M3, 3) ≺ (M3, 4) ≺ (M3, 5)

the timeline associated with Figure 4 (notice that we consider that a month is made of
4 weeks). The initial time stage (M0, 5) corresponds to the additional time (s−, f̄) in (27).
The times (M1, 5) and (M2, 5) both represent the “end of the month” when a consumption
decision (slow scale decision uss on the bottom line of Figure 4) is taken.

We now illustrate how the crude oil procurement problem can be put in the form of a
two-time-scale optimization problem such as presented in §5.1. For this purpose, we proceed
to the identifications in Table 2.

We call s−buffer (resp. s−−buffer), the temporary stock that is created at the beginning
of the month s (resp. s−) and that will be delivered two months after. For instance, in
Figure 4, the yellow disks represent theM1−buffer and the red disks represent theM2−buffer.

We introduce the state variable xsf(s,f) =
(
s−−buffer, s−buffer, refinery stocks

)
, together with
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the accumulation dynamics Gsf(s,f) for the buffers, and the accumulation dynamics Gss for the

stocks. Regarding the criterion to minimize, it is an intertemporal cost like in (30) with
slow time scale cost functions Λs− made of minus the purchases of crude oil plus the selling
of finished products inside a week. Supposing that the products prices are independent
month by month, we represent this assumption by a family of constant stochastic kernels
{ρss:s+}s∈S\{s̄}. By contrast, we do not assume that the crude prices are independent week by

week, and the possible dependency is modeled by stochastic kernels ρsf
(s,f):(s,f)+ for f ∈ F\{f̄}.

Now that all the elements from §5.1 have been identified, Proposition 12 enables us to
write a dynamic programming equation such as (36) at the scale of the month, without losing
the time-dependency of crude prices inside the month.

6 Decision-hazard-decision optimization problems

In multistage stochastic optimization, the decision-hazard-decision (DHD) framework corre-
sponds to the case where, at the beginning of each time interval, a decision is taken without
knowing the uncertainty that will materialize at the end of the time interval (decision-
hazard), and, at the end of the time interval, a recourse decision is possible knowing this
uncertainty (hazard-decision). The reader is referred to [5, §1.2.1] for the notions of decision-
hazard and hazard-decision in stochastic optimal control. A discussion about these notions
and an application in stochastic thermal scheduling can also be found in [21].

In §6.1, we provide motivation for the decision-hazard-decision framework. In §6.2, we
formalize the decision-hazard-decision framework and we provide a dynamic programming
equation.

6.1 Motivation for the decision-hazard-decision framework

We illustrate our motivation to develop a formalism for the decision-hazard-decision frame-
work with a single dam management problem. We suppose given a stochastic process
{At}t∈J1,T K on a probability space. We can model the dynamics of the water volume in
a dam by

St+1 = min
{
S],St −Qt + At+1

}
, ∀t ∈ J0, T−1K , (38)

where S] is the maximal dam volume, St is the volume (stock) of water at the beginning
of period [t, t + 1[, At+1 is the inflow water volume (rain, etc.) during [t, t + 1[, Qt is the
turbined outflow volume during [t, t+ 1[. The control variable Qt is decided at the beginning
of period [t, t + 1[, chosen such that 0 ≤ Qt ≤ St, supposed to depend on the stock St
but not on the inflow water At+1 (as At+1 takes place during [t, t + 1[, hence materializes
at t + 1, hence the time index t + 1). The min operation in Equation (38) ensures that
the dam volume always remains below its maximal capacity S], but induces a nonlinearity
in the dynamics. This nonlinear dynamics is an obstacle to apply stochastic dual dynamic
programming (SDDP).
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Alternatively, we can model the dynamics of the water volume in a dam by

St+1 = St −Qt + At+1 −Rt+1 , ∀t ∈ J0, T−1K , (39)

where the new control variable Rt+1 is the spilled volume, decided at the end of period [t, t+
1[, supposed to depend both on the stock St and on the inflow water At+1, and chosen such
that 0 ≤ St −Qt + At+1 −Rt+1 ≤ S]. Thus, with the formulation (39), we “pay the price”
to add one control Rt+1, but we obtain a linear model instead of the nonlinear model (38).
This is especially interesting when using the stochastic dual dynamic programming (SDDP)
algorithm, for which the linearity of the dynamics is used to obtain the convexity properties
required by the algorithm.

6.2 Decision-hazard-decision framework and dynamic program-
ming equation

Let {U\
t}t∈J0,T−1K (head or “before” controls), {U[

t}t∈J1,T K (tail or “after” controls), {Wt}t∈J1,T K
(uncertainties) and {Xt}t∈J0,T K (states) be sequences of Borel spaces. Let also be given Borel-
measurable dynamics mappings

ft : Xt × U\
t ×Wt+1 × U[

t+1 → Xt+1 , ∀t ∈ J0, T−1K , (40a)

nonnegative lower semianalytic instantaneous cost functions

Lt : Xt × U\
t ×Wt+1 × U[

t+1 → [0,+∞] , ∀t ∈ J0, T−1K , (40b)

and a nonnegative lower semianalytic final cost function

K : XT → [0,+∞] . (40c)

Finally, we suppose given a Borel probability space (Ω,F ,P), a random variable X0 : Ω→
X0, and a stochastic process {Wt}t∈J1,T K (noise process), where Wt : Ω→Wt for t ∈ J1, T K.

Thus equipped, we consider the following multistage stochastic optimization problem

inf
{(U\

t,U
[
t+1)}

t∈J0,T−1K

E
[T−1∑

t=0

Lt(Xt,U
\
t,Wt+1,U

[
t+1) +K(XT )

]
, (41a)

σ(U\
t) ⊂ σ(X0,W1, . . . ,Wt) , ∀t ∈ J0, T−1K , (41b)

σ(U[
t) ⊂ σ(X0,W1, . . . ,Wt) , ∀t ∈ J1, T K , (41c)

Xt+1 = ft(Xt,U
\
t,Wt+1,U

[
t+1) , ∀t ∈ J0, T−1K . (41d)

Thus, in the above setting, during the time interval between two time steps, the decision-
maker makes two decisions. At the end of the time interval [t−1, t[, a random variable Wt is
revealed, and then, at the beginning of the time interval [t, t+1[, the decision-maker makes a
head decision U\

t. What is new — in comparison with the classical decision-hazard framework
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— is that, at the end of the time interval [t, t + 1[, when a next random variable Wt+1 is
revealed, the decision-maker has the possibility to make a tail decision U[

t+1. This latter
decision U[

t+1 can be thought as a recourse variable for a two stage stochastic optimization
problem that would take place inside the time interval [t, t + 1[. Note that, because of the
term (U\

t,U
[
t+1) in the cost function Lt and in the dynamics ft, considering the pair (U\

t,U
[
t)

as the control variable at time t would not satisfy the assumptions of Theorem 8.

Proposition 13 If the a random variable X0 is deterministic with value x0, and if the noise
process {Wt}t∈J1,T K is white, that is, is made of independent random variables, then the
value V0(x0) of the multistage stochastic optimization problem (41) is given by the dynamic
programming backward induction

VT (x) = K(x) , (42a)

and, for t ∈ J0, T−1K,

Vt(x) = inf
u\t∈U

\
t

E
[

inf
u[t+1∈U[t+1

{
Lt(x, u

\
t,Wt+1, u

[
t+1) + Vt+1

(
ft(x, u

\
t,Wt+1, u

[
t+1)

)}]
. (42b)

Proof. As the statement is made with random variables, whereas the theory has been developed
with stochastic kernels, we make the link as follows: for each time t ∈ J1, T K, the stochastic
kernel ρt−1:t in (3) is the probability distribution of the random variable Wt. This done, the proof
is an application of Theorem 8, as follows (we just sketch the procedure, as the detailed proof can
be found in the preprint [6]). We rename the uncertainty sets {Wt}t∈J1,T K as {W[

t}t∈J1,T K and for

each time t ∈ J1, T K we introduce a spurious uncertainty variable w\t taking values in a singleton

set W\
t = {w̄\t}, so that we obtain the following sequence of events

w\0︸︷︷︸
=x0

 u\0  w[1  u[1  w\1︸︷︷︸
spurious

 u\1  w[2  u[2  w\2︸︷︷︸
spurious

 u\2  . . .

 w[T−1  u[T−1  w\T−1︸ ︷︷ ︸
spurious

 u\T−1  w[T  u[T  w\T︸︷︷︸
spurious

.

