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Time Blocks Decomposition
of Multistage Stochastic Optimization Problems

Pierre Carpentier∗, Jean-Philippe Chancelier†, Michel De Lara†,
Thomas Martin†, Tristan Rigaut‡

December 22, 2022

Abstract

Multistage stochastic optimization problems are, by essence, complex as their so-
lutions are functions of both stages and uncertainties. Their large scale nature makes
decomposition methods appealing, like dynamic programming which is a sequential
decomposition using a state variable defined at all stages. By contrast, in this pa-
per we introduce the notion of state reduction by time blocks, that is, at stages that
are not necessarily all the original stages. Then, we prove a dynamic programming
equation with value functions that are functions of a state only at some stages. This
equation crosses over time blocks, but involves an optimization inside each block. We
illustrate our contribution by showing its potential in three applications in multistage
stochastic optimization: mixing dynamic programming and stochastic programming,
two-time-scale optimization problems, decision-hazard-decision optimization problems.

Keywords: multistage stochastic optimization, time blocks decomposition, time scales,
dynamic programming

1 Introduction

Solutions of multistage stochastic optimization problems are functions of both time and
uncertainties. This makes such problems complex. However, their structure makes decom-
position methods appealing to solve them [18]. One of the most common approaches are time
decomposition (state-based resolution methods), like stochastic dynamic programming, in
stochastic optimal control, and scenario decomposition, like progressive hedging, in stochastic
programming. On the one hand, stochastic programming deals with an underlying random
process taking a finite number of values, called scenarios [19]. Solutions are indexed by a
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scenario tree, the size of which increases exponentially with the number of stages (hence gen-
erally a few stages in practice). However, to overcome this obstacle, stochastic programming
takes advantage of scenario decomposition methods (progressive hedging [17]). On the other
hand, stochastic control deals with a state model driven by a white noise, that is, the noise
is made of a sequence of independent random variables. Under such assumptions, stochastic
dynamic programming is able to handle many stages, as it offers reduction of the search for
a solution among state feedbacks (instead of functions of the past noise) [2, 15].

In a word, dynamic programming is good at handling multiple stages — but at the price
of assuming that noises are stagewise independent — whereas stochastic programming does
not require such assumption, but can only handle a few stages. Could we take advantage of
both methods? Is there a way to apply stochastic dynamic programming at a slow time scale
— a scale at which noises could be considered statistically independent — crossing over fast
time scale optimization problems where independence would not hold? This question is one
of the motivations of this paper, and we indeed provide a method to decompose multistage
stochastic optimization problems by time blocks. This decomposition method and the main
result are, mathematically speaking, quite natural, but the main difficulty is notational.
Indeed, the rigorous formulation of multistage stochastic optimization problems on so-called
history spaces requires heavy notation.

Although specialists in stochastic optimal control and dynamic programming will find the
results as natural and non surprising, or as part of folklore, the fact is that we have not been
able to find references that treat the case of a state defined only at a subset of stages. This
is why we set out to write this paper, without any real theoretical ambition, but with the
objective that this result be established and can be used for applications using several forms
of decomposition1. This is also why we present three (theoretical) applications in multistage
stochastic optimization: mixing dynamic programming and stochastic programming, two-
time-scale optimization problems, decision-hazard-decision optimization problems.

As there are several ways to tackle the difficulties of dealing with a large number of time
steps, we compare our approach with other ones. In this paper, we propose an exact decom-
position of a multistage stochastic optimization problem by time blocks using a state defined
only at a subset of stages, to be distinguished from either time aggregation or approximate
decomposition by timescales, which both yield approximate problems. We discuss both now.

Time aggregation consists in grouping the time steps, that is, in considering a partition
of the time steps in time blocks and “aggregating” variables and constraints in each time
block. To our knowledge, this approach was initiated in [4] for stochastic linear programs.
For such linear programs, it is indeed easily conceived that, by summing (“aggregating”)
linear constraints, one obtains lower bounds for minimization problems. This approach was
generalized in [27] who puts forward a measure-theoretic framework with coarser and finer
filtrations, and used linear duality. Then, this was extended in [11] for stochastic convex
programs, using filtrations and convex duality. The main idea can be sketched as follows: the

1The starting point of our reflections on this subject were conversations that three of us held with Roger
Wets in Bogota in 2013. We discussed the interest and the way of mixing the techniques of scenario trees
(to be able to take into account correlated noises) with the techniques of dynamic programming (to have a
vision of the optimal future costs).
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coarser filtration is used to reduce the measurability of the decision variables, whereas the
finer filtration is used to enlarge the measurability of the dual variables associated with the
constraints, so that the optimal value of the problem obtained by using these two filtrations
is an upper bound of the true optimal value; exchanging the role of the filtrations leads to a
lower bound. Thus, with time aggregation, one obtains simpler problems that are lower and
upper bounds for the original minimization stochastic problems, hence are approximations.

In approximate decomposition by timescales, one identifies several timescales in the orig-
inal multistage stochastic optimization problem and then sets up an optimization problem
for each timescale. It is approximate in that the connexion between the problems formulated
for each timescale and the whole multistage problem is not explicit.

Approximate decomposition by timescales can be done in the context of dynamic pro-
gramming, with the value functions obtained for a given timescale entering the final cost of
the problem at the finer timescale. This approach gives a cascade of easier to solve optimiza-
tion problems, and again corresponds to approximate the original problem. An example of
this approach can be found in [6] where — for a problem involving both the control of the
storage of a battery (5 minutes time steps) and the frequency regulation (2 seconds time
steps) — is introduced a first hourly resource model whose resolution by dynamic program-
ming leads to value functions used in a five minute storage model as final costs. The value
functions, obtained by solving by dynamic programming this second model, are themselves
used in a 2 second frequency model. Another possibility arises when the considered optimiza-
tion problem displays a periodical behavior. In that case, a natural time blocks decomposition
is given by the period of the system. In [20], by taking into account such a periodical pattern
in the dynamic programming equations, one significantly reduces the computational effort to
solve the problem using a fixed point approach. Finally, [14] present a preliminary work on
extending the Stochastic Dual Dynamic Programming approach to two-time-scale problems,
such as those encountered in energy systems involving both long-term hydro storages and
short-term battery storages.

Approximate decomposition by timescales can also be done in the framework of stochastic
programming. In [10], the authors introduce a slow scenario tree, that is, a tree involving
only the time stages of the slow time scale; but at each node of this slow scenario tree are
attached fast time scale scenarios, which do not interfere with the other nodes of the slow
scenario tree. The special situation where decisions are taken only at the slow time scale
(whereas uncertainties occur at each time stage) is considered in [8]. The authors propose
to build a scenario tree branching at the slow time stages, and designed using the theory of
bridge processes between two consecutive nodes in order to represent the noise at the fast
time scale.

The paper is organized as follows. In Sect. 2, we present stochastic dynamic program-
ming with histories as a way to solve a stochastic optimal control problem formulated in
discrete time. In Sect. 3, we revisit the notion of “state” by defining state reduction by time
blocks — that is, at stages that are not necessarily all the original stages — and then we
prove a reduced dynamic programming equation. This is the central contribution. Then, we
illustrate our contribution by showing its potential in three cases. In Sect. 4, we show how to
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mix dynamic programming and stochastic programming. In Sect. 5, we detail how to handle
problems with two time scales, and illustrate this with the crude oil procurement problem.
In Sect. 6, we introduce what we call the decision-hazard-decision framework, and we pro-
vide a dynamic programming equation. In Appendix A, we survey several frameworks and
approaches to solve, by dynamic programming, a stochastic optimal control problem formu-
lated in discrete time. We relegate technical results and proofs in Appendix B, Appendix C
and in Appendix D.

2 Stochastic dynamic programming with histories

In this section, we formulate multistage stochastic optimization problems over the so-called
history space, with history feedbacks. Then, to prepare the main result in Sect. 3, we
establish a dynamic programming equation when the state is the history, that is, the uncer-
tainties and the controls prior to the current stage (see the “canonical construction” in [9,
p. 15]). Although quite natural, this equation is generally not written in the literature, as
most frameworks in dynamic programming assume the a priori existence of a state (see the
survey in Appendix A).

We use the notation Jr, sK = {r, r + 1, . . . , s− 1, s} for any two natural numbers r, s such
that r ≤ s. We will also use the shorter notation r:s = Jr, sK, for example in subscripts as in
hr:s. From now on, time is discrete and runs among the natural numbers t ∈ J0, T K, where
T ∈ N∗ is a positive natural number (and where, for the sake of simplicity, we have taken
t0 = 0 regarding the notation in Appendix A). We first define the basic and the composite
spaces that we need to formulate multistage stochastic optimization problems. Then, we
introduce a class of solutions called history feedbacks.

Histories and history spaces. For each time t ∈ J0, T−1K, the control ut takes its values
in a measurable set Ut equipped with a σ-field Ut. For each time t ∈ J0, T K, the uncertainty wt
takes its values in a measurable set Wt equipped with a σ-field Wt. For t ∈ J0, T K, we define
the history space Ht equipped with the history field Ht

Ht = W0 ×
t∏

s=1

(Us−1 ×Ws) ,

Ht = W0 ⊗
t⊗

s=1

(Us−1 ⊗Ws) ,

with the particular case H0 = W0, H0 = W0. A generic element ht =
(
w0, (us−1, ws)s=1,...,t

)
=

(w0, u0, w1, u1, w2, . . ., ut−2, wt−1, ut−1, wt) ∈ Ht is called a history at time t. For
1 ≤ r ≤ s ≤ t, we introduce the (r :s)-history subpart hr:s = (ur−1, wr, . . . , us−1, ws) ∈
Hr:s =

∏s
τ=r(Uτ−1 ×Wτ ), so that we have ht = (hr−1, hr:t).

History feedbacks. For 0 ≤ r ≤ t ≤ T − 1, we define a (r : t)-history feedback as a
sequence

{
γs
}
s=r,...,t

of measurable mappings γs : (Hs,Hs) → (Us,Us). We call Γr:t the set
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of (r : t)-history feedbacks. The history feedbacks reflect the following information structure.
At the end of the time interval [t− 1, t[, an uncertainty variable wt is revealed. Then, at the
beginning of the time interval [t, t+ 1[, a decision-maker chooses a control ut contingent on
no more than the past, giving the chronology

w0  u0  w1  u1  · · · wt  ut  · · · wT−1  uT−1  wT . (1)

Stochastic kernels. In what follows, given (Y,Y) a measurable space, ∆(Y) denotes
the space of probability measures over (Y,Y). Uncertainty is represented by a family{
ρt−1:t

}
t∈J1,T K of stochastic kernels

ρt−1:t : (Ht−1,Ht−1)→ ∆(Wt) , ∀t ∈ J1, T K , (2)

where each ρt−1:t(ht−1, ·) represents the distribution of the next uncertainty wt parameterized
by past history ht−1.

We define, for any feedback {γs}s=t,...,T−1 ∈ Γt:T−1, a new family of stochastic kernels
ργt:T : (Ht,Ht)→ ∆(HT ), that capture the transitions between histories when the dynamics
hs+1 =

(
hs, us, ws+1

)
is driven by us = γs(hs) for all s in Jt, T−1K (see Definition 15 in

Appendix B for the detailed construction of ργr:t). Note that ργt:T generates a probability
distribution on the space HT of histories over the whole timespan J0, T K.

Cost function. In what follows, we say that a function is numerical if it takes its values
in R = [−∞,+∞] (also called extended or extended real-valued function). The cost to be
minimized is a numerical function

j : (HT ,HT )→ [0,+∞] , (3)

assumed to be nonnegative2 and measurable with respect to the history field HT .
Notice that (3) does not represent a cost at final stage, but a cost function of the whole

history hT = (w0, u0, w1, u1, . . . , wT−1, uT−1, wT ) ∈ HT . As hT contains all past controls and
uncertainties, a function j : HT → [0,+∞] covers the most general case. For instance, the
function j can have the special form of a sum of time block costs, like in Equation (20).

Optimization data set and family of optimization problems. We call optimization
data set the family

D =
(
{(Ut,Ut)}t∈J0,T−1K , {(Wt,Wt)}t∈J0,T K , {ρt−1:t}t∈J1,T K , j

)
(4)

2We could also consider a criterion j : Ht → R, either measurable bounded function, or measurable
and uniformly bounded below function. However, for the sake of simplicity, we will deal in the sequel with
measurable nonnegative numerical functions. The case j(hT ) = +∞ materializes joint constraints between
uncertainties and controls in hT .
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made of the elements presented above. We consider the following family of optimization
problems, indexed by t in J0, T−1K and parameterized by the history ht ∈ Ht: for all t in
J0, T−1K, we define the minimum value

Vt(ht) = inf
γt:T−1∈Γt:T−1

∫

HT

j(h′T )ργt:T ( dh′T |ht) , ∀ht ∈ Ht , (5a)

and we also define

VT (hT ) = j(hT ) , ∀hT ∈ HT . (5b)

The numerical function Vt : Ht → [0,+∞] is called the value function at time t.
In the next paragraph, we show how the family {Vt}t∈J0,T K of value functions can be used

to solve, via dynamic programming, the optimization problem of interest, that is, the one
starting at t = 0, whose value is (recall that h0 = w0)

V0(w0) = inf
γ0:T−1∈Γ0:T−1

∫

HT

j(h′T )ργ0:T ( dh′T |w0) . (6)

Bellman operators and dynamic programming. We show that the value functions
in (5) are Bellman functions, in that they are solution of a Bellman or dynamic programming
equation. However, the proof requires technical assumptions. Indeed, as Bertsekas and
Shreve notice at the beginning of [3, §7.6]: “The dynamic programming algorithm is centered
around infimization of functions, and this is intimately connected with projections of sets”;
“Unfortunately, the projection of a Borel-measurable set need not be Borel-measurable. In
Borel spaces, however, the projection of a Borel-measurable set is an analytic set”. They
devote [3, §7.6] to the definition and study of analytic sets, and in [3, §7.7] define universally
measurable functions, as well as lower semianalytic functions.

