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Abstract Multistage stochastic optimization problems are, by essence, complex because their solutions
are indexed both by stages (time) and by uncertainties (scenarios). Their large scale nature makes
decomposition methods appealing. The most common approaches are time decomposition — and state-
based resolution methods, like stochastic dynamic programming, in stochastic optimal control — and
scenario decomposition — like progressive hedging in stochastic programming. We present a method
to decompose multistage stochastic optimization problems by time blocks, which covers both stochastic
programming and stochastic dynamic programming. Once established a dynamic programming equation
with value functions defined on the history space (a history is a sequence of uncertainties and controls),
we provide conditions to reduce the history using a compressed “state” variable. This reduction is done
by time blocks, that is, at stages that are not necessarily all the original unit stages, and we prove a
reduced dynamic programming equation. Then, we apply the reduction method by time blocks to two
time-scales stochastic optimization problems and to a novel class of so-called decision-hazard-decision
problems, arising in many practical situations, like in stock management. The time blocks decomposition
scheme is as follows: we use dynamic programming at slow time scale where the slow time scale noises
are supposed to be stagewise independent, and we produce slow time scale Bellman functions; then, we
use stochastic programming at short time scale, within two consecutive slow time steps, with the final
short time scale cost given by the slow time scale Bellman functions, and without assuming stagewise
independence for the short time scale noises.

Keywords: multistage stochastic optimization, dynamic programming, decomposition, time blocks,
two time-scales, decision-hazard-decision.

MSC: 90C06,90C39,93E20.

1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed
both by stages (time) and by uncertainties. Their large scale nature makes decomposition methods
appealing. The most common approaches are time decomposition — and state-based resolution methods,
like stochastic dynamic programming, in stochastic optimal control — and scenario decomposition —
like progressive hedging in stochastic programming.

On the one hand, stochastic programming deals with an underlying random process taking a finite
number of values, called scenarios [10]. Solutions are indexed by a scenario tree, the size of which explodes
with the number of stages, hence generally few in practice. However, to overcome this obstacle, stochastic
programming takes advantage of scenario decomposition methods (progressive hedging [9]). On the other
hand, stochastic control deals with a state model driven by a white noise, that is, the noise is made of
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a sequence of independent random variables. Under such assumptions, stochastic dynamic programming
is able to handle many stages, as it offers reduction of the search for a solution among state feedbacks
(instead of functions of the past noise) [2,8].

In a word, dynamic programming is good at handling multiple stages — but at the price of assuming
that noises are stagewise independent — whereas stochastic programming does not require such assump-
tion, but can only handle a few stages. Could we take advantage of both methods? Is there a way to
apply stochastic dynamic programming at a slow time scale — a scale at which noise would be statis-
tically independent — crossing over short time scale optimization problems where independence would
not hold? This question is one of the motivations of this paper.

We will provide a method to decompose multistage stochastic optimization problems by time blocks.
In Sect. 2, we present a mathematical framework that covers both stochastic programming and stochastic
dynamic programming. First, in §2.1, we sketch the literature in stochastic dynamic programming, in
order to locate our contribution. Second, in §2.2, we formulate multistage stochastic optimization prob-
lems over a so-called history space, and we obtain a general dynamic programming equation. Then, we
lay out the basic brick of time blocks decomposition, by revisiting the notion of “state” in Sect. 3. We
lay out conditions under which we can reduce the history using a compressed “state” variable, but with
a reduction done by time blocks, that is, at stages that are not necessarily all the original unit stages.
We prove a reduced dynamic programming equation, and apply it to two classes of problems in Sect. 4.
In §4.1, we detail the case of two time-scales stochastic optimization problems. In §4.2, we apply the
reduction method by time blocks to a novel class consisting of decision-hazard-decision models. In the
appendix, we relegate technical results, as well as the specific case of optimization with noise process.

2 Stochastic Dynamic Programming with Histories

We recall the standard approaches used to deal with a stochastic optimal control problem formulated in
discrete time, and we highlight the differences with the framework used in this paper.

2.1 Background on Stochastic Dynamic Programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic control problems. Let
pX,Xq and pY,Yq be two measurable spaces. A stochastic kernel from pX,Xq to pY,Yq is a mapping ρ :
Xˆ YÑ r0, 1s such that

– for any Y P Y, ρp¨, Y q is X-measurable;
– for any x P X, ρpx, ¨q is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel is also denoted as a mapping ρ : X Ñ ∆pYq from the
measurable space pX,Xq towards the space ∆pYq of probability measures over pY,Yq, with the property
that the function x P X ÞÑ

ş

Y
ρpx, dyq is measurable for any Y P Y.

We now sketch the most classical frameworks for stochastic dynamic programming.

Witsenhausen Approach. The most general stochastic dynamic programming principle is sketched by
Witsenhausen in [12]. However, we do not detail it as its formalism is too far from the following ones. We
present here what Witsenhausen calls an optimal stochastic control problem in standard form (see [11]).
The ingredients are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;
2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (“state” spaces);
3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);
4. It is a subfield of Xt, for t “ t0, . . . , T ´ 1 (information);
5. ft : pXt ˆ Ut,Xt b Utq Ñ pXt`1,Xt`1q is measurable, for t “ t0, . . . , T ´ 1 (dynamics);
6. πt0 is a probability on pXt0 ,Xt0q;
7. j : pXT ,XT q Ñ R is a measurable function (criterion).

With these ingredients, Witsenhausen formulates a stochastic optimization problem, whose solutions
are to be searched among adapted feedbacks, namely λt : pXt,Xtq Ñ pUt,Utq with the property that
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λ´1
t pUtq Ă It for all t “ t0, . . . , T ´ 1. Then, he establishes a dynamic programming equation, where

the Bellman functions are function of the (unconditional) distribution of the original state xt P Xt, and
where the minimization is done over adapted feedbacks.

The main objective of Witsenhausen is to establish a dynamic programming equation for nonclassical
information patterns.

Evstigneev Approach. The ingredients of the approach developed in [6] are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1 is discrete, with integers t0 ă T ;
2. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);
3. pΩ,Fq is a measurable space (Nature);
4. tFtut0,...,T´1 is a filtration of F (information);
5. P is a probability on pΩ,Fq;
6. j : p

ś

t“t0,...,T´1 Ut ˆΩ,
Â

t“t0,...,T´1 Ut b Fq Ñ R is a measurable function (criterion).

With these ingredients, Evstigneev formulates a stochastic optimization problem, whose solutions are
to be searched among adapted processes, namely random processes with values in

ś

t“t0,...,T´1 Ut and
adapted to the filtration tFtut0,...,T´1. Then, he establishes a dynamic programming equation, where the
Bellman function at time t is an Ft-integrand depending on decisions up to time t (random variables)
and where the minimization is done over Ft-measurable random variables at time t.

The main objective of Evstigneev is to establish an existence theorem for an optimal adapted process
(under proper technical assumptions, especially on the function j, that we do not detail here).

Bertsekas and Shreve Approach. The ingredients of the approach developed in [3] are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;
2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (state spaces);
3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);
4. pWt0 ,Wt0q,. . . , pWT ,WT q are measurable spaces (Nature);
5. ft : pXt ˆ Ut ˆWt,Xt b Ut bWtq Ñ pXt`1,Xt`1q is a measurable mapping, for t “ t0, . . . , T ´ 1

(dynamics);
6. ρt´1:t : Xt´1 ˆ Ut´1 Ñ ∆pWtq is a stochastic kernel, for t “ t0, . . . , T ´ 1;
7. Lt : XtˆUtˆWt`1 Ñ R, for t “ t0, . . . , T ´1 and K : XT Ñ R, measurable functions (instantaneous

and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization problem with time
additive additive cost function over given state spaces, action spaces and uncertainty spaces (note that
state and action spaces are assumed to be of fixed sizes when time varies, thus a “state” is a priori given).
They introduce the notion of history at time t which consists in the states and the actions prior to t and
study optimization problems whose solutions (policies) are to be searched among history feedbacks (or

relaxed history feedbacks), namely sequences of mappings Xt0 ˆ
śt´1
s“t0

pUs ˆXs`1q Ñ Ut. They identify
cases where no loss of optimality results from reducing the search to (relaxed) Markovian feedbacks
Xt Ñ Ut. Then, they establish a dynamic programming equation, where the Bellman functions are
function of the state xt P Xt, and where the minimization is done over controls ut P Ut. For finite horizon
problems, the mathematical challenge is to set up a mathematical framework (the Borel assumptions)
for which optimal policies exists.

The main objective of Bertsekas and Shreve is to state conditions under which the dynamic program-
ming equation is mathematically sound, namely with universally measurable Bellman functions and with
universally measurable relaxed control strategies in the context of Borel spaces. The interested reader
will find all the subtleties about Borel spaces and universally measurable concepts in [3, Chapter 7].

Puterman Approach. The ingredients of the approach developed in [8] are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;
2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (state spaces);
3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);
4. ρt´1:t : Xt´1 ˆ Ut´1 Ñ ∆pXtq is a stochastic kernel, for t “ t0, . . . , T ´ 1;
5. Lt : Xt ˆ Ut Ñ R, for t “ t0, . . . , T ´ 1 and K : XT Ñ R, measurable functions (instantaneous and

final costs).

3



Puterman shares most of his ingredients with Bertsekas and Shreve, but he does not require uncertainty
sets and dynamics, as he directly considers state transition stochastic kernels. With these ingredients,
Puterman formulates a stochastic optimization problem, whose solutions are to be searched among
history feedbacks, namely sequences of mappings Xt0 ˆ

śt´1
s“t0

pUs ˆ Xs`1q Ñ Ut. Then, he establishes
a dynamic programming equation, where the Bellman functions are function of the history ht P Xt0 ˆ
śt´1
s“t0

pUs ˆ Xs`1q. He identifies cases where no loss of optimality results from reducing the search to
Markovian feedbacks Xt Ñ Ut. In such cases, the Bellman functions are function of the state xt P Xt,
and the minimization in the dynamic programming equation is done over controls ut P Ut.

The main objective of Puterman is to explore infinite horizon criteria, average reward criteria, the
continuous time case, and to present many examples.

Approach in this Paper. The ingredients that we will use are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;
2. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);
3. pWt0 ,Wt0q,. . . , pWT ,WT q are measurable spaces (Nature);

4. ρt´1:t : W0 ˆ
śt´1
s“0pUs ˆWs`1q Ñ ∆pWtq is a stochastic kernel, for t “ t0, . . . , T ´ 1,

5. j : pW0 ˆ
śT´1
s“0 pUs ˆWs`1q,W0 b

ÂT´1
s“0 pUs bWs`1qq Ñ R is a measurable function (criterion).

The main features of the framework developed in this paper are the following: the history at time t
consists of all uncertainties and actions prior to time t (rather than states and actions); the cost is a unique
function depending on the whole history, from initial time t0 to the horizon T ; the probability distribution
of uncertainty at time t depends on the history up to time t´ 1. We will state a dynamic programming
equation, where the Bellman functions are function of the history ht P W0 ˆ

śt
s“0pUs ˆWs`1q and

where the minimization is done over controls ut P Ut.
Our main objective is to establish a dynamic programming equation with a state, not at any time t P

t0, . . . , T u, but at some specified instants 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . The state spaces are not given a
priori, but introduced a posteriori as image sets of history reduction mappings. With this, we can mix
dynamic programming and stochastic programming.