Proceeding this way, we have doubled the timeline as time t has been “duplicated” in the ordered

pair (t, [) and (t, \). With this, we embed the decision-hazard-decision structure as a particular

case of multiple consecutive time blocks (of size 2) as in §3.2. �

Equation (42) can be solved using the stochastic dual dynamic programming (SDDP)
algorithm provided that lower semicontinuity and convexity of the value functions are pre-
served. This is ensured first by assuming linearity in the dynamics – a feature that may be
obtained by modeling the problem in the decision-hazard-decision framework as illustrated
in §6.1 – and second by assuming lower semicontinuity for the cost functions as well as
compactness for the existence of optimal controls.
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7 Conclusion and perspectives

As said in the introduction, decomposition methods are appealing to tackle multistage
stochastic optimization problems, as they are naturally large scale. The most common
approaches are time decomposition (and state-based resolution methods, like stochastic dy-
namic programming, in stochastic optimal control), and scenario decomposition (like pro-
gressive hedging in stochastic programming).

This paper is part of a general research program that consists in mixing different decom-
position bricks. Space decomposition methods have been investigated in [1] and [7]. Here,
we have tackled the issue of using time block decomposition in such a way that stochas-
tic dynamic programming is used at the slow time scale with an appropriate white noise
assumption, whereas stochastic programming methods such as progressive hedging can be
used at the fast time scale where such an independence assumption does not hold. This
approach paves the way of mixing time decomposition with scenario decomposition. For this
purpose, we have revisited the notion of state, and have provided a way to perform time
decomposition but only across specified time blocks.

Acknowledgements. We thank Roger Wets for fruitful discussions about the possibility
of mixing stochastic dynamic programming with progressive hedging.

A Technical details and proofs

We suppose to be in the framework of §2.1. We introduce the notations

Wr:t =
t∏

s=r

Ws , 0 ≤ r ≤ t ≤ T , Ur:t =
t∏

s=r

Us , 0 ≤ r ≤ t ≤ T−1 . (43)

Let 0 ≤ r ≤ s ≤ t ≤ T . From a history ht ∈ Ht, we extract the (r :s)-history uncertainty
part

[ht]
W
r:s = (wr, . . . , ws) = wr:s ∈Wr:s , 0 ≤ r ≤ s ≤ t , (44a)

the (r :s)-history control part (notice that the indices are special)

[ht]
U
r:s = (ur−1, . . . , us−1) = ur−1:s−1 ∈ Ur−1:s−1 , 1 ≤ r ≤ s ≤ t . (44b)

Flows. Let r and t be given such that 0 ≤ r < t ≤ T . For a (r : t− 1)-history feedback
γ = {γs}s∈Jr,tK−1 ∈ Γr:t−1, we define the flow Φγ

r:t by

Φγ
r:t : Hr ×Wr+1:t → Ht (45a)

(hr, wr+1:t) 7→
(
hr, γr(hr), wr+1, γr+1

(
hr, γr(hr), wr+1

)
, wr+2, · · · , γt−1(ht−1), wt

)
.
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Otherwise stated, the flow is given by

Φγ
r:t(hr, wr+1:t) = (hr, ur, wr+1, ur+1, wr+2, . . . , ut−1, wt) , (45b)

with hs = (hr, ur, wr+1, . . . , us−1, ws) , r < s ≤ t , (45c)

and us = γs(hs) , r ≤ s ≤ t− 1 . (45d)

When 0 ≤ r = t ≤ T , we put Φγ
r:r : Hr → Hr, hr 7→ hr. With this convention, the expression

Φγ
r:t makes sense when 0 ≤ r ≤ t ≤ T . The mapping Φγ

r:t gives the history at time t as a
function of the initial history hr at time r and of the history feedbacks {γs}s∈Jr,tK−1 ∈ Γr:t−1.
An immediate consequence of this definition are the flow properties :

Φγ
r:t+1(hr, wr+1:t+1) =

(
Φγ
r:t(hr, wr+1:t), γt

(
Φγ
r:t(hr, wr+1:t)

)
, wt+1

)
, 0 ≤ r ≤ t ≤ T−1 ,

(46a)

Φγ
r:t(hr, wr+1:t) = Φγ

r+1:t

((
hr, γr(hr), wr+1

)
, wr+2:t

)
, 0 ≤ r < t ≤ T . (46b)

We recall that L0
+(Ht) denotes the space of lower semianalytic nonnegative numerical

functions over Ht.

Definition 14 Let r and t be given such that 0 ≤ r ≤ t ≤ T .

• When 0 ≤ r < t ≤ T , for a (r : t− 1)-history feedback γ = {γs}s∈Jr,t−1K ∈ Γr:t−1, and
for a family {ρs−1:s}s∈Jr+1,tK of Borel-measurable stochastic kernels ρs−1:s : Hs−1 →
∆(Ws) , s ∈ Jr+1, tK, we define a Borel-measurable stochastic kernel ργr:t : Hr →
∆(Ht) such that, for any numerical function ϕ ∈ L0

+(Ht), we have that

∫

Ht
ϕ(h′r, h

′
r+1:t)ρ

γ
r:t( dh′t |hr)

=

∫

Wr+1:t

ϕ
(
Φγ
r:t(hr, wr+1:t)

) t∏

s=r+1

ρs−1:s

(
dws

∣∣Φγ
r:s−1(hr, wr+1:s−1)

)
. (47)

• When 0 ≤ r = t ≤ T , we define ργr:r : Hr → ∆(Hr) by ργr:r( dh′r |hr) = δhr( dh′r) where δ
represents the Dirac measure.

The stochastic kernels ργr:t on Ht, given by (47), are of the form

ργr:t( dh′t |hr) = ργr:t( dh′r dh′r+1:t |hr) = δhr( dh′r)⊗ %γr:t( dh′r+1:t |hr) , (48)

where, for each hr ∈ Hr, the probability distribution %γr:t( dh′r+1:t |hr) only charges the his-
tories visited by the flow from r+1 to t. The construction of the stochastic kernels ργr:t is
developed in [1, p. 190] for relaxed history feedbacks and obtained by using [1, Proposi-
tion 7.45, p. 175].
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Proposition 15 The family {ργs:t}s∈Jr,tK of stochastic kernels of Definition 14 has the flow
property:

ργs:t( dh′t |hs) =

∫

Ws+1

ρs:s+1( dws+1 |hs)ργs+1:t

(
dh′t

∣∣∣
(
hs, γs(hs), ws+1

))
, ∀s < t . (49)

Proof. Let s < t. For any ϕ ∈ L0
+(Ht), we have that

∫

Ht
ϕ(h′s, h

′
s+1:t)ρ

γ
s:t

(
dh′t

∣∣hs
)

(50a)

=

∫

Ws+1:t

ϕ
(
Φγ
s:t(hs, ws+1:t)

) ∫

Ws+1:t

t∏

s′=s+1

ρs′−1:s′
(

dws′
∣∣Φγ

s:s′−1(hs, ws+1:s′−1)
)

by Definition (47)