For any Borel space X, subset X ⊂ X and function ϕ : X → R, the function ϕ is
said to be lower semianalytic [3, Definition 7.21] if the subset X is analytic and if the
subset

{
x ∈ X

∣∣ϕ(x) < c
}

is analytic for all c ∈ R. We denote by L0
+(X) the space of lower

semianalytic nonnegative numerical functions over X.

Definition 1 The optimization data set D in (4) is said to be Borel-analytic if the spaces
{(Ut,Ut)}t∈J0,T−1K and {(Wt,Wt)}t∈J0,T K are Borel spaces, the stochastic kernels {ρt−1:t}t∈J1,T K
in (2) are Borel-measurable, and the criterion j in (3) is a (nonnegative) lower semianalytic
numerical function.

The proof of the following theorem is given in Appendix B.

Theorem 2 Suppose that the optimization data set D in (4) is Borel-analytic. For t in
J0, T−1K, we define the Bellman operator Bt+1:t by, for all ϕ ∈ L0

+(Ht+1) and for all ht ∈ Ht,

(
Bt+1:tϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ(ht, ut, wt+1)ρt:t+1(dwt+1 |ht) . (7a)
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Then, the Bellman operators are such that

Bt+1:t : L0
+(Ht+1)→ L0

+(Ht) , (7b)

and the value functions Vt defined in (5) are universally measurable and satisfy the Bellman
equation, or (stochastic) dynamic programming equation,

VT = j , Vt = Bt+1:tVt+1 , for t = T−1, . . . , 1, 0 . (8)

This theorem is mainly inspired by [3, Chap. 8], with the feature that the state xt is, in
our case, the canonical history ht, with the canonical dynamics ht+1 =

(
ht, ut, wt+1

)
. This

very general dynamic programming result is the basis of all future developments in this
paper.

The recalls and statements presented in this Sect. 2 are mostly straightforward conse-
quences of results already established in the literature. However, the developements are
indispensable to tackle time blocks decomposition in the forthcoming Sect. 3.

3 State reduction by time blocks and dynamic pro-

gramming

In standard approaches to solve, by dynamic programming, a stochastic optimal control
problem formulated in discrete time, either a state is given for all times or no state is given
(see Appendix A). In this paper, our approach is intermediate, in that a state is possibly
obtained, but only at certain times. Thus, in this section, we consider the question of
reducing the history using a compressed “state” variable. Differing with traditional practice,
such a variable may not be available at any time t ∈ J0, T K, but at some specified stages
0 = t0 < · · · < tN = T . We have seen in Sect. 2 that the history ht is itself a state variable
with associated canonical dynamics ht+1 =

(
ht, ut, wt+1

)
. However, the size of this canonical

state increases with t, which is an unpleasant feature for dynamic programming quickly
leading to the well-known curse of dimensionality, hence the practical need to introduce a
(ideally low dimensional) state space, at least at some specified stages, as done in this paper.
As already said in the introduction, the main difficulty in achieving this goal is notational.

In §3.1, we start by introducing the notion of state reduction on a single time block.
In §3.2, we move to state reduction on multiple consecutive time blocks and we give the
corresponding dynamic programming equations across time blocks. In §3.3, we conclude on
how we obtain reduced optimal feedbacks.

3.1 State reduction on a single time block

We first present the case where the reduction only occurs at two instants denoted by r and t,
and such that 0 ≤ r < t ≤ T .

7



Definition 3 Let (Xr,Xr) and (Xt,Xt) be two measurable state spaces, θr and θt be two
measurable reduction mappings

θr : Hr → Xr , θt : Ht → Xt , (9a)

and fr:t be a measurable dynamics

fr:t : Xr ×Hr+1:t → Xt . (9b)

The triplet (θr, θt, fr:t) is called a state reduction across Jr, tK if we have3

θt
(
(hr, hr+1:t)

)
= fr:t

(
θr(hr), hr+1:t

)
, ∀ht ∈ Ht . (9c)

The state reduction (θr, θt, fr:t) is said to be compatible with the family {ρs−1:s}r+1≤s≤t of
stochastic kernels (2) if

• there exists a reduced stochastic kernel ρ̃r:r+1 : Xr → ∆(Wr+1), such that the stochas-
tic kernel ρr:r+1 in (2) can be factored, for all hr ∈ Hr, as ρr:r+1( dwr+1 |hr) =
ρ̃r:r+1

(
dwr+1

∣∣ θr(hr)
)
,

• for all s in Jr + 2, tK, there exists a reduced stochastic kernel ρ̃s−1:s : Xr ×Hr+1:s−1 →
∆(Ws), such that the stochastic kernel ρs−1:s can be factored, for all hs−1 ∈ Hs−1, as
ρs−1:s

(
dws

∣∣ (hr, hr+1:s−1)
)

= ρ̃s−1:s

(
dws

∣∣ (θr(hr), hr+1:s−1

))
.

We call single time block compatible reduction data set the family

Rr,t =
(

(Xr,Xr), (Xt,Xt), θr, θt, fr:t, {ρ̃s−1:s}s∈Jr+1,tK

)
(11)

made of the elements presented above. We say that the single time block compatible reduction
data set Rr,t is Borel if the spaces (Xr,Xr) and (Xt,Xt) are Borel spaces, the reduction
mappings θr and θt are Borel-measurable, the dynamics fr:t is Borel-measurable, and the
reduced stochastic kernels ρ̃r:r+1 and ρ̃s−1:s, for s ∈ Jr + 2, tK, are Borel-measurable.

The above definition is similar to the sufficient statistics idea in stochastic control: the
state variable, which summarizes the history, is sufficient for the controller to design its
control policy ([22, p. 19], [3, Definition 10.6], [21]). However, sufficient statistics in the
stochastic control literature are defined at the original time stages. By contrast, Definition 3
— and the coming Definition 5 — consider a notion of sufficient statistics only for a subset
of stages.

According to Definition 3, the triplet (θr, θt, fr:t) is a state reduction across Jr, tK if and
only if the diagram in the left part of Figure 1 is commutative; it is compatible if and only
if the diagram in the middle part of Figure 1 is commutative.

The following proposition is the key ingredient to formulate dynamic programming equa-
tions with a reduced state.

3Notice that, if only the couple (θr, fr:t) is given, we can define θt by (9c), and thus obtain a
triplet (θr, θt, fr:t) which is a state reduction across Jr, tK.
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Hr ×Hr+1:t Ht

Xr ×Hr+1:t Xt

θr Id

Id

θt

fr:t

Hr ×Hr+1:s−1 ∆(Ws)

Xr ×Hr+1:s−1

θr Id

ρs−1:s

ρ̃s−1:s

L0
+(Ht) L0

+(Hr)

L0
+(Xt) L0

+(Xr)

Bt:r

θ⋆t

B̃t:r

θ⋆r

1

Figure 1: Commutative diagrams in case of state reduction

Proposition 4 Suppose that the optimization data set D in (4) is Borel-analytic. Then, we
can define the Bellman operator across Jt, rK, Bt:r : L0

+(Ht)→ L0
+(Hr) by

Bt:r = Br+1:r ◦ · · · ◦ Bt:t−1 , (12)

where the one time step operators Bs:s−1, for s in Jr + 1, tK are defined in (7a).
Suppose that there exists a state reduction (θr, θt, fr:t) that is compatible with the family

{ρs−1:s}r+1≤s≤t of stochastic kernels (2), and that the single time block compatible reduction
data set Rr,t in (11) is Borel.

Then, there exists a reduced Bellman operator across Jt, rK, B̃t:r : L0
+(Xt) → L0

+(Xr),
such that (

B̃t:rϕ̃t
)
◦ θr = Bt:r(ϕ̃t ◦ θt) , ∀ϕ̃t ∈ L0

+(Xt) . (13)

For any ϕ̃t ∈ L0
+(Xt) and for any xr ∈ Xr, we have that

(
B̃t:rϕ̃t

)
= inf

ur∈Ur

∫

Wr+1

ρ̃r:r+1( dwr+1 |xr)

inf
ur+1∈Ur+1

∫

Wr+2

ρ̃r+1:r+2( dwr+2 |xr, ur, wr+1) · · ·

inf
ut−1∈Ut−1

∫

Wt

ρ̃t−1:t( dwt |xr, ur, wr+1, . . . , ut−2, wt−1)

ϕ̃t
(
fr:t(xr, ur, wr+1, . . . , ut−1, wt)

)
. (14)

The formula (14) represents a nested sequence of infima of integrals (with respect to different
kernels).

The proof of Proposition 4 is given in Appendix B. Proposition 4 can be interpreted as
follows. Denoting by θ?t : L0

+(Xt)→ L0
+(Ht) the operator defined by θ?t (ϕ̃t) = ϕ̃t ◦ θt for any

ϕ̃t ∈ L0
+(Xt), the relation (13) rewrites as θ?r ◦ B̃t:r = Bt:r ◦ θ?t , that is, Proposition 4 states

that the diagram in the right part of Figure 1 is commutative.
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3.2 State reduction on multiple consecutive time blocks and dy-
namic programming equations

Proposition 4 can easily be extended to the case of multiple consecutive time blocks Jti, ti+1K,
with N ∈ N∗, i ∈ J0, N−1K and 0 = t0 < · · · < tN = T .

Definition 5 Let {(Xti ,Xti)}i∈J0,NK be a family of measurable state spaces, {θti}i∈J0,NK be a

family of measurable reduction mappings θti : Hti → Xti, and {fti:ti+1
}
i∈J0,N−1K be a family of

measurable dynamics
fti:ti+1

: Xti ×Hti+1:ti+1
→ Xti+1

.

The collection
(
{(Xti ,Xti)}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K

)
is called a state reduction

across the consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K if every triplet (θti , θti+1
, fti:ti+1

) is
a state reduction across Jti, ti+1K, for i in J0, N−1K. The state reduction is said to be Borel
if the state spaces {(Xti ,Xti)}i∈J0,NK are Borel spaces, the reduction mappings {θti}i∈J0,NK are

Borel-measurable, the dynamics {fti:ti+1
}
i∈J0,N−1K are Borel-measurable.

The state reduction across the consecutive time blocks Jti, ti+1K is said to be compatible
with the family {ρs−1:s}s∈J1,T K of stochastic kernels given in (2) if every triplet (θti , θti+1

, fti:ti+1
)

is compatible with the family {ρs−1:s}s∈Jti+1,ti+1K, for i in J0, N−1K. In this case, we call mul-
tiple time block compatible reduction data set the family

R{ti}i∈J0,NK
=
(
{(Xti ,Xti)}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K,

{
{ρ̃s−1:s}s∈Jti+1,ti+1K

}
i∈J0,N−1K

)
, (15)

made of the elements presented above. We say that the multiple time block compatible reduc-
tion data set R{ti}i∈J0,NK

is Borel if the state reduction is Borel, and the reduced stochastic

kernels
{
{ρ̃s−1:s}s∈Jti+1,ti+1K

}
i∈J0,N−1K

are Borel-measurable.

Remark 6 (Composed state dynamics as a reduction mapping)
There is a practical case where state reductions can readily be obtained, namely, when

the model is given by controlled state dynamics driven by noises. Indeed, in that case,we are
given a family of measurable state spaces

{
(Xs,Xs)

}
s∈J0,T K and a family {fs:s+1}s∈J0,T−1K of

measurable dynamics
fs:s+1 : Xs × Us ×Ws+1 → Xs+1 . (16)

For any time s ∈ J0, T−1K, we define the composition f0:s+1 = fs:s+1◦fs−1:s◦. . .◦f0:1 with the
abuse of notation that the composition is performed on the state argument. Setting W0 = X0,
we obtain that f0:s+1 : Hs+1 → Xs+1 is a mapping from the history space Hs+1 taking values
in the state space Xs+1.

Now, given a natural number N > 0 and an increasing sequence 0 = t0 < · · · < tN = T
of times, we define the family

{
θti
}
i∈J0,NK of measurable reduction mappings by θti = f0:ti :

10



Hti → Xti for i > 0, and by θ0 = Id (the identity mapping on W0) for i = 0. Moreover,
given i and j ∈ J0, NK, with i < j we obtain, for all htj ∈ Htj , that

θtj(htj) = θtj
(
(hti , hti+1:tj)

)
= fti:tj

(
θti(hti), hti+1:tj

)
, (17)

with fti:tj = ftj−1:tj ◦ ftj−2:tj−1 ◦ . . . ◦ fti:ti+1 which gives the state reduction Equation (9c).

Remark 7 (Block independent exogenous noises and stochastic kernels)
There is a practical case where compatible state reductions can readily be obtained. As-

sume that the family {ρs−1:s}s∈J1,T K of stochastic kernels in (2) are mappings whose argu-
ments do not include the control part (that is, depend at most on the history uncertainty
part (see (48a)). If we interpret stochastic kernels as (conditional) distributions of noises
(random process), this means that the system dynamics are driven by an exogenous noise
process, say {Wt}t∈J1,T K.

Assume moreover that the stochastic kernels give rise to noises that are independent
block by block, in the sense that the random vectors W0, (Wt)t∈J1,t1K, (Wt)t∈Jt1+1,t2K, . . . ,
(Wt)t∈Jti+1,ti+1K, . . . , (Wt)t∈JtN−2+1,tN−1K, (Wt)t∈JtN−1+1,tN K are stochastically independent.
Then, from Definitions 3 and 5, we deduce that any state reduction across the same time
blocks is compatible with the stochastic kernels. If the optimization data set D in (4) is
Borel-analytic and the state reduction is Borel, then the corresponding multiple time block
compatible reduction data set is Borel.

