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1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed
both by stages (time) and by uncertainties. Their large scale nature makes decomposition methods
appealing.

On the one hand, stochastic programming deals with an underlying random process taking a finite
number of values, called scenarios [9]. Solutions are indexed by a scenario tree, the size of which explodes
with the number of stages, hence generally few. However, to overcome this obstacle, stochastic program-
ming takes advantage of scenario decomposition methods (Progressive Hedging [8]). On the other hand,
stochastic control deals with a state model driven by a white noise, that is, the noise is made of a sequence
of independent random variables. Under such assumptions, stochastic dynamic programming is able to
handle many stages, as it offers reduction of the search for a solution among state feedbacks (instead of
functions of the past noise) [1,6].

In a word, dynamic programming is good at handling multiple stages — but at the price of assuming
that noise are stagewise independent — whereas stochastic programming does not require such assump-
tion, but can only handle a few stages. Could we take advantage of both methods? Is there a way to
apply stochastic dynamic programming at a slow time scale — a scale at which noise would be statis-
tically independent — crossing over short time scale optimization problems where independence would
not hold? This question is one of the motivations of this paper.

We will provide a method to decompose multistage stochastic optimization problems by time blocks.
In Sect. 2, we present a mathematical framework that covers both stochastic programming and stochastic
dynamic programming.We formulate multistage stochastic optimization problems over a so-called history
space, with solutions being history feedbacks. We prove a general dynamic programming equation, with
value functions defined on the history space. In Sect. 3, we consider the question of reducing the history
using a compressed “state” variable. This reduction can be done by time blocks, that is, at stages that
are not necessarily all the original unit stages. We prove a reduced dynamic programming equation.
In Sect. 4, we apply the reduction method by time blocks to several classes of optimization problems,
especially two time-scales stochastic optimization problems and a novel class consisting of decision hazard
decision models. Finally, we consider the case of optimization with noise process; we show in Sect. 5 that
it is a special case of the setting in Sect. 2.

2 Stochastic Dynamic Programming with History Feedbacks

Consider the time span t0, 1, 2 . . . , T´1, T u, with horizon T P N
˚. At the end of the time interval rt´1, tr,

an uncertainty variable wt is produced. Then, at the beginning of the time interval rt, t ` 1r, a decision-
maker takes a decision ut, as follows

w0 ù u0 ù w1 ù u1 ù . . . ù wT´1 ù uT´1 ù wT .

We present the mathematical formalism to handle such type of problems.

2.1 Histories, Feedbacks and Flows

We first define in §2.1.1 the basic and the composite spaces that we will need to formulate multistage
stochastic optimization problems. Then, in §2.1.2, we introduce a class of solutions called history feed-
backs; we also define flows.

2.1.1 Histories and History Spaces

For each time t “ 0, 1, 2 . . . , T ´ 1, the decision ut takes its values in a measurable set Ut equipped with
a σ-field Ut. For each time t “ 0, 1, 2 . . . , T , the uncertainty wt takes its values in a measurable set Wt

equipped with a σ-field Wt.
For t “ 0, 1, 2 . . . , T , we define the history space Ht equipped with the history field Ht by

Ht “ W0 ˆ
t´1ź

s“0

pUs ˆ Ws`1q and Ht “ W0 b
t´1â
s“0

pUs b Ws`1q , t “ 0, 1, 2 . . . , T , (1)
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with the particular case H0 “ W0, H0 “ W0. A generic element ht P Ht is called a history:

ht “ pw0, pus, ws`1qs“0,...,t´1q “ pw0, u0, w1, u1, w2, . . . , ut´2, wt´1, ut´1, wtq P Ht . (2a)

We introduce the notations

Wr:t “
tź

s“r

Ws , 0 ď r ď t ď T (2b)

Ur:t “
tź

s“r

Us , 0 ď r ď t ď T ´ 1 (2c)

Hr:t “
t´1ź

s“r´1

pUs ˆ Ws`1q “ Ur´1 ˆ Wr ˆ ¨ ¨ ¨ ˆ Ut´1 ˆ Wt , 1 ď r ď t ď T . (2d)

Let 0 ď r ď s ď t ď T . From a history ht P Ht, we can extract the pr :sq-history uncertainty part

rhts
W

r:s “ pwr, . . . , wsq “ wr:s P Wr:s , 0 ď r ď s ď t , (2e)

the pr :sq-history control part (notice that the indices are special)

rhts
U

r:s “ pur´1, . . . , us´1q “ ur´1:s´1 P Ur´1:s´1 , 1 ď r ď s ď t , (2f)

and the pr :sq-history subpart

rhtsr:s “ pur´1, wr, . . . , us´1, wsq “ hr:s P Hr:s , 1 ď r ď s ď t , (2g)

so that we obtain, for 0 ď r ` 1 ď s ď t,

ht “ pw0, u0, w1, . . . , ur´1, wrloooooooooooooomoooooooooooooon
hr

ur, wr`1, . . . , ut´2, wt´1, ut´1, wtlooooooooooooooooooooomooooooooooooooooooooon
hr`1:t

q “ phr, hr`1:tq . (2h)

2.1.2 Feedbacks and Flows

Let r and t be given such that 0 ď r ď t ď T .

History Feedbacks. When 0 ď r ď t ď T ´ 1, we define a pr : tq-history feedback as a sequence tγsus“r,...,t

of measurable mappings
γs : Hs Ñ Us . (3)

We call Γr:t the set of pr : tq-history feedbacks.

Flows. When 0 ď r ă t ď T , for a pr : t ´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1, we define the

flow Φ
γ
r:t by

Φ
γ
r:t : Hr ˆ Wr`1:t Ñ Ht (4a)

phr, wr`1:tq ÞÑ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, ¨ ¨ ¨ , ut´1, wtq , (4b)

that is,

Φ
γ
r:tphr, wr`1:tq “ phr, ur, wr`1, ur`1, wr`2, . . . , ut´1, wtq , (4c)

with hs “ phr, ur, wr`1, . . . , us´1, wsq , r ă s ď t , (4d)

and us “ γsphsq , r ă s ď t ´ 1 . (4e)

When 0 ď r “ t ď T , we put

Φγ
r:r : Hr Ñ Hr , hr ÞÑ hr . (4f)

With this convention, the expression Φ
γ
r:t makes sense when 0 ď r ď t ď T for a pr : t ´ 1q-history

feedback γ “ tγsus“r,...,t´1 P Γr:t´1 (when r “ t, no pr : r ´ 1q-history feedback exists, but none is
needed).
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The mapping Φ
γ
r:t gives the history at time t as a function of the initial history hr at time r and of

the history feedbacks tγsus“r,...,t´1 P Γr:t´1. An immediate consequence of this definition are the flow
properties :

Φ
γ
r:t`1phr, wr`1:t`1q “

´
Φ
γ
r:tphr, wr`1:tq, γt

`
Φ
γ
r:tphr, wr`1:tq

˘
, wt`1

¯
, 0 ď r ď t ď T ´ 1 , (5a)

Φ
γ
r:tphr, wr`1:tq “ Φ

γ
r`1:t

`
phr, γrphrq, wr`1q, wr`2:t

˘
, 0 ď r ă t ď T . (5b)

2.2 Optimization with Stochastic Kernels

In §2.2.1, given a history feedback and a sequence of stochastic kernels from partial histories to uncer-
tainties, we will build a new sequence of stochastic kernels, but from partial histories to sequences of
uncertainties. With this construction, we introduce a family of optimization problems with stochastic
kernels in §2.2.2. Then, in §2.2.3, we show how such problems can be solved by stochastic dynamic
programming.

In what follows, we say that a function is numerical if it takes its values in r´8,`8s (also called
extended or extended real-valued function) [5].