=

∫

Ws+1:t

ϕ
(
Φγ
s:t(hs, ws+1:t)

)
ρs:s+1

(
dws+1

∣∣hs
) ∫

Ws+1:t

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s:s′−1(hs, ws+1:s′−1)
)

=

∫

Ws+1:t

ϕ
(
Φγ
s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))
ρs:s+1

(
dws+1

∣∣hs
)

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))
(by the flow property (46b))

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
) ∫

Ws+2:t

ϕ
(
Φγ
s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))

by Fubini Theorem

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
) ∫

Ht
ϕ
(
(h′s, γs(h

′
s), w

′
s+1), h′s+2:t

)
ργs+1:t

(
dh′t

∣∣ (hs, γs(hs), ws+1)
)

by Definition (47)

=

∫

Ht
ϕ
(
(h′s, γs(h

′
s), w

′
s+1), h′s+2:t

)

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
)
ργs+1:t

(
dh′t

∣∣ (hs, γs(hs), ws+1)
)

(50b)

by Fubini Theorem. As the two expressions (50a) and (50b) are equal for any ϕ ∈ L0
+(Ht), we

deduce the flow property (49). �
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Proof of Theorem 1. We only give a sketch of the proof, as it is a variation on different
results of [1], the framework of which we follow.

Proof. We are in the setting of [1, Chap. 7, Chap. 8]. We take the history space Ht for state
space, and the state dynamics

f
(
ht, ut, wt+1

)
=
(
ht, ut, wt+1

)
= ht+1 ∈ Ht+1 = Ht × Ut ×Wt+1 . (51)

Then, the family {ρs−1:s}s∈J1,T K of Borel-measurable stochastic kernels (3) gives a family of distur-
bance kernels (vocabulary of [1, p 189]) that do not depend on the current control. The criterion
to be minimized (4) is a function of the history at time T , thus of the state at time T . We consider
the finite horizon model with final cost corresponding to the optimization problem defined by the
associated value function (6):

V0(w0) = inf
γ0:T−1∈Γ0:T−1

∫

HT
j(h′T )ργ0:T ( dh′T |w0)

= inf
γ0:T−1∈Γ0:T−1

∫

W1:T

j
(
Φγ

0:T (w0:T )
) T∏

s=1

ρs−1:s

(
dws

∣∣Φγ
0:s−1(w0:s−1)

)
, (by (47))

where the flows Φγ
0:s for s ∈ J0, T−1K are defined by Equation (45a), and where we are minimizing

over the so-called state-feedbacks. Then, the proof of Theorem 1 follows from the results developed
in Chap. 7, 8 and 10 of [1] in a Borel setting.

The Bellman operators in (7a) satisfy (7b) because, by Lemma 7.30(4) and Propositions 7.47
and 7.48 in [1], we have that7 ϕ ∈ L0

+(Ht+1) =⇒ Bt+1:tϕ ∈ L0
+(Ht), for t in J0, T−1K.

Since we are considering a finite horizon model with a final cost, we detail the steps needed to
use the results of [1, Chap. 8]. The final cost at time T can be turned into an instantaneous cost
at time T−1 by inserting the state dynamics (51) in the final cost. Getting rid of the disturbance
in the expected cost by using the disturbance kernel is standard practice. Then, we can turn this
non-homogeneous finite horizon model into a finite horizon model with homogeneous dynamics and
costs by following the steps of [1, Chap. 10]. Using [1, Proposition 8.2, p. 198], we obtain that the
family of optimization problems defined by the associated value functions (5), when minimizing over
the relaxed state feedbacks, satisfies the Bellman equation (8); we conclude with [1, Proposition 8.4,
p. 203] which covers the minimization over state feedbacks.

The Bellman equation (8) is a consequence of [1, Proposition 8.2, p. 198].

To finish, Theorem 1 is valid under the general Borel assumptions of [1, Chap. 8] and with the

specific (F+) assumption needed for [1, Proposition 8.4, p. 203]; this last assumption is fulfilled

here since we have assumed that the cost criterion (4) is nonnegative. �

Proof of Proposition 3.
We suppose to be in the framework of §2.1.
Proof. We are in the setting of [1, Chap. 7, Chap. 8]. Let ϕ̃t : Xt → [0,+∞] be a given lower

semianalytic nonnegative numerical function, and let ϕt : Ht → [0,+∞] be

ϕt = ϕ̃t ◦ θt . (52)

7More precisely, the property (7b) is a consequence of the properties that i) the Bellman operator (7a)
corresponds to the operator T (with g = 0 and α = 1) in [1, Definition 8.5, p. 195] ii) that T (J) is lower
semianalytic whenever J also is, as explained right above [1, Lemma 8.2, p. 196].
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Let ϕr : Hr → [0,+∞] be the lower semianalytic nonnegative numerical function obtained by
applying the Bellman operator Bt:r across Jt, rK (see (10)) to the lower semianalytic nonnegative
numerical function ϕt:

ϕr = Bt:rϕt = Br+1:r ◦ · · · ◦ Bt:t−1ϕt . (53)

By [1, Lemma 7.30(3), p. 178] — on the stability of lower semianalytic functions under right com-
position with a Borel-measurable mapping — we get that the nonnegative numerical function ϕr is
lower semianalytic. We show that there exists a lower semianalytic nonnegative numerical function
ϕ̃r : Xr → [0,+∞] such that

ϕr = ϕ̃r ◦ θr . (54)

First, we show by backward induction that, for all s ∈ Jr, tK, there exists a lower semianalytic
nonnegative numerical function ϕs such that ϕs(hs) = ϕs(θr(hr), hr+1:s). Second, we prove that
the function ϕ̃r = ϕr satisfies (54) and is lower semianalytic.

• For s = t, we have, by (52) and by (9c), that ϕt(ht) = ϕ̃t
(
θt(ht)

)
= ϕ̃t

(
fr:t(θr(hr), hr+1:t)

)
,

so that the nonnegative numerical function ϕt is given by ϕ̃t ◦ fr:t. By [1, Lemma 7.30(3),
p. 178], ϕt is a lower semianalytic numerical function.

• Assume that, at s+1, the result holds true, that is, ϕs+1(hs+1) = ϕs+1(θr(hr), hr+1:s+1),
where the numerical function ϕs+1 is nonnegative lower semianalytic. Then, by (53),

ϕs(hs) =
(
Bs+1:sϕs+1

)
(hs)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(hs, us, ws+1)

)
ρs:s+1( dws+1 |hs)

(by definition (7a) of the Bellman operator)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)
inf
us∈Us

∫

Ws+1

ρs:s+1( dws+1 |hs)

(by the induction assumption)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)
inf
us∈Us

∫

Ws+1

ρ̃s:s+1

(
dws+1

∣∣ (θr(hr), hr+1:s)
)

(by compatibility of the stochastic kernel)

= ϕs
(
θr(hr), hr+1:s

)
,

where ϕs
(
xr, hr+1:s

)
= inf

us∈Us

∫

Ws+1

ϕs+1

(
(xr, (hr+1:s, us, ws+1))

)
ρ̃s:s+1

(
dws+1

∣∣ (xr, hr+1:s)
)
.

By [1, p. 196] (right before Lemma 8.2), we get that the numerical function ϕs is nonnegative
lower semianalytic. Thus, we have shown that the result holds true at time s.

The induction implies that, at time r, the expression of ϕr(hr) is ϕr(hr) = ϕr
(
θr(hr)

)
, since the

term hr+1:r vanishes. Choosing ϕ̃r = ϕr gives the expected result. �
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Forewords for additional material

We provide here additional material to the paper [AM2]. In Appendix B, we
survey several frameworks and approaches to solve, by dynamic programming, a
stochastic optimal control problem formulated in discrete time. In Appendix C,
we make the link between the setting of two-time-scale optimization problems
(as developed in Sect. 5 with stochastic kernels) and the framework of stochastic
optimal control (with random variables). In Appendix D, we give a detailed
proof of Proposition 13 concerning the decision-hazard-decision approach. In
Appendix E, we present a framework for two-time-scale multistage optimization
problems which is more general than in Sect. 5.