Assuming the existence of a state reduction across the consecutive time blocks Jti, ti+1K
compatible with the family of stochastic kernels (2), we obtain the existence of a fam-
ily of reduced Bellman operators across the consecutive Jti, ti+1K as an immediate conse-

quence of multiple applications of Proposition 4, that is, B̃ti+1:ti : L0
+(Xti+1

) → L0
+(Xti),

i ∈ J0, N−1K, such that, for any function ϕ̃ti+1
∈ L0

+(Xti+1
), we have that

(
B̃ti+1:tiϕ̃ti+1

)
◦θti =

Bti+1:ti(ϕ̃ti+1
◦ θti+1

). We now consider the family of optimization problems defined by the
associated value functions (5). Thanks to the state reductions, we can enounce the follow-
ing two theorems which establish dynamic programming equations across consecutive time
blocks. The first one, Theorem 8, states a dynamic programming equation for an optimiza-
tion problem in Mayer form (that is, just involving a final cost). The second one, Theorem 9,
is more general as it involves both instantaneous costs and a final cost. As it is well known
that the second case can be reduced to a Mayer form through a state augmentation, the
proof of Theorem 9 easily follows from the proof of Theorem 8.

Theorem 8 (Time block decomposition for the Mayer form) Suppose that the opti-
mization data set D in (4) is Borel-analytic. Suppose that a state reduction

(
{(Xti ,Xti)}i∈J0,NK,

{θti}i∈J0,NK, {fti:ti+1
}
i∈J0,N−1K

)
exists across the consecutive time blocks {Jti, ti+1K}i∈J0,N−1K,

satisfying 0 = t0 < · · · < tN = T , which is compatible with the family {ρs−1:s}s∈J1,T K of
stochastic kernels given in (2), and that the multiple time block compatible reduction data
set R{ti}i∈J0,NK

in (15) is Borel.

Suppose that there exists a reduced criterion ̃ : XT → [0,+∞], which is a nonnegative
lower semianalytic function and is such that the cost function j in (3) can be factored as

11



j = ̃ ◦ θT . We define the family of reduced value functions {Ṽti}i∈J0,NK, where Ṽti : Xti →
[0,+∞] for i ∈ J0, NK, by

ṼtN = ̃ and Ṽti = B̃ti+1:tiṼti+1
, ∀i ∈ J0, N−1K , (19)

where the reduced Bellman operators {B̃ti+1:ti}i∈J0,N−1K across the intervals {Jti, ti+1K}i∈J0,N−1K

are given in (14). Then, the family {Vti}i∈J0,NK in (5) satisfies Vti = Ṽti◦θti, for all i ∈ J0, NK.

The proof is an immediate consequence of multiple applications of Theorem 2 and Propo-
sition 4. It is left to the reader to prove that the following theorem holds true (the proof
uses [3, Lemma 7.30(3,4)] on the stability of lower semianalytic functions under addition and
under right composition with a Borel mapping).

Theorem 9 (Taking care of instantaneous costs in addition to final cost)
Suppose that the assumptions of Theorem 8 are satisfied, but for the criterion j : HT →

[0,+∞] which is supposed to be factored as

j(hT ) =
N−1∑

i=0

`ti
(
θti(hti), hti+1:ti+1

)
+ `tN

(
θtN (htN )

)
, (20)

where the numerical functions {`ti}i∈J0,NK are nonnegative lower semianalytic, with `ti : Xti×
Hti+1:ti+1

→ [0,+∞] for i ∈ J0, NK.

We define the family of reduced value functions {Ṽti}i∈J0,NK, where Ṽti : Xti → [0,+∞]
for i ∈ J0, NK, by

ṼtN = `tN and Ṽti = Bti+1:tiṼti+1
, ∀i ∈ J0, N−1K , (21)

where the reduced Bellman operator Bti+1:ti across Jti, ti+1K are given, for any i ∈ J0, N−1K,
for any ϕ̃ti+1

∈ L0
+(Xti+1

) and for any xti ∈ Xti, by

(
Bti+1:tiϕ̃ti+1

)
(xti) = inf

uti∈Uti

∫

Wti+1

ρ̃ti:ti+1( dwti+1 |xti)

inf
uti+1∈Uti+1

∫

Wti+2

ρ̃ti+1:ti+2( dwti+2 |xti , uti , wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρ̃ti+1−1:ti+1

( dwti+1
|xti , uti , wti+1, . . . , uti+1−2, wti+1−1)(

`ti(xti , uti , wti+1, . . . , uti+1−1, wti+1
)

+ ϕ̃ti+1

(
fti:ti+1

(xti , uti , wti+1, . . . , uti+1−1, wti+1
)
))

. (22)

Then, the family {Vti}i∈J0,NK in (21) satisfies Vti = Ṽti ◦ θti, for all i ∈ J0, NK.

12



Here again, Formula (22) represents a nested sequence of infima of integrals (with respect
to different kernels).

Of course, solving Equation (19) or Equation (22) can be as difficult as solving the original
Bellman equation. However, the interest of such time block decomposition will be illustrated
on different applications in Sect. 4, Sect. 5 and Sect. 6.

3.3 State reduction on multiple consecutive time blocks and re-
duced optimal feedbacks

As in the classical dynamic programming framework [3, p. 190], we recover the property that
the search of an optimal policy among all policies (history feedbacks) can be limited to the
search of an optimal state feedback. This is the most important result in practice.

Proposition 10 Under the assumptions of Theorem 8, the reduced value functions {Ṽti}i∈J0,NK

defined in (19) give the minimum value of the following optimization problems, parameterized
by the reduced history (state) xti ∈ Xti:

Ṽti(xti) = inf
γti:T−1∈Γ

xti
ti:T−1

∫

Hti+1:T

(xti , h
′
ti+1:T )%̃γti:T ( dh′ti+1:T |xti , hti+1:t) , ∀xti ∈ Xti , (23a)

and

ṼT (xT ) = ̃(xT ) , ∀xT ∈ XT , (23b)

where the mapping  is given by  = ̃ ◦ ftN−1:tN ◦ ftN−2:tN−1
◦ . . . ◦ fti:ti+1

(with, as already
noted, the abuse of notation that the composition is performed on the state argument), where
%̃γti:T is the reduced stochastic kernel associated with the kernel %γti:T ,4 and where Γ

xti
ti:T−1 is

the set of (ti:T−1)-reduced history feedbacks, that is, the set of sequences
{
γs
}
s=ti,...,T−1

of

measurable mappings γs : (Xti ×Hti+1:s,Xti ⊗Hti+1:s)→ (Us,Us).

Proof. Using Theorem 8, we have that, for all i ∈ J0, NK, Vti = Ṽti ◦ θti , with Ṽti satisfying
the Bellman equation (19). For establishing that Ṽti is a value function satisfying Equation (23),
we now prove that, in the definition of Vti in Equation (5), we can replace the set of admissible
controls Γti:T−1 by the set Γ

xti
ti:T−1. We proceed as follows. Following [3, Chapter 8] we use the

Bellman equation (22) to obtain ε-minimizers for each problem (5) (note that ε-minimizers can
be built with the required analytic regularity which would not be the case for ε = 0 minimizers
without extra assumptions). As ε-minimizers are built by recursively solving the equations (22),
they are obtained by solving (up to ε) parametric optimization problems. Thus, we easily obtain
that the ε-minimizer at time t ∈ Jti, ti+1K, can be obtained as a function of (θ(hti), hti+1:t). From
this last fact, we obtain that — in the value function definition of Vti given in Equation (5) — the
set Γ0:T−1 can be replaced by the set of feedbacks of the form (θ(hti), hti+1:t) without changing the
value function.

4The stochastic kernels ργr:t, given by (51), are of the form ργr:t( dh′t |hr) = δhr
( dh′r)⊗ %γr:t( dh′r+1:t |hr).
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Finally, when considering Equation (5) — with this restricted family of feedbacks, and consid-

ered at time ti for i ∈ J0, NK — we obtain that the cost to be minimized is now parameterized by

θ(hti) — as it is the case for the cost to be integrated and also for the stochatic kernels induced

by the feedbacks. By setting xi = θ(hti), the obtained optimization problem is the right hand side

of (23), that we call ˜̃Vti(xti), and we have that, for all i ∈ J0, NK, Vti = ˜̃Vti ◦ θti . It remains to

prove that Ṽti = ˜̃Vti , for all i ∈ J0, NK. By a proof similar to the one of Theorem 8, we show that

the family { ˜̃Vti}i∈J0,NK satisfies the Bellman equation (19). By uniqueness, the family { ˜̃Vti}i∈J0,NK
coincides with the family {Ṽti}i∈J0,NK. �

4 Mixing dynamic programming and stochastic pro-

gramming

As a first application of the formalism developed in §3.2, we show how dynamic programming
and stochastic programming can be mixed (which was the original motivation for the paper,
see Footnote 1). The proof of the following proposition is a straightforward application of
Theorem 9 combined with Remark 7.

Proposition 11 Suppose that the optimization data set D in (4) is Borel-analytic. We
consider multiple consecutive time blocks Jti, ti+1K, with N ∈ N∗, i ∈ J0, N−1K and 0 = t0 <
· · · < tN = T , and we assume that

• a Borel state reduction
(
{(Xti ,Xti)}i∈J0,NK, {θti}i∈J0,NK, {fti:ti+1

}
i∈J0,N−1K

)
exists across

the consecutive time blocks {Jti, ti+1K}i∈J0,N−1K,

• the noises are exogeneous and time block independent, that is, the elements of the
family {ρs−1:s}s∈J1,T K in (2) are of the form

ρr:r+1 : Wti × · · · ×Wr → ∆(Wr+1) , (24)

for all i ∈ J0, N−1K and r ∈ [ti, ti+1), which means that the distribution of the un-
certainty wr+1 is only function of the past uncertainties (wti , . . . , wr) within the time
block,

• the criterion j : HT → [0,+∞] can be factored as

j(hT ) =
N−1∑

i=0

`ti
(
θti(hti), hti+1:ti+1

)
+ `tN

(
θtN (htN )

)
, (25)

where the numerical functions {`ti}i∈J0,NK are nonnegative lower semianalytic, with

`ti : Xti ×Hti+1:ti+1
→ [0,+∞] for i ∈ J0, NK.

Then, the multistage stochastic optimization problem (6) can be solved by the following al-
gorithm.
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Initialization. Define ṼtN = `tN : XT → [0,+∞].

Backward recursion. Suppose that the function Ṽti+1
: Xti+1

→ [0,+∞] is known at index
i+ 1 ∈ J1, NK. Then, for each state xti ∈ Xti (for instance on a grid approximating the
set Xti, or on Xti itself when finite and small enough), compute the previous Bellman
value function Ṽti at index i as

Ṽti(xti) = inf
uti∈Uti

∫

Wti+1

ρti:ti+1( dwti+1 |wti) (26)

inf
uti+1∈Uti+1

∫

Wti+2

ρti+1:ti+2( dwti+2 |wti , wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρti+1−1:ti+1
( dwti+1

|wti , wti+1, . . . , wti+1−1)

(
`ti(xti , uti , wti+1, . . . , uti+1−1, wti+1

)

+ Ṽti+1

(
fti:ti+1

(xti , uti , wti+1, . . . , uti+1−1, wti+1
)
))

. (27)

Final step. Compute V0(w0) = Ṽt0
(
θt0(wt0)

)
.

In many practical situations, all the uncertainty sets W0, . . . , WT are finite and the
computation in (26) is tractable by using stochastic programming and scenario tree tech-
niques, which do not require stagewise independence of the noises. We are thus able to take
advantage of both the dynamic programming world and the stochastic programming world:

• use dynamic programming at a selection of stages (for instance, at stages corresponding
to the slow time scale) and across the corresponding time blocks (for instance, across
consecutive slow time stages), when noises are stochastically independent block by
block; that produces Bellman value functions only for the chosen selection of stages
(for instance, at the slow time scale);

• use stochastic programming inside time blocks (for instance, at fast time scale, within
two consecutive slow time stages); the fast time scale final cost function of a block is
given by the Bellman value function computed at the slow time scale which corresponds
to the terminal stage of the block; no stagewise independence assumption is required
within time blocks (for instance, for the short time scale noises).

Remark 12 As a special case, it is straightforward to check that the triplet
(
{Wti}i∈J0,NK,

{θti}i∈J0,NK, {fti:ti+1
}
i∈J0,N−1K

)
, with

• the reduction mapping θti given by θti(hti) = wti for all i ∈ J0, NK,

• the dynamics fti:ti+1
given by fti:ti+1

(wti , hti+1:ti+1
) = wti+1

, for all i ∈ J0, N − 1K.
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is a state reduction across the consecutive time blocks Jti, ti+1K, i ∈ J0, N−1K which is com-
patible with the family of stochastic kernels given by Equation (24). Thus, Proposition 11
applies.

But, in this special case, the optimal controls can be computed in parallel with respect to
time blocks, as the term Ṽti+1

(
wti+1

)
is a constant in (26). What is interesting in (26) is the

added fact that the optimal strategy which was, a priori, searched as feedbacks depending on
the whole history is in fact made up of independent strategies, each defined on a single time
block and made up of feedbacks depending only on the block history (the history within the
block).

Numerical illustration. To numerically illustrate the mixing between dynamic program-
ming and stochastic programming, we consider a toy optimization problem over a time
span J0, T K, where T is an even natural number (for instance T = 24 for an hourly period
problem during a day). The problem involves a storage the state xt of which is driven by
a dynamics involving a control variable ut and a noise variable wt. We assume that the
noises during the first half time span, that is, for t ∈ J1, T/2K, are independent of the noises
during the second half time span, that is, for t ∈ JT/2, T K. We also assume that each noise
variable wt can only take 2 possibles values, so that the whole uncertainty process can be
represented by a binary tree.

In this problem, we consider the two consecutive time blocks J0, T/2K and JT/2, T K, and
the state reduction is given in a straightforward manner by the variable xt (as explained in
Remark 6). Thus, we are able to compute Bellman values functions by the algorithm given
in Proposition 11. We illustrate the algorithm for the horizon T = 24.

• The Bellman value function Ṽ24 is given by the final cost function of the problem.