2.2.1 Stochastic Kernels

Definition of stochastic kernels. Let pX,Xq and pY,Yq be two measurable spaces. A stochastic kernel
from pX,Xq to pY,Yq is a mapping ρ : X ˆ Y Ñ r0, 1s such that

– for any Y P Y, ρp¨, Y q is X-measurable;
– for any x P X, ρpx, ¨q is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel (on Y knowing X) is also denoted as a mapping ρ :
X Ñ ∆pYq from the measurable space pX,Xq towards the space ∆pYq of probability measures over Y,
with the property that the function x P X ÞÑ

ş
Y
ρpx, dyq is measurable for any Y P Y.

Building new stochastic kernels from history feedbacks and stochastic kernels.

Definition 1 Let r and t be given such that 0 ď r ď t ď T .

– When 0 ď r ă t ď T , for
1. a pr : t ´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1,
2. a family tρs´1:sur`1ďsďt of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ r ` 1, . . . , t , (6)

we define a stochastic kernel
ρ
γ
r:t : Hr Ñ ∆pHtq (7a)

by, for any ϕ : Ht Ñ r0,`8s, measurable nonnegative numerical function,1

ż

Ht

ϕph1
r, h

1
r`1:tqρ

γ
r:tphr, dh

1
tq “

ż

Wr`1:t

ϕ
`
Φ
γ
r:tphr, wr`1:tq

˘ tź

s“r`1

ρs´1:s

`
Φ
γ
r:s´1phr, wr`1:s´1q, dws

˘
. (7b)

– When 0 ď r “ t ď T , we define

ργr:r : Hr Ñ ∆pHrq , ργr:rphr, dh
1
rq “ δhr

pdh1
rq . (7c)

1 We could also consider any ϕ : Ht Ñ R, measurable bounded function, or measurable and uniformly bounded below
function. However, for the sake of simplicity, we will deal in the sequel with measurable nonnegative numerical functions.
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We detail Equation (7b) in Appendix A. The stochastic kernels ργr:t on Ht, given by (7), are of the form

ρ
γ
r:tphr, dh

1
tq “ ρ

γ
r:tphr, dh

1
rdh

1
r`1:tq “ δhr

pdh1
rq b ̺

γ
r:tphr, dh

1
r`1:tq , (8)

where, for each hr P Hr, the probability distribution ̺
γ
r:tphr, dh

1
r`1:tq only charges the histories visited

by the flow from r ` 1 to t.

Proposition 1 Following Definition 1, we can define a family tργs:turďsďt of stochastic kernels. This
family has the flow property, that is, for s ă t,

ρ
γ
s:tphs, dh

1
tq “

ż

Ws`1

ρs:s`1

`
hs, dws`1

˘
ρ
γ
s`1:t

´`
hs, γsphsq, ws`1

˘
, dh1

t

¯
. (9)

Proof Let s ă t. For any ϕ : Ht Ñ r0,`8s, we have that

ż

Ht

ϕph1
s, h

1
s`1:tqρ

γ
s:tphs, dh

1
tq (10a)

“

ż

Ws`1:t

ϕ
`
Φ
γ
s:tphs, ws`1:tq

˘ tź

s1“s`1

ρs1´1:s1

`
Φ
γ
s:s1´1phs, ws`1:s1´1q, dws1

˘

by the definition (7b) of the stochastic kernel ργs:t

“

ż

Ws`1:t

ϕ
`
Φ
γ
s:tphs, ws`1:tq

˘
ρs:s`1

`
hs, dws`1

˘ tź

s1“s`2

ρs1´1:s1

`
Φ
γ
s:s1´1phs, ws`1:s1´1q, dws1

˘

by the property (4f) of the flow Φγ
s:s

“

ż

Ws`1:t

ϕ
`
Φ
γ
s`1:t

`
phs, γsphsq, ws`1q, ws`2:t

˘˘

ρs:s`1

`
hs, dws`1

˘ tź

s1“s`2

ρs1´1:s1

`
Φ
γ
s`1:s1´1

`
phs, γsphsq, ws`1q, ws`2:s1´1

˘
, dws1

˘

by the flow property (5b)

“

ż

Ws`1

ρs:s`1

`
hs, dws`1

˘ ż

Ws`2:t

ϕ
`
Φ
γ
s`1:t

`
phs, γsphsq, ws`1q, ws`2:t

˘˘

tź

s1“s`2

ρs1´1:s1

`
Φ
γ
s`1:s1´1

`
phs, γsphsq, ws`1q, ws`2:s1´1

˘
, dws1

˘

by Fubini Theorem [5, p.137]

“

ż

Ws`1

ρs:s`1

`
hs, dws`1

˘ ż

Ht

ϕ
`
ph1

s, γsph1
sq, w1

s`1q, h1
s`2:t

˘
ρ
γ
s`1:t

`
phs, γsphsq, ws`1q, dh1

t

˘

by definition (7b) of ργs`1:t

“

ż

Ht

ϕ
`
ph1

s, γsph1
sq, w1

s`1q, h1
s`2:t

˘ ż

Ws`1

ρs:s`1

`
hs, dws`1

˘
ρ
γ
s`1:t

`
phs, γsphsq, ws`1q, dh1

t

˘
(10b)

by Fubini Theorem and by definition (7b) of ργs:t. As the two expressions (10a) and (10b) are equal for
any ϕ : Ht Ñ r0,`8s, we deduce the flow property (9). This ends the proof.
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2.2.2 Family of Optimization Problems with Stochastic Kernels

To build a family of optimization problems over the time span t0, . . . , T ´ 1u, we need two ingredients:

– a family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (11)

– a numerical function, playing the role of a cost to be minimized,

j : HT Ñ r0,`8s , (12)

assumed to be nonnegative2 and measurable with respect to the field HT .

We define, for any tγsus“t,...,T 1́ P Γt:T 1́,

V
γ
t phtq “

ż

HT

jph1
T qργt:T pht, dh

1
T q , @ht P Ht . (13)

We consider the family of optimization problems, indexed by t “ 0, . . . , T ´ 1 and parameterized by
ht P Ht:

inf
γt:T´1PΓt:T´1

ż

HT

jph1
T qργt:T pht, dh

1
T q . (14)

For all t “ 0, . . . , T ´ 1, we define the minimum value of Problem (14) by

Vtphtq “ inf
γt:T´1PΓt:T´1

ż

HT

jph1
T qργt:T pht, dh

1
T q (15a)

“ inf
γt:T´1PΓt:T´1

V
γ
t phtq , @ht P Ht , (15b)

and we also define

VT phT q “ jphT q , @hT P HT . (15c)

The last notation is consistent with (14) by the definition (7c) of the stochastic kernel ρ
γ
T :T . The

numerical function Vt : Ht Ñ r0,`8s is called value function.

2.2.3 Resolution by Stochastic Dynamic Programming

Now, we show that the value functions in (15) are Bellman functions, in that they are solution of the
Bellman or Dynamic Programming equation.

The following two assumptions will be made throughout the whole paper.

Assumption 1 (Measurable function) For all t “ 0, . . . , T ´ 1 and for all nonnegative measurable
numerical function ϕ : Ht`1 Ñ r0,`8s, the numerical function

ht ÞÑ inf
utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q (16)

is measurable3 from pHt,Htq to r0,`8s.

Assumption 2 (Measurable selection) For all t “ 0, . . . , T ´1, there exists a measurable selection,4

that is, a measurable mapping
γ‹
t : pHt,Htq Ñ pUt,Utq (17a)

such that

γ‹
t phtq P argmin

utPUt

ż

Wt`1

Vt`1pht, ut, wt`1qρt:t`1pht, dwt`1q , (17b)

where the numerical function Vt`1 is given by (15).