B A brief survey of frameworks for stochastic dynamic

programming in discrete time

We sketch mathematical frameworks for stochastic dynamic programming in discrete time
to be found in the literature. In what follows, t0 ∈ N and T ∈ N∗ are two natural numbers
such that t0 < T . We use the notation Jr, sK = {r, r + 1, . . . , s− 1, s} for any two natural
numbers r, s such that r ≤ s.

Witsenhausen approach. The most general stochastic dynamic programming principle is
sketched by Witsenhausen at the end of [AM8]. However, we do not detail it as its formalism
is too far from the following ones, though we will touch the subject when we discuss Yüksel’s
approach below. We present here what Witsenhausen calls an optimal stochastic control
problem in standard form (see [AM6]). The ingredients are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0) (nature), (Xt0+1,Xt0+1), . . . , (XT ,XT ) (state spaces) are measurable spaces;

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. It is a subfield of Xt, for t ∈ Jt0, T−1K (information);

5. ft : (Xt × Ut,Xt ⊗ Ut)→ (Xt+1,Xt+1) is measurable, for t ∈ Jt0, T−1K (dynamics);

6. πt0 is a probability on (Xt0 ,Xt0);

7. j : (XT ,XT )→ R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization problem, whose
solutions are to be searched among adapted feedbacks, namely λt : (Xt,Xt) → (Ut,Ut)
with the property that λ−1

t (Ut) ⊂ It for all t ∈ Jt0, T−1K. Then, he establishes a dynamic
programming equation, where the Bellman functions are function of the (unconditional)
distribution of the original state xt ∈ Xt, and where the minimization is done over adapted
feedbacks. The main objective of Witsenhausen is to establish a dynamic programming
equation for nonclassical information patterns.
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Evstigneev approach. The ingredients of the approach developed in [AM3] are the fol-
lowing:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

3. (Ω,F) is a measurable space (nature);

4.
{
Ft
}
t∈Jt0,T−1K is a filtration of F (information);

5. P is a probability on (Ω,F);

6. j : (Ω×∏t∈Jt0,T−1K Ut,F ⊗
⊗

t∈Jt0,T−1K Ut)→ R is a measurable function (criterion).

With these ingredients, Evstigneev formulates a stochastic optimization problem, whose
solutions are to be searched among adapted processes, namely random processes with values
in
∏

t∈Jt0,T−1K Ut and adapted to the filtration
{
Ft
}
t∈Jt0,T−1K. Then, he establishes a dynamic

programming equation, where the Bellman function at time t is an Ft-integrand depending
on controls up to time t (random variables) and where the minimization is done over Ft-
measurable random variables at time t. The main objective of Evstigneev is to establish
an existence theorem for an optimal adapted process (under proper technical assumptions,
especially on the objective function j, that we do not detail here). Notice that there is no
notion of state variable.

Puterman approach. The ingredients of the approach developed in [AM5, Sect. 2.1] are
the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are measurable spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. νt:t+1 : Xt × Ut → ∆(Xt+1) is a stochastic kernel, for t ∈ Jt0, T−1K (transitions);

5. Lt : Xt × Ut → R, for t ∈ Jt0, T−1K, and K : XT → R, are measurable functions
(instantaneous and final costs).

With these ingredients, Puterman formulates a stochastic optimization problem with a time
additive cost function over given state and control spaces, whose solutions are to be searched
among history feedbacks, namely sequences of mappings Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut.
Then, he establishes a dynamic programming equation, where the Bellman functions are
function of the history ht ∈ Xt0 ×

∏t−1
s=t0

(Us × Xs+1). He identifies cases where no loss of
optimality results from reducing the search to Markovian feedbacks Xt → Ut. In such cases,
the Bellman functions are function of the state xt ∈ Xt, and the minimization in the dynamic
programming equation is done over controls ut ∈ Ut. The main objective of Puterman is
to explore infinite horizon criteria, average reward criteria, the continuous time case, and to
present many examples.
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Hernández-Lerma and Lasserre approach. The ingredients of the approach developed
in [AM4, §2.2, §3.2, §3.3] are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. νt:t+1 : Xt × Ut → ∆(Xt+1), for t ∈ Jt0, T−1K, are Borel-measurable stochastic kernels
(transitions);

5. Lt : Xt × Ut → R, for t ∈ Jt0, T−1K, and K : XT → R are Borel-measurable functions
(instantaneous and final costs).

With these ingredients, Hernández-Lerma and Lasserre formulate a stochastic optimization
problem with a time additive cost function over given state and control spaces. They intro-
duce the “canonical construction” where the history at time t consists in the states and the
controls prior to t. Then, they study optimization problems whose solutions (policies) are to
be searched among history feedbacks (or randomized history feedbacks), namely sequences
of mappings Xt0 ×

∏t−1
s=t0

(Us × Xs+1)→ Ut. They identify cases where no loss of optimality
results from reducing the search to (relaxed) Markovian feedbacks Xt → Ut. Then, they
establish a dynamic programming equation, where the Bellman functions are function of the
state xt ∈ Xt, and where the minimization is done over controls ut ∈ Ut. For finite horizon
problems, the mathematical challenge is to set up a mathematical framework — the Borel
assumptions plus additional topological ones presented in [AM4, §3.3] — for which optimal
policies exists. The main objective of [AM4] is to offer a unified and comprehensive treat-
ment of discrete-time Markov control processes, with emphasis on the case of Borel state
and control spaces, and possibly unbounded costs and noncompact control constraint sets.

Bertsekas and Shreve approach. The ingredients of the approach developed in [AM1]
(more precisely in [AM1, Definition 10.1]) are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. (Wt0 ,Wt0),. . . , (WT ,WT ) are Borel spaces (noise);

5. ft : (Xt×Ut×Wt,Xt⊗Ut⊗Wt)→ (Xt+1,Xt+1), for t ∈ Jt0, T−1K, are Borel-measurable
mappings (dynamics);
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6. ρt:t+1 : Xt × Ut → ∆(Wt+1), for t ∈ Jt0, T−1K, are Borel-measurable stochastic kernels
(noise distributions);

7. Lt : Xt ×Ut → R, for t ∈ Jt0, T−1K, and K : XT → R are lower semianalytic functions
(instantaneous and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization problem
with a time additive cost function over given state spaces, control spaces and uncertainty
spaces. They introduce the notion of history at time t which consists in the states and
the controls prior to t and study optimization problems whose solutions (policies) are to
be searched among history feedbacks (or relaxed history feedbacks), namely sequences of
mappings from history space Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut. They identify cases where no
loss of optimality results from reducing the search to (relaxed) Markovian feedbacks Xt →
Ut. Then, they establish a dynamic programming equation, where the Bellman functions
are function of the state xt ∈ Xt, and where the minimization is done over controls ut ∈
Ut. For finite horizon problems, the mathematical challenge is to set up a mathematical
framework (the Borel assumptions) for which optimal policies exists. The main objective of
Bertsekas and Shreve is to state conditions under which the dynamic programming equation
is mathematically sound in the context of Borel spaces. The interested reader will find all
the subtleties in [AM1, Chapter 7].