Our framework is rather distant with the one of Evstigneev in [6]. It falls in the general framework
developed by Witsenhausen (see [11] and [4, § 4.5.4]), except for the stochastic kernels (we are more
general) and for the information structure (we are less general). Finally, our framework is closest to the
one found in Bertsekas and Shreve [3] and Puterman [8], except for the state spaces, not given a priori,
and for the criterion, function of the whole history.

2.2 Stochastic Dynamic Programming with History Feedbacks

We now present a framework that is adapted to both stochastic programming and stochastic dynamic
programming. Time is discrete and runs among the integers t “ 0, 1, 2 . . . , T ´ 1, T , where T P N˚. For
0 ď r ď s ď T , we introduce the interval pr :sq “ tt P N | r ď t ď su.

2.2.1 Histories and Feedbacks

We first define the basic and the composite spaces that we need to formulate multistage stochastic
optimization problems. Then, we introduce a class of solutions called history feedbacks.

Histories and History Spaces. For each time t “ 0, 1, 2 . . . , T ´ 1, the decision ut takes its values in a
measurable set Ut equipped with a σ-field Ut. For each time t “ 0, 1, 2 . . . , T , the uncertainty wt takes
its values in a measurable set Wt equipped with a σ-field Wt.

For t “ 0, 1, 2 . . . , T , we define the history space Ht equipped with the history field Ht by

Ht “W0 ˆ

t´1
ź

s“0

pUs ˆWs`1q and Ht “W0 b

t´1
â

s“0

pUs bWs`1q , t “ 0, 1, 2 . . . , T , (1)

with the particular case H0 “W0, H0 “W0. A generic element ht P Ht is called a history :

ht “ pw0, pus, ws`1qs“0,...,t´1q “ pw0, u0, w1, u1, w2, . . . , ut´2, wt´1, ut´1, wtq P Ht .
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For 1 ď r ď s ď t, we introduce the pr :sq-history subpart

hr:s “ pur´1, wr, . . . , us´1, wsq ,

so that we have ht “ phr´1, hr:tq.

History Feedbacks. When 0 ď r ď t ď T ´ 1, we define a pr : tq-history feedback as a sequence tγsus“r,...,t
of measurable mappings

γs : pHs,Hsq Ñ pUs,Usq .
We call Γr:t the set of pr : tq-history feedbacks.

The history feedbacks reflect the following information structure. At the end of the time interval rt´
1, tr, an uncertainty variable wt is produced. Then, at the beginning of the time interval rt, t ` 1r, a
decision-maker takes a decision ut, as follows

w0 ù u0 ù w1 ù u1 ù . . . ù wT´1 ù uT´1 ù wT . (2)

2.2.2 Optimization with Stochastic Kernels

We introduce a family of optimization problems with stochastic kernels. Then, we show how such prob-
lems can be solved by stochastic dynamic programming.

In what follows, we say that a function is numerical if it takes its values in r´8,`8s (also called
extended or extended real-valued function).

Family of Optimization Problems with Stochastic Kernels. To build a family of optimization problems
over the time span t0, . . . , T ´ 1u, we require two ingredients:

– a family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : pHs´1,Hs´1q Ñ ∆pWsq , s “ 1, . . . , T , (3)

that represents the distribution of the next uncertainty ws parameterized by past history hs´1 (see
the chronology in (2)),

– a numerical function, playing the role of a cost to be minimized,

j : pHT ,HT q Ñ r0,`8s , (4)

assumed to be nonnegative1 and measurable with respect to the field HT .

We define, for any tγsus“t,...,T 1́ P Γt:T 1́, a new family of stochastic kernels

ργt:T : pHt,Htq Ñ ∆pHT q ,

that capture the transitions between histories when the dynamics hs`1 “
`

hs, us, ws`1

˘

is driven by
us “ γsphsq for s “ t, . . . , T´1 (see Definition 5 in §A.2 for the detailed construction of ργr:t; note that ργt:T
generates a probability distribution on the space HT of histories over the whole horizon t0, . . . , T u).

We consider the family of optimization problems, indexed by t “ 0, . . . , T ´ 1 and parameterized by
the history ht P Ht:

inf
γt:T´1PΓt:T´1

ż

HT

jph1T qρ
γ
t:T pht,dh

1
T q , @ht P Ht , (5)

the integral in the right-hand side of the above equation corresponding to the cost induced by the
feedback γt:T´1 when starting at time t with a given history ht. For all t “ 0, . . . , T ´ 1, we define the
minimum value of Problem (5) by

Vtphtq “ inf
γt:T´1PΓt:T´1

ż

HT

jph1T qρ
γ
t:T pht,dh

1
T q , @ht P Ht , (6a)

and we also define

VT phT q “ jphT q , @hT P HT . (6b)

The numerical function Vt : Ht Ñ r0,`8s is called the value function at time t.

1 We could also consider any j : Ht Ñ R, measurable bounded function, or measurable and uniformly bounded below
function. However, for the sake of simplicity, we will deal in the sequel with measurable nonnegative numerical functions.
When jphT q “ `8, this materializes joint constraints between uncertainties and controls.
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Bellman Operators and Dynamic Programming. We show that the value functions in (6) are Bellman
functions, in that they are solution of the Bellman or dynamic programming equation.

For t “ 0, . . . , T , let L0
`pHt,Htq be the space of universally measurable nonnegative numerical func-

tions over Ht (see [3] for further details). For t “ 0, . . . , T ´ 1, we define the Bellman operator by, for
all ϕ P L0

`pHt`1,Ht`1q and for all ht P Ht,

`

Bt`1:tϕ
˘

phtq “ inf
utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q . (7)

Since ϕ P L0
`pHt`1,Ht`1q, we have that Bt`1:tϕ is a well defined nonnegative numerical function.

The proof of the following theorem is inspired by [3], and given in §A.3.1.

Theorem 1 Assume that all the spaces introduced in §2.2.1 are Borel spaces, the stochastic kernels
in (3) are Borel-measurable, and that the criterion j in (4) is a nonnegative lower semianalytic function.

Then, the Bellman operators in (7) map L0
`pHt`1,Ht`1q into L0

`pHt,Htq

Bt`1:t : L0
`pHt`1,Ht`1q Ñ L0

`pHt,Htq ,

and the value functions Vt defined in (6) are universally measurable and satisfy the Bellman equation,
or (stochastic) dynamic programming equation,

VT “ j , (8a)

Vt “ Bt`1:tVt`1 , for t “ T´1, . . . , 1, 0 . (8b)

This theorem is mainly inspired by [3], with the feature that the state xt is in our case the history ht,
with the dynamics:

ht`1 “
`

ht, ut, wt`1

˘

. (9)

This very general dynamic programming result will be the basis of all future developments in this paper.
In the sequel, we assume that all the assumptions of Theorem 1 are fulfilled, that is,

– all the spaces (like the ones introduced in §2.2.1) will be supposed to be Borel spaces,
– all the stochastic kernels (like the ones introduced in (3)) will be supposed to be Borel-measurable,
– all the criteria (like the one introduced in (4)) will be supposed to be nonnegative lower semianalytic

functions.

3 State Reduction by Time Blocks and Dynamic Programming

In this section, we consider the question of reducing the history using a compressed “state” variable.
Differing with traditional practice, such a variable may be not available at any time t P t0, . . . , T u, but
at some specified instants 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . We have see in the previous section that the
history ht is itself a canonical state variable in our framework with associated dynamics (9). However
the size of this canonical state increases with t, which is a nasty feature for dynamic programming.

3.1 State Reduction on a Single Time Block

We first present the case where the reduction only occurs at two instants denoted by r and t:

0 ď r ă t ď T .

Definition 1 Let pXr,Xrq and pXt,Xtq be two measurable state spaces, θr and θt be two measurable
reduction mappings

θr : Hr Ñ Xr , θt : Ht Ñ Xt , (10a)

and fr:t be a measurable dynamics
fr:t : Xr ˆHr`1:t Ñ Xt . (10b)
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The triplet pθr, θt, fr:tq is called a state reduction across pr : tq if we have

θt
`

phr, hr`1:tq
˘

“ fr:t
`

θrphrq, hr`1:t

˘

, @ht P Ht . (10c)

The state reduction pθr, θt, fr:tq is said to be compatible with the family tρs´1:sur`1ďsďt of stochastic
kernels (3) if

– there exists a reduced stochastic kernel

rρr:r`1 : Xr Ñ ∆pWr`1q , (11a)

such that the stochastic kernel ρr:r`1 in (3) can be factored as

ρr:r`1phr,dwr`1q “ rρr:r`1

`

θrphrq,dwr`1

˘

, @hr P Hr , (11b)

– for all s “ r ` 2, . . . , t, there exists a reduced stochastic kernel

rρs´1:s : Xr ˆHr`1:s´1 Ñ ∆pWsq , (11c)

such that the stochastic kernel ρs´1:s can be factored as

ρs´1:s

`

phr, hr`1:s´1q,dws
˘

“ rρs´1:s

´

`

θrphrq, hr`1:s´1

˘

,dws

¯

, @hs´1 P Hs´1 . (11d)

According to this definition, the triplet pθr, θt, fr:tq is a state reduction across pr : tq if and only
if the diagram in Figure 1 is commutative; it is compatible if and only if the diagram in Figure 2 is
commutative.

Hr ˆ Hr`1:t Ht

Xr ˆ Hr`1:t Xt

θr Id

Id

θt

fr:t

Fig. 1 Commutative diagram in case of state reduction pθr, θt, fr:tq

Hr ˆ Hr`1:s´1 ∆pWsq

Xr ˆ Hr`1:s´1

θr Id

ρs´1:s

rρs´1:s

Fig. 2 Commutative diagram in case of state reduction pθr, θt, fr:tq compatible with the family tρs´1:sur`1ďsďt

We define the Bellman operator across pt :rq Bt:r : L0
`pHt,Htq Ñ L0

`pHr,Hrq by

Bt:r “ Bt:t´1 ˝ ¨ ¨ ¨ ˝ Br`1:r , (12)

where the one time step operators Bs:s´1, for r ` 1 ď s ď t are defined in (7).
The following proposition, whose proof is given in §A.3.2, is the key ingredient to formulate dynamic

programming equations with a reduced state.
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Proposition 1 Suppose that there exists a state reduction pθr, θt, fr:tq that is compatible with the fam-
ily tρs´1:sur`1ďsďt of stochastic kernels (3) (see Definition 1). Then, there exists a reduced Bellman
operator across pt :rq

rBt:r : L0
`pXt,Xtq Ñ L0

`pXr,Xrq , (13)

such that, for all rϕt P L0
`pXt,Xtq, we have that

`

rBt:r rϕt
˘

˝ θr “ Bt:rprϕt ˝ θtq . (14)

For all measurable nonnegative numerical function rϕt : Xt Ñ r0,`8s and for all xr P Xr, we have that

`

rBt:r rϕt
˘

pxrq “ inf
urPUr

ż

Wr`1

rρr:r`1pxr,dwr`1q

inf
ur`1PUr`1

ż

Wr`2

rρr`1:r`2pxr, ur, wr`1,dwr`2q . . .

inf
ut´1PUt´1

ż

Wt

rϕt
`

fr:tpxr, ur, wr`1, . . . , ut´1, wtq
˘

rρt´1:tpxr, ur, wr`1, . . . , ut´2, wt´1,dwtq . (15)

Proposition 1 can be interpreted as follows. Denoting by θ‹t : L0
`pXt,Xtq Ñ L0

`pHt,Htq the operator
defined by

θ‹t prϕtq “ rϕt ˝ θt , @rϕt P L0
`pXt,Xtq ,

the relation (14) rewrites

θ‹r ˝
rBt:r “ Bt:r ˝ θ‹t ,

that is, Proposition 1 states that the diagram in Figure 3 is commutative.