2 See Footnote 1. When jphT q “ `8, this materializes joint constraints between uncertainties and controls.
3 This is a delicate issue, treated in [2].
4 See [2] and [7] for a precise definition of a measurable selection.
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Bellman Operators. For t “ 0, . . . , T , let L0
`pHt,Htq be the space of nonnegative measurable numerical

functions over Ht.

Definition 2 For t “ 0, . . . , T ´ 1, we define the Bellman operator

Bt`1:t : L
0
`pHt`1,Ht`1q Ñ L

0
`pHt,Htq (18a)

such that, for all ϕ P L
0
`pHt`1,Ht`1q and for all ht P Ht,

`
Bt`1:tϕ

˘
phtq “ inf

utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q . (18b)

Since ϕ P L
0
`pHt`1,Ht`1q, we have that Bt`1:tϕ is a well defined nonnegative numerical function and, by

Assumption 1, we know that Bt`1:tϕ is a measurable numerical function, hence belongs to L
0
`pHt,Htq.

Bellman equation and optimal history feedbacks.

Theorem 1 The value functions in (15) satisfy the Bellman equation, or (Stochastic) Dynamic Pro-
gramming equation

VT “ j , (19a)

Vt “ Bt`1:tVt`1 for t “ T ´1, . . . , 0 . (19b)

Moreover, a solution to any Problem (14) — that is, whatever the index t “ 0, . . . , T ´ 1 and the
parameter ht P Ht — is any history feedback γ‹ “ tγ‹

sus“t,...,T 1́ defined by the collection of mappings γ‹
s

in (17).

Notice that, although Problem (14) is parameterized by ht P Ht, the optimal history feedback γ‹ “
tγ‹

sus“t,...,T 1́ is not.

Proof From the definition (13), we have for any tγsus“t,...,T 1́ P Γt:T 1́,

V
γ
t phtq “

ż

HT

jph1
T qργt:T pht, dh

1
T q

that only depends on tγsus“t,...,T 1́

“

ż

HT

jph1
T q

ż

Wt`1

ρt:t`1

`
ht, dwt`1

˘
ρ
γ
t`1:T

´`
ht, γtphtq, wt`1

˘
, dh1

T

¯

by the flow property (9) for stochastic kernels

“

ż

Wt`1

ρt:t`1

`
ht, dwt`1

˘ ż

HT

jph1
T qργt`1:T

´`
ht, γtphtq, wt`1

˘
, dh1

T

¯

by Fubini Theorem [5, p.137]

“

ż

Wt`1

ρt:t`1

`
ht, dwt`1

˘
V

γ
t`1

`
ht, γtphtq, wt`1

˘

by definition (13) of V γ
t`1

ě

ż

Wt`1

ρt:t`1

`
ht, dwt`1

˘
Vt`1

`
ht, γtphtq, wt`1

˘

by definition (15) of the value function Vt`1, and as V γ
t`1 only depends on tγsus“t`1,...,T 1́. We deduce

that

Vtphtq ě inf
ut

ż

Wt`1

ρt:t`1

`
ht, dwt`1

˘
Vt`1

`
ht, ut, wt`1

˘
. (20a)

The inequality (20a) above is in fact an equality, as seen by using any measurable history feedback
γ‹ “ tγ‹

sus“t,...,T 1́ defined by the collection of functions γ‹
s in (17).

This ends the proof.
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3 State Reduction by Time Blocks

In this section, we consider the question of reducing the history using a compressed “state” variable.
Such a variable may be not available at any time t P t0, . . . , T u, but at some specified instants. We have
to note that the history ht is itself a canonical state variable in our framework, the associated dynamics
being ht`1 “

`
ht, ut, wt`1

˘
.

3.1 State Reduction on a Single Time Block

We first present the case where the reduction only occurs at two instants denoted by r and t:

0 ď r ă t ď T .

Let tρs´1:sur`1ďsďt be a family of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ r ` 1, . . . , t . (21)

We define the Bellman operator across pt :rq by

Bt:r : L
0
`pHt,Htq Ñ L

0
`pHr,Hrq , Bt:r “ Bt:t´1 ˝ ¨ ¨ ¨ ˝ Br`1:r , (22)

where the one time step operators Bs:s´1, for r ` 1 ď s ď t have been defined in (18).

Definition 3 Let Xr and Xt be two state spaces, θr and θt be two measurable reduction mappings

θr : Hr Ñ Xr , θt : Ht Ñ Xt , (23)

and fr:t be a measurable dynamics

fr:t : Xr ˆ Hr`1:t Ñ Xt . (24)

The triplet pθr, θt, fr:tq is called a state reduction across pr : tq if we have

θt
`
phr, hr`1:tq

˘
“ fr:t

`
θrphrq, hr`1:t

˘
, @ht P Ht . (25)

The state reduction pθr, θt, fr:tq is said to be compatible with the family tρs´1:sur`1ďsďt of stochastic
kernels defined in (21) if

– there exists a reduced stochastic kernel

rρr:r`1 : Xr Ñ ∆pWr`1q , (26a)

such that the stochastic kernel ρr:r`1 can be factored as

ρr:r`1phr, dwr`1q “ rρr:r`1

`
θrphrq, dwr`1

˘
, @hr P Hr , (26b)

– for all s “ r ` 2, . . . , t, there exists a reduced stochastic kernel

rρs´1:s : Xr ˆ Hr`1:s´1 Ñ ∆pWsq (26c)

such that the stochastic kernel ρs´1:s can be factored as

ρs´1:s

`
phr, hr`1:s´1q, dws

˘
“ rρs´1:s

´`
θrphrq, hr`1:s´1

˘
, dws

¯
, @hs´1 P Hs´1 . (26d)

According to this definition, the triplet pθr, θt, fr:tq is a state reduction across pr : tq if and only of the
diagram in Figure 1 is commutative. In addition, it is compatible if and only of the diagram in Figure 2
is commutative.

The following theorem is the key ingredient to formulate Dynamic Programming equations with a
reduced state.
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Hr ˆ Hr`1:t Ht

Xr ˆ Hr`1:t Xt

θr Id

Id

θt

fr:t

Fig. 1 Commutative diagram in case of state reduction pθr , θt, fr:tq

Hr ˆ Hr`1:s´1 ∆pWsq

Xr ˆ Hr`1:s´1

θr Id

ρs´1:s

rρs´1:s

Fig. 2 Commutative diagram in case of state reduction pθr , θt, fr:tq compatible with the family tρs´1:sur`1ďsďt

L0
`

pHt,Htq L0
`

pHr ,Hrq

L
0

`
pXt,Xtq L

0

`
pXr ,Xrq

Bt:r

θ˚

t

rBt:r

θ˚
r

Fig. 3 Commutative diagram for Bellman operators in case of state reduction pθr , θt, fr:tq compatible with the fam-
ily tρs´1:sur`1ďsďt

Theorem 2 Suppose that there exists a state reduction pθr, θt, fr:tq that is compatible with the fam-
ily tρs´1:sur`1ďsďt of stochastic kernels (21) (see Definition 3). Then, there exists a reduced Bellman
operator across pt :rq

rBt:r : L
0
`pXt,Xtq Ñ L

0
`pXr,Xrq , (27)

such that, for any measurable nonnegative numerical function rϕt : Xt Ñ r0,`8s, we have that
` rBt:r rϕt

˘
˝ θr “ Bt:rprϕt ˝ θtq . (28)

Denoting by θ˚
t : L0

`pXt,Xtq Ñ L
0
`pHt,Htq the operator such that

θ˚
t prϕtq “ rϕt ˝ θt , (29)

the relation (28) rewrites:

θ˚
r

` rBt:r rϕt

˘
“ Bt:r

`
θ˚
t prϕtq

˘
. (30)

Equivalently, Theorem 2 states that the diagram in Figure 3 is commutative.