Yüksel approach. As said at the beginning, the most general stochastic dynamic pro-
gramming principle is sketched by Witsenhausen at the end of [AM8]. This approach builds
upon the so-called Witsenhausen intrinsic model [AM7] which does not consider state, but
information under the form of σ-fields (see [AM 9] for the functional form). In [AM 6],
Witsenhausen provides conditions to express stochastic control optimization problems —
with information constraints, but without state — in standard form with a state (the first
approach that we have considered above).

Although Witsenhausen established a dynamic programming equation in [AM6], Yüksel
notes in [AM10] that “Witsenhausen’s construction [. . . ] does not address the well-posedness
of such a dynamic program” and that “the existence problem was not considered”. In the
spirit of [AM6], Yüksel entails in [AM10] “a general approach establishing that any sequen-
tial team optimization may admit a formulation appropriate for a dynamic programming
analysis”. One of the contributions of [AM10] is to propose a construction of standard Borel
controlled state and action spaces and to establish a universal dynamic program for stochas-
tic control optimization problems — with information constraints, but without state — thus
addressing some of the issues raised and left open by Witsenhausen. The ingredients are the
following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ω,F) is a measurable space (nature);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);
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4. (Yt0 ,Yt0), . . . , (YT−1,YT−1) are measurable spaces (“observation” spaces);

5.
{
ηt : (Ω×∏s∈Jt0,tK Us , F ⊗⊗s∈Jt0,tK Us)→

(Ut,Ut)
}
t∈Jt0,T−1K are measurable mappings (“measurement constraints”);

6. P is a probability on (Ω,F);

7. j : (Ω×∏t∈Jt0,T−1K Ut,F ⊗
⊗

t∈Jt0,T−1K Ut)→ R+ is a measurable function (criterion).

With these ingredients, Yüksel formulates a stochastic team optimization problem whose
solutions (policies) are to be searched among sequences of measurable mappings (“design
constraints”) Yt−1 → Ut, and their “randomized” versions (so-called strategic measures).
He establishes a dynamic programming equation, where the Bellman functions are function
of probability distributions and where the minimization is done over proper design mappings.
One objective of Yüksel is to set up a mathematical framework under which the dynamic
programming equation is mathematically sound [AM10, Theorem 3.6].

Our approach. The ingredients that we use (in Sect. 2 and in Sect. 3) are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces);

3. (Wt0 ,Wt0),. . . , (WT ,WT ) are Borel spaces (noise);

4. ρt:t+1 : Wt0 ×
∏t−1

s=t0
(Us ×Ws+1) → ∆(Wt+1), for t ∈ Jt0, T−1K, are Borel-measurable

stochastic kernels (noise distributions);

5. j : (Wt0×
∏T−1

s=t0
(Us×Ws+1),Wt0⊗

⊗T−1
s=t0

(Us⊗Ws+1))→ [0,+∞] is a nonnegative lower
semianalytic function (criterion);

6. t0 < · · · < tN = T are the indices of multiple consecutive time blocks Jt0, t1K, . . . ,
JtN−1, tNK, with N ≥ 1 a natural number;

7.
{

(Xtj ,Xtj)
}
j∈J0,NK are Borel spaces (time block state spaces);

8.
{
θtj : Wt0 ×

tj−1∏
s=t0

(Us ×Ws+1)→ Xtj

}

j∈J1,NK

and θt0 : Wt0 → Xt0 are Borel-measurable

mappings (time block reduction of history towards state);

9.
{
ftj :tj+1

: Xtj×
tj+1−1∏
s=tj

(Us×Ws+1)→ Xtj+1

}

j∈J0,N−1K

are Borel-measurable mappings (time

block dynamics).
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The framework developed in the paper [AM2] is intermediate between the ones of Evstigneev
in [AM3] and of Yüksel in [AM10] — notable by the absence of a state space — and the ones
of Witsenhausen [AM6], Hernández-Lerma and Lasserre [AM4], Bertsekas and Shreve [AM
1] and Puterman [AM5] — where the state spaces are given for all times.

This said, our preoccupation could be adapted to any of the above frameworks. Indeed,
our objective is to establish a dynamic programming equation with a state, not at any
time t ∈ Jt0, T K, but at some specified instants t0 < t1 < · · · < tN = T . In §3.2, the
state spaces are introduced as image sets (codomains) of what we call (time block) history
reduction mappings (where history at time t consists of all uncertainties and controls prior
to time t).

C Supplement to Sect. 5

We make the link between the setting of two-time-scale optimization problems (as developed
in Sect. 5 with stochastic kernels) and the framework of stochastic optimal control (with
random variables).

The property that the stochastic kernels (31) do not depend on any decision variable
makes it possible to build a probability ρ(s,f):(s̄,f̄) on the product space W(s,f):(s̄,f̄) by

ρ(s,f):(s̄,f̄) =
⊗

s∈S

(
ρss:s+( dws

s+)⊗ ρsf(s+,f):(s+,f+)( dwsf
(s+,f+) |ws

s+)⊗ · · ·

⊗ ρsf(s+,f̄−):(s+,f̄)( dwsf
(s+,f̄) |ws

s+ , w
sf
(s+,f+), · · · , wsf

(s+,f̄−))
)
. (56)

Then, with the notations given in §5.1 and using the probability definied in Equation (56),
Problem (6), may be rewritten as

Vs−(xss−) = inf
γ

∫

W(s,f):(s̄,f̄)

(
Λs̄

(
xss̄
)

+
∑

s∈S

Λs

(
xss− , u

s
s− , w

s
s, {xsf(s,f), u

sf
(s,f), w

sf
(s,f)+}

f∈F\{f̄}

))

ρ(s,f):(s̄,f̄)

(
dws

s, dwsf
(s,f+) · · · dwsf

(s̄,f̄−), dwsf
(s̄,f̄)

)
(57a)

s.t. xsf
(s,f)+ = Gsf(s,f)(x

sf
(s,f), u

sf
(s,f), w

sf
(s,f)+) , ∀s ∈ S , ∀f ∈ F \ {f̄} , (57b)

xsf(s+,f) = Gss(xss, uss, ws
s+) , ∀s ∈ S \ {s̄} , (57c)

uss = γs
(
{u(s′,f ′), w(s′,f ′)+}

(s′,f ′)≺(s,f̄)

)
, ∀s ∈ S \ {s̄} , (57d)

usf(s,f) = γ(s,f)

(
{u(s′,f ′), w(s′,f ′)+}

(s′,f ′)≺(s,f)

)
, ∀s ∈ S , ∀f ∈ F \ {f̄} . (57e)

The integral cost given in the right hand side of Equation (57a) can be reformulated
as a mathematical expectation, denoted by E, with respect to the probability ρ(s,f):(s̄,f̄)
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by introducing random variables for the exogeneous noises as projection mappings from
W(s,f):(s̄,f̄) to W(s,f) for all (s, f) ∈ S×F

W(s,f) : W(s,f):(s̄,f̄) →W(s,f) , ∀(s, f) ∈ S×F , (58)

and obtaining random variables for the states and the control through the dynamics equa-
tions (57b)–(57c) and the feedback equations (57d)–(57e).