L0
`pHt,Htq L0

`pHr,Hrq

L0
`pXt,Xtq L0

`pXr,Xrq

Bt:r

θ‹t

rBt:r

θ‹r

Fig. 3 Commutative diagram for Bellman operators in case of a compatible state reduction pθr, θt, fr:tq

3.2 State Reduction on Multiple Consecutive Time Blocks and Dynamic Programming Equations

Proposition 1 can easily be extended to the case of multiple consecutive time blocks rti, ti`1s, i “
0, . . . , N ´ 1, where

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . (16)

Definition 2 Let tpXti ,Xtiqui“0,...,N be a family of measurable state spaces, tθtiui“0,...,N be a family

of measurable reduction mappings θti : Hti Ñ Xti , and
 

fti:ti`1

(

i“0,...,N´1
be a family of measurable

dynamics fti:ti`1
: Xti ˆHti`1:ti`1

Ñ Xti`1
.

The triplet ptXtiui“0,...,N , tθtiui“0,...,N ,
 

fti:ti`1

(

i“0,...,N´1
q is called a state reduction across the con-

secutive time blocks rti, ti`1s, i “ 0, . . . , N ´ 1 if every triplet pθti , θti`1 , fti:ti`1q is a state reduction, for
i “ 0, . . . , N ´ 1.

The state reduction across the consecutive time blocks rti, ti`1s is said to be compatible with the
family tρs´1:su1ďsďT of stochastic kernels given in (3) if every triplet pθti , θti`1

, fti:ti`1
q is compatible

with the family tρs´1:suti`1ďsďti`1
, for i “ 0, . . . , N ´ 1.

8



Assuming the existence of a state reduction across the consecutive time blocks rti, ti`1s compatible
with the family of stochastic kernels (3), we obtain the existence of a family of reduced Bellman operators
across the consecutive pti`1 : tiq as an immediate consequence of multiple applications of Proposition 1,
that is,

rBti`1:ti : L0
`pXti`1

,Xti`1
q Ñ L0

`pXti ,Xtiq , i “ 0, . . . , N ´ 1 ,

such that, for any function rϕti`1
P L0

`pXti`1
,Xti`1

q, we have that

`

rBti`1:ti rϕti`1

˘

˝ θti “ Bti`1:tiprϕti`1 ˝ θti`1q .

We now consider the family of optimization problems (5) and the associated value functions (6).
Thanks to the state reductions, we are able to state the following theorem which establishes dynamic
programming equations across consecutive time blocks. Its proof is an immediate consequence of multiple
applications of Theorem 1 and Proposition 1.

Theorem 2 Suppose that a state reduction ptXtiui“0,...,N , tθtiui“0,...,N ,
 

fti:ti`1

(

i“0,...,N´1
q exists across

the consecutive time blocks rti, ti`1s, i “ 0, . . . , N ´ 1 as in (16), that is compatible with the fam-
ily tρs´1:su1ďsďT of stochastic kernels given in (3).

Assume that there exists a reduced criterion

rj : XT Ñ r0,`8s ,

such that the cost function j in (4) can be factored as

j “ rj ˝ θtN .

We define the family of reduced value functions trVtiui“0,...,N by

rVtN “ rj , (18a)

rVti “
rBti`1:ti

rVti`1 , for i “ N ´ 1, . . . , 0 . (18b)

Then, the family tVtiui“0,...,N in (6) satisfies

Vti “
rVti ˝ θti , i “ 0, . . . , N . (18c)

To obtain such a dynamic programming equation across time blocks, we needed the detour of Sect. 2,
with a dynamic programming equation over the history space. Thus equipped, it is now possible to pro-
pose a decomposition scheme for optimization problems with multiple time scales, using both stochastic
programming and stochastic dynamic programming. We detail applications of this scheme in Sect. 4.

4 Applications of Time Blocks Dynamic Programming

We present in this section two applications of the state reduction result stated in Theorem 2.
The first one corresponds to a two time-scales optimization problem. A typical instance of such

a problem is to optimize long-term investment decisions (slow time-scale) — for example the renewal
of batteries in an energy system — but the optimal long-term decisions highly depend on short-term
operating decisions (fast time-scale) — for example the way the battery is operated in real-time.

The second application corresponds to a class of stochastic multistage optimization problems arising
often in practice, especially when managing stocks (dams for instance). The decision-maker takes two
decisions at each time step t: at the beginning of the time interval rt, t`1r, the first decision (quantity of
water to be turbinated to produce electricity for instance) is taken without knowing the uncertainty that
will occur during the time step (decision-hazard framework); at the end of the time interval rt, t ` 1r,
an uncertainty variable wt`1 is produced and the second decision (quantity of water to be released to
avoid dam overflow for instance) is taken once the uncertainty at time step t is revealed (hazard-decision
framework). This new class of problems is called decison-hazard-decision optimization problems.
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4.1 Two Time-Scales Multistage Optimization Problems

In this class of problems, each time index t is represented by a couple pd,mq of indices, with d P
t0, . . . , D ` 1u and m P t0, . . . ,Mu: we can think of the index d as an index of days (slow time-scale),
and m as an index of minutes (fast time-scale). The corresponding set of time indices is thus

T “ t0, . . . , Du ˆ t0, . . . ,Mu Y tpD ` 1, 0qu . (19)

At the end of every minute m´1 of every day d, that is, at the end of the time interval
“

pd,m´1q, pd,mq
˘

,
0 ď d ď D and 1 ď m ď M , an uncertainty variable wd,m becomes available. Then, at the beginning
of the minute m, a decision-maker takes a decision ud,m. Moreover, at the beginning of every day d, an
uncertainty variable wd,0 is produced, followed by a decision ud,0. The interplay between uncertainties
and decision is thus as follows (compare the chronology with the one in (2)):

w0,0 ù u0,0 ù w0,1 ù u0,1 ù ¨ ¨ ¨

¨ ¨ ¨ ù w0,M´1 ù u0,M´1 ù w0,M ù u0,M ù w1,0 ù u1,0 ù w1,1 ¨ ¨ ¨

¨ ¨ ¨ ù wD,M ù uD,M ù wD`1,0 .

We assume that a state reduction (as in Definition 2) is available at the beginning of each day d, so that
it becomes possible to write dynamic programming equations by time blocks as stated by Theorem 2.
Such state reductions will be for example available when the noises of the different days are stochastically
independent.

We present the mathematical formalism to handle such type of problems. In this application, the
difficulty to apply Theorem 2 is mainly notational.

Time Span. We consider the set T equipped with the lexicographical order

p0, 0q ă p0, 1q ă ¨ ¨ ¨ ă pd,Mq ă pd` 1, 0q ă ¨ ¨ ¨ ă pD,M ´ 1q ă pD,Mq ă pD ` 1, 0q . (20a)

The set T of couples in (19) is in one to one correspondence with the (linear) time span t0, . . . , T u, where

T “ pD ` 1q ˆ pM ` 1q ` 1 , (20b)

by the lexicographic mapping τ

τ : t0, . . . , T u Ñ T (20c)

t ÞÑ τptq “ pd,mq . (20d)

In the sequel, we will denote by pd,mq P T the element of t0, . . . , T u given by τ´1pd,mq “ dˆpM`1q`m:

T Q pd,mq Ø τ´1pd,mq “ dˆ pM ` 1q `m P t0, . . . , T u . (20e)

For pd,mq ď pd1,m1q, as ordered by the lexicographical order (20a), we introduce the time interval
ppd,mq :pd1,m1qq “ tpd2,m2q P T | pd,mq ď pd2,m2q ď pd1,m1qu.

History Spaces. For all pd,mq P t0, . . . , Duˆt0, . . . ,Mu, the decision ud,m takes its values in a measurable
set Ud,m equipped with a σ-field Ud,m. For all pd,mq P t0, . . . , Du ˆ t0, . . . ,Mu Y tpD ` 1, 0qu, the
uncertainty wd,m takes its values in a measurable set Wd,m equipped with a σ-field Wd,m.

With the identification (20e), for all pd,mq P T, we define the history space Hpd,mq
Hpd,mq “W0,0 ˆ U0,0 ˆW0,1 ˆ ¨ ¨ ¨ ˆ Ud,m´1 ˆWd,m , (21a)

equipped with the history field Hpd,mq as in (1). For all d P t0, . . . , D ` 1u, we define the slow scale
history hd element of the slow scale history space Hd

hd “ hpd,0q P Hd “ Hpd,0q , (21b)

equipped with the slow scale history field Hd “ Hpd,0q. For all d P t1, . . . , Du, we define the slow scale
partial history space Hd:d`1

Hd:d`1 “ Hpd,1q:pd`1,0q “ Ud,0 ˆWd,1 ˆ ¨ ¨ ¨ ˆ Ud,M´1 ˆWd,M ˆ Ud,M ˆWd`1,0 , (21c)

equipped with the associated slow scale partial history field Hd:d`1, the case d “ 0 being

H0:1 “ Hp1,0q “W0,0 ˆ U0,0 ˆW0,1 ˆ ¨ ¨ ¨ ˆ U0,M´1 ˆW0,M ˆ U0,M ˆW1,0 . (21d)
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Stochastic Kernels. Because of the jump from one day to the next, we introduce two families of stochastic
kernels2:

– a family
 

ρpd,Mq:pd`1,0q

(

0ďdďD
of stochastic kernels across consecutive slow scale steps

ρpd,Mq:pd`1,0q : Hpd,Mq Ñ ∆pWd`1,0q , d “ 0, . . . , D , (22a)

– a family
 

ρpd,m´1q:pd,mq

(

0ďdďD,1ďmďM
of stochastic kernels within consecutive slow scale steps

ρpd,m´1q:pd,mq : Hpd,m´1q Ñ ∆pWd,mq , d “ 0, . . . , D , m “ 1, . . . ,M . (22b)

History Feedbacks. A history feedback at index pd,mq P T is a measurable mapping

γpd,mq : Hpd,mq Ñ Upd,mq .