Proof Let rϕt : Xt Ñ r0,`8s be a given measurable nonnegative numerical function, and let ϕt : Ht Ñ
r0,`8s be

ϕt “ rϕt ˝ θt . (31)

Let ϕr : Hr Ñ r0,`8s be the measurable nonnegative numerical function obtained by applying the
Bellman operator Bt:r across pt :rq (see (22)) to the measurable nonnegative numerical function ϕt:

ϕr “ Bt:rϕt “ Br`1:r ˝ ¨ ¨ ¨ ˝ Bt:t´1ϕt . (32)
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We will show that there exists a measurable nonnegative numerical function

rϕr : Xr Ñ r0,`8s (33)

such that
ϕr “ rϕr ˝ θr . (34)

First, we show by backward induction that, for all s P tr, . . . , tu, there exists a measurable nonnegative
numerical function ϕs such that ϕsphsq “ ϕspθrphrq, hr`1:sq. Second, we prove that the function rϕr “ ϕr

satisfies (34).

– For s “ t, we have, by (31) and by (25), that

ϕtphtq “ rϕt

`
θtphtq

˘
“ rϕt

`
fr:tpθrphrq, hr`1:tq

˘
,

so that the measurable nonnegative numerical function ϕt is given by rϕt ˝ fr:t.
– Assume that, at s ` 1, the result holds true, that is,

ϕs`1phs`1q “ ϕs`1pθrphrq, hr`1:s`1q . (35)

Then,

ϕsphsq “
`
Bs`1:sϕs`1

˘
phsq ( by (32))

“ inf
usPUs

ż

Ws`1

ϕs`1

`
phs, us, ws`1q

˘
ρs:s`1phs, dws`1q

by definition (18) of the Bellman operator

“ inf
usPUs

ż

Ws`1

ϕs`1

`
pθrphrq, phr`1:s, us, ws`1qq

˘
ρs:s`1phs, dws`1q

by induction assumption (35)

“ inf
usPUs

ż

Ws`1

ϕs`1

`
pθrphrq, phr`1:s, us, ws`1qq

˘
rρs:s`1

`
pθrphrq, hr`1:sq, dws`1

˘

by compatibility (26) of the stochastic kernel

“ ϕs

`
θrphrq, hr`1:s

˘
,

where

ϕs

`
xr, hr`1:s

˘
“ inf

usPUs

ż

Ws`1

ϕs`1

`
pxr, phr`1:s, us, ws`1qq

˘
rρs:s`1

`
pxr , hr`1:sq, dws`1

˘
.

The result thus holds true at time s.

The induction implies that, at time r, the expression of ϕrphrq is

ϕrphrq “ ϕr

`
θrphrq

˘
,

since the term hr`1:r vanishes. Choosing rϕr “ ϕr gives the expected result.

Corollary 1 Under the assumptions of Theorem 2, the expression of the reduced Bellman operator rBt:r

in (27) is available: for all measurable nonnegative numerical function rϕt : Xt Ñ r0,`8s and for
all xr P Xr, we have that

` rBt:r rϕt

˘
pxrq “ inf

urPUr

ż

Wr`1

rρr:r`1pxr , dwr`1q inf
ur`1PUr`1

ż

Wr`2

rρr`1:r`2pxr, ur, wr`1, dwr`2q

. . . inf
ut´1PUt´1

ż

Wt

rϕt

`
fr:tpxr , ur, wr`1, . . . , ut´1, wt, ut´1, wtq

˘

rρt´1:tpxr , ur, wr`1, . . . , ut´2, wt´1, dwtq . (37)

Proof Equation (37) follows from the induction developed in the proof of Theorem 2.

The optimal feedbacks yielded by (37) are mappings rγs : Xr ˆ Hr`1:s Ñ Us, for s “ r, . . . , t ´ 1.
These are no longer history feedbacks, by partially truncated history feedbacks where history hr has
been replaced by state xr .
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3.2 State Reduction on Multiple Consecutive Time Blocks

Theorem 2 can easily be extended to the case of multiple consecutive time blocks rti, ti`1s, i “ 0, . . . , N´1
where

0 ď t0 ă t1 ă ¨ ¨ ¨ ă tN ď T . (38)

Let tρs´1:sut0`1ďsďtN be a family of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ t0 ` 1, . . . , tN . (39)

Definition 4 Let tXtiui“0,...,N be a family of state spaces, tθtiui“0,...,N be a family of measurable

reduction mappings θti : Hti Ñ Xti , and
 
fti:ti`1

(
i“0,...,N´1

be a family of dynamics fti:ti`1
: Xti ˆ

Hti`1:ti`1
Ñ Xti`1

.
The triplet ptXtiui“0,...,N , tθtiui“0,...,N ,

 
fti:ti`1

(
i“0,...,N´1

q is called a state reduction across the con-

secutive time blocks rti, ti`1s, i “ 0, . . . , N ´ 1 if every triplet pθti , θti`1
, fti:ti`1

q is a state reduction, for
i “ 0, . . . , N ´ 1.

The state reduction triplet is said to be compatible with the family tρs´1:sut0`1ďsďtN of stochastic
kernels given in (39) if every triplet pθti , θti`1

, fti:ti`1
q is compatible with the family tρs´1:suti`1ďsďti`1

,
for i “ 0, . . . , N ´ 1.

Theorem 3 Suppose that a state reduction ptXtiui“0,...,N , tθtiui“0,...,N ,
 
fti:ti`1

(
i“0,...,N´1

q exists across

the consecutive time blocks rti, ti`1s, i “ 0, . . . , N´1, that is compatible with the family tρs´1:sut0`1ďsďtN

of stochastic kernels given in (39).
Then, there exists a family of reduced Bellman operators across the consecutive pti`1 : tiq, i “

0, . . . , N ´ 1,
rBti`1:ti : L

0
`pXti`1

,Xti`1
q Ñ L

0
`pXti ,Xtiq , i “ 0, . . . , N ´ 1 , (40)

such that, for any function rϕti`1
P L

0
`pXti`1

,Xti`1
q, we have that

` rBti`1:ti rϕti`1

˘
˝ θti “ Bti`1:tiprϕti`1

˝ θti`1
q . (41)

Proof This is an immediate consequence of multiple applications of Theorem 2.

4 Stochastic Dynamic Programming by Time Blocks

We apply the reduction by time blocks to several classes of optimization problems: dynamic programming
with unit time blocks in §4.1, two time-scales dynamic programming in §4.2; decision hazard decision
dynamic programming in §4.3.

4.1 Dynamic Programming with Unit Time Blocks

We now consider the case where a state reduction exists at each time t “ 0, . . . , T ´ 1, with associated
dynamics. We recover the classical Dynamic Programming equations.

Following the setting in §2.2, we consider a family tρt´1:tu1ďtďT of stochastic kernels as in (11) and
a measurable nonnegative numerical cost function j as in (12).

4.1.1 The General Case of Unit Time Blocks

First, we treat the general criterion case. We assume the existence of a family of state spaces tXtut“0,...,T

and the existence of a family of mappings tθtut“0,...,T with θt : Ht Ñ Xt. We suppose that there exists a
family of dynamics tft:t`1ut“0,...,T´1 with ft:t`1 : Xt ˆ Ut ˆ Wt`1 Ñ Xt`1, such that

θt`1

`
pht, ut, wt`1q

˘
“ ft:t`1

`
θtphtq, ut, wt`1

˘
, @pht, ut, wt`1q P Ht ˆ Ut ˆ Wt`1 . (42)

The following Proposition is a direct application of Theorem 3.
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Proposition 2 Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which is a state
reduction across the consecutive time blocks rt, t ` 1st“0,...,T´1 of the time span, is compatible with the
family tρt´1:tut“1,...,T of stochastic kernels in (11) (see Definition 4).