This leads to a reformulation of Problem (57) as a classical stochastic optimal control
problem

inf E
[∑

s∈S

Λs

(
Xs
s− ,U

s
s− ,Ws, {Xsf

(s,f),U
sf
(s,f),W

f

(s,f)+}
f∈F\{f̄}

)
+ Λs̄

(
Xs
s̄

)]
(59a)

s.t. Xsf
(s,f)+ = Gsf(s,f)(X

sf
(s,f),U

sf
(s,f),W

sf
(s,f)+) , ∀s ∈ S , ∀f ∈ F \ {f̄} , (59b)

Xsf
(s+,f) = Gss

(
Xs
s,U

s
s,W

s
s+

)
, ∀s ∈ S\{s̄} , (59c)

Us
s ∈ Us

s , ∀s ∈ S\{s̄} , (59d)

σ(Us
s) ⊂ σ({Ws

s}s′�s, {Wsf
(s′,f ′)}(s′,f ′)�(s,f̄)

) , ∀s ∈ S\{s̄} , (59e)

Usf
(s,f) ∈ Usf

(s,f) , ∀s ∈ S , ∀f ∈ F \ {f̄} , (59f)

σ
(
Usf

(s,f)

)
⊂ σ

(
{Ws

s′}s′�s, {Wsf
(s′,f ′)}(s′,f ′)�(s,f)

)
, ∀s ∈ S , ∀f ∈ F \ {f̄} , (59g)

where the two feedback constraints in (57d) and (57e) are reformulated as measurability
constraints (59e) and (59g), using the σ-fields generated by random variables (of course, a
formal equivalence would require to be more specific about spaces to use Doob functional
Lemma).

D Detailed proof of Proposition 13 (Sect.6)

As indicated in the sketchy proof of Proposition 13, we give here a detailed proof of this
latter. For this purpose, we first flesh out the ingredients necessary to formulate a multi-
stage stochastic optimization problem with decision-hazard-decision information structure.
Second, we provide in Theorem 16 a Bellman equation for such a multistage stochastic op-
timization problem (see Equation (70)). Third, we give the proof of Theorem 16 which is
derived through an embeding of the decision-hazard-decision structure as a particular case
of multiple consecutive time blocks followed by an application of Theorem 8.

History. Let T ∈ N∗. For each time t ∈ J0, T−1K, the head decision u\t takes values in
a Borel space U\

t. For each time t ∈ J1, T K, the tail decision u[t takes values in a Borel
space U[

t. For each time t ∈ J1, T K, the uncertainty w[t takes its values in a Borel space W[
t.

For time t = 0, the uncertainty w\0 takes its values in a Borel space W\
0.

At the beginning of the time interval [t, t+1[, the decision-maker makes a head decision u\t.
What is new — in comparison with the classical decision-hazard framework — is that, at
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the end of the time interval [t, t + 1[, when an uncertainty variable w[t+1 is revealed, the
decision-maker has the possibility to make a tail decision u[t+1. This latter decision u[t+1

can be thought as a recourse variable for a two stage stochastic optimization problem that
would take place inside the time interval [t, t + 1[. We call w\0 the uncertainty happening
right before the first decision. The interplay between uncertainties and decisions is thus as
follows (compare the chronology with the one in (2)):

w\0  u\0  w[1  u[1  u\1  w[2  . . .  w[T−1  u[T−1  u\T−1  w[T  u[T .

History Spaces. For t ∈ J0, T K, we define the head history space as the product Borel
space

H\
t = W\

0 ×
t−1∏

t′=0

(
U\
t′ ×W[

t′+1 × U[
t′+1

)
. (60a)

We also define, for t ∈ J1, T K, the tail history space as the product Borel space

H[
t = H\

t−1 × U\
t−1 ×W[

t . (60b)

Stochastic kernels. We introduce a family {ρ[t−1:t}t∈J1,T K of probability distributions (con-
stant Borel-measurable stochastic kernels), with

ρ[t−1:t ∈ ∆(W[
t) . (61)

History feedbacks. For t ∈ J0, T−1K, a head history feedback at time t is a universally
measurable mapping

γ\t : H\
t → U\

t . (62a)

We call Γ\t the set of head history feedbacks at time t, and we define Γ\t:T = Γ\t × · · · × Γ\T .
We also define, for all t ∈ J1, T K, a tail history feedback at time t as a universally measurable
mapping

γ[t : H[
t → U[

t . (62b)

We call Γ[t the set of tail history feedbacks at time t, and we define Γ[t:T = Γ[t × · · · × Γ[T .

Value functions. Let {X\
t}t∈J0,T K (states) be sequences of Borel spaces with X\

0 = W\
0. Let

also be given Borel-measurable dynamics mappings

ft : X\
t × U\

t ×W[
t+1 × U[

t+1 → X\
t+1 , ∀t ∈ J0, T−1K , (63a)

nonnegative lower semianalytic instantaneous cost functions

Lt : X\
t × U\

t ×W[
t+1 × U[

t+1 → [0,+∞] , ∀t ∈ J0, T−1K , (63b)
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and a nonnegative lower semianalytic final cost function

K : X\
T → [0,+∞] . (63c)

Second, we recursively define a family of Borel-measurable reduction mappings θ\t : H\
t →

X\
t by the following forward recursion for t ∈ J0, T−1K

θ\t+1(h\t+1) = ft
(
θ\t(h

\
t), u

\
t, w

[
t+1, u

[
t+1

)
, and θ\0(h\0) = h\0 , (64)

and consider a nonnegative and lower semianalytic numerical function j : H\
T → [0,+∞]

defined by

j(h\T ) =
T−1∑

t=0

Lt
(
θ\t(ht), u

\
t, w

[
t+1, u

[
t+1

)
+K

(
θ\T (h\T )

)
. (65)

For t ∈ J0, T K, we define value functions by

Vt(h
\
t) = inf

γ\∈Γ\t:T−1,γ
[∈Γ\t+1:T

∫

H\T

j(h′T )ργ
\,γ[

t:T ( dh′T |h\t) , ∀h\t ∈ H\
t , (66)

where ργ
\,γ[

t:T has to be understood as ργt:T (see Definition 14), with

γt(h
\
t) = γ\t (h

\
t) , ∀h\t ∈ H\

t , (67a)

γt′(h
[
t′) =

(
γ[t′(h

[
t′), γ

\
t′

(
h[t′ , γ

[
t′(h

[
t′)
))

, ∀t′ ∈ Jt+ 1, T−1K , ∀h[t′ ∈ H[
t′ , (67b)

γT (h[T ) = γ[T (h[T ) , ∀h[T ∈ H[
T . (67c)

In fact, in the special case (61) we are developing here, ργ
\,γ[

t:T does not depend on the history
feedbacks but reduces to the product

ργ
\,γ[

t:T = ρ[t−1:t ⊗ . . .⊗ ρ[T−1:T . (68)

Theorem 16 We assume to be in the setting of §2.1. We define the sequence of reduced
value functions {V \

t }t∈J0,T K, where V \
t : X\

t → [0,+∞] for t ∈ J0, T K, by

V \
T = KT and V \

t = B\t+1:tV
\
t+1 , ∀t ∈ J0, T−1K , (69)

where the reduced Bellman operator B\t+1:t are given, for any t ∈ J0, T−1K, for any ϕ\t+1 ∈
L0

+(X\
t+1) and for any x\t ∈ X\

t, by

(
B\t+1:tϕ

\
t+1

)
(x\t) = inf

u\t∈U
\
t

∫

W[
t

ρ[t−1:t( dw[t)

inf
u[t+1∈U[t+1

(
Lt(x

\
t, u

\
t, w

[
t+1, u

[
t+1)

+ ϕ\t+1

(
ft(x

\
t, u

\
t, w

[
t+1, u

[
t+1)
))
. (70)

Then, the value function V0 given in Equation (66) coincides with the value function V \
0 .
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Proof. We embed the decision-hazard-decision structure as a particular case of multiple con-
secutive time blocks (of size 2) as in §3.2 in order to use Theorem 8 to obtain the reduced Bell-
man equation (19) which boils down to Equation (70) in the decision-hazard-decision case. For

each time t ∈ J1, T K, we introduce a spurious uncertainty variable w\t taking values in a singleton

set W\
t = {w̄\t}, so that we obtain the following chronology

w\0︸︷︷︸
x\0

 u\0  w[1  u[1  w\1︸︷︷︸
spurious

 u\1  w[2  u[2  w\2︸︷︷︸
spurious

 u\2  . . .

 w[T−1  u[T−1  w\T−1︸ ︷︷ ︸
spurious

 u\T−1  w[T  u[T  w\T︸︷︷︸
spurious

.