For pd,mq ď pd1,m1q, as ordered by the lexicographical order (20a), we denote by Γpd,mq:pd1,m1q the set of
ppd,mq :pd1,m1qq-history feedbacks.

Slow Scale Value Functions. We suppose given a nonnegative numerical function

j : HD`1 Ñ r0,`8s , (23)

assumed to be measurable with respect to the field HD`1 associated to HD`1.

For d “ 0, . . . , D, we build the new stochastic kernels ργ
pd,0q:pD`1,0q : Hd Ñ ∆pHD`1q (see Definition 5

in §A.2 for their construction), and we define the slow scale value functions

Vdphdq “ inf
γPΓpd,0q:pD,Mq

ż

HD`1

jph1D`1qρ
γ
pd,0q:pD`1,0qphd,dh

1
D`1q , @hd P Hd , (24a)

VD`1 “ j . (24b)

For d “ 0, . . . , D, we define a family of slow scale Bellman operators across pd` 1:dq

Bd`1:d : L0
`pHd`1,Hd`1q Ñ L0

`pHd,Hdq , d “ 0, . . . , D , (25a)

by

Bd`1:d “ Bpd`1,0q:pd,0q “ Bpd`1,0q:pd,Mq ˝ Bpd,Mq:pd,M´1q ˝ . . . ˝ Bpd,1q:pd,0q . (25b)

Then, applying repeatedly Theorem 1 leads to the fact that the family tVdud“0,...,D`1 of slow scale value
functions (24) satisfies

VD`1 “ j , (26a)

Vd “ Bd`1:dVd`1 , for d “ D,D ´ 1, . . . , 0 . (26b)

2 These families are defined over the time span t0, . . . , T u ” T by the identification (20e) in such a way that the notation
is consistent with the notation (3).
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Compatible State Reductions. We now rewrite Definition 2 in the context of the two time-scales problem.

Definition 3 (Compatible slow scale reduction) Let tpXd,Xdqud“0,...,D`1 be a family of measurable
state spaces, tθdud“0,...,D`1 be family of measurable reduction mappings such that

θd : Hd Ñ Xd ,

and tfd:d`1ud“0,...,D be a family of measurable dynamics such that

fd:d`1 : Xd ˆHd:d`1 Ñ Xd`1 .

The triplet
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

is said to be a slow scale state reduction
if for all d “ 0, . . . , D

θd`1

`

phd, hd:d`1q
˘

“ fd:d`1

`

θdphdq, hd:d`1

˘

, @phd, hd:d`1q P Hd`1 .

The slow scale state reduction
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

is said to be compat-

ible with the two families
 

ρpd,Mq:pd`1,0q

(

0ďdďD
and

 

ρpd,m´1q:pd,mq

(

0ďdďD,1ďmďM
of stochastic kernels

defined in (22a)–(22b) if for any d “ 0, . . . , D, we have that

– there exists a reduced stochastic kernel

rρpd,Mq:pd`1,0q : Xd ˆHpd,0q:pd,Mq Ñ ∆pWd`1,0q ,

such that the stochastic kernel ρpd,Mq:pd`1,0q in (22a) can be factored as

ρpd,Mq:pd`1,0qphd,M ,dwd`1,0q “ rρpd,Mq:pd`1,0q

`

θdphdq, hpd,0q:pd,Mq,dwd`1,0

˘

, @hd,M P Hpd,Mq ,

– for each m “ 1, . . . ,M , there exists a reduced stochastic kernel

rρpd,m´1q:pd,mq : Xd ˆHpd,0q:pd,m´1q Ñ ∆pWd,mq ,

such that the stochastic kernel ρpd,m´1q:pd,mq in (22b) can be factored as

ρpd,m´1q:pd,mqphd,m´1,dwd,mq “ rρpd,m´1q:pd,mq

`

θdphdq, hpd,0q:pd,m´1q,dwd,m
˘

, @hd,m´1 P Hpd,m´1q .

Dynamic Programming Equations. Using the reduced stochastic kernels of Definition 3, we apply Propo-
sition 1 and obtain a family of slow scale reduced Bellman operators across pd` 1:dq

rBd`1:d : L0
`pXd`1,Xd`1q Ñ L0

`pXd,Xdq , d “ 0, . . . , D . (29)

We are now able to state the main result of this section.

Theorem 3 Assume that there exists a compatible slow scale state reduction
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

and that there exists a reduced criterion

rj : XD`1 Ñ r0,`8s ,

such that the cost function j in (23) can be factored as

j “ rj ˝ θD`1 .

We define the family of reduced value functions trVdud“0,...,D`1 by

rVD`1 “ rj , (31a)

rVd “ rBd`1:d
rVd`1 , for d “ D, . . . , 0 . (31b)

Then, the family tVdud“0,...,D`1 of slow scale value functions (24) satisfies

Vd “ rVd ˝ θd , d “ 0, . . . , D . (31c)
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Proof Since the triplet ptXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,Dq is a state reduction across the

time blocks rpd, 0q, pd`1, 0qs, which is compatible with the family
 

ρpd,0q:pd`1,0q

(

0ďdďD
of stochastic

kernels, the proof is an immediate consequence of Theorem 2.

Thanks to Theorem 3, we are able to replace the optimization problem formulated on the whole time
set T by a sequence ofD optimization subproblems formulated each on a single time block rpd, 0q, pd̀ 1, 0qs.
Moreover, the numerical burden of the method remains reasonable provided that the dimensions of the
spaces Xd remain small, thus avoiding the curse of dimensionality. This is the benefit induced by dynamic
programming which makes possible a time decomposition of the problem. However, to make the method
operational, we need to compute the functions rVd, whose expression is available thanks to Proposition 1:

rVdpxdq “ inf
ud,0PUd,0

ż

Wd,1

rρpd,0q:pd,1qpxd,dwd,1q . . .

inf
ud,M´1PUd,M´1

ż

Wd,M

rρpd,M´1q:pd,Mqpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M´1,dwd,M q

inf
ud,MPUd,M

ż

Wd`1,0

rVd`1

`

rfd:d`1pxd, ud,0, wd,1, ¨ ¨ ¨ , ud,M´1, wd,M , ud,M , wd`1,0q
˘

rρpd,Mq:pd`1,0qpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M ,dwd`1,0q . (32)

In many practical situations, this computation is tractable by using stochastic programming. For example,
if the stochastic kernels rρpd,mq:pd,m`1q do not depend on the past controls pud,0, ¨ ¨ ¨ , ud,m´1q, then it is
possible to approximate the optimization problem (32) by using scenario tree techniques. Note that these
last techniques do not require stagewise independence of the noises. We are thus able to take advantage
of both the dynamic programming world and the stochastic programming world:

– use dynamic programming at slow time scale across consecutive slow time steps, when the slow time
scale noises are supposed to be stochastically independent; produce slow time scale Bellman functions;

– use stochastic programming at short time scale, within two consecutive slow time steps; the final
short time scale cost is given by the slow time scale Bellman functions; no stagewise independence
assumption is required for the short time scale noises.

4.2 Decision-Hazard-Decision Optimization Problems

We apply the reduction by time blocks to the so-called decision-hazard-decision dynamic programming.

4.2.1 Motivation for the Decision-Hazard-Decision Framework

We illustrate our motivation with a single dam management problem. We can model the dynamics of
the water volume in a dam by

St`1 “ mintS7, St ´ qt ` at`1u , (33)

where t “ t0, t0 ` 1, . . . , T ´ 1 and

– S7 is the maximal dam volume,
– St is the volume (stock) of water at the beginning of period rt, t` 1r,
– at`1 is the inflow water volume (rain, etc.) during rt, t` 1r,
– qt is the turbined outflow volume during rt, t` 1r (control variable),

– decided at the beginning of period rt, t` 1r,
– chosen such that 0 ď qt ď St,
– supposed to depend on the stock St but not on the inflow water at`1.

The min operation in Equation (33) ensures that the dam volume always remains below its maximal
capacity, but induces a non linearity in the dynamics.

Alternatively, we can model the dynamics of the water volume in a dam by

St`1 “ St ´ qt ´ at`1 ´ rt`1 , (34)

where t “ t0, t0 ` 1, . . . , T ´ 1 and
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– rt`1 is the spilled volume
– decided at the end of period rt, t` 1r,
– supposed to depend on the stock St and on the inflow water at`1,
– and chosen such that 0 ď St ´ qt ` at`1 ´ rt`1 ď S7.

Thus, with the formulation (34), we pay the price to add one control rt`1, but we obtain a linear model
instead of the nonlinear model (33). This is especially interesting when using the stochastic dual dynamic
programming (SDDP), for which the linearity of the dynamics is used to obtain the convexity properties
required by the algorithm.

4.2.2 Decision-Hazard-Decision Framework

We consider stochastic optimization problems where, during the time interval between two time steps,
the decision-maker takes two decisions. At the end of the time interval rs ´ 1, sr, an uncertainty vari-
able w5s is produced, and then, at the beginning of the time interval rs, s` 1r, the decision-maker takes
a head decision u7s. What is new is that, at the end of the time interval rs, s ` 1r, when an uncertainty
variable w5s`1 is produced, the decision-maker has the possibility to make a tail decision u5s`1. This lat-

ter decision u5s`1 can be thought as a recourse variable for a two stage stochastic optimization problem

that would take place inside the time interval rs, s ` 1r. We call w70 the uncertainty happening right
before the first decision. The interplay between uncertainties and decisions is thus as follows (compare
the chronology with the one in (2)):

w70 ù u70 ù w51 ù u51 ù u71 ù w52 ù . . . ù w5S´1 ù u5S´1 ù u7S´1 ù w5S ù u5S .

Let S P N˚. For each time s “ 0, 1, 2 . . . , S ´ 1, the head decision u7s takes values in a measurable
set U7s, equipped with a σ-field U7s. For each time s “ 1, 2 . . . , S, the tail decision u5s takes values in
measurable set U5s, equipped with a σ-field U5s. For each time s “ 1, 2 . . . , S, the uncertainty w5s takes its

values in a measurable set W5
s, equipped with a σ-field W5

s. For time s “ 0, the uncertainty w70 takes its

values in a measurable set W7
0, equipped with a σ-field W

7
0.

Again, in this application, the difficulty to apply Theorem 2 is mainly notational.

History Spaces. For s “ 0, 1, 2 . . . , S, we define the head history space

H7s “W7
0 ˆ

s´1
ź

s1“0

`

U7s1 ˆW5
s1`1 ˆ U5s1`1

˘

, (35a)

and its associated head history field H7
s. We also define, for s “ 1, 2 . . . , S, the tail history space

H5s “ H7s´1 ˆ U7s´1 ˆW5
s , (35b)

and its associated tail history field H5
s.

Stochastic Kernels. We introduce a family of stochastic kernels tρs´1:su1ďsďS , with

ρs´1:s : H7s´1 Ñ ∆pW5
sq . (36)

History Feedbacks. For s “ 0, . . . , S ´ 1, a head history feedback at time s is a measurable mapping

γ7s : H7s Ñ U7s .