Suppose that there exists a measurable nonnegative numerical function

rj : XT Ñ r0,`8s , (43a)

such that the cost function j in (12) can be factored as

j “ rj ˝ θT . (43b)

Define the family
!
rVt

)
t“0,...,T

of functions by the backward induction

rVT pxT q “ rjpxT q , @xT P XT , (44a)

rVtpxtq “ inf
utPUt

ż

Wt`1

rVt`1

`
ft:t`1pxt, ut, wt`1q

˘
rρt:t`1pxt, dwt`1q , @xt P Xt , (44b)

for t “ T ´ 1, . . . , 0.
Then, the family tVtut“0,...,T of value functions defined by the family of optimization problems (15)

satisfies
Vt “ rVt ˝ θt , t “ 0, . . . , T . (45)

Proof The existence of the family t rBt`1:tut“0,...,T´1 of reduced Bellman operators, as well as the rela-
tion (45), are a direct consequence of Theorem 3. The specific expression (44b) is induced by Corollary 1
in case of a unit time block.

The expression of the optimal state feedbacks is given by the next Corollary.

Corollary 2 Suppose that, for t “ 0, . . . , T ´ 1, there exist measurable selections

rγ‹
t : pXt,Xtq Ñ pUt,Utq (46a)

such that, for all xt P Xt,

rγ‹
t pxtq P argmin

utPUt

ż

Wt`1

rVt`1

`
ft:t`1pxt, ut, wt`1q

˘
rρt:t`1pxt, dwt`1q , (46b)

where the family trVtut“0,...,T of functions is given by (44). Then, the family of history feedbacks
tγ‹

sus“t,...,T´1 given by
γ‹
s “ rγ‹

s ˝ θs , s “ t, . . . , T ´ 1 (47)

is a solution to any Problem (14), that is, whatever the index t “ 0, . . . , T ´1 and the parameter ht P Ht.

Proof The proof is an immediate consequence of Theorem 1 and Theorem 2.

4.1.2 The Case of Time Additive Cost Functions

A time additive Stochastic Optimal Control problem is a particular form of the stochastic optimization
problem presented previously.

As in §4.1.1, we assume the existence of a family of state spaces tXtut“0,...,T , the existence of a family
of mappings tθtut“0,...,T , and the existence of a family of dynamics such that Equation (42) is fulfilled.

We then assume that there exist measurable nonnegative instantaneous cost numerical functions,
for t “ 0, . . . , T ´ 1,

Lt : Xt ˆ Ut ˆ Wt`1 Ñ r0,`8s , (48a)

and that there exists a measurable nonnegative final cost numerical function

K : XT Ñ r0,`8s , (48b)

such that the cost function j in (12) writes

jphT q “
T´1ÿ

t“0

Lt

`
θtphtq, ut, wt`1

˘
` K

`
θT phT q

˘
. (48c)
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Proposition 3 Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which is a state
reduction across the consecutive time blocks rt, t ` 1st“0,...,T´1 of the time span, is compatible with the
family tρt´1:tut“1,...,T of stochastic kernels in (11) (see Definition 4).

We inductively define the family of functions tpVtut“0,...,T , with pVt : Xt Ñ r0,`8s, by the relations

pVT pxT q “ KpxT q , @xT P XT (49a)

and, for t “ T ´ 1, . . . , 0 and for all xt P Xt,

pVtpxtq “ min
utPUt

ż

Wt`1

´
Ltpxt, ut, wt`1q ` pVt`1

`
ft:t`1pxt, ut, wt`1q

˘¯
rρt:t`1pxt, dwt`1q . (49b)

Then, the family tVtut“0,...,T of value functions defined by the family of optimization problems (15)
satisfies

Vtphtq “
t´1ÿ

s“0

Ls

`
θsphsq, us, ws`1

˘
` pVt

`
θtphtq

˘
, t “ 1, . . . , T , (50a)

V0ph0q “ pV0

`
θ0ph0q

˘
. (50b)

Proof The proof is an immediate consequence of Theorem 2, of the specific form of the cost function j

and of the fact that the additive term
řt´1

s“0 Ls

`
θsphsq, us, ws`1

˘
only depends on ht.

Corollary 3 Suppose that, for t “ 0, . . . , T ´ 1, there exists measurable selections

pγ‹
t : pXt,Xtq Ñ pUt,Utq , (51a)

such that, for all xt P Xt,

pγ‹
t pxtq P argmin

utPUt

ż

Wt`1

´
Ltpxt, ut, wt`1q ` pVt`1

`
Ftpxt, ut, wt`1q

˘¯
rρt:t`1pxt, dwt`1q , (51b)

where the family tpVtut“0,...,T , of functions is given by (49). Then, the family of history feedbacks tγ‹
sus“t,...,T´1

given by
γ‹
s “ pγ‹

s ˝ θs , s “ t, . . . , T ´ 1 (52)

is a solution to any Problem (14), that is, whatever the index t “ 0, . . . , T ´1 and the parameter ht P Ht.

4.2 Two Time-Scales Dynamic Programming

Let pD,Mq P N
˚2. We put

T “ t0, . . . , Du ˆ t0, . . . ,Mu Y tpD ` 1, 0qu . (53)

We can think of the index d P t0, . . . , D ` 1u as an index of days (slow scale), and m P t0, . . . ,Mu as an
index of minutes (fast scale).

At the end of every minute m ´ 1 of every day d, that is, at the end of the time interval
“
pd,m ´

1q, pd,mq
˘
, 0 ď d ď D and 1 ď m ď M , an uncertainty variable wd,m becomes available. Then, at

the beginning of the minute m, a decision-maker takes a decision ud,m. Moreover, at the beginning of
every day d, an uncertainty variable wd,0 is produced, followed by a decision ud,0. The interplay between
uncertainties and decision is thus as follows

w0,0 ù u0,0 ù w0,1 ù u0,1 ù ¨ ¨ ¨

¨ ¨ ¨ ù w0,M´1 ù u0,M´1 ù w0,M ù u0,M ù w1,0 ù u1,0 ù w1,1 ¨ ¨ ¨

¨ ¨ ¨ ù wD,M ù uD,M ù wD`1,0 .

We present the mathematical formalism to handle such type of problems.
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We consider the set T equipped with the lexicographical order

p0, 0q ă p0, 1q ă ¨ ¨ ¨ ă pd,Mq ă pd ` 1, 0q ă ¨ ¨ ¨ ă pD,M ´ 1q ă pD,Mq ă pD ` 1, 0q . (54a)

This set is in one to one correspondence with the time span t0, . . . , T u, where

T “ pD ` 1q ˆ pM ` 1q ` 1 (54b)

by the lexicographic mapping τ

τ : t0, . . . , T u Ñ T (54c)

t ÞÑ τptq “ pd,mq . (54d)

By abuse of notation, we will simply denote by pd,mq P T the element of t0, . . . , T u given by τ´1pd,mq “
d ˆ pM ` 1q ` m

T Q pd,mq ” τ´1pd,mq P t0, . . . , T u . (54e)

For all pd,mq P t0, . . . , Du ˆ t0, . . . ,Mu, the decision ud,m takes its values in a measurable set Ud,m

equipped with a σ-field Ud,m. For all pd,mq P t0, . . . , Duˆt0, . . . ,MuYtpD`1, 0qu, the uncertainty wd,m

takes its values in a measurable set Wd,m equipped with a σ-field Wd,m.