Proceeding this way, we have doubled the timeline as time t has been “duplicated” in the ordered
pair (t, [) and (t, \). We introduce new notations to explicitely deal with the new duplicated
timeline. An element of the duplicated timeline is denoted by τ . For τ ∈ J0, 2T K, we introduce the
sets

Uτ =

{
U\s if τ = 2s

U[s if τ = 2s+ 1
, ∀τ ∈ J0, 2T − 1K , (71a)

Wτ =

{
W\
s if τ = 2s

W[
s if τ = 2s+ 1

, ∀τ ∈ J0, 2T K , (71b)

For τ ∈ J0, 2T K, we define the history space Hτ as the product Borel space

Hτ = W0 ×
τ∏

s=1

(Us−1 ×Ws) , (72)

Then, given the times τi = 2i for i ∈ J0, T K, we consider the consecutive time blocks Jτi, τi+1K,
for i ∈ J0, T−1K whose union covers the doubled timeline. For i ∈ J0, T K, we define the state spaces

Xτi = X\i. Using Equation (63a), we define a family of Borel-measurable dynamics {fτi:τi+1}i∈J0,T−1K
by

fτi:τi+1 : Xτi ×Hτi+1:τi+1 → Xτi+1(
x\i, u

\
i, w

[
i+1, u

[
i+1, w

\
i+1︸ ︷︷ ︸

hτi+1:τi+1

)
7→ fi(x

\
i , u

\
i, w

[
i+1, u

[
i+1) . (73)

We recursively define a family of Borel-measurable reduction mappings θτi : Hti → Xti by the
following forward recursion for i ∈ J0, T−1K

θτi+1(hτi+1) = θτi+1

(
(hτi , hτi+1:τi+1)

)
= fτi:τi+1

(
θτi(hτi), hτi+1:τi+1

)
, and θτ0(h0) = h0 , (74)

to obtain the family
(
{Xτi}i∈J0,T K, {θτi}i∈J0,T K, {fτi:τi+1}i∈J0,T−1K

)
which gives a state reduction

across the consecutive time blocks Jτi, τi+1K, i ∈ J0, T−1K. It is worth noting that, for i ∈ J0, T K,
we have that θτi = θ\i where the mapping θ\i is defined in Equation (64).

Now, for each i ∈ J1, T K we consider the family of stochastic kernels {ρ[i−1:i}i∈J1,T K given by
Equation (61) which are probability distributions and the family of spurious stochastic kernels
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{ρ\i−1:i}i∈J1,T K which are Dirac measures at fixed points {w̄\i}i∈J1,T K. The state reduction across the
consecutive time blocks Jτi, τi+1K is indeed compatible with the family {ρτ−1:τ}τ∈J0,2T K of stochastic
kernels given by

ρτ−1:τ =

{
ρ\s−1:s if τ = 2s

ρ[s−1:s if τ = 2s+ 1
, ∀τ ∈ J0, 2T K . (75)

Finally we introduce the familly of cost functions {`τi}i∈J0,T K, given by

`τi : Xτi ×Hτi+1:τi+1 3
(
x\i , u

\
i, w

[
i+1, u

[
i+1, w

\
i+1

)
7→ Li(x

\
i , u

\
i, w

[
i+1, u

[
i+1) , ∀i ∈ J0, T−1K , (76a)

`τT : XτT 3 x\T 7→ K(x\i) . (76b)

Now, using Theorem 8 we obtain that the value function V0 given in Equation (66) coincides
with the value function Ṽ0 where the sequence of reduced value functions {Ṽτi}i∈J0,T K, with Ṽτi :
Xτi → [0,+∞] for i ∈ J0, NK, is defined by

ṼτT = `τT and Ṽτi = Bτi+1:τi Ṽτi+1 , ∀i ∈ J0, T−1K , (77)

and where the reduced Bellman operator Bτi+1:τi across Jτi, τi+1K are given, for any i ∈ J0, N−1K,
for any ϕ̃τi+1 ∈ L0

+(Xτi+1) and for any xτi ∈ Xτi , by Equation (19) that we reproduce here:

(
Bτi+1:τiϕ̃τi+1

)
(xτi) = inf

uτi∈Uτi

∫

Wτi+1

ρτi:τi+1( dwτi+1 |xτi)

inf
uτi+1∈Uτi+1

∫

Wτi+2

ρτi+1:τi+2( dwτi+2 |xτi , uτi , wτi+1) · · ·

inf
uτi+1−1∈Uτi+1−1

∫

Wτi+1

ρτi+1−1:τi+1

( dwτi+1 |xτi , uτi , wτi+1, . . . , uτi+1−2, wτi+1−1)
(
`τi(xτi , uτi , wτi+1, . . . , uτi+1−1, wτi+1)

+ ϕ̃τi+1

(
fτi:τi+1(xτi , uτi , wτi+1, . . . , uτi+1−1, wτi+1)

))
. (78)

It remains to show that Equation (78) gives Equation (70) that is, for i ∈ J0, T−1K, B\i+1:i =

Bτi+1:τi and for i ∈ J0, T K V \
i = Ṽτi . Note that, using the definition of τi+1, we have that τi+1− 1 =

2(i+ 1)− 1 = 2i+ 1 = τi + 1 and thus we only have two minimization problems in Equation (78).
We obtain successively
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(
Bτi+1:τiϕ̃τi+1

)
(xτi) = inf

uτi∈Uτi

∫

Wτi+1

ρτi:τi+1( dwτi+1 |xτi)

inf
uτi+1∈Uτi+1

∫

Wτi+1

ρτi+1−1:τi+1( dwτi+1 |xτi , uτi , wτi+1, . . . , uτi+1−2, wτi+1−1)

(
`τi(xτi , uτi , wτi+1, uτi+1, wτi+1)

+ ϕ̃τi+1

(
fτi:τi+1(xτi , uτi , wτi+1, uτi+1, wτi+1)

))
(by (78))

= inf
uτi∈Uτi

∫

W[
i

ρ[i−1:i( dw[i) (by (75) second case)

inf
uτi+1∈Uτi+1

∫

W\
i+1

ρ\i:i+1( dw\i+1) (by (75) first case)

(
Li(xτi , uτi , w

[
i , uτi+1) + ϕ̃τi+1

(
fi(xτi , uτi , w

[
i , uτi+1)

))

(by (76) and (73))

= inf
u\i∈U

\
i

∫

W[
i

ρ[i−1:i( dw[i) (by (71a))

inf
u[i+1∈U[i+1

(
Li(xτi , u

\
i , w

[
i , u

[
i+1) + ϕ̃τi+1

(
fi(xτi , u

\
i, w

[
i , u

[
i+1)

))
,

from which the end of the proof follows. �

E Two-time-scale dynamic programming

We present a framework for two-time-scale multistage optimization problems which is more
general than in Sect. 5, as we do not require dynamics and states at the fast time-scale.
In §E.1, we detail the data needed to formulate the two-time-scale optimization problems
that we consider. In §E.2, we show how to decompose such problems by slow time blocks.

E.1 Data for two-time-scale multistage optimization problem

Two time scales and unified extended timeline. We consider the same setting as
in §5.1 in what regards the two time-scales S and F

min S = s ≺ · · · ≺ s− ≺ s ≺ s+ ≺ · · · ≺ s̄ = max S , (79a)

minF = f ≺ · · · ≺ f− ≺ f ≺ f+ ≺ · · · ≺ f̄ = maxF , (79b)

but with an extra final slow time s̄+ (with S = S ∪ {s̄+}) and the unified extended timeline
S×F = (S×F) ∪ (s̄+, f)

(s, f) ≺ (s, f+) ≺ · · · ≺ (s−, f̄) ≺ (s, f) ≺ (s, f+) ≺ · · ·
· · · ≺ (s, f̄−) ≺ (s, f̄) ≺ (s+, f) ≺ · · · ≺ (s̄, f̄) ≺ (s̄+, f) . (79c)
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Note that, at the difference of §5.1, as the state dynamics is only defined at the slow time
scale, it is more convenient to add an extra final time s̄+ rather than an initial extra time
(s−, f̄).