We call Γ 7s the set of head history feedbacks at time s, and we define Γ 7s:S “ Γ 7s ˆ¨ ¨ ¨ˆΓ
7

S . We also define,
for all s “ 1, 2 . . . , S, a tail history feedback at time s as a measurable mapping

γ5s : H5s Ñ U5s .

We call Γ 5s the set of tail history feedbacks at time s, and we define Γ 5s:S “ Γ 5s ˆ ¨ ¨ ¨ ˆ Γ
5
S .
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Value Functions. We consider a nonnegative numerical function

j : H7S Ñ r0,`8s , (38)

assumed to be measurable with respect to the head history field H
7

S .
For s “ 0, . . . , S , we define value functions by

Vsph
7
sq “ inf

γ7PΓ 7s:S´1,γ
5PΓ 7s`1:S

ż

H7S
jph1Sqρ

γ7,γ5

s:S ph7s,dh
1
Sq , @h

7
s P H7s , (39)

where ργ
7,γ5

s:S has to be understood as ργs:S (see Definition 5), with

γsph
7
sq “ γ7sph

7
sq , @h

7
s P H7s , (40a)

γs1ph
5
s1q “

´

γ5s1ph
5
s1q, γ

7

s1

`

h5s1 , γ
5
s1ph

5
s1q

˘

¯

, @s1 “ s` 1, . . . , S ´ 1 , @h5s1 P H5s1 , (40b)

γSph
5
Sq “ γ5Sph

5
Sq , @h

5
S P H5S . (40c)

The following proposition, whose proof has been relegated in A.3.3, characterizes the dynamic pro-
gramming equations in the decision-hazard-decision framework.

Proposition 2 For s “ 0, . . . , S ´ 1, we define the Bellman operator

Bs`1:s : L0
`pH

7
s`1,H

7
s`1q Ñ L0

`pH7s,H7
sq (41a)

such that, for all ϕ P L0
`pH

7
s`1,H

7
s`1q and for all h7s P H7s,

`

Bs`1:sϕ
˘

ph7sq “ inf
u7sPU7s

ż

W5s`1

´

inf
u5s`1PU5s`1

ϕph7s, u
7
s, w

5
s`1, u

5
s`1q

¯

ρs:s`1ph
7
s, dw

5
s`1q . (41b)

Then the value functions (39) satisfy

VS “ j , (41c)

Vs “ Bs`1:sVs`1 , @s “ 0, . . . , S ´ 1 . (41d)

Compatible State Reductions. We now rewrite Definition 2 in the context of a decision-hazard-decision
problem.

Definition 4 (Compatible state reduction) Let tXsus“0,...,S be a family of state spaces, tθsus“0,...,S

be a family of measurable reduction mappings such that

θs : H7s Ñ Xs ,

and tfs:s`1us“0,...,S´1 be a family of measurable dynamics such that

fs:s`1 : Xs ˆ U7s ˆWs`1 ˆ U5s`1 Ñ Xs`1 .

The triplet
`

tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘

is said to be a decision-hazard-decision state
reduction if, for all s “ 0, . . . , S ´ 1, we have that

θs`1

`

phs, u
7
s, ws`1, u

5
s`1q

˘

“ fs:s`1

`

θsphsq, u
7
s, ws`1, u

5
s`1

˘

,

@phs, u
7
s, ws`1, u

5
s`1q P H7s ˆ U7s ˆWs`1 ˆ U5s`1 .

The decision-hazard-decision state reduction is said to be compatible with the family tρs:s`1u0ďsďS´1 of
stochastic kernels in (36) if there exists a family trρs:s`1u0ďsďS´1 of reduced stochastic kernels

rρs:s`1 : Xs Ñ ∆pWs`1q ,

such that, for each s “ 0, . . . , S ´ 1, the stochastic kernel ρs:s`1 in (36) can be factored as

ρs:s`1ph
7
s,dws`1q “ rρs:s`1

`

θsph
7
sq,dws`1

˘

, @h7s P H7s .
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Dynamic Programming Equations. We state the main result of this section.

Theorem 4 Assume that there exists a decision-hazard-decision state reduction
`

tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘

and that there exists a reduced criterion

rj : XS Ñ r0,`8s ,

such that the cost function j in (38) can be factored as

j “ rj ˝ θS .

We define a family of reduced Bellman operators across ps` 1:sq

rBs`1:s : L0
`pXs`1,Xs`1q Ñ L0

`pXs,Xsq , s “ 1, . . . , S ´ 1 , (45a)

by, for any measurable function rϕ : Xs`1 Ñ r0,`8s,

p rBs`1:s rϕqpxsq “ inf
u7sPU7s

ż

Ws`1

´

inf
u5s`1PU5s`1

rϕ
`

fs:s`1pxs, u
7
s, ws`1, u

5
s`1q

˘

¯

rρs:s`1pxs, dws`1q . (45b)

*We define the family of reduced value functions trVsus“0,...,S by

rVS “ rj (46a)

rVs “ rBs`1:s
rVs`1 for s “ S ´ 1, . . . , 0 . (46b)

Then, the value functions Vs defined by (39) satisfy

Vs “ rVs ˝ θs , s “ 0, . . . , S . (47)

Proof It has been shown in the proof of Proposition 2 that the setting of a decision-hazard-decision
problem was a particular kind of two time-scales problem. The proof of the theorem is then a direct
application of Theorem 3.

Theorem 4 allows to develop dynamic programming equations in the decision-hazard-decision frame-
work. Such equations can be solved using the stochastic dual dynamic programming (SDDP) algorithm
provided that convexity of the value functions is preserved. This requires linearity in the dynamics, a
feature that may be recovered by modeling the problem in the decision-hazard-decision framework as
illustrated in §4.2.1.

5 Conclusion and Perspectives

As said in the introduction, decomposition methods are appealing to tackle multistage stochastic opti-
mization problems, as they are naturally large scale. The most common approaches are time decompo-
sition (and state-based resolution methods, like stochastic dynamic programming, in stochastic optimal
control), and scenario decomposition (like progressive hedging in stochastic programming). One also finds
space decomposition methods [1].

This paper is part of a general research program that consists in mixing different decomposition
bricks. Here, we tackled the issue of mixing time decomposition (stochastic dynamic programming) with
scenario decomposition. For this purpose, we have revisited the notion of state, and have provided a
way to perform time decomposition but only accross specified time blocks. Inside a time block, one can
then use stochastic programming methods, like scenario decomposition. Our time blocks decomposition
scheme is especially adapted to multi time-scales stochastic optimization problems. In this vein, we have
shown its application to two time-scales and to the novel class of decision-hazard-decision problems.

We are currently working on how to mix time decomposition (stochastic dynamic programming) with
space/units decomposition.

Acknowledgements. We thank Roger Wets for the fruitful discussions about the possibility of
mixing stochastic dynamic programming with progressive hedging. We thank an anonymous reviewer for
challenging our first version of the paper: the current version has been deeply restructured.
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A Technical Details and Proofs

In this section, we provide technical details, constructions and proofs of results in the paper.

A.1 Histories, Feedbacks and Flows

We introduce the notations

Wr:t “

t
ź

s“r

Ws , 0 ď r ď t ď T (48a)

Ur:t “
t
ź

s“r

Us , 0 ď r ď t ď T ´ 1 (48b)

Hr:t “
t´1
ź

s“r´1

pUs ˆWs`1q “ Ur´1 ˆWr ˆ ¨ ¨ ¨ ˆ Ut´1 ˆWt , 1 ď r ď t ď T . (48c)

Let 0 ď r ď s ď t ď T . From a history ht P Ht, we can extract the pr :sq-history uncertainty part

rhts
W
r:s “ pwr, . . . , wsq “ wr:s PWr:s , 0 ď r ď s ď t , (49a)

the pr :sq-history control part (notice that the indices are special)

rhts
U
r:s “ pur´1, . . . , us´1q “ ur´1:s´1 P Ur´1:s´1 , 1 ď r ď s ď t , (49b)

and the pr :sq-history subpart

rhtsr:s “ pur´1, wr, . . . , us´1, wsq “ hr:s P Hr:s , 1 ď r ď s ď t , (49c)

so that we obtain, for 0 ď r ` 1 ď s ď t,

ht “ pw0, u0, w1, . . . , ur´1, wr
loooooooooooooooomoooooooooooooooon

hr

, ur, wr`1, . . . , ut´2, wt´1, ut´1, wt
looooooooooooooooooooooomooooooooooooooooooooooon

hr`1:t

q “ phr, hr`1:tq . (49d)

Flows. Let r and t be given such that 0 ď r ă t ď T . For a pr : t´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1, we

define the flow Φγr:t by

Φγr:t : Hr ˆWr`1:t Ñ Ht (50a)

phr, wr`1:tq ÞÑ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, ¨ ¨ ¨ , γt´1pht´1q, wtq , (50b)

that is,

Φγr:tphr, wr`1:tq “ phr, ur, wr`1, ur`1, wr`2, . . . , ut´1, wtq , (50c)

with hs “ phr, ur, wr`1, . . . , us´1, wsq , r ă s ď t , (50d)

and us “ γsphsq , r ă s ď t´ 1 . (50e)

When 0 ď r “ t ď T , we put

Φγr:r : Hr Ñ Hr , hr ÞÑ hr . (50f)

With this convention, the expression Φγr:t makes sense when 0 ď r ď t ď T : when r “ t, no pr : r ´ 1q-history feedback
exists, but none is needed. The mapping Φγr:t gives the history at time t as a function of the initial history hr at time r
and of the history feedbacks tγsus“r,...,t´1 P Γr:t´1. An immediate consequence of this definition are the flow properties:

Φγr:t`1phr, wr`1:t`1q “

´

Φγr:tphr, wr`1:tq, γt
`

Φγr:tphr, wr`1:tq
˘

, wt`1

¯

, 0 ď r ď t ď T ´ 1 , (51a)

Φγr:tphr, wr`1:tq “ Φγr`1:t

`

phr, γrphrq, wr`1q, wr`2:t

˘

, 0 ď r ă t ď T . (51b)
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A.2 Building Stochastic Kernels from History Feedbacks

Definition 5 Let r and t be given such that 0 ď r ď t ď T .

– When 0 ď r ă t ď T , for
1. a pr : t´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1,

2. a family tρs´1:sur`1ďsďt of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ r ` 1, . . . , t ,

we define a stochastic kernel
ργr:t : Hr Ñ ∆pHtq (52a)

by, for any ϕ : Ht Ñ r0,`8s, measurable nonnegative numerical function, that is, ϕ P L0
`pHt,Htq, 3

ż

Ht

ϕph1r, h
1
r`1:tqρ

γ
r:tphr, dh

1
tq “

ż

Wr`1:t

ϕ
`

Φγr:tphr, wr`1:tq
˘

t
ź

s“r`1

ρs´1:s

`

Φγr:s´1phr, wr`1:s´1q, dws
˘

. (52b)

– When 0 ď r “ t ď T , we define

ργr:r : Hr Ñ ∆pHrq , ργr:rphr, dh1rq “ δhr pdh
1
rq . (52c)

The stochastic kernels ργr:t on Ht, given by (52), are of the form

ργr:tphr, dh
1
tq “ ργr:tphr, dh

1
rdh

1
r`1:tq “ δhr pdh

1
rq b %

γ
r:tphr, dh

1
r`1:tq , (53)

where, for each hr P Hr, the probability distribution %γr:tphr,dh
1
r`1:tq only charges the histories visited by the flow from r`1

to t. The construction of the stochastic kernels ργr:t is developed in [3, p. 190] for relaxed history feedbacks and obtained
by using [3, Proposition 7.45].