• The Bellman value function Ṽ12 is approximated by discretization and it is computed
on a grid involving n points (x1, . . . , xn). For i ∈ J1, nK, each value Ṽ12(xi) is obtained
by solving a stochastic programming problem on the time span J12, 24K, that is, on a
tree involving 212 leaves.

• The optimal cost of the optimization problem is Ṽ0(x0), obtained again by stochastic
programming on the time span J0, 12K, that is, by solving a stochastic optimization
problem on a tree involving 212 leaves, the final cost being given by the function Ṽ12.

Gathering the calculations performed by this algorithm, we obtain that solving the global
problem by mixing dynamic programming and stochastic programming is done by solving
(n + 1) stochastic optimization programs on scenario trees, each involving 212 leaves. The
total number of leaves to explore when solving the problem by this mixing method is

(n+ 1)212 ≈ 4(n+ 1) 103 ,

which gives an estimation of the algorithm computational effort.
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This mixing method is to be compared with a pure scenario tree method, that is, when
the problem is solved by a stochastic optimization program on a scenario tree over the whole
time horizon on 24 hours, the total number of leaves to explore being

224 ≈ 1.6 107 .

Even using a fairly fine state discretization grid, for example a grid containing 100 points,
the resolution by mixing dynamic programming and stochastic programming compared to
the pure stochastic programming approach leads to a quite significant gain, namely a fac-
tor 1.6 107/4(100 + 1) 103 ≈ 40 in our case.

We performed numerical experiments with a single computer equipped with 12 Intel
Core i5-10500 CPU and 16 GB of RAM. We used the LP package of the solver Gurobi 9.51.
Apart from the solver, all our code has been implemented with the Julia language and the
JuMP modeler. As we failed to obtain a solution for the original problem on a tree for
the horizon T = 24, we performed numerical tests for shorter horizons, hence for smaller
numbers of time steps. For every T ∈ {12, 14, 16, 18, 20, 24}, we have considered that a
state reduction existed at time T/2. The results are gathered in Table 1, and show that the
computational time5 needed by the pure scenario tree method is very rapidly increasing with
the number of time steps, whereas the computational time needed by the mixing method
grows very slowly with the number of time steps, at least for the different horizons under
consideration. Finally, note that the mixing method can be easily parallelized since the
computation of the n values

{
ṼT/2(xi)

}
i∈J1,nK of the Bellman function ṼT/2 can be performed

in parallel, reducing the CPU time by a factor (n + 1)/2, that is, approximately 50 in our
case.

Horizon T Mixing method Pure scenario tree method
12 6.5 s 0.5 s
14 6.5 s 5.0 s
16 6.6 s 71.2 s
18 6.8 s 1009.5 s
20 6.8 s 137,296.0 s
24 7.2 s ×

Table 1: Computational time (in seconds) needed for solving the problem by both the mixing
method and the pure scenario tree method, for different horizons; the symbol × means that
the optimization failed

5 Two-time-scale optimization problems

As a second application of the formalism developed in §3.2, we show how to tackle two-time-
scale optimization problems. Indeed, some decisions problems naturally involve two different

5that is, the CPU time needed to create the LP model by JuMP and to solve it by Gurobi
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time scales, because of the timing of decisions — as for example long term investment decision
and short term monitoring of physical devices.

In §5.1 and §5.2 we detail the structure and we formulate the two-time-scale optimization
problems that we consider. In §5.3, we show how to decompose such problems by time blocks.
In §5.4, we illustrate the approach on a crude oil procurement problem.

5.1 Structure of a two-time-scale optimization problem

We provide the data for a two-time-scale optimization problem.

Two time scales. We consider a multistage decision problem, with two time scales. The
slow time scale is represented by a finite totally ordered set (S,�) as follows — where s+

denotes the successor of s ∈ S and s− its predecessor, and where we use the notation t ≺ t′

for t � t′ and t 6= t′ —

min S = s ≺ · · · ≺ s− ≺ s ≺ s+ ≺ · · · ≺ s̄ = max S , (28a)

and the fast time scale by a finite totally ordered set (F,�):

minF = f ≺ · · · ≺ f− ≺ f ≺ f+ ≺ · · · ≺ f̄ = maxF . (28b)

In a sense to be made more rigorous later (once a unified timeline will have been defined),
each slow time interval [s, s+[ is made up of |F| (cardinality of F) fast time steps, hence the
denomination “two-time-scale”. For instance, S = {Mo, Tu, We, Th, Fr, Sa, Su} may
represent days, whereas F = J1, 24K may represent hours within a day. In some problems,
we might even take F = J0, 24K to handle the fact that two decisions (one slow and one fast)
are taken at midnight, hence an additional fast time step 0.

Unified timeline. We define the unified timeline of the decision problem in two steps.
First, we equip the product set S× F with the following lexicographic order:

(s, f) ≺ · · · ≺ (s−, f̄) ≺ (s, f) ≺ (s, f+) ≺ · · · (29)

· · · ≺ (s, f̄−) ≺ (s, f̄) ≺ (s+, f) ≺ · · · ≺ (s̄, f̄) .

More formally, we denote by (s, f)+ the successor of (s, f) in S× F \ {(s̄, f̄)}, with

(s, f)+ =

{
(s, f+) if f 6= f̄ ,

(s+, f) if f = f̄ .
(30a)

Similarly, we denote by (s, f)− the predecessor of (s, f) in S× F \ {(s, f)}, with

(s, f)− =

{
(s, f−) if f 6= f ,

(s−, f̄) if f = f .
(30b)

18



We adopt the convention that the slow time s ∈ S is identified with the two scale time (s, f̄),
as illustrated in Figure 2. For instance Monday is identified with (Mo, 24).

In the product set S×F, the first time (s, f) does not coincide with a slow time (the
couple (Mo, 0) does not correspond to Monday in our running example). Thus, we add to
the product set S×F an extra time denoted by (s−, f̄), corresponding to the extra slow time
s−, which is such that (s, f)− = (s−, f̄). We denote by S the set {s−}∪S and by S×F the set

(s−, f̄)∪ (S×F), also called the extended timeline when equipped with an order � as follows
— where we use the notation (s, f) ≺ (s′, f ′) for (s, f) � (s′, f ′) and (s, f) 6= (s′, f ′) —

(s−, f̄) ≺ (s, f) ≺ · · · ≺ (s−, f̄) ≺ (s, f) ≺ (s, f+) ≺ · · ·
· · · ≺ (s, f̄−) ≺ (s, f̄) ≺ (s+, f) ≺ · · · ≺ (s̄, f̄) . (31)

The two-time-scale optimization problem will be formulated on the extended timeline S×F,
which we trivially identify with the time set J0, T K, where T = |S| × |F|.

s− s s+ s̄− s̄

(s−, f̄) (s, f) (s, f̄) (s+, f) (s+, f̄) (s̄−, f̄) (s̄, f) (s̄, f̄)

S

· · ·

· · ·
{s}×F

S×F

· · ·

{s+}×F

· · · · · ·
{s̄}×F

1

Figure 2: The product timeline with an extra starting point (s−, f̄)

Decisions. We suppose given

• a family {Us
s}s∈S\{s̄} of slow time scale decision Borel sets, and a family {Ws

s}s∈S of
slow time scale uncertainty Borel sets,

• a family {Usf
(s,f)}(s,f)∈S×(F\{f̄})

of fast time scale decision Borel sets, and a family

{Wsf
(s,f)}(s,f)∈S×(F\{f})

of fast time scale uncertainty Borel sets.

Dynamics. We suppose given a family {Xsf
(s,f)}(s,f)∈S×(F\{f̄})

of fast time scale state Borel

sets. For the sake of simplicity, we set Xs
s = Xsf

(s,f̄)
for all s ∈ S (thus, the slow time s ∈ S is
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identified with the two scale time (s, f̄)). We also suppose given a family {F s
s}s∈S\{s̄} of slow

time scale dynamics Borel-measurable mappings, that represent the evolution “driven at the
slow time scale” given, for s ∈ S \ {s̄}, by6

F s
s : Xs

s×Us
s×Ws

s+ → Xsf
(s+,f) ,(

xss, u
s
s, w

s
s+

)
7→ xsf(s+,f) = F s

s

(
xss, u

s
s, w

s
s+

)
. (32a)

We suppose given a family {F sf
(s,f)}(s,f)∈S×(F\{f̄})

of fast time scale dynamics Borel-measurable

mappings, that represent the evolution “driven at the fast time scale” given, for all s ∈ S
and f ∈ F \ {f̄}, by

F sf
(s,f) : Xsf

(s,f)×Usf
(s,f)×Wsf

(s,f)+ → Xsf
(s,f)+ ,

(
xsf(s,f), u

sf
(s,f), w

sf
(s,f)+

)
7→ xsf

(s,f)+

= F sf
(s,f)

(
xsf(s,f), u

sf
(s,f), w

sf
(s,f)+

)
. (32b)

Criterion. We suppose given a family {Λs}s∈S\{s̄} of slow time scale nonnegative lower
semianalytic cost functions, with

Λs− : Xs
s−×Us

s−×Ws
s×

∏

f∈F\{f̄}

(
Xsf

(s,f)×Usf
(s,f)×Wsf

(s,f)+

)

︸ ︷︷ ︸
interval [s−,s[

→ [0,+∞] ,

for s ∈ S, and we suppose given a nonnegative lower semianalytic function Λs̄ representing
a final cost, with

Λs̄ : Xs
s̄ → [0,+∞] ,

that make up, by summation, an intertemporal criterion

∑

s∈S

Λs−

(
xss− , u

s
s− , w

s
s, {xsf(s,f), u

sf
(s,f), w

sf
(s,f)+}

f∈F\{f̄}

)
+ Λs̄

(
xss̄
)
. (34)

Stochastic kernels. Finally, we suppose given a family of constant slow time scale stochas-
tic kernels {ρss:s+}s∈S\{s̄}

ρss:s+ ∈ ∆(Ws
s+) , ∀s ∈ S \ {s̄} , (35a)

6We stress that the slow time scale dynamics (32a) yields as output the first fast state of the slow period
(and not the next slow state). Thus, the slow time scale dynamics (32a) is not a dynamics from one slow
state to the next slow state.
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and, for each s ∈ S, a family {ρsf
(s,f):(s,f)+}

f∈F\{f̄}
of fast time scale stochastic kernels

ρsf
(s,f):(s,f)+ : Ws

s ×
f∏

f ′=f+

Wsf
(s,f ′)

︸ ︷︷ ︸
interval [s−,s[

−→ ∆(Wsf
(s,f)+) ,

∀s ∈ S , ∀f ∈ F\{f̄} , (35b)

with the convention that the Cartesian products of spaces in Equations (35a) and (35b)
reduce to the empty set when the upper index of the Cartesian product is strictly lower that
the corresponding lower index. Note that, for a given s ∈ S, each fast time scale stochastic
kernel ρsf

(s,f):(s,f)+ , only depends on the noises of the slow time block s.7

5.2 Formulation of a two-time-scale optimization problem on the
product timeline

To apply Theorem 8, we introduce sets associated with the extended timeline (31) by

X(s,f) =

{
Xs
s if f = f̄

Xsf
(s,f) if f 6= f̄

, ∀(s, f) ∈ S×F , (36a)

U(s,f) =

{
Us
s if f = f̄

Usf
(s,f) if f 6= f̄

, ∀(s, f) ∈ S×F \ {(s̄, f̄)} , (36b)

W(s,f) =

{
Ws

s if f = f

Wsf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F , (36c)

with the particular case of the extra initial slow time

W(s−,f̄) = Xs
s− , (36d)

and a family of state dynamics F(s,f) : X(s,f)×U(s,f)×W(s,f)+ → X(s,f)+ defined by

F(s,f) =

{
F s
s if f = f̄

F sf
(s,f) if f 6= f̄

, ∀(s, f) ∈ S×F \ {(s̄, f̄)} . (37)

From these sets, we deduce the history sets and the histories for all (s, f) ∈ S×F

H(s,f) = W(s−,f̄) ×
∏

(s,f)�(s′,f ′)�(s,f)

(
U(s′,f ′)− ×W(s′,f ′)

)
, (38a)

h(s,f) =
(
w(s−,f̄),

(
u(s′,f ′)− , w(s′,f ′)

)
(s,f)�(s′,f ′)�(s,f)

)
, (38b)

7The (constant) assumption (35a) and the (single block) assumption (35b) correspond to stochastic
independence between time blocks, and will be useful in the proof of Proposition 13.
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
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×Us
s
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
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Xsf
(s+,f)

×Usf
(s+,f)
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
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Xsf
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×Usf
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×Wsf
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
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


Xsf
(s+,f̄−)

×Usf
(s+,f̄−)

×Wsf
(s+,f̄)
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
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




X(s+,f̄)

×U(s+,f̄)

×W
(s+,f̄)+




· · ·

F s
s

F sf
(s+,f) · · ·

F sf
(s+,f̄−)

F(s,f̄) F(s+,f) · · ·
F(s+,f̄−)

1

Figure 3: Original dynamics and their reformulation on the product timeline on the slow
time interval [s, s+[

and, for suitable indices, the partial history sets and the partial histories

H(s,f):(s′,f ′) =
∏

(s,f)�(s′′,f ′′)�(s′,f ′)

(U(s′′,f ′′)− ×W(s′′,f ′′)) , (39a)

h(s,f):(s′,f ′) =
(
(u(s′′,f ′′)− , w(s′′,f ′′))(s,f)�(s′′,f ′′)�(s′,f ′)

)
. (39b)

The criterion formulated in Equation (34) combined with state dynamics leads to a (lower
semianalytic) criterion j : H

(s̄,f̄)
→ [0,+∞].

Based on the stochastic kernels (35a) and (35b), we introduce stochastic kernels ρ(s,f):(s,f)+

associated with the extended timeline (31), for each (s, f) ∈ S×F \ {s̄, f̄}, by ρ(s,f):(s,f)+ :
H(s,f) −→ ∆(W

(s,f)+) with

ρ(s,f):(s,f)+

(
dw

(s,f)+

∣∣h(s,f)

)

=

{
ρss:s+( dws

s+) if f = f̄ ,

ρsf
(s,f):(s,f)+

(
dwsf

(s,f+)

∣∣ws
s, w

sf
(s,f+)

, · · · , wsf
(s,f)

)
if f 6= f̄ .