History spaces. With the identification (54e), for all pd,mq P T, we define the history space Hpd,mq

equipped with the history field Hpd,mq as in (1). For all d P t0, . . . , D ` 1u, we define the slow scale
history hd element of the slow scale history space Hd equipped with the slow scale history field Hd as
in (1) by:

hd “ hpd,0q P Hd “ Hpd,0q , Hd “ Hpd,0q . (55a)

For all d P t0, . . . , Du, we define the slow scale partial history space Hd:d`1 equipped with the slow scale
partial history field Hd:d`1 as in (2d) by:

Hd:d`1 “ Hpd,1q:pd`1,0q “ Ud,0 ˆ Wd,1 ˆ ¨ ¨ ¨ ˆ Ud,M´1 ˆ Wd,M ˆ Ud,M ˆ Wd`1,0 , (55b)

Hd:d`1 “ Hpd,1q:pd`1,0q “ Ud,0 b Wd,1 b ¨ ¨ ¨ b Ud,M´1 b Wd,M b Ud,M b Wd`1,0 . (55c)

Stochastic kernels. Because of the jump from one day to the next, we introduce two families of stochastic
kernels5:

– a family
 
ρpd,Mq:pd`1,0q

(
0ďdďD

of stochastic kernels accross consecutive slow scale steps

ρpd,Mq:pd`1,0q : Hpd,Mq Ñ ∆pWd`1,0q , d “ 0, . . . , D , (56a)

– a family
 
ρpd,m´1q:pd,mq

(
0ďdďD,1ďmďM

of stochastic kernels within consecutive slow scale steps

ρpd,m´1q:pd,mq : Hpd,m´1q Ñ ∆pWd,mq , d “ 0, . . . , D , m “ 1, . . . ,M . (56b)

History feedbacks. Following the notation in §2.1.2, a history feedback at index pd,mq P T is a measurable
mapping

γpd,mq : Hpd,mq Ñ Upd,mq . (57)

For pd,mq ď pd1,m1q, we denote by Γpd,mq:pd1,m1q the set of ppd,mq :pd1,m1qq-history feedbacks.

5 These families are defined over the time span t0, . . . , T u ” T by the identification (54e) in such a way that the notation
is consistent with the notation (11).
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Slow scale value functions. We suppose given a nonnegative numerical function

j : HD`1 Ñ r0,`8s , (58)

assumed to be measurable with respect to the field HD`1 associated to HD`1.
For d “ 0, . . . , D, we build the new stochastic kernels ρ

γ

pd,0q:pD`1,0qphd, dh
1
D`1q : Hd Ñ ∆pHD`1q

thanks to Definition 1, and we are then to define the slow scale value functions

Vdphdq “ min
γPΓpd,0q:pD,Mq

ż

HD`1

jph1
D`1qργpd,0q:pD`1,0qphd, dh

1
D`1q , @hd P Hd , (59)

and VD`1 “ j.

Bellman operators. For d “ 0, . . . , D, we define a family of slow scale Bellman operators across pd ` 1:dq

Bd`1:d : L0
`pHd`1,Hd`1q Ñ L

0
`pHd,Hdq , d “ 0, . . . , D , (60a)

by, for any measurable function ϕ : Hd`1 Ñ r0,`8s,

`
Bd`1:dϕ

˘
phdq “ inf

ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1qphd, dwd,1q . . .

inf
ud,M´1PUd,M´1

ż

Wd,M

ρpd,M´1q:pd,Mqphd, ud,0, wd,1, ¨ ¨ ¨ , wd,M´1, dwd,M q

inf
ud,MPUd,M

ż

Wd`1,0

ϕ
`
hd, ud,0, wd,1, ¨ ¨ ¨ , ud,M´1, wd,M , ud,M , wd`1,0

˘

ρpd,Mq:pd`1,0qphd, ud,0, wd,1, ¨ ¨ ¨ , wd,M , dwd`1,0q . (60b)

Proposition 4 The family tVdud“0,...,D`1 of slow scale value functions (59) satisfies

VD`1 “ j , (61a)

Vd “ Bd`1:dVd`1 , for d “ D, . . . , 0 . (61b)

Proof With the identification (54e), a general two-time scales stochastic dynamic optimization problem
as (59) takes the usual form (14). Since we have

Bd`1:d “ Bpd`1,0q:pd,0q “ Bpd`1,0q:pd,Mq ˝ Bpd,Mq:pd,M´1q ˝ . . . ˝ Bpd,1q:pd,0q ,

we can apply Theorem 1 repeatedly, which leads to the result.

Definition 5 (Compatible slow scale reduction) Let tXdud“0,...,D`1 be a family of state spaces,
tθdud“0,...,D`1 be family of measurable reduction mappings such that

θd : Hd Ñ Xd , (62a)

and tfd:d`1ud“0,...,D be a family of dynamics such that

fd:d`1 : Xd ˆ Hd:d`1 Ñ Xd`1 . (62b)

The triplet
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘
is said to be a slow scale state reduction

if for all d “ 0, . . . , D

θd`1

`
phd, hd:d`1q

˘
“ fd:d`1

`
θdphdq, hd:d`1

˘
, @phd, hd:d`1q P Hd`1 . (62c)

The slow scale state reduction
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘
is said to be compat-

ible with the two families
 
ρpd,Mq:pd`1,0q

(
0ďdďD

and
 
ρpd,m´1q:pd,mq

(
0ďdďD,1ďmďM

of stochastic kernels

defined in (56a)–(56b) if for any d “ 0, . . . , D, we have that
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– there exists a reduced stochastic kernel

rρpd,Mq:pd`1,0q : Xd ˆ Hpd,0q:pd,Mq Ñ ∆pWd`1,0q , (63a)

such that the stochastic kernel ρpd,Mq:pd`1,0q in (56a) can be factored as

ρpd,Mq:pd`1,0qphd,M , dwd`1,0q “ rρpd,Mq:pd`1,0q

`
θdphdq, hpd,0q:pd,Mq, dwd`1,0

˘
,

@hd,M P Hpd,Mq , (63b)

– for each m “ 1, . . . ,M , there exists a reduced stochastic kernel

rρpd,m´1q:pd,mq : Xd ˆ Hpd,0q:pd,m´1q Ñ ∆pWd,mq , (63c)

such that the stochastic kernel ρpd,m´1q:pd,mq in (56b) can be factored as

ρpd,m´1q:pd,mqphd,m´1, dwd,mq “ rρpd,m´1q:pd,mq

`
θdphdq, hpd,0q:pd,m´1q, dwd,m

˘
,

@hd,m´1 P Hpd,m´1q . (63d)

Theorem 4 Assume that there exists a slow scale state reduction`
tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘
and that there exists a reduced criterion

rj : XD`1 Ñ r0,`8s , (64a)

such that the cost function j in (58) can be factored as

j “ rj ˝ θD`1 . (64b)

Using the reduced stochastic kernels of Definition 5, we define a family of slow scale reduced Bellman
operators across pd ` 1:dq

rBd`1:d : L0
`pXd`1,Xd`1q Ñ L

0
`pXd,Xdq , d “ 0, . . . , D , (65a)

by, for any measurable function rϕ : Xd`1 Ñ r0,`8s,

` rBd`1:drϕ
˘
pxdq “ inf

ud,0PUd,0

ż

Wd,1

rρpd,0q:pd,1qpxd, dwd,1q . . .

inf
ud,M´1PUd,M´1

ż

Wd,M

rρpd,M´1q:pd,Mqpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M´1, dwd,M q

inf
ud,MPUd,M

ż

Wd`1,0

rϕ
` rfd:d`1pxd, ud,0, wd,1, ¨ ¨ ¨ , ud,M´1, wd,M , ud,M , wd`1,0q

˘

rρpd,Mq:pd`1,0qpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M , dwd`1,0q . (65b)

We define the family of reduced value functions trVdud“0,...,D`1 by

rVD`1 “ rj , (66a)

rVd “ rBd`1:d
rVd`1 , for d “ D, . . . , 0 . (66b)

Then, the family tVdud“0,...,D`1 of slow scale value functions (59) satisfies

Vd “ rVd ˝ θd , d “ 0, . . . , D . (66c)

Proof The triplet ptXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,Dq is a state reduction accross the time

blocks rpd, 0q, pd`1, 0qs, which is compatible with the family
 
ρpd,0q:pd`1,0q

(
0ďdďD

of stochastic kernels.