Proposition 3 Following Definition 5, we can define a family
 

ργs:t
(

rďsďt
of stochastic kernels. This family has the flow

property, that is, for s ă t,

ργs:tphs, dh
1
tq “

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ργs`1:t

´

`

hs, γsphsq, ws`1

˘

,dh1t

¯

. (54)

Proof Let s ă t. For any ϕ : Ht Ñ r0,`8s, we have that
ż

Ht

ϕph1s, h
1
s`1:tqρ

γ
s:tphs,dh

1
tq (55a)

“

ż

Ws`1:t

ϕ
`

Φγs:tphs, ws`1:tq
˘

t
ź

s1“s`1

ρs1´1:s1
`

Φγ
s:s1´1

phs, ws`1:s1´1q, dws1
˘

by the definition (52b) of the stochastic kernel ργs:t,

“

ż

Ws`1:t

ϕ
`

Φγs:tphs, ws`1:tq
˘

ρs:s`1

`

hs,dws`1

˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s:s1´1

phs, ws`1:s1´1q,dws1
˘

by the property (50f) of the flow Φγs:s,

“

ż

Ws`1:t

ϕ
`

Φγs`1:t

`

phs, γsphsq, ws`1q, ws`2:t

˘˘

ρs:s`1

`

hs, dws`1

˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s`1:s1´1

`

phs, γsphsq, ws`1q, ws`2:s1´1

˘

, dws1
˘

by the flow property (51b),

“

ż

Ws`1

ρs:s`1

`

hs,dws`1

˘

ż

Ws`2:t

ϕ
`

Φγs`1:t

`

phs, γsphsq, ws`1q, ws`2:t

˘˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s`1:s1´1

`

phs, γsphsq, ws`1q, ws`2:s1´1

˘

, dws1
˘

3 See Footnote 1.
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by Fubini Theorem [7, p.137],

“

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ż

Ht

ϕ
`

ph1s, γsph
1
sq, w

1
s`1q, h

1
s`2:t

˘

ργs`1:t

`

phs, γsphsq, ws`1q, dh
1
t

˘

by definition (52b) of ργs`1:t,

“

ż

Ht

ϕ
`

ph1s, γsph
1
sq, w

1
s`1q, h

1
s`2:t

˘

ż

Ws`1

ρs:s`1

`

hs,dws`1

˘

ργs`1:t

`

phs, γsphsq, ws`1q,dh
1
t

˘

(55b)

by Fubini Theorem and by definition (52b) of ργs:t. As the two expressions (55a) and (55b) are equal for any ϕ : Ht Ñ r0,`8s,
we deduce the flow property (54). This ends the proof.

A.3 Proofs

A.3.1 Proof of Theorem 1

Proof We only give a sketch of the proof, as it is a variation on different results of [3], the framework of which we follow.

We take the history space Ht for state space, and the state dynamics

f
`

ht, ut, wt`1

˘

“
`

ht, ut, wt`1

˘

“ ht`1 P Ht`1 “ Ht ˆ Ut ˆWt`1 . (56)

Then, the family tρs´1:su1ďsďT of stochastic kernels (3) gives a family of disturbance kernels that do not depend on the
current control. The criterion to be minimized (4) is a function of the history at time T , thus of the state at time T .
Problem (5) is thus a finite horizon model with a final cost and we are minimizing over the so-called state-feedbacks. Then,
the proof of Theorem 1 follows from the results developed in Chap. 7, 8 and 10 of [3] in a Borel setting. Since we are
considering a finite horizon model with a final cost, we detail the steps needed to use the results of [3, Chap. 8].

The final cost at time T can be turned into an instantaneous cost at time T ´ 1 by inserting the state dynamics (56)
in the final cost. Getting rid of the disturbance in the expected cost by using the disturbance kernel is standard practice.
Then, we can turn this non-homogeneous finite horizon model into a finite horizon model with homogeneous dynamics
and costs by following the steps of [3, Chap. 10]. Using [3, Proposition 8.2], we obtain that the family of optimization
problems (5), when minimizing over the relaxed state feedbacks, satisfies the Bellman equation (8); we conclude with [3,
Proposition 8.4] which covers the minimization over state feedbacks.

To summarize, Theorem 1 is valid under the general Borel assumptions of [3, Chap. 8] and with the specific pF´q
assumption needed for [3, Proposition 8.4]; this last assumption is fulfilled here since we have assumed that the criterion (4)
is nonnegative.

A.3.2 Proof of Proposition 1

Proof Let rϕt : Xt Ñ r0,`8s be a given measurable nonnegative numerical function, and let ϕt : Ht Ñ r0,`8s be

ϕt “ rϕt ˝ θt . (57)

Let ϕr : Hr Ñ r0,`8s be the measurable nonnegative numerical function obtained by applying the Bellman operator Bt:r
across pt :rq (see (12)) to the measurable nonnegative numerical function ϕt:

ϕr “ Bt:rϕt “ Br`1:r ˝ ¨ ¨ ¨ ˝ Bt:t´1ϕt . (58)

We will show that there exists a measurable nonnegative numerical function

rϕr : Xr Ñ r0,`8s

such that

ϕr “ rϕr ˝ θr . (59)

First, we show by backward induction that, for all s P tr, . . . , tu, there exists a measurable nonnegative numerical
function ϕs such that ϕsphsq “ ϕspθrphrq, hr`1:sq. Second, we prove that the function rϕr “ ϕr satisfies (59).

– For s “ t, we have, by (57) and by (10c), that

ϕtphtq “ rϕt
`

θtphtq
˘

“ rϕt
`

fr:tpθrphrq, hr`1:tq
˘

,

so that the measurable nonnegative numerical function ϕt is given by rϕt ˝ fr:t.
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– Assume that, at s` 1, the result holds true, that is,

ϕs`1phs`1q “ ϕs`1pθrphrq, hr`1:s`1q . (60)

Then, by (58),

ϕsphsq “
`

Bs`1:sϕs`1

˘

phsq

“ inf
usPUs

ż

Ws`1

ϕs`1

`

phs, us, ws`1q
˘

ρs:s`1phs, dws`1q

by definition (7) of the Bellman operator

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pθrphrq, phr`1:s, us, ws`1qq
˘

ρs:s`1phs, dws`1q

by induction assumption (60)

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pθrphrq, phr`1:s, us, ws`1qq
˘

rρs:s`1

`

pθrphrq, hr`1:sq, dws`1

˘

by compatibility (11) of the stochastic kernel

“ ϕs
`

θrphrq, hr`1:s

˘

,

where

ϕs
`

xr, hr`1:s

˘

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pxr, phr`1:s, us, ws`1qq
˘

rρs:s`1

`

pxr, hr`1:sq, dws`1

˘

.

The result thus holds true at time s.

The induction implies that, at time r, the expression of ϕrphrq is

ϕrphrq “ ϕr
`

θrphrq
˘

,

since the term hr`1:r vanishes. Choosing rϕr “ ϕr gives the expected result.

A.3.3 Proof of Proposition 2

Proof We now show that the setting in §4.2 is a particular kind of two time scales problem as seen in §4.1. For this purpose,

we introduce a spurious uncertainty variable w7s taking values in a singleton set W7s “ tw7su, equipped with the trivial

σ-field tH,W7su, for each time s “ 1, 2 . . . , S. Now, we obtain the following sequence of events:

w70 ù u70 ù w51 ù u51 ù w71 ù u71 ù w52 ù u52 ù w72 ù u72 ù . . .

ù w5S´1 ù u5S´1 ù w7S´1 ù u7S´1 ù w5S ù u5S ù w7S ,

which coincides with a two time scales problem:

w0,0 “ w70 ù u0,0 “ u70 ù w0,1 “ w51 ù u0,1 “ u51
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

slow time cycle

ù

w1,0 “ w71 ù u1,0 “ u71 ù w1,1 “ w52 ù u1,1 “ u52
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

slow time cycle

ù

¨ ¨ ¨ ù wS´1,0 “ w7S´1 ù uS´1,0 “ u7S´1 ù wS´1,1 “ w5S ù uS´1,1 “ u5S
loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

slow time cycle

ù wS,0 “ w7S .

We introduce the sets

Wd,0 “W7d, for d P t0, . . . , Su,

Wd,1 “W5d`1, for d P t0, . . . , S ´ 1u,

Ud,0 “ U7d, for d P t0, . . . , S ´ 1u,

Ud,1 “ U5d`1, for d P t0, . . . , S ´ 1u.

As a consequence, we observe that the two time scales history spaces in §4.1 are in one to one correspondence with the
decision-hazard-decision history spaces and fields in (35a)–(35b) as follows:
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for d “ 0, 1, 2 . . . , S,

Hd,0 “W70 ˆ
d´1
ź

d1“0

`

Ud1,0 ˆWd1,1 ˆ Ud1,1 ˆWd1`1,0

˘

“W70 ˆ
d´1
ź

d1“0

`

U7
d1
ˆW5d1`1 ˆ U5d1`1 ˆW7

d1`1

˘

”W70 ˆ
d´1
ź

d1“0

`

U7
d1
ˆW5d1`1 ˆ U5d1`1

˘

“ H7d ,

for d “ 0, 1, 2 . . . , S,

Hd,0 “W
7
0 b

d´1
â

d1“0

`

U
7

d1
bW5d1`1 b U5d1`1 bW

7

d1`1

˘

,

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “W70 ˆ
d´1
ź

d1“0

`

Ud1,0 ˆWd1,1 ˆ Ud1,1 ˆWd1`1,0

˘

ˆ Ud,0 ˆWd,1

“W70 ˆ
d´1
ź

d1“0

`

U7
d1
ˆW5d1`1 ˆ U5d1`1 ˆW7

d1`1

˘

ˆ U7d ˆW5d`1

”W70 ˆ
d´1
ź

d1“0

`

U7
d1
ˆW5d1`1 ˆ U5d1`1

˘

ˆ U7d ˆW5d`1 “ H5d`1 ,

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “W
7
0 b

d´1
â

d1“0

`

U
7

d1
bW5d1`1 b U5d1`1 bW

7

d1`1

˘

b U
7

d bW5d`1 .

For any element h of Hd,0 or Hd,1 we call
“

h
‰7

the element of H7d or H5d corresponding to h with all the spurious
uncertainties removed. By a slight abuse of notation, the criterion j in (38) (decision-hazard-decision setting) corresponds

to j ˝
“

¨
‰7

in the two time scales setting in §4.1. The feedbacks in the two time scales setting in §4.1 are in one to one
correspondence with the same elements in the decision-hazard-decision setting, namely

γd,0 “ γ7d ˝
“

¨
‰7
, γd,1 “ γ5d`1 ˝

“

¨
‰7
.