Note that, for f 6= f̄ , the kernels ρ(s,f):(s,f)+ : H(s,f):(s,f) → ∆(W
(s,f)+), only depend on the

partial history uncertainty part from (s, f) to (s, f), and not on the (past) controls.

The components of the problem are now formulated on the extended timeline S×F,
already identified with the time set J0, T K. Thus, we are in the framework of Sect. 2 and we
aim at solving an optimization problem as formulated in Equation (6).

5.3 Two-time-scale decomposition

The existence of Bellman equations for a two-time-scale optimization problem is given by
the following proposition.
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Proposition 13 Consider a two-time-scale optimization problem as formulated in §5.1 and
§5.2. The optimization problem (6) has a solution given by a dynamic programming equation
at the slow scale. More precisely, let {Vs}s∈S be given by Vs̄ = Λs̄ and, for s ∈ S \ {s̄}, by the
backward induction8

Vs(x
s
s) = inf

uss∈Us
s

∫

Ws
s+

ρss:s+( dws
s+)

inf
usf

(s+,f)
∈Usf

(s+,f)

∫

Wsf
(s+,f+)

ρsf(s+,f):(s+,f+)( dwsf
(s+,f+) |ws

s+) · · ·

inf
usf

(s+,f̄−)
∈Usf

(s+,f̄−)

∫

Wsf
(s+,f̄)

ρsf(s+,f̄−):(s+,f̄)( dwsf
(s+,f̄) |ws

s+ , w
sf
(s+,f+), · · · , wsf

(s+,f̄−))

(
Λs(x

s
s, u

s
s, w

s
s+ , . . . , u

sf
(s+,f̄−), w

sf
(s+,f̄))

+ Vs+
(
Fs:s+(xss, u

s
s, w

s
s+ , . . . , u

sf
(s+,f̄−), w

sf
(s+,f̄))

))
, (40)

where Fs:s+ is the composition Fs:s+ = F sf
(s+,f̄−)

◦· · · ◦ F sf
(s+,f) ◦F s

s associated with the state dy-

namics defined in (32). Then, the value of the optimization problem (6) is given by Vs−(xss−).

Proof. The proof is an application of Theorem 9 with the help of Remarks 6 and 7. First, we

have re-framed in §5.2 the two-time-scale optimization problems described in §5.1 in the formalism

of Sect. 2 with the help of the extended timeline (31). Second, as we are given state dynamics (37)

on the extended timeline and thanks to Remark 6, we obtain a Borel state reduction at times

{(s, f̄)}s∈S by composition of the state dynamics. Moreover, as the slow time scale kernels given by

Equation (35a) are constant, the state reduction across the slow time scale is compatible with the

stochastic kernels (see Remark 7), and is Borel. We are thus able to apply Theorem 9 and obtain

the slow time scale Bellman recursion (40) as a special case of Equation (22). �

The slow time scale Bellman equation (40) is as difficult to solve as the Bellman equation
on the extended timeline. However, the interest of (40) lies elsewhere. Imagine that one is
able to obtain, in a relatively easy way, lower Vs and upper Vs approximations of Vs in (40)
(see [16] in which such approximations are obtained on a battery management problem).
Then, in order to obtain optimal controls for the optimization problem (6), one can proceed
as follows. By replacing the last term Vs+ of (40) by either Vs+ or Vs+ , one can now solve a

(lower or upper) surrogate of Equation (40) and thus obtain the optimal controls on the time
block Js, s+K. For instance, one could use scenario decomposition methods, like progressive
hedging [17], that do not require statistical independence of noises within the slow time
interval [s, s+[. Thus, the two-time-scale optimization problem as formulated in §5.1 and
§5.2 can be approximatively solved, from below and from above, by a mix of slow time
scale dynamic programming and of (for example) progressive hedging (or any other method,
including dynamic programming).

8Here again, the formula (40) represents a nested sequence of infima of integrals (with respect to different
kernels).
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5.4 Illustration with the crude oil procurement problem

Crude oil procurement is the part of the oil supply chain that sits between the production of
crude oil and its processing in a refinery. The goal of procurement is to purchase crude oil
from various suppliers around the world and having it delivered in time to the refinery to be
processed. As illustrated in Figure 4, every month (on the bottom line) a refinery receives
crudes that have been bought during the 8 previous weeks (on the upper line).

usf
(M1,1)

usf
(M1,2)

usf
(M1,3)

usf
(M1,4)

usf
(M2,1)

usf
(M2,2)

usf
(M2,3)

usf
(M2,4)

usf
(M3,1)

usf
(M3,2)

usf
(M3,3)

usf
(M3,4)

us
M0

us
M1

us
M2

M0 M1

1 2 3 4

M2

1 2 3 4

M3

1 2 3 4 12 3 4

refinery
stocks

crude oil shipments purchased every week

refinery stock consumption every month

Figure 4: Procurement of crude oil over 3 months M1, M2 and M3, where a circle ◦ denotes
purchase decisions and a square � denotes consumption decisions

The problem naturally displays two time scales. On the one hand, deliveries to the
refinery are made at the beginning of each month, and crude consumption is set once a
month. On the other hand, crude oil shipments can be purchased at the frequency of the
week; every week, a selection of shipments is presented to the decision-maker who must
decide which shipments to purchase. Following the construction of the extended timeline
in (31), we represent by the sequence

(M0, 5) ≺ (M1, 1) ≺ (M1, 2) ≺ (M1, 3) ≺ (M1, 4) ≺ (M1, 5)

≺ (M2, 1) ≺ (M2, 2) ≺ (M2, 3) ≺ (M2, 4) ≺ (M2, 5) (41)

≺ (M3, 1) ≺ (M3, 2) ≺ (M3, 3) ≺ (M3, 4) ≺ (M3, 5)

the timeline associated with Figure 4 (notice that we consider that a month is made of
4 weeks). The initial stage (M0, 5) corresponds to the additional stage (s−, f̄) in (31). The
stages (M1, 5) and (M2, 5) both represent the “end of the month” when a consumption
decision (slow scale decision uss on the bottom line of Figure 4) is taken.

We now illustrate how the crude oil procurement problem can be put in the form of a

24



Notations from §5.1 Crude oil procurement

S set of months during which we manage the refinery;
in Figure 4, S = {M1,M2,M3}

F set of weeks in each month;
in Figure 4, F = {1, 2, 3, 4, 5}

Us
s set of crude oil consumptions during the month s+

Ws
s+ set of product prices for the month s+

Usf
(s,f) set of crude shipments purchased in week (s, f)

Wsf
(s,f)+ set of crude oil prices in week (s, f)

F sf
(s,f) accumulation of shipments purchased in (s, f)

F s
s delivery of orders and consumption of crude oil for the month s+

Λs operational costs during the month s
(crude oil purchases during s - earnings from production)

ΛM4
end cost associated with the state xsM3

= xsf(M3,5)

valuation of the buffers and stocks in the refinery
before the beginning of the month M4

Table 2: Identification of the elements introduced in §5.1 with elements of the crude oil
procurement problem

two-time-scale optimization problem such as presented in §5.1. For this purpose, we proceed
to the identifications in Table 2.

We call s−buffer (resp. s−−buffer), the temporary stock that is created at the beginning
of the month s (resp. s−) and that will be delivered two months after. For instance, in
Figure 4, the yellow disks represent theM1−buffer and the red disks represent theM2−buffer.

We introduce the state variable xsf(s,f) =
(
s−−buffer, s−buffer, refinery stocks

)
, together with

the accumulation dynamics F sf
(s,f) for the buffers, and the accumulation dynamics F s

s for the

stocks. Regarding the criterion to minimize, it is an intertemporal criterion like in (34) with
slow time scale cost functions Λs− made of minus the purchases of crude oil plus the selling of
finished products inside a week. Supposing that the products prices are independent month
by month, we represent this assumption by a family of constant kernels {ρss:s+}s∈S\{s̄}. By

contrast, we do not assume that the crude prices are independent week by week, and the
possible dependency is modeled by stochastic kernels ρsf

(s,f):(s,f)+ for f ∈ F\{f̄}.
Now that all the elements from §5.1 have been identified, Proposition 13 enables us to

write a dynamic programming equation such as (40) at the scale of the month, without
losing the time-dependency of crude prices inside the month. This illustration stems from a
research work done in partnership with TotalEnergies, in the context of a PhD thesis [13].
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6 Decision-Hazard-Decision Optimization Problems

In multistage stochastic optimization, the decision-hazard-decision framework corresponds
to the case where, at the beginning of each time interval, a decision is taken without knowing
the uncertainty that will materialize at the end of the time interval, and, at the end of the
time interval, a recourse decision is possible.

In §6.1, we provide motivation for the decision-hazard-decision framework. In §6.2, we
formalize the decision-hazard-decision framework and we provide a dynamic programming
equation. Proofs and details are relegated in Appendix D.

6.1 Motivation for the Decision-Hazard-Decision Framework

We illustrate our motivation to develop a formalism for the Decision-Hazard-Decision frame-
work with a single dam management problem. We suppose given a stochastic process
{At}t∈J1,T K on a probability space. We can model the dynamics of the water volume in
a dam by

St+1 = min
{
S],St −Qt + At+1

}
, ∀t ∈ J0, T−1K , (42)

where S] is the maximal dam volume, St is the volume (stock) of water at the beginning
of period [t, t + 1[, At+1 is the inflow water volume (rain, etc.) during [t, t + 1[, Qt is the
turbined outflow volume during [t, t+ 1[. The control variable Qt is decided at the beginning
of period [t, t + 1[, chosen such that 0 ≤ Qt ≤ St, supposed to depend on the stock St
but not on the inflow water At+1 (as At+1 takes place during [t, t + 1[, hence materializes
at t + 1, hence the time index t + 1). The min operation in Equation (42) ensures that
the dam volume always remains below its maximal capacity S], but induces a nonlinearity
in the dynamics. This nonlinear dynamics is an obstacle to apply stochastic dual dynamic
programming (SDDP).

Alternatively, we can model the dynamics of the water volume in a dam by

St+1 = St −Qt −At+1 −Rt+1 , ∀t ∈ J0, T−1K , (43)

where the new control variable Rt+1 is the spilled volume, decided at the end of period [t, t+
1[, supposed to depend on the stock St and on the inflow water At+1, and chosen such that
0 ≤ St −Qt + At+1 −Rt+1 ≤ S]. Thus, with the formulation (43), we “pay the price” to
add one control Rt+1, but we obtain a linear model instead of the nonlinear model (42).
This is especially interesting when using the stochastic dual dynamic programming (SDDP)
algorithm, for which the linearity of the dynamics is used to obtain the convexity properties
required by the algorithm.

6.2 Decision-Hazard-Decision framework and dynamic program-
ming equation

Let {U[
t}t∈J0,T−1K, {U]

t}t∈J1,T K, {Wt}t∈J1,T K and {Xt}t∈J0,T K be sequences of measurable sets,

equipped with corresponding σ-fields {U]
t}t∈J0,T−1K, {U[

t}t∈J0,T−1K, {Wt}t∈J1,T K and {Xt}t∈J0,T K.
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Let also be given measurable dynamics mappings

ft : Xt × U[
t × U]

t+1 ×Wt+1 → Xt+1 , ∀t ∈ J0, T−1K , (44a)

measurable instantaneous cost functions

Lt : Xt × U[
t × U]

t+1 ×Wt+1 → [0,+∞] , ∀t ∈ J0, T−1K , (44b)

and measurable final cost function

K : XT → [0,+∞] . (44c)

Finally, we suppose given a probability space (Ω,F ,P), a random variable X0 : Ω → X0,
and a stochastic process {Wt}t∈J1,T K (noise process), where Wt : Ω→Wt for t ∈ J1, T K.

Thus equipped, we consider the following multistage stochastic optimization problem

inf
{(U[

t,U
]
t+1)}

t∈J0,T−1K

E
[T−1∑

t=0

Lt(Xt,U
[
t,U

]
t+1,Wt+1) +K(XT )

]
, (45a)

σ(U[
t) ⊂ σ(X0,W1, . . . ,Wt) , ∀t ∈ J0, T−1K , (45b)

σ(U]
t) ⊂ σ(X0,W1, . . . ,Wt) , ∀t ∈ J1, T K , (45c)

Xt+1 = ft(Xt,U
[
t,U

]
t+1,Wt+1) , ∀t ∈ J0, T−1K . (45d)

Thus, in the above setting, during the time interval between two time steps, the decision-
maker makes two decisions. At the end of the time interval [t−1, t[, a random variable Wt is
revealed, and then, at the beginning of the time interval [t, t+1[, the decision-maker makes a
head decision U]

t. What is new — in comparison with the classical decision-hazard framework
— is that, at the end of the time interval [t, t + 1[, when a next random variable Wt+1 is
revealed, the decision-maker has the possibility to make a tail decision U[

t+1. This latter
decision U[

t+1 can be thought as a recourse variable for a two stage stochastic optimization
problem that would take place inside the time interval [t, t+ 1[.

Proposition 14 Assume that the spaces {(U[
t,U

[
t)}t∈J0,T−1K, {(U]

t,U
]
t)}t∈J1,T K, {(Wt,Wt)}t∈J1,T K

and {(Xt,Xt)}t∈J0,T K are Borel spaces, that all mappings in (44) are Borel-measurable, and
that all functions in (44) are lower semianalytic.