The extended timeline S×F can be identified with the time set J0, T K, so that we are in
the framework of §2.1.

In conformity with the above unified extended timeline — and, as in §3.2, we will consider
state reduction on multiple consecutive time blocks, but in the special case where each block
is made of all the fast time steps between two consecutive slow time steps — we define

[(s, f), (s, f̄)] = {s} × F = {(s, f), (s, f+), . . . , (s, f̄)} , ∀s ∈ S , (79d)

[(s, f), (s+, f)] = {(s, f), (s, f+), . . . , (s, f̄), (s+, f)} , ∀s ∈ S . (79e)

Decision and uncertainty spaces, stochastic kernels. For the rest, to the differ-
ence with §5.1, we consider decision Borel spaces {U(s,f)}(s,f)∈S×F, uncertainty Borel spaces

{W(s,f)}(s,f)∈S×F, stochastic kernels

ρ(s−,f̄):(s,f) ∈ ∆(W(s,f)) , ∀s ∈ S , (80a)

ρ(s,f−):(s,f) :

f−∏

f ′=f

W(s,f ′) → ∆(W(s,f)) , ∀s ∈ S , ∀f ∈ F \ {f} . (80b)

Note that, for a given s ∈ S, each stochastic kernel ρ(s,f) depends at most on the noises of
the slow time block [(s, f), (s, f̄)] in (79d). The (constant) assumption (80a) and the (single
block) assumption (80b) correspond to stochastic independence between time blocks, and
will be useful in the proof of Proposition 17.

History spaces. In conformity with the unified extended timeline (79c) and with the
decision and uncertainty spaces, we deduce the history Borel spaces and the histories for all
(s, f) ∈ S×F

H(s,f) = W(s,f) ×
∏

(s,f+)�(s′,f ′)�(s,f)

(
U(s′,f ′)− ×W(s′,f ′)

)
, (81a)

h(s,f) =
(
w(s,f),

(
u(s′,f ′)− , w(s′,f ′)

)
(s,f+)�(s′,f ′)�(s,f)

)
, (81b)

and, for suitable indices, the partial history sets and the partial histories

H(s,f):(s′,f ′) =
∏

(s,f)�(s′′,f ′′)�(s′,f ′)

(U(s′′,f ′′)− ×W(s′′,f ′′)) , (82a)

h(s,f):(s′,f ′) =
(
(u(s′′,f ′′)− , w(s′′,f ′′))(s,f)�(s′′,f ′′)�(s′,f ′)

)
. (82b)
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State reductions and slow time scale dynamics. Let {Xs}s∈S be a sequence of Borel
(state) spaces (where Xs = W(s,f)), {θs}s∈S be a sequence of Borel-measurable reduction

mappings θs : H(s,f) → Xs (where θs = Id : H(s,f) = W(s,f) → Xs = W(s,f)), and {fs}s∈S be a

sequence of Borel-measurable dynamics

fs : Xs ×H(s,f+):(s+,f) → Xs+ , ∀s ∈ S . (83)

Cost functions. We suppose given a family {Λs}s∈S of slow time scale nonnegative lower
semianalytic cost functions, with

Λs : Xs ×H(s,f+):(s+,f) → [0,+∞] , ∀s ∈ S (84a)

and a slow time scale nonnegative lower semianalytic final cost function Λs̄+

Λs̄ : Xs̄+ → [0,+∞] . (84b)

With the slow time scale cost functions and final cost function, we make up, by summation,
a (nonnegative lower semianalytic) cost criterion j : H(s̄+,f) → [0,+∞] given by

j(h(s̄+,f)) =
∑

s∈S

Λs

(
θs(h(s,f)), h(s,f+):(s+,f)

)
+ Λs̄+

(
θs̄+(h(s̄+,f )

)
. (84c)

E.2 Two-time-scale dynamic programming

Proposition 17 Suppose that the family
(
{Xs}s∈S, {θs}s∈S, {fs}s∈S is a state reduction

across the consecutive time blocks [(s, f), (s, f̄)], for s ∈ S (where we identify f(s,f):(s,f̄) = fs
in Definition 4).

Then, the multistage (two-time-scale) stochastic optimization problem — formulated like
in (6) with the data in §E.1 — has a solution given by a dynamic programming equation at
the slow scale. More precisely, let {Vs}s∈S be a sequence of functions given by Vs̄+ = Λs̄+

and, for s ∈ S, by the backward induction

Vs(xs) = inf
u(s+,f)∈U(s+,f)

∫

W(s+,f+)

ρ(s+,f):(s+,f+)( dw(s+,f+) |ws+) · · ·

inf
u(s+,f̄−)∈U(s+,f̄−)

∫

W(s+,f̄)

ρ(s+,f̄−):(s+,f̄)( dw(s+,f̄) |ws+ , w(s+,f+), · · · , w(s+,f̄−))

(
Λs

(
xs, (u(s′,f ′)− , w(s′,f ′))(s,f+)�(s′,f ′)�(s+,f)

)

+ Vs+
(
fs
(
xs, (u(s′,f ′)− , w(s′,f ′))(s,f+)�(s′,f ′)�(s+,f)

)))
. (85)

Then, the value of the optimization problem (6) is given by Vs(xs), where the initial condition
xs corresponds to w0 in (6), as stated by (81b).
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Proof. The proof is an application of Theorem 8 with the help of Remarks 5 and 6. First,

we have framed the multistage (two-time-scale) stochastic optimization problem in the formalism

of §2.1 with the help of the extended timeline (79c). Second, we have by assumption a state

reduction at times {(s, f)}
s∈S by composition of the state dynamics. Moreover, as the slow time

scale stochastic kernels given by Equation (80a) are constant, the state reduction across the slow

time scale is compatible with the stochastic kernels (see Remark 6). We are thus able to apply

Theorem 8 and obtain the slow time scale Bellman recursion (85) as a special case of Equation (19).

This ends the proof. �
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[AM10] Serdar Yüksel. A universal dynamic program and refined existence results for decen-
tralized stochastic control. SIAM Journal on Control and Optimization, 58(5):2711–
2739, 2020.

49


	Introduction
	Stochastic dynamic programming with histories
	The Bertsekas-Shreve setting Bertsekas-Shreve:1996
	Stochastic dynamic programming equation with histories

	State reduction by time blocks and dynamic programming
	State reduction on a single time block
	State reduction on multiple consecutive time blocks and dynamic programming equations
	State reduction on multiple consecutive time blocks and reduced optimal feedbacks

	Mixing dynamic programming and stochastic programming
	Two-time-scale optimization problems
	Structure of a two-time-scale optimization problem
	Formulation of a two-time-scale optimization problem on the product timeline
	Two-time-scale decomposition
	Illustration with the crude oil procurement problem

	Decision-hazard-decision optimization problems
	Motivation for the decision-hazard-decision framework
	Decision-hazard-decision framework and dynamic programming equation

	Conclusion and perspectives
	Technical details and proofs
	A brief survey of frameworks for stochastic dynamic programming in discrete time
	Supplement to Sect. 5
	Detailed proof of Proposition 13 (Sect.6)
	Two-time-scale dynamic programming
	Data for two-time-scale multistage optimization problem
	Two-time-scale dynamic programming