Now we define two families of stochastic kernels

– a family
 

ρpd,0q:pd,1q
(

0ďdďD
of stochastic kernels within two consecutive slow scale indexes

ρpd,0q:pd,1q : Hd,0 Ñ ∆pWd,1q ,

hd,0 ÞÑ ρd:d`1 ˝
“

¨
‰7
.

– a family
 

ρpd,1q:pd`1,0q

(

0ďdďD´1
of stochastic kernels across two consecutive slow scale indexes

ρpd,1q:pd`1,0q : Hd,1 Ñ ∆pWd`1,0q ,

hd,1 ÞÑ δ
w
7
d`1

p¨q ,

where we recall that Wd`1,0 “W7d`1 “ tw
7

d`1u.

With these notations, we obtain Equation (41b), where only one integral appears because of the Dirac in the stochastic
kernels ρpd,1q:pd`1,0q. Indeed, for any measurable function ϕ : Hd`1,0 Ñ r0,`8s, we have that

`

Bd`1:dϕ
˘

phd,0q “ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

ż

Wd`1,0

ϕ
`

hd,0, ud,0, wd,1, ud,1, wd`1,0

˘

ρpd,1q:pd`1,0q

´

hd,0, hd:d`1, dwd`1,0

¯

.
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Now, if there exists rϕ : H7d`1 Ñ r0,`8s such that ϕ “ rϕ ˝
“

¨
‰7

, we obtain that

`

Bd`1:dϕ
˘

phd,0q “ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

rϕp
“

hd,0
‰7
, ud,0, wd,1, ud,1q

ż

Wd`1,0

ρpd,1q:pd`1,0q

´

hd,0, hd:d`1, dwd`1,0

¯

“ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

rϕp
“

hd,0
‰7
, ud,0, wd,1, ud,1q

by the Dirac probability of the stochastic kernels ρpd,1q:pd`1,0q,

“ inf
u
7
d
PU7

d

ż

W5
d`1

ρpd,0q:pd,1q

´

h7d,dw
5
d`1

¯

inf
u5
d`1

PU5
d`1

rϕph7d, u
7

d, w
5
d`1, u

5
d`1q

This ends the proof.

B Dynamic Programming with Unit Time Blocks

Here, we recover the classical dynamic programming equations when a state reduction exists at each time t “ 0, . . . , T ´ 1,
with associated dynamics. Following the setting in §2.2.2, we consider a family tρt´1:tu1ďtďT of stochastic kernels as in (3)
and a measurable nonnegative numerical cost function j as in (4).

B.1 The General Case of Unit Time Blocks

First, we treat the general criterion case. We assume the existence of a family of measurable state spaces tXtut“0,...,T and

the existence of a family of measurable mappings tθtut“0,...,T with θt : Ht Ñ Xt. We suppose that there exists a family of

measurable dynamics tft:t`1ut“0,...,T´1 with ft:t`1 : Xt ˆ Ut ˆWt`1 Ñ Xt`1, such that

θt`1

`

pht, ut, wt`1q
˘

“ ft:t`1

`

θtphtq, ut, wt`1

˘

, @pht, ut, wt`1q P Ht ˆ Ut ˆWt`1 . (65)

The following proposition is a immediate application of Theorem 2 and Proposition 1.

Proposition 4 Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which is a state reduction across

the consecutive time blocks rt, t`1st“0,...,T´1 of the time span, is compatible with the family tρt´1:tut“1,...,T of stochastic
kernels in (3) (see Definition 2).

Suppose that there exists a measurable nonnegative numerical function

rj : XT Ñ r0,`8s ,

such that the cost function j in (4) can be factored as

j “ rj ˝ θT .

Define the family
!

rVt
)

t“0,...,T
of functions by the backward induction

rVT pxT q “ rjpxT q , @xT P XT , (67a)

rVtpxtq “ inf
utPUt

ż

Wt`1

rVt`1

`

ft:t`1pxt, ut, wt`1q
˘

rρt:t`1pxt, dwt`1q , @xt P Xt , (67b)

for t “ T ´ 1, . . . , 0.

Then, the family tVtut“0,...,T of value functions defined by the family of optimization problems (6) satisfies

Vt “ rVt ˝ θt , t “ 0, . . . , T . (68)
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B.2 The Case of Time Additive Cost Functions

A time additive stochastic optimal control problem is a particular form of the stochastic optimization problem presented
previously. As in §B.1, we assume the existence of a family of measurable state spaces tXtut“0,...,T , the existence of a

family of measurable mappings tθtut“0,...,T , and the existence of a family of measurable dynamics such that Equation (65)
is fulfilled.

We then assume that, for t “ 0, . . . , T ´1, there exist measurable nonnegative numerical functions (instantaneous cost)

Lt : Xt ˆ Ut ˆWt`1 Ñ r0,`8s ,

and that there exists a measurable nonnegative numerical function (final cost)

K : XT Ñ r0,`8s ,

such that the cost function j in (4) writes

jphT q “
T´1
ÿ

t“0

Lt
`

θtphtq, ut, wt`1

˘

`K
`

θT phT q
˘

.

The following proposition is an immediate consequence of the specific form of the cost function j when applying Proposi-
tion 4.

Proposition 5 Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which is a state reduction across

the consecutive time blocks rt, t`1st“0,...,T´1 of the time span, is compatible with the family tρt´1:tut“1,...,T of stochastic
kernels in (3) (see Definition 2).

We inductively define the family of functions tpVtut“0,...,T , with pVt : Xt Ñ r0,`8s, by the relations

pVT pxT q “ KpxT q , @xT P XT (70a)

and, for t “ T ´ 1, . . . , 0 and for all xt P Xt,

pVtpxtq “ inf
utPUt

ż

Wt`1

´

Ltpxt, ut, wt`1q ` pVt`1

`

ft:t`1pxt, ut, wt`1q
˘

¯

rρt:t`1pxt,dwt`1q . (70b)

Then, the family tVtut“0,...,T of value functions defined by the family of optimization problems (6) satisfies

Vtphtq “
t´1
ÿ

s“0

Ls
`

θsphsq, us, ws`1

˘

` pVt
`

θtphtq
˘

, t “ 1, . . . , T , (71a)

V0ph0q “ pV0
`

θ0ph0q
˘

. (71b)

C The Case of Optimization with Noise Process

In this section, the noise at time t is modeled as a random variable Wt. We suppose given a stochastic process tWtut“0,...,T
called noise process. Then, optimization with noise process becomes a special case of the setting in §2.2. Therefore, we can
apply the results obtained in Sect. 3.

We moreover assume that, for any s “ 0, . . . , T´1, the set Us in §2.2.1 is a separable complete metric space.

C.1 Optimization with Noise Process

Noise Process and Stochastic Kernels. Let pΩ,Aq be a measurable space. For t “ 0, . . . , T , the noise at time t is modeled as
a random variable Wt defined on Ω and taking values in Wt. Therefore, we suppose given a stochastic process tWtut“0,...,T
called noise process. The following assumption is made in the sequel.

Assumption 1 For any 1 ď s ď T , there exists a regular conditional distribution of the random variable Ws knowing

the random process W0:s´1, denoted by PW0:s´1

Ws
pw0:s´1, dwsq.

Under Assumption 1, we can introduce the family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (72a)

defined by

ρs´1:sphs´1, dwsq “ PW0:s´1

Ws

`

rhs´1s
W
0:s´1, dws

˘

, s “ 1, . . . , T , (72b)

where rhs´1s
W
0:s´1 “ pw0, w1, . . . , ws´1q is the uncertainty part of the history hs´1 (see Equation (49a)).
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Then, using Definition 5, the stochastic kernels ργr:t : Hr Ñ ∆pHtq are defined, for any measurable nonnegative
numerical function ϕ : Ht Ñ r0,`8s, by

ż

Ht

ϕph1tqρ
γ
r:tphr, dh

1

tq “

ż

Wr`1:t

ϕ
´

Φγr:tphr, wr`1:tq

¯

PW0:r
Wr`1:t

`

rhrs
W
0:r, dwr`1:t

˘

.

“ E
”

ϕ
`

Φγr:tphr,Wr`1:tq
˘

ı

W0:r “ rhrs
W
0:r , (73)

where Φγr:tphr, wr`1:tq “ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, ¨ ¨ ¨ , γt´1pht´1q, wtq is the flow induced by the
feedback γ (see §A.1).

Adapted Control Processes. Let t be given such that 0 ď t ď T ´ 1. We introduce

At:t “ tH, Ωu , At:t`1 “ σpWt`1q , . . . , , At:T´1 “ σpWt`1, . . . ,WT´1q .

Let L0pΩ,At:T´1,Ut:T´1q be the space of A-adapted control processes pUt, . . . ,UT´1q with values in Ut:T´1, that is, such
that

σpUsq Ă At:s , s “ t, . . . , T ´ 1 .

Family of Optimization Problems over Adapted Control Processes. We suppose here that the measurable space pΩ,Aq is
equipped with a probability P, so that pΩ,A,Pq is a probability space. Following the setting given in §2.2.2, we consider a
measurable nonnegative numerical cost function j as in Equation (4).

We consider the following family of optimization problems, indexed by t “ 0, . . . , T ´ 1 and by ht P Ht,

qVtphtq “ inf
pUt:T´1qPL0pΩ,At:T´1,Ut:T´1q

E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ı

W0:t “ rhts
W
0:t . (74)

Proposition 6 Let t P t0, . . . , T ´ 1u and ht P Ht be given. Problem (5) and Problem (74) coincide, that is,

qVtphtq “ Vtphtq , (75)

where the family of value functions tVtut“0,...,T is defined by (6).

Proof Let t P t0, . . . , T ´ 1u and ht P Ht be given. We show that Problem (74) and Problem (5) are in one-to-one
correspondence.

– First, for any history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1, we define

pUt:T´1q P L0pΩ,At:T´1,Ut:T´1q by

pUt, . . . ,UT´1q “
“

Φγt:T pht,Wt`1, . . . ,WT q
‰U
t`1:T

, (76)

where the flow Φγt:T has been defined in (50) and the history control part r¨sUt`1:T in (49b). By the expression (72b) of

ρs:s`1ph1s, dws`1q and by Definition 5 of the stochastic kernel ργt:T , we obtain that

E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ı

W0:t “ rhts
W
0:t “ E

”

jpΦγt:T pht,Wt`1, . . . ,WT qq

ı

W0:t “ rhts
W
0:t

“

ż

HT

jph1T qρ
γ
t:T pht, dh

1
T q . (77)

As a consequence

inf
pUt:T´1qPL0pΩ,At:T´1,Ut:T´1q

E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ı

W0:t “ rhts
W
0:t

ď inf
γt:T´1PΓt:T´1

ż

HT

jph1T qρ
γ
t:T pht, dh

1
T q . (78)

– Second, we define a pt :T ´ 1q-noise feedback as a sequence λ “ tλsus“t,...,T´1 of measurable mappings (the mapping

λt is constant)
λt P Ut , λs : Wt`1:s Ñ Us , t` 1 ď s ď T ´ 1 .