Hence, we can apply Theorem 3, which leads to the expressions (66c). The expression (60) of the reduced
Bellman operators is a consequence of Corollary 1.
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4.3 Decision Hazard Decision Dynamic Programming

We consider stochastic optimization problems where, during the time interval between two time steps,
the decision-maker takes two decisions. As outlined at the beginning of Sect. 2, at the end of the time
interval rs ´ 1, sr, an uncertainty variable w5

s is produced, and then, at the beginning of the time inter-
val rs, s ` 1r, the decision-maker takes a head decision u7

s. What is new is that, at the end of the time
interval rs, s` 1r, when an uncertainty variable w5

s`1 is produced, the decision-maker has the possibility

to make a tail decision u5
s`1. This latter decision u5

s`1 can be thought as a recourse variable for a two

stage stochastic optimization problem that would take place inside the time interval rs, s`1r. We call w7
0

the uncertainty happening right before the first decision. This gives the following sequence of events:

w
7
0 ù u

7
0 ù w5

1 ù u5
1 ù u

7
1 ù w5

2 ù . . . ù w5
S´1 ù u5

S´1 ù u
7
S´1 ù w5

S ù u5
S .

Let S P N
˚. For each time s “ 0, 1, 2 . . . , S ´ 1, the head decision u7

s takes values in a measurable
set U

7
s, equipped with a σ-field U7

s. For each time s “ 1, 2 . . . , S, the tail decision u5
s takes values in

measurable set U5
s, equipped with a σ-field U5

s. For each time s “ 1, 2 . . . , S, the uncertainty w5
s takes its

values in a measurable set W5
s, equipped with a σ-field W5

s. For time s “ 0, the uncertainty w
7
0 takes its

values in a measurable set W7
0, equipped with a σ-field W

7
0.

Decision Hazard Decision history spaces and fields. We define,
for s “ 0, 1, 2 . . . , S, the head history space

H
7
s “ W

7
0 ˆ

s´1ź

s1“0

`
U

7
s1 ˆ W

5
s1`1 ˆ U

5
s1`1

˘
, (67a)

for s “ 0, 1, 2 . . . , S, the head history field

H7
s “ W

7
0 b

s´1â

s1“0

`
U

7
s1 b W5

s1`1 b U5
s1`1

˘
, (67b)

for s “ 1, 2 . . . , S, the tail history space

H
5
s “ H

7
s´1 ˆ U

7
s´1 ˆ W

5
s , (67c)

for s “ 1, 2 . . . , S, the tail history field

H5
s “ H

7
s´1 b U

7
s´1 b W5

s . (67d)

Decision Hazard Decision history feedbacks. For all s “ 0, . . . , S ´ 1, a head history feedback at time s is
a measurable mapping

γ7
s :

`
H

7
s,H

7
s

˘
Ñ

`
U

7
s,U

7
s

˘
. (68a)

We call Γ 7
s the set of head history feedbacks at time s. In addition, for 0 ď s ď S ´ 1, we define

Γ
7
s:S “ Γ 7

s ˆ ¨ ¨ ¨ ˆ Γ
7
S . (68b)

For all s “ 1, 2 . . . , S, a tail history feedback at time s is a measurable mapping

γ5
s :

`
H

5
s,H

5
s

˘
Ñ

`
U

5
s,U

5
s

˘
. (68c)

We call Γ 5
s the set of tail history feedbacks at time s. In addition, for 1 ď s ď S, we define

Γ 5
s:S “ Γ 5

s ˆ ¨ ¨ ¨ ˆ Γ 5
S . (68d)

Decision Hazard Decision stochastic kernels. For s “ 1, 2 . . . , S, we define a DHD stochastic kernel
between time s ´ 1 and s as a measurable mapping

ρs´1:s :
`
H

7
s´1,H

7
s´1

˘
Ñ ∆pW5

sq , s “ 1, . . . , S . (69)

Let tρs´1:su1ďsďS be a family of DHD stochastic kernels.
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Decision Hazard Decision value functions. We consider a nonnegative numerical function

j : H7
S Ñ r0,`8s , (70)

supposed to be measurable with respect to the σ-field H
7
S in (67b).

We define DHD value functions by, for all s “ 0, . . . , S,

Vsph7
sq “ min

γ7PΓ 7
s:S´1

,γ5PΓ 7
s`1:S

ż

H
7
S

jph1
Sqργ

7,γ5

s:S ph7
s, dh

1
Sq , @h7

s P H
7
s , (71)

where ρ
γ7,γ5

s:S has to be understood as ργs:S as in (7a) with

γsph7
sq “ γ7

sph7
sq , @h7

s P H
7
s , (72a)

γs1 ph5
s1 q “

´
γ5
s1 ph5

s1 q, γ
7
s1

`
h5
s1 , γ

5
s1 ph5

s1 q
˘¯

, @s1 “ s ` 1, . . . , S ´ 1 , @h5
s1 P H

5
s1 , (72b)

γSph5
Sq “ γ5

Sph5
Sq , @h5

S P H
5
S . (72c)

Theorem 5 For s “ 0, . . . , S ´ 1, we define the DHD Bellman operator

Bs`1:s : L
0
`pH7

s`1,H
7
s`1q Ñ L

0
`pH7

s,H
7
sq (73a)

such that, for all ϕ P L
0
`pH7

s`1,H
7
s`1q and for all h7

s P H
7
s,

`
Bs`1:sϕ

˘
ph7

sq “ inf
u

7
sPU7

s

ż

W5
s`1

inf
u5
s`1

PU5
s`1

ϕph7
s, u

7
s, w

5
s`1, u

5
s`1qρs:s`1ph7

s, dw
5
s`1q . (73b)

Then the value functions (71) satisfy

VS “ j , (73c)

Vs “ Bs`1:sVs`1,@s “ 0, . . . , S ´ 1 . (73d)

Proof We will show that the proof follows from Theorem 4. Indeed, we will now show that the setting
in §4.3 is a particular kind of two time scales problem as seen in §4.2. For this purpose, we introduce a
spurious uncertainty variable w7

s taking values in a singleton set W
7
s “ tw7

su, equipped with the trivial
σ-field tH,W7

su, for each time s “ 1, 2 . . . , S. Now, we obtain the following sequence of events:

w
7
0 ù u

7
0 ù w5

1 ù u5
1 ù w

7
1 ù u

7
1 ù w5

2 ù u5
2 ù w

7
2 ù u

7
2 ù . . .

ù w5
S´1 ù u5

S´1 ù w
7
S´1 ù u

7
S´1 ù w5

S ù u5
S ù w

7
S ,

which coincides with a two time scales problem:

w0,0 “ w
7
0 ù u0,0 “ u

7
0 ù w0,1 “ w5

1 ù u0,1 “ u5
1looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

slow time cycle

ù

w1,0 “ w
7
1 ù u1,0 “ u

7
1 ù w1,1 “ w5

2 ù u1,1 “ u5
2looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

slow time cycle

ù

¨ ¨ ¨ ù wS´1,0 “ w
7
S´1 ù uS´1,0 “ u

7
S´1 ù wS´1,1 “ w5

S ù uS´1,1 “ u5
Slooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

slow time cycle

ù wS,0 “ w
7
S .