If the a random variable X0 is deterministic with value x0, and if the noise process
{Wt}t∈J1,T K is white, that is, is made of independent random variables, then the value Vt(x0)
of the multistage stochastic optimization problem (45) is given by the dynamic programming
backward induction

VT (x) = K(x) , (46a)

Vt(x) = inf
u]t∈U

]
t

E
[

inf
u[t+1∈U[

t+1

{
Lt(xt, u

[
t, u

]
t+1,Wt+1) + Vt+1

(
ft(xt, u

[
t, u

]
t+1,Wt+1)

)}]
. (46b)
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Theorem 19 allows to develop dynamic programming equations in the decision-hazard-
decision framework. Such equations can be solved using the stochastic dual dynamic pro-
gramming (SDDP) algorithm provided that convexity of the value functions is preserved.
This requires linearity in the dynamics, a feature that may be recovered by modeling the
problem in the decision-hazard-decision framework as illustrated in §6.1.

7 Conclusion and perspectives

As said in the introduction, decomposition methods are appealing to tackle multistage
stochastic optimization problems, as they are naturally large scale. The most common
approaches are time decomposition (and state-based resolution methods, like stochastic dy-
namic programming, in stochastic optimal control), and scenario decomposition (like pro-
gressive hedging in stochastic programming).

This paper is part of a general research program that consists in mixing different decom-
position bricks. Space decomposition methods have been investigated in [1] and [5]. Here,
we have tackled the issue of using time blocks decomposition in such a way that stochas-
tic dynamic programming is used at the slow time scale with an appropriate white noise
assumption, whereas stochastic programming methods such as progressive hedging can be
used at the fast time scale where such an independence assumption does not hold. This
approach paves the way of mixing time decomposition with scenario decomposition. For this
purpose, we have revisited the notion of state, and have provided a way to perform time
decomposition but only across specified time blocks.

Acknowledgements. We thank Roger Wets for fruitful discussions about the possibility
of mixing stochastic dynamic programming with Progressive Hedging.

A Background on stochastic dynamic programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic control
problems. Let (X,X) and (Y,Y) be two measurable spaces. A stochastic kernel from (X,X)
to (Y,Y) is a function ρ : X × Y → [0, 1] such that, for any Y ∈ Y, the function ρ(·, Y ) :
X → [0, 1] is X-measurable and, for any x ∈ X, the function ρ(x, ·) : Y → [0, 1] is a
probability measure. By a slight abuse of notation, a stochastic kernel is also denoted as
a mapping ρ : X → ∆(Y) from the measurable space (X,X) towards the space ∆(Y) of
probability measures over (Y,Y), with the property that the function x ∈ X 7→

∫
Y
ρ( dy |x)

is measurable for any Y ∈ Y.
We now sketch the most classical frameworks for stochastic dynamic programming in

discrete time. In what follows, t0 ∈ N and T ∈ N∗ are two natural numbers such that
t0 < T .

Witsenhausen approach. The most general stochastic dynamic programming principle
is sketched by Witsenhausen at the end of [25]. However, we do not detail it as its formalism
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is too far from the following ones, though we will touch the subject when we discuss Yüksel’s
approach below. We present here what Witsenhausen calls an optimal stochastic control
problem in standard form (see [23]). The ingredients are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0) (nature), (Xt0+1,Xt0+1), . . . , (XT ,XT ) (state spaces) are measurable spaces;

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. It is a subfield of Xt, for t ∈ Jt0, T−1K (information);

5. ft : (Xt × Ut,Xt ⊗ Ut)→ (Xt+1,Xt+1) is measurable, for t ∈ Jt0, T−1K (dynamics);

6. πt0 is a probability on (Xt0 ,Xt0);

7. j : (XT ,XT )→ R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization problem, whose
solutions are to be searched among adapted feedbacks, namely λt : (Xt,Xt) → (Ut,Ut)
with the property that λ−1

t (Ut) ⊂ It for all t ∈ Jt0, T−1K. Then, he establishes a dynamic
programming equation, where the Bellman functions are function of the (unconditional)
distribution of the original state xt ∈ Xt, and where the minimization is done over adapted
feedbacks. The main objective of Witsenhausen is to establish a dynamic programming
equation for nonclassical information patterns.

Evstigneev approach. The ingredients of the approach developed in [7] are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

3. (Ω,F) is a measurable space (nature);

4.
{
Ft
}
t∈Jt0,T−1K is a filtration of F (information);

5. P is a probability on (Ω,F);

6. j : (Ω×∏t∈Jt0,T−1K Ut,F ⊗
⊗

t∈Jt0,T−1K Ut)→ R is a measurable function (criterion).

With these ingredients, Evstigneev formulates a stochastic optimization problem, whose
solutions are to be searched among adapted processes, namely random processes with values
in
∏

t∈Jt0,T−1K Ut and adapted to the filtration
{
Ft
}
t∈Jt0,T−1K. Then, he establishes a dynamic

programming equation, where the Bellman function at time t is an Ft-integrand depending
on controls up to time t (random variables) and where the minimization is done over Ft-
measurable random variables at time t. The main objective of Evstigneev is to establish
an existence theorem for an optimal adapted process (under proper technical assumptions,
especially on the objective function j, that we do not detail here). Notice that there is no
notion of state variable.
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Puterman approach. The ingredients of the approach developed in [15, Sect. 2.1] are the
following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are measurable spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. νt:t+1 : Xt × Ut → ∆(Xt+1) is a stochastic kernel, for t ∈ Jt0, T−1K (transitions);

5. Lt : Xt × Ut → R, for t ∈ Jt0, T−1K, and K : XT → R, are measurable functions
(instantaneous and final costs).

With these ingredients, Puterman formulates a stochastic optimization problem with a time
additive cost function over given state and control spaces, whose solutions are to be searched
among history feedbacks, namely sequences of mappings Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut.
Then, he establishes a dynamic programming equation, where the Bellman functions are
function of the history ht ∈ Xt0 ×

∏t−1
s=t0

(Us × Xs+1). He identifies cases where no loss of
optimality results from reducing the search to Markovian feedbacks Xt → Ut. In such cases,
the Bellman functions are function of the state xt ∈ Xt, and the minimization in the dynamic
programming equation is done over controls ut ∈ Ut. The main objective of Puterman is
to explore infinite horizon criteria, average reward criteria, the continuous time case, and to
present many examples.

Hernández-Lerma and Lasserre approach. The ingredients of the approach developed
in [9, §2.2, §3.2, §3.3] are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. νt:t+1 : Xt × Ut → ∆(Xt+1), for t ∈ Jt0, T−1K, are Borel-measurable stochastic kernels
(transitions);

5. Lt : Xt × Ut → R, for t ∈ Jt0, T−1K, and K : XT → R are Borel-measurable functions
(instantaneous and final costs).

With these ingredients, Hernández-Lerma and Lasserre formulate a stochastic optimization
problem with a time additive cost function over given state and control spaces. They intro-
duce the “canonical construction” where the history at time t consists in the states and the
controls prior to t. Then, they study optimization problems whose solutions (policies) are to
be searched among history feedbacks (or randomized history feedbacks), namely sequences
of mappings Xt0 ×

∏t−1
s=t0

(Us × Xs+1)→ Ut. They identify cases where no loss of optimality
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results from reducing the search to (relaxed) Markovian feedbacks Xt → Ut. Then, they
establish a dynamic programming equation, where the Bellman functions are function of the
state xt ∈ Xt, and where the minimization is done over controls ut ∈ Ut. For finite horizon
problems, the mathematical challenge is to set up a mathematical framework — the Borel
assumptions plus additional topological ones presented in [9, §3.3] — for which optimal poli-
cies exists. The main objective of [9] is to offer a unified and comprehensive treatment of
discrete-time Markov control processes, with emphasis on the case of Borel state and control
spaces, and possibly unbounded costs and noncompact control constraint sets.

Bertsekas and Shreve approach. The ingredients of the approach developed in [3] (more
precisely in [3, Definition 10.1]) are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Xt0 ,Xt0), . . . , (XT ,XT ) are Borel spaces (state spaces);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are Borel spaces (control spaces); there are also feasible
state-dependent control constraints that we do not present here;

4. (Wt0 ,Wt0),. . . , (WT ,WT ) are Borel spaces (noise);

5. ft : (Xt×Ut×Wt,Xt⊗Ut⊗Wt)→ (Xt+1,Xt+1), for t ∈ Jt0, T−1K, are Borel-measurable
mappings (dynamics);

6. ρt:t+1 : Xt × Ut → ∆(Wt+1), for t ∈ Jt0, T−1K, are Borel-measurable stochastic kernels
(noise distributions);

7. Lt : Xt ×Ut → R, for t ∈ Jt0, T−1K, and K : XT → R are lower semianalytic functions
(instantaneous and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization problem
with a time additive cost function over given state spaces, control spaces and uncertainty
spaces. They introduce the notion of history at time t which consists in the states and
the controls prior to t and study optimization problems whose solutions (policies) are to be
searched among history feedbacks (or relaxed history feedbacks), namely sequences of map-
pings from history space Xt0 ×

∏t−1
s=t0

(Us × Xs+1) → Ut. They identify cases where no loss
of optimality results from reducing the search to (relaxed) Markovian feedbacks Xt → Ut.
Then, they establish a dynamic programming equation, where the Bellman functions are
function of the state xt ∈ Xt, and where the minimization is done over controls ut ∈ Ut. For
finite horizon problems, the mathematical challenge is to set up a mathematical framework
(the Borel assumptions) for which optimal policies exists. The main objective of Bertsekas
and Shreve is to state conditions under which the dynamic programming equation is mathe-
matically sound, namely with universally measurable Bellman functions and with universally
measurable relaxed control strategies in the context of Borel spaces. The interested reader
will find all the subtleties about Borel spaces and universally measurable concepts in [3,
Chapter 7].
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Yüksel approach. As said at the beginning, the most general stochastic dynamic pro-
gramming principle is sketched by Witsenhausen at the end of [25]. This approach builds
upon the so-called Witsenhausen intrinsic model [24] which does not consider state, but in-
formation under the form of σ-fields (see [26] for the functional form). In [23], Witsenhausen
provides conditions to express stochastic control optimization problems — with information
constraints, but without state — in standard form with a state (the first approach that we
have considered above).

Although Witsenhausen established a dynamic programming equation in [23], Yüksel
notes in [28] that “Witsenhausen’s construction [. . . ] does not address the well-posedness
of such a dynamic program” and that “the existence problem was not considered”. In the
spirit of [23], Yüksel entails in [28] “a general approach establishing that any sequential team
optimization may admit a formulation appropriate for a dynamic programming analysis”.
One of the contributions of [28] is to propose a construction of standard Borel controlled
state and action spaces and to establish a universal dynamic program for stochastic control
optimization problems — with information constraints, but without state — thus addressing
some of the issues raised and left open by Witsenhausen. The ingredients are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ω,F) is a measurable space (nature);

3. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);

4. (Yt0 ,Yt0), . . . , (YT−1,YT−1) are measurable spaces (“observation” spaces);

5.
{
ηt : (Ω×∏s∈Jt0,tK Us , F ⊗⊗s∈Jt0,tK Us)→

(Ut,Ut)
}
t∈Jt0,T−1K are measurable mappings (“measurement constraints”);

6. P is a probability on (Ω,F);

7. j : (Ω×∏t∈Jt0,T−1K Ut,F ⊗
⊗

t∈Jt0,T−1K Ut)→ R+ is a measurable function (criterion).

With these ingredients, Yüksel formulates a stochastic team optimization problem whose
solutions (policies) are to be searched among sequences of measurable mappings (“design
constraints”) Yt−1 → Ut, and their “randomized” versions (so-called strategic measures).
He establishes a dynamic programming equation, where the Bellman functions are function
of probability distributions and where the minimization is done over proper design mappings.
One objective of Yüksel is to set up a mathematical framework under which the dynamic
programming equation is mathematically sound [28, Theorem 3.6].

Our approach. The ingredients that we use (in Sect. 2 and in Sect. 3) are the following:

1. time t ∈ Jt0, T K is discrete and runs among a finite set of consecutive natural numbers;

2. (Ut0 ,Ut0),. . . , (UT−1,UT−1) are measurable spaces (control spaces);
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3. (Wt0 ,Wt0),. . . , (WT ,WT ) are measurable spaces (noise);

4. ρt:t+1 : Wt0 ×
∏t−1

s=t0
(Us ×Ws+1) → ∆(Wt+1), for t ∈ Jt0, T−1K, are stochastic kernels

(noise distributions);

5. j : (Wt0×
∏T−1

s=t0
(Us×Ws+1),Wt0⊗

⊗T−1
s=t0

(Us⊗Ws+1)) → [0,+∞] is a measurable func-
tion (criterion);

6. t0 < · · · < tN = T are the indices of multiple consecutive time blocks Jt0, t1K, . . . ,
JtN−1, tNK, with N ≥ 1 a natural number;

7.
{

(Xtj ,Xtj)
}
j∈J0,NK are measurable spaces (time block state spaces);

8.
{
θtj : Wt0 ×

tj−1∏
s=t0

(Us ×Ws+1)→ Xtj

}

j∈J1,NK

and θt0 : Wt0 → Xt0 are measurable map-

pings (time block reduction of history towards state);

9.
{
ftj :tj+1

: Xtj×
tj+1−1∏
s=tj

(Us×Ws+1)→ Xtj+1

}

j∈J0,N−1K

are measurable mappings (time block

dynamics).

The framework developed in this paper is intermediate between the ones of Evstigneev in [7]
and of Yüksel in [28] — notable by the absence of a state space — and the ones of Witsen-
hausen [23], Hernández-Lerma and Lasserre [9], Bertsekas and Shreve [3] and Puterman [15]
— where the state spaces are given for all times.

This said, our preoccupation could be adapted to any of the above frameworks. Indeed,
our objective is to establish a dynamic programming equation with a state, not at any
time t ∈ Jt0, T K, but at some specified instants t0 < t1 < · · · < tN = T . In §3.2, the
state spaces are introduced as image sets (codomains) of what we call (time block) history
reduction mappings (where history at time t consists of all uncertainties and controls prior
to time t).