We denote by Λt:T´1 the set of pt :T ´ 1q-noise feedbacks. Let pUt, . . . ,UT´1q P L0pΩ,At:T´1,Ut:T´1q. As each set
Us is a separable complete metric space, for s “ t, . . . , T ´ 1, we can invoke Doob Theorem (see [5, Chap. 1, p. 18]).
Therefore, there exists a pt :T ´ 1q-noise feedback λ “ tλsus“t,...,T´1 P Λt:T´1 such that

Ut “ λt , Us “ λspWt`1:sq , t` 1 ď s ď T ´ 1 .

Then, we define the history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1 by, for any history h1r P Hr, r “ t, . . . , T ´ 1:

γtph
1
tq “ λt ,

γt`1ph
1
t`1q “ λt`1

´

“

h1t`1

‰W
t`1:t`1

¯

“ λt`1pw
1
t`1q ,

...

γT´1ph
1
T´1q “ λT´1

´

“

h1T´1

‰W
t`1:T´1

¯

“ λT´1pw
1
t`1, ¨ ¨ ¨ , w

1
T´1q .
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By the expression (72b) of ρs:s`1ph1s, dws`1q and by Definition 5 of the stochastic kernel ργt:T , we obtain that

ż

HT

jph1T qρ
γ
t:T pht,dh

1
T q “ E

”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ı

W0:t “ rhts
W
0:t .

As a consequence

inf
γt:T´1PΓt:T´1

ż

HT

jph1T qρ
γ
t:T pht, dh

1
T q

ď inf
pUt,...,UT´1qPL0pΩ,At:T´1,Ut:T´1q

E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ı

W0:t “ rhts
W
0:t . (79)

Gathering inequalities (78) and (79) leads to (75). This ends the proof.

The following proposition is an immediate consequence of Theorem 1 and Proposition 6.

Proposition 7 The family
!

qVt
)

t“0,...,T
of functions in (74) satisfies the backward induction

qVT phT q “ jphT q , @hT P HT , (80a)

and, for t “ T ´ 1, . . . , 0,

qVtphtq “ inf
ut

ż

Wt`1

qVt`1

`

ht, ut, wt`1

˘

PW0:t
Wt`1

`

rhts
W
0:t,dwt`1

˘

(80b)

“ inf
ut

E
“

qVt`1

`

ht, ut,Wt`1

˘‰

W0:t “ rhts
W
0:t , @ht P Ht . (80c)

C.2 Two Time-Scales Dynamic Programming

We adopt the notation of §4.1. We suppose given a two time-scales noise process

Wp0,0q:pD`1,0q “
`

W0,0,W0,1, . . . ,W0,M ,W1,0, . . . ,WD,M ,WD`1,0

˘

.

For any d P t0, 1, . . . , Du, we introduce the σ-fields

Ad,0 “ tH, Ωu , Ad,m “ σpWpd,1q:pd,mqq , m “ 1, . . . ,M .

The proof of the following proposition is left to the reader.

Proposition 8 Suppose that there exists a family tXdud“0,...,D`1 of measurable state spaces, with X0 “ W0,0, and a

family tfd:d`1ud“0,...,D of measurable dynamics

fd:d`1 : Xd ˆ Hd:d`1 Ñ Xd`1 .

Suppose that the slow scale subprocesses Wpd,1q:pd`1,0q “
`

Wd,1, ¨ ¨ ¨ ,Wd`1,0

˘

, d “ 0, . . . , D, are independent (under the
probability law P).

For a measurable nonnegative numerical cost function

rj : XD`1 Ñ r0,`8s ,

we define the family
!

rVd

)

d“0,...,D`1
of functions by the backward induction

rVD`1pxD`1q “ rjpxD`1q , (81a)

rVdpxdq “ inf
Upd,0q:pd,MqPL0pΩ,Apd,0q:pd,Mq,Upd,0q:pd,Mqq

E
”

rVd`1

`

fd:d`1pxd,Ud,0,Wd,1, ¨ ¨ ¨ ,Ud,M ,Wd`1,0q
˘

ı

. (81b)

Then, the value functions rVd are the solution of the following family of optimization problems, indexed by d “ 0, . . . , D
and by xd P Xd,

rVdpxdq “ inf
Upd,0q:pD,MqPL0pΩ,Apd,0q:pD,Mq,Upd,0q:pD,Mqq

E
“

rjpXD`1q
‰

, (82a)

where, for all d1 “ d, . . . , D,

Xd “ xd , Xd1`1 “ fd1:d1`1

`

Xd1 ,Ud1,0,Wd1,1, ¨ ¨ ¨ ,Ud1,M ,Wd1`1,0

˘

. (82b)
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C.3 Decision-Hazard-Decision Dynamic Programming

We adopt the notation of §4.2. We suppose given a noise process

W0:S “
`

W7
0,W

5
1, . . . ,W

5
S

˘

. (83)

For any s P t0, 1, . . . , S ´ 1u, we introduce the σ-fields

As “ tH, Ωu , As1 “ σpW5
s`1:s1 q , s

1 “ s` 1, . . . , S . (84)

The proof of the following proposition is left to the reader.

Proposition 9 Suppose that there exists a family tXsus“0,...,S of measurable state spaces, with X0 “ W70, and a family

tfs:s`1us“0,...,S´1 of measurable dynamics

fs:s`1 : Xs ˆ U7s ˆW5s`1 ˆ U5s`1 Ñ Xs`1 .

Suppose that the noise process
 

W5
s

(

s“0,...,S
is made of independent random variables (under the probability law P).

For a measurable nonnegative numerical cost function

rj : XS Ñ r0,`8s , (85)

we define the family of functions
!

rVs
)

s“0,...,S
by the backward induction

rVSpxSq “ rjpxSq , (86a)

rVspxsq “ inf
u
7
sPU

7
s

E
”

inf
u5s`1PU

5
s`1

rVs`1

´

fs1:s1`1

`

xs, u
7
s,W

5
s`1, u

5
s`1

˘

¯ı

. (86b)

Then, the value functions rVs in (86) are the solution of the following family of optimization problems, indexed by
s “ 0, . . . , S ´ 1 and by xs P Xs,

rVspxsq “ inf
U
7
s:S´1

PL0pΩ,As:S´1,U
7
s:S´1

q

inf
U5

s`1:S
PL0pΩ,As`1:S ,U5s`1:S

q

E
“

rjpXSq
‰

, (87a)

where
Xs1 “ xs , Xs1`1 “ fs1:s1`1

`

Xs1 ,U
7

s1
,W5

s1`1,U
5
s1`1

˘

, @s1 “ s, . . . , S ´ 1 . (87b)

C.4 Dynamic Programming with Unit Time Blocks

In the setting of optimization with noise process, we now consider the case where a state reduction exists at each time
t “ 0, . . . , T ´ 1. We will use a standard assumption in Dynamic Programming, that is, tWtut“0,...,T is a white noise
process.

C.4.1 The Case of Final Cost Function

We first treat the case of a general criterion, as in §B.1.

Proposition 10 Suppose that there exists a family tXtut“0,...,T of measurable state spaces, with X0 “W0, and a family

tft:t`1ut“0,...,T´1 of measurable dynamics

ft:t`1 : Xt ˆ Ut ˆWt`1 Ñ Xt`1 .

Suppose that the noise process tWtut“0,...,T is made of independent random variables (under the probability law P).
For a measurable nonnegative numerical cost function

rj : XT Ñ r0,`8s ,

we define the family
!

rVt
)

t“0,...,T
of functions by the backward induction

rVT pxT q “ rjpxT q , @xT P XT , (88a)

rVtpxtq “ inf
utPUt

E
“

rVt`1

`

xt, ut,Wt`1

˘‰

, @xt P Xt , (88b)

for t “ T´1, . . . , 0. Then, the value functions rVt are the solution of the following family of optimization problems, indexed
by t “ 0, . . . , T ´ 1 and by xt P Xt,

rVtpxtq “ inf
Ut:T´1PL0pΩ,At:T´1,Ut:T´1q

E
“

rjpXT q
‰

, (89a)

where
Xs “ xt , Xs`1 “ fs:s`1

`

Xs,Us,Ws`1

˘

, @s “ t, . . . , T ´ 1 . (89b)
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Proof We define a family tθtut“0,...,T of reduction mappings θt : Ht Ñ Xt as in (10a) by induction. First, as X0 “W0 “ H0

by assumption, we put θ0 “ Id : H0 Ñ X0. Then, we use (65) to define the mappings θ1, . . . , θT . As a consequence, the triplet
ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q is a state reduction across the consecutive time blocks rt, t ` 1st“0,...,T´1

of the time span.
Since the noise process tWtut“0,...,T is made of independent random variables (under P), the family tρs´1:su1ďsďT

of stochastic kernels defined in (72) is given by

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (90a)

hs´1 ÞÑ PWs pdwsq . (90b)

As a consequence, we have by (11) that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q is compatible (see

Definition 2) with the family tρt´1:tut“1,...,T of stochastic kernels in (90). In addition, the reduced stochastic kernels
in (11) coincide with the original stochastic kernels in (90).

Define the cost function j as
j “ rj ˝ θT .

Proposition 4 applies, so that the family tVtut“0,...,T of value functions defined for the family of optimization problems

(5) satisfies

Vt “ rVt ˝ θt , t “ 0, . . . , T .

By means of Proposition 6, we deduce that
qVtphtq “ rVt ˝ θtphtq ,

for all t “ 0, . . . , T and for any ht P Ht. From the definition (74) of the family of functions qVt, we obtain the expression

(89) of functions rVt.

C.4.2 The Case of Time Additive Cost Functions

We make the same assumptions than in §B.2. The proof is left to the reader.

Proposition 11 Suppose that there exists a family tXtut“0,...,T of measurable state spaces, with X0 “W0, and a family

tft:t`1ut“0,...,T´1 of measurable dynamics

ft:t`1 : Xt ˆ Ut ˆWt`1 Ñ Xt`1 .

Suppose that the noise process tWtut“0,...,T is made of independent random variables (under the probability law P).

We define the family
!

rVt
)

t“0,...,T
of functions by the backward induction

pVT pxT q “ KpxT q , @xT P XT , (91a)

and, for t “ T ´ 1, . . . , 0 and for all xt P Xt

pVtpxtq “ inf
utPUt

E
“

Ltpxt, ut,Wt`1q ` pVt`1

`

ft:t`1pxt, ut,Wt`1q
˘‰

. (91b)

Then, the value functions pVt are the solution of the following family of optimization problems, indexed by t “ 0, . . . , T ´1
and by xt P Xt,

pVtpxtq “ inf
pUt,...,UT´1qPL0pΩ,At:T´1,Ut:T´1q

E
„ T´1

ÿ

s“t

Ls
`

Xs,Us,Ws`1

˘

`K
`

XT

˘



, (92a)

where
Xs “ xt , Xs`1 “ fs:s`1

`

Xs,Us,Ws`1

˘

, @s “ t, . . . , T ´ 1 . (92b)
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