B Technical details and proofs (Sect. 2)

We introduce the notations

Wr:t =
t∏

s=r

Ws , 0 ≤ r ≤ t ≤ T ,

Ur:t =
t∏

s=r

Us , 0 ≤ r ≤ t ≤ T−1 . (47)

Let 0 ≤ r ≤ s ≤ t ≤ T . From a history ht ∈ Ht, we can extract the (r :s)-history uncertainty
part

[ht]
W
r:s = (wr, . . . , ws) = wr:s ∈Wr:s , 0 ≤ r ≤ s ≤ t , (48a)
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the (r :s)-history control part (notice that the indices are special)

[ht]
U
r:s = (ur−1, . . . , us−1)

= ur−1:s−1 ∈ Ur−1:s−1 , 1 ≤ r ≤ s ≤ t . (48b)

Flows. Let r and t be given such that 0 ≤ r < t ≤ T . For a (r : t− 1)-history feedback
γ = {γs}s=r,...,t−1 ∈ Γr:t−1, we define the flow Φγ

r:t by

Φγ
r:t : Hr ×Wr+1:t → Ht

(hr, wr+1:t) 7→
(
hr, γr(hr), wr+1, γr+1

(
hr, γr(hr), wr+1

)
, wr+2, · · · , γt−1(ht−1), wt

)
.

(49a)

Otherwise stated, the flow is given by

Φγ
r:t(hr, wr+1:t) = (hr, ur, wr+1, ur+1, wr+2, . . . , ut−1, wt) , (49b)

with hs = (hr, ur, wr+1, . . . , us−1, ws) , r < s ≤ t , (49c)

and us = γs(hs) , r ≤ s ≤ t− 1 . (49d)

When 0 ≤ r = t ≤ T , we put Φγ
r:r : Hr → Hr, hr 7→ hr. With this convention, the expression

Φγ
r:t makes sense when 0 ≤ r ≤ t ≤ T . The mapping Φγ

r:t gives the history at time t as a
function of the initial history hr at time r and of the history feedbacks {γs}s=r,...,t−1 ∈ Γr:t−1.
An immediate consequence of this definition are the flow properties :

Φγ
r:t+1(hr, wr+1:t+1) =

(
Φγ
r:t(hr, wr+1:t), γt

(
Φγ
r:t(hr, wr+1:t)

)
, wt+1

)
, 0 ≤ r ≤ t ≤ T−1 ,

(50a)

Φγ
r:t(hr, wr+1:t) = Φγ

r+1:t

(
(hr, γr(hr), wr+1), wr+2:t

)
, 0 ≤ r < t ≤ T . (50b)

Definition 15 Let r and t be given such that 0 ≤ r ≤ t ≤ T .

• When 0 ≤ r < t ≤ T , for a (r : t− 1)-history feedback γ = {γs}s∈Jr,t−1K ∈ Γr:t−1, and for
a family {ρs−1:s}r+1≤s≤t of stochastic kernels ρs−1:s : Hs−1 → ∆(Ws) , s ∈ Jr + 1, tK,
we define a stochastic kernel ργr:t : Hr → ∆(Ht) such that, for any numerical function
ϕ ∈ L0

+(Ht)
9, we have that

∫

Ht

ϕ(h′r, h
′
r+1:t)ρ

γ
r:t( dh′t |hr)

=

∫

Wr+1:t

ϕ
(
Φγ
r:t(hr, wr+1:t)

) t∏

s=r+1

ρs−1:s

(
dws

∣∣Φγ
r:s−1(hr, wr+1:s−1)

)
. (51)

• When 0 ≤ r = t ≤ T , we define ργr:r : Hr → ∆(Hr) by ργr:r( dh′r |hr) = δhr( dh′r).

9space of universally measurable nonnegative numerical functions over Ht: see Footnote 2
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The stochastic kernels ργr:t on Ht, given by (51), are of the form ργr:t( dh′t |hr) = ργr:t( dh′r dh′r+1:t |hr) =
δhr( dh′r)⊗%γr:t( dh′r+1:t |hr), where, for each hr ∈ Hr, the probability distribution %γr:t( dh′r+1:t |hr)
only charges the histories visited by the flow from r+1 to t. The construction of the stochas-
tic kernels ργr:t is developed in [3, p. 190] for relaxed history feedbacks and obtained by using
[3, Proposition 7.45].

Proposition 16 The family {ργs:t}s=r,...,t of stochastic kernels of Definition 15 has the flow
property:

ργs:t( dh′t |hs) =

∫

Ws+1

ρs:s+1( dws+1 |hs)ργs+1:t

(
dh′t

∣∣∣
(
hs, γs(hs), ws+1

))
, ∀s < t . (52)

Proof. Let s < t. For any ϕ ∈ L0
+(Ht), we have that

∫

Ht

ϕ(h′s, h
′
s+1:t)ρ

γ
s:t( dh′t |hs) (53a)

=

∫

Ws+1:t

ϕ
(
Φγ
s:t(hs, ws+1:t)

)

t∏

s′=s+1

ρs′−1:s′
(

dws′
∣∣Φγ

s:s′−1(hs, ws+1:s′−1)
)

(by Definition (51))

=

∫

Ws+1:t

ϕ
(
Φγ
s:t(hs, ws+1:t)

)
ρs:s+1

(
dws+1

∣∣hs
)

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s:s′−1(hs, ws+1:s′−1)
)

=

∫

Ws+1:t

ϕ
(
Φγ
s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))

ρs:s+1

(
dws+1

∣∣hs
)

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))
(by the flow property (50b))

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
)

∫

Ws+2:t

ϕ
(
Φγ
s+1:t

(
(hs, γs(hs), ws+1), ws+2:t

))

t∏

s′=s+2

ρs′−1:s′
(

dws′
∣∣Φγ

s+1:s′−1

(
(hs, γs(hs), ws+1), ws+2:s′−1

))
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by Fubini Theorem [12, p.137]

=

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
) ∫

Ht

ϕ
(
(h′s, γs(h

′
s), w

′
s+1), h′s+2:t

)

ργs+1:t

(
dh′t

∣∣ (hs, γs(hs), ws+1)
)

(by Definition (51))

=

∫

Ht

ϕ
(
(h′s, γs(h

′
s), w

′
s+1), h′s+2:t

)

∫

Ws+1

ρs:s+1

(
dws+1

∣∣hs
)
ργs+1:t

(
dh′t

∣∣ (hs, γs(hs), ws+1)
)

(53b)

by Fubini Theorem. As the two expressions (53a) and (53b) are equal for any ϕ ∈ L0
+(Ht), we

deduce the flow property (52). �

Proof of Theorem 2. We only give a sketch of the proof, as it is a variation on different
results of [3], the framework of which we follow.

Proof. By assumption, the optimization data set D in (4) is Borel-analytic, so that we are in
the setting of [3, Chap. 7, Chap. 8].

We take the history space Ht for state space, and the state dynamics

f
(
ht, ut, wt+1

)
=
(
ht, ut, wt+1

)
= ht+1 ∈ Ht+1 = Ht × Ut ×Wt+1 . (54)

Then, the family {ρs−1:s}s∈J1,T K of stochastic kernels (2) gives a family of disturbance kernels that
do not depend on the current control. The criterion to be minimized (3) is a function of the history
at time T , thus of the state at time T . The optimization problem defined by the associated value
function (6)

V0(w0) = inf
γ0:T−1∈Γ0:T−1

∫

HT

j(h′T )ργ0:T ( dh′T |w0)

= inf
γ0:T−1∈Γ0:T−1

∫

W1:T

j
(
Φγ

0:T (w0:T )
) T∏

s=1

ρs−1:s

(
dws

∣∣Φγ
0:s−1(w0:s−1)

)
,

by (51) — where the flows Φγ
0:s for s ∈ J0, T−1K are defined by Equation (49a) — is thus a finite

horizon model with a final cost, and we are minimizing over the so-called state-feedbacks. Then,
the proof of Theorem 2 follows from the results developed in Chap. 7, 8 and 10 of [3] in a Borel
setting.

The Bellman operators in (7a) satisfy (7b) because — as the optimization data set D in (4) is
Borel-analytic, and by Lemma 7.30(4) and Propositions 7.47 and 7.48 as stated in [3, p. 196] — we
have that ϕ ∈ L0

+(Ht+1) =⇒ Bt+1:tϕ ∈ L0
+(Ht), for t in J0, T−1K.

Since we are considering a finite horizon model with a final cost, we detail the steps needed to

use the results of [3, Chap. 8]. The final cost at time T can be turned into an instantaneous cost

at time T−1 by inserting the state dynamics (54) in the final cost. Getting rid of the disturbance

in the expected cost by using the disturbance kernel is standard practice. Then, we can turn this

non-homogeneous finite horizon model into a finite horizon model with homogeneous dynamics and

costs by following the steps of [3, Chap. 10]. Using [3, Proposition 8.2], we obtain that the family
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of optimization problems defined by the associated value functions (5), when minimizing over the

relaxed state feedbacks, satisfies the Bellman equation (8); we conclude with [3, Proposition 8.4]

which covers the minimization over state feedbacks. �

To summarize, Theorem 2 is valid under the general Borel assumptions of [3, Chap. 8]
and with the specific (F−) assumption needed for [3, Proposition 8.4]; this last assumption
is fulfilled here since we have assumed that the criterion (3) is nonnegative.

C Technical details and proofs (Sect. 3)

Proof of Proposition 4.
Proof. By assumption, the optimization data set D in (4) is Borel-analytic and the single

time block compatible reduction data set Rr,t in (11) is Borel. Thus, we are in the setting of [3,
Chap. 7, Chap. 8].

Let ϕ̃t : Xt → [0,+∞] be a given lower semianalytic nonnegative numerical function, and
let ϕt : Ht → [0,+∞] be

ϕt = ϕ̃t ◦ θt . (55)

Let ϕr : Hr → [0,+∞] be the lower semianalytic nonnegative numerical function obtained by
applying the Bellman operator Bt:r across Jt, rK (see (12)) to the lower semianalytic nonnegative
numerical function ϕt:

ϕr = Bt:rϕt = Br+1:r ◦ · · · ◦ Bt:t−1ϕt . (56)

By [3, Lemma 7.30(3)] — on the stability of lower semianalytic functions under right composition
with a Borel mapping — we have that the nonnegative numerical function ϕr is lower semianalytic.
We show that there exists a lower semianalytic nonnegative numerical function ϕ̃r : Xr → [0,+∞]
such that

ϕr = ϕ̃r ◦ θr . (57)

First, we show by backward induction that, for all s ∈ Jr, tK, there exists a measurable non-
negative numerical function ϕs such that ϕs(hs) = ϕs(θr(hr), hr+1:s). Second, we prove that the
function ϕ̃r = ϕr satisfies (57) and is lower semianalytic.

• For s = t, we have, by (55) and by (9c), that ϕt(ht) = ϕ̃t
(
θt(ht)

)
= ϕ̃t

(
fr:t(θr(hr), hr+1:t)

)
,

so that the nonnegative numerical function ϕt is given by ϕ̃t ◦ fr:t. By [3, Lemma 7.30(3)],
ϕt is a lower semianalytic numerical function.

• Assume that, at s + 1, the result holds true, that is, ϕs+1(hs+1) = ϕs+1(θr(hr), hr+1:s+1),
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where the numerical function ϕs+1 is nonnegative lower semianalytic. Then, by (56),

ϕs(hs) =
(
Bs+1:sϕs+1

)
(hs)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(hs, us, ws+1)

)
ρs:s+1( dws+1 |hs)

(by definition (7a) of the Bellman operator)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)

ρs:s+1( dws+1 |hs) (by the induction assumption)

= inf
us∈Us

∫

Ws+1

ϕs+1

(
(θr(hr), (hr+1:s, us, ws+1))

)

ρ̃s:s+1

(
dws+1

∣∣ (θr(hr), hr+1:s)
)

(by compatibility (10) of the stochastic kernel)

= ϕs
(
θr(hr), hr+1:s

)
,

where

ϕs
(
xr, hr+1:s

)
= inf

us∈Us

∫

Ws+1

ϕs+1

(
(xr, (hr+1:s, us, ws+1))

)

ρ̃s:s+1

(
dws+1

∣∣ (xr, hr+1:s)
)
.

By [3, p. 196] (right before Lemma 8.2), we get that the numerical function ϕs is nonnegative
lower semianalytic. Thus, we have shown that the result holds true at time s.

The induction implies that, at time r, the expression of ϕr(hr) is ϕr(hr) = ϕr
(
θr(hr)

)
, since the

term hr+1:r vanishes. Choosing ϕ̃r = ϕr gives the expected result. �

D Technical details and proofs (Sect.6)

In §D.1, we formally define the decision-hazard-decision framework within the history for-
malism of Sect. 2. Then, in §D.2, we prove a dynamic programming equation. Finally, in
§D.3, we express the formalism of state reduction, developed in Sect. 3, for the decision-
hazard-decision framework, and then we prove a reduced dynamic programming equation.
Again, in this application, the difficulty is mainly notational.

D.1 Multistage stochastic optimization problem with decision-
hazard-decision information structure

We flesh out the ingredients necessary to formulate a multistage stochastic optimization
problem with decision-hazard-decision information structure.
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History. Let T ∈ N∗. For each time t ∈ J0, T−1K, the head decision u]t takes values in a
measurable set U]

t, equipped with a σ-field U
]
t. For each time t ∈ J1, T K, the tail decision u[t

takes values in measurable set U[
t, equipped with a σ-field U[

t. For each time t ∈ J1, T K,
the uncertainty w[t takes its values in a measurable set W[

t, equipped with a σ-field W[
t. For

time t = 0, the uncertainty w]0 takes its values in a measurable set W]
0, equipped with a

σ-field W
]
0.

At the beginning of the time interval [t, t+1[, the decision-maker makes a head decision u]t.
What is new — in comparison with the classical decision-hazard framework — is that, at
the end of the time interval [t, t + 1[, when an uncertainty variable w[t+1 is revealed, the
decision-maker has the possibility to make a tail decision u[t+1. This latter decision u[t+1

can be thought as a recourse variable for a two stage stochastic optimization problem that
would take place inside the time interval [t, t + 1[. We call w]0 the uncertainty happening
right before the first decision. The interplay between uncertainties and decisions is thus as
follows (compare the chronology with the one in (1)):

w]0  u]0  w[1  u[1  u]1  w[2  . . .  w[T−1  u[T−1  u]T−1  w[T  u[T .

History Spaces. For t ∈ J0, T K, we define the head history space

H]
t = W]

0 ×
t−1∏

t′=0

(
U]
t′ ×W[

t′+1 × U[
t′+1

)
, (59a)

and its associated head history field H
]
t. We also define, for t ∈ J1, T K, the tail history space

H[
t = H]

t−1 × U]
t−1 ×W[

t , (59b)

and its associated tail history field H[
t.

Stochastic kernels. We introduce a family of stochastic kernels {ρt−1:t}1≤t≤T , with

ρt−1:t : H]
t−1 → ∆(W[

t) . (60)

History feedbacks. For t ∈ J0, T−1K, a head history feedback at time t is a measurable
mapping

γ]t : H]
t → U]

t .

We call Γ]t the set of head history feedbacks at time t, and we define Γ]t:T = Γ]t × · · · × Γ]T .
We also define, for all t ∈ J1, T K, a tail history feedback at time t as a measurable mapping

γ[t : H[
t → U[

t .

We call Γ[t the set of tail history feedbacks at time t, and we define Γ[t:T = Γ[t × · · · × Γ[T .
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Value functions. We consider a nonnegative numerical function

j : H]
T → [0,+∞] , (62)

assumed to be measurable with respect to the head history field H
]
T .

For s ∈ J0, T K, we define value functions by

Vt(h
]
t) = inf

γ]∈Γ]
t:T−1,γ

[∈Γ]
t+1:T

∫

H]
T

j(h′T )ργ
],γ[

t:T ( dh′T |h]t) , ∀h]t ∈ H]
t , (63)

where ργ
],γ[

t:T has to be understood as ργt:T (see Definition 15), with

γt(h
]
t) = γ]t (h

]
t) , ∀h]t ∈ H]

t , (64a)

γt′(h
[
t′) =

(
γ[t′(h

[
t′), γ

]
t′

(
h[t′ , γ

[
t′(h

[
t′)
))

, ∀t′ ∈ Jt+ 1, T−1K , ∀h[t′ ∈ H[
t′ , (64b)

γT (h[T ) = γ[T (h[T ) , ∀h[T ∈ H[
T . (64c)

D.2 Dynamic programming equations in the decision-hazard-decision
framework

The following proposition characterizes the dynamic programming equations in the decision-
hazard-decision framework.

Proposition 17 Assume that all the spaces introduced in §D.1 are Borel spaces, the stochas-
tic kernels in (60) are Borel-measurable, and that the criterion j in (62) is a nonnegative
lower semianalytic numerical function.

For t ∈ J0, T−1K, we define the Bellman operator

Bt+1:t : L0
+(H]

t+1)→ L0
+(H]

t) (65a)

such that, for all ϕ ∈ L0
+(H]

t+1) and for all h]t ∈ H]
t,

(
Bt+1:tϕ

)
(h]t) = inf

u]t∈U
]
t

∫

W[
t+1

(
inf

u[t+1∈U[
t+1

ϕ(h]t, u
]
t, w

[
t+1, u

[
t+1)
)
ρt:t+1(h]t, dw

[
t+1) . (65b)

Then the value functions (63) satisfy

VT = j , (65c)

Vt = Bt+1:tVt+1 , ∀t ∈ J0, T−1K . (65d)
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Proof. We now show that the setting in §D.1 is a particular kind of two-time-scale problem
as formalized in Sect. 5. For this purpose, we introduce a spurious uncertainty variable w]t taking

values in a singleton set W]
t = {w̄]t}, equipped with the trivial σ-field {∅,W]

t}, for each time t ∈
J1, T K. Now, we obtain the following sequence of events

w]0  u]0  w[1  u[1  w]1  u]1  w[2  u[2  w]2  u]2  . . .

 w[T−1  u[T−1  w]T−1  u]T−1  w[T  u[T  w]T ,

which coincides with a two-time-scale problem:

w0,0 = w]0  u0,0 = u]0  w0,1 = w[1  u0,1 = u[1︸ ︷︷ ︸
slow time cycle

 

w1,0 = w]1  u1,0 = u]1  w1,1 = w[2  u1,1 = u[2︸ ︷︷ ︸
slow time cycle

 

· · · wT−1,0 = w]T−1  uT−1,0 = u]T−1  wT−1,1 = w[T  uT−1,1 = u[T︸ ︷︷ ︸
slow time cycle

 wT,0 = w]T .

We introduce the sets

Wd,0 = W]
d, for d ∈ J0, T K,

Wd,1 = W[
d+1, for d ∈ J0, T−1K,

Ud,0 = U]d, for d ∈ J0, T−1K,

Ud,1 = U[d+1, for d ∈ J0, T−1K.

As a consequence, we observe that the two-time-scale history spaces in §D.1 are in one to one
correspondence with the decision-hazard-decision history spaces and fields in (59a)–(59b) as follows:

for d ∈ J0, T K,

Hd,0 = W]
0 ×

d−1∏

d′=0

(
Ud′,0 ×Wd′,1 × Ud′,1 ×Wd′+1,0

)

= W]
0 ×

d−1∏

d′=0

(
U]d′ ×W[

d′+1 × U[d′+1 ×W]
d′+1

)

≡W]
0 ×

d−1∏

d′=0

(
U]d′ ×W[

d′+1 × U[d′+1

)
= H]

d ,

for d ∈ J0, T K,

Hd,0 = W
]
0 ⊗

d−1⊗

d′=0

(
U
]
d′ ⊗W[

d′+1 ⊗ U[d′+1 ⊗W
]
d′+1

)
,
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for d ∈ J0, T − 1K,

Hd,1 = W]
0 ×

d−1∏

d′=0

(
Ud′,0 ×Wd′,1 × Ud′,1 ×Wd′+1,0

)
× Ud,0 ×Wd,1

= W]
0 ×

d−1∏

d′=0

(
U]d′ ×W[

d′+1 × U[d′+1 ×W]
d′+1

)
× U]d ×W[

d+1

≡W]
0 ×

d−1∏

d′=0

(
U]d′ ×W[

d′+1 × U[d′+1

)
× U]d ×W[

d+1 = H[
d+1 ,

for d ∈ J0, T − 1K,

Hd,1 = W
]
0 ⊗

d−1⊗

d′=0

(
U
]
d′ ⊗W[

d′+1 ⊗ U[d′+1 ⊗W
]
d′+1

)
⊗ U

]
d ⊗W[

d+1 .

For any element h of Hd,0 or Hd,1 we call
[
h
]]

the element of H]
d or H[

d corresponding to h
with all the spurious uncertainties removed. By a slight abuse of notation, the criterion j in (62)

(decision-hazard-decision setting) corresponds to j ◦
[
·
]]

in the two-time-scale setting in Sect. 5.
The feedbacks in the two-time-scale setting in Sect. 5 are in one to one correspondence with the
same elements in the decision-hazard-decision setting, namely

γd,0 = γ]d ◦
[
·
]]
, γd,1 = γ[d+1 ◦

[
·
]]
.

Now we define two families of stochastic kernels

• a family {ρ(d,0):(d,1)}0≤d≤D of stochastic kernels within two consecutive slow scale indexes

ρ(d,0):(d,1) : Hd,0 → ∆(Wd,1) ,

hd,0 7→ ρd:d+1 ◦
[
·
]]
.

• a family {ρ(d,1):(d+1,0)}0≤d≤D−1
of stochastic kernels across two consecutive slow scale indexes

ρ(d,1):(d+1,0) : Hd,1 → ∆(Wd+1,0) ,

hd,1 7→ δ
w̄]

d+1
(·) ,

where we recall that Wd+1,0 = W]
d+1 = {w̄]d+1}.

With these notations, we obtain Equation (65b), where only one integral appears because of
the Dirac in the stochastic kernels ρ(d,1):(d+1,0). Indeed, for any measurable function ϕ : Hd+1,0 →
[0,+∞], we have that

(
Bd+1:dϕ

)
(hd,0) = inf

ud,0∈Ud,0

∫

Wd,1

ρ(d,0):(d,1)

(
dwd,1

∣∣∣hd,0
)

inf
ud,1∈Ud,1

∫

Wd+1,0

ϕ
(
hd,0, ud,0, wd,1, ud,1, wd+1,0

)
ρ(d,1):(d+1,0)

(
dwd+1,0

∣∣∣hd,0, hd:d+1

)
.
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Now, if there exists ϕ̃ : H]
d+1 → [0,+∞] such that ϕ = ϕ̃ ◦

[
·
]]

, we obtain that

(
Bd+1:dϕ

)
(hd,0) = inf

ud,0∈Ud,0

∫

Wd,1

ρ(d,0):(d,1)

(
dwd,1

∣∣∣hd,0
)

inf
ud,1∈Ud,1

ϕ̃(
[
hd,0

]]
, ud,0, wd,1, ud,1)

∫

Wd+1,0

ρ(d,1):(d+1,0)

(
dwd+1,0

∣∣∣hd,0, hd:d+1

)

= inf
ud,0∈Ud,0

∫

Wd,1

ρ(d,0):(d,1)

(
dwd,1

∣∣∣hd,0
)

inf
ud,1∈Ud,1

ϕ̃(
[
hd,0

]]
, ud,0, wd,1, ud,1)

by the Dirac probability of the stochastic kernels ρ(d,1):(d+1,0),

= inf
u]d∈U

]
d

∫

W[
d+1

ρ(d,0):(d,1)

(
dw[d+1

∣∣∣h]d
)

inf
u[d+1∈U

[
d+1

ϕ̃(h]d, u
]
d, w

[
d+1, u

[
d+1)

This ends the proof. �

D.3 State reduction in the decision-hazard-decision framework

We express the formalism of state reduction, developed in Sect. 3, for the decision-hazard-
decision framework, and then we prove a reduced dynamic programming equation.

Compatible state reductions. We now rewrite Definition 5 in the context of a decision-
hazard-decision problem.

Definition 18 (Compatible state reduction) Let {(Xt,Xt)}t∈J0,T K be a family of state
spaces, {θt}t∈J0,T K be a family of measurable reduction mappings such that

θt : H]
t → Xt ,

and {ft:t+1}t∈J0,T−1K be a family of measurable dynamics such that

ft:t+1 : Xt × U]
t ×Wt+1 × U[

t+1 → Xt+1 .

The triplet
(
{Xt}t∈J0,T K, {θt}t∈J0,T K, {ft:t+1}t∈J0,T−1K

)
is said to be a decision-hazard-decision

state reduction if, for all t ∈ J0, T−1K, we have that

θt+1

(
(ht, u

]
t, wt+1, u

[
t+1)
)

= ft:t+1

(
θt(ht), u

]
t, wt+1, u

[
t+1

)
,

∀(ht, u]t, wt+1, u
[
t+1) ∈ H]

t × U]
t ×Wt+1 × U[

t+1 .

The decision-hazard-decision state reduction is said to be compatible with the family {ρt:t+1}t∈J0,T−1K

of stochastic kernels in (60) if there exists a family {ρ̃t:t+1}t∈J0,T−1K of reduced stochastic
kernels
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ρ̃t:t+1 : Xt → ∆(Wt+1) ,

such that, for each t ∈ J0, T−1K, the stochastic kernel ρt:t+1 in (60) can be factored as

ρt:t+1( dwt+1 |h]t) = ρ̃t:t+1

(
dwt+1

∣∣ θt(h]t)
)
, ∀h]t ∈ H]

t .

As in Definition 5, we call decision-hazard-decision compatible reduction data set the family

Rdhd =
(
{(Xt,Xt)}t∈J0,T K, {θt}t∈J0,T K, {ft:t+1}t∈J0,T−1K, {ρ̃t:t+1}t∈J0,T−1K

)
(71)

made of the elements presented above. We say that the decision-hazard-decision compatible
reduction data set Rdhd is Borel if the state spaces {(Xt,Xt)}t∈J0,T K are Borel spaces, the
reduction mappings {θt}t∈J0,T K are Borel-measurable, the dynamics {ft:t+1}t∈J0,T−1K are Borel-
measurable, the reduced stochastic kernels {ρ̃t:t+1}t∈J0,T−1K are Borel-measurable.

Dynamic programming equations. We state the main result of this section.

Theorem 19 Suppose that all the assumptions of Proposition 17 hold true. Suppose that
there exists a compatible decision-hazard-decision state reduction with Borel decision-hazard-
decision compatible reduction data set Rdhd as in (71), and that there exists a reduced crite-
rion, which is a nonnegative lower semianalytic numerical function,

j̃ : XT → [0,+∞] ,

such that the cost function j in (62) can be factored as

j = j̃ ◦ θT .
We can define a family of reduced Bellman operators across Jt+ 1, tK

B̃t+1:t : L0
+(Xt+1)→ L0

+(Xt,Xt) , t ∈ J1, T−1K , (73a)

by, for any measurable function ϕ̃ : Xt+1 → [0,+∞],

(B̃t+1:tϕ̃)(xt) = inf
u]t∈U

]
t

∫

Wt+1

(
inf

u[t+1∈U[
t+1

ϕ̃
(
ft:t+1(xt, u

]
t, wt+1, u

[
t+1)
))
ρ̃t:t+1(xt, dwt+1) . (73b)

We define the family of reduced value functions {Ṽt}t∈J0,T K by

ṼT = j̃ (74a)

Ṽt = B̃t+1:tṼt+1 for t = T − 1, . . . , 0 . (74b)

Then, the value functions Vt defined by (63) satisfy

Vt = Ṽt ◦ θt , t ∈ J0, T K . (75)

Proof. It has been shown in the proof of Proposition 17 that the setting of a decision-hazard-

decision problem was a particular kind of two time-scales problem. The proof of the theorem is

then a direct application of Proposition 13. �
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