We introduce the sets

Wd,0 “ W
7
d, for d P t0, . . . , Su,

Wd,1 “ W
5
d`1, for d P t0, . . . , S ´ 1u,

Ud,0 “ U
7
d, for d P t0, . . . , S ´ 1u,

Ud,1 “ U
5
d`1, for d P t0, . . . , S ´ 1u.
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As a consequence, we observe that the two time scales history spaces in §4.2 are in one to one
correspondence with the Decision Hazard Decision history spaces and fields in (67a)–(67c) as follows:

for d “ 0, 1, 2 . . . , S,

Hd,0 “ W
7
0 ˆ

d´1ź

d1“0

`
Ud1,0 ˆ Wd1`1,1 ˆ Ud1`1,1 ˆ Wd1`1,0

˘
(74a)

“ W
7
0 ˆ

d´1ź

d1“0

`
U

7
d1 ˆ W

5
d1`1 ˆ U

5
d1`1 ˆ W

7
d1`1

˘
(74b)

” W
7
0 ˆ

d´1ź

d1“0

`
U

7
d1 ˆ W

5
d1`1 ˆ U

5
d1`1

˘
“ H

7
d , (74c)

for d “ 0, 1, 2 . . . , S,

Hd,0 “ W
7
0 b

d´1â

d1“0

`
U

7
d1 b W

5
d1`1 b U

5
d1`1 b W

7
d1`1

˘
, (74d)

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “ W
7
0 ˆ

d´1ź

d1“0

`
Ud1,0 ˆ Wd1`1,1 ˆ Ud1`1,1 ˆ Wd1`1,0

˘
ˆ Ud,0 ˆ Wd`1,1 (74e)

“ W
7
0 ˆ

d´1ź

d1“0

`
U

7
d1 ˆ W

5
d1`1 ˆ U

5
d1`1 ˆ W

7
d1`1

˘
ˆ U

7
d ˆ W

5
d`1 (74f)

” W
7
0 ˆ

d´1ź

d1“0

`
U

7
d1 ˆ W

5
d1`1 ˆ U

5
d1`1

˘
ˆ U

7
d ˆ W

5
d`1 “ H

5
d`1 , (74g)

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “ W
7
0 b

d´1â

d1“0

`
U

7
d1 b W5

d1`1 b U5
d1`1 b W

7
d1`1

˘
b U

7
d b W5

d`1 . (74h)

For any element h of Hd,0 or Hd,1 we call
“
h
‰7

the element of H7
d or H5

d corresponding to h with all the
spurious uncertainties removed. By a slight abuse of notation, the criterion j in (70) (Decision Hazard

Decision setting) corresponds to j ˝
“

¨
‰7

in the two time scales setting in §4.2. The feedbacks in the two
time scales setting in §4.2 are in one to one correspondence with the same elements (72) in the Decision
Hazard Decision setting, namely

γd,0 “ γ
7
d ˝

“
¨
‰7

, γd,1 “ γ5
d`1 ˝

“
¨
‰7

. (75)

Now we define two famillies of stochastic kernels

– a family
 
ρpd,0q:pd,1q

(
0ďdďD

of stochastic kernels within two consecutive slow scale indexes

ρpd,0q:pd,1q : Hd,0 Ñ ∆pWd,1q , (76a)

hd,0 ÞÑ ρd:d`1 ˝
“

¨
‰7

. (76b)

– a family
 
ρpd,1q:pd`1,0q

(
0ďdďD´1

of stochastic kernels accross two consecutive slow scale indexes

ρpd,1q:pd`1,0q : Hd,1 Ñ ∆pWd`1,0q , (77a)

hd,1 ÞÑ δ
w

7
d`1

p¨q , (77b)
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where we recall that Wd`1,0 “ W
7
d`1 “ tw7

d`1u.
With these notations, we can apply Theorem 4 to obtain equation (73b), where only one integral

appears because of the Dirac stochastic kernels in (77). Indeed, for any measurable function ϕ : Hd`1,0 Ñ
r0,`8s, we have that

`
Bd`1:dϕ

˘
phd,0q “ inf

ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´
hd,0, dwd,1

¯

inf
ud,1PUd,1

ż

Wd`1,0

ϕ
`
hd,0, ud,0, wd,1, ud,1, wd`1,0

˘
ρpd,1q:pd`1,0q

´
hd,0, hd:d`1, dwd`1,0

¯
.

Now, if there exists rϕ : H7
d`1 Ñ r0,`8s such that ϕ “ rϕ ˝

“
¨
‰7
, we obtain that

`
Bd`1:dϕ

˘
phd,0q “ inf

ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´
hd,0, dwd,1

¯
inf

ud,1PUd,1

rϕp
“
hd,0

‰7
, ud,0, wd,1, ud,1q

ż

Wd`1,0

ρpd,1q:pd`1,0q

´
hd,0, hd:d`1, dwd`1,0

¯

“ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´
hd,0, dwd,1

¯
inf

ud,1PUd,1

rϕp
“
hd,0

‰7
, ud,0, wd,1, ud,1q

by the Dirac probability in (77)

“ inf
u

7
d

PU7
d

ż

W5
d`1

ρpd,0q:pd,1q

´
h

7
d, dw

5
d`1

¯
inf

u5
d`1

PU5
d`1

rϕph7
d, u

7
d, w

5
d`1, u

5
d`1q

This ends the proof.

Definition 6 (Decision Hazard Decision compatible state reduction) Let tXsus“0,...,S be a fam-
ily of state spaces, tθsus“0,...,S be family of measurable reduction mappings such that

θs : H
7
s Ñ Xs , (78a)

and tfs:s`1us“0,...,S´1 be a family of dynamics such that

fs:s`1 : Xs ˆ U
7
s ˆ Ws`1 ˆ U

5
s`1 Ñ Xs`1 . (78b)

The triplet
`

tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘
is said to be a DHD state reduction if, for all

s “ 0, . . . , S ´ 1, we have that

θs`1

`
phs, u

7
s, ws`1, u

5
s`1q

˘
“ fs:s`1

`
θsphsq, u7

s, ws`1, u
5
s`1

˘
,

@phs, u
7
s, ws`1, u

5
s`1q P H

7
s ˆ U

7
s ˆ Ws`1 ˆ U

5
s`1 . (78c)

The DHD state reduction is said to be compatible with the family tρs:s`1u0ďsďS´1 of DHD stochastic
kernels in (69) if there exists a family trρs:s`1u0ďsďS´1 of reduced DHD stochastic kernels

rρs:s`1 : Xs Ñ ∆pWs`1q , (79a)

such that, for each s “ 0, . . . , S ´ 1, the stochastic kernel ρs:s`1 in (69) can be factored as

ρs:s`1ph7
s, dws`1q “ rρs:s`1

`
θsph7

sq, dws`1

˘
, @h7

s P H
7
s . (79b)

Theorem 6 Assume that there exists a slow scale state reduction`
tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘
and that there exists a reduced criterion

rj : XS Ñ r0,`8s , (80a)

such that the cost function j in (70) can be factored as

j “ rj ˝ θS . (80b)
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We define a family of DHD reduced Bellman operators across ps ` 1:sq

rBs`1:s : L
0
`pXs`1,Xs`1q Ñ L

0
`pXs,Xsq , s “ 1, . . . , S ´ 1 , (81a)

by, for any measurable function rϕ : Xs`1 Ñ r0,`8s,

p rBs`1:s rϕqpxsq “ inf
u

7
sPU7

s

ż

Ws`1

inf
u5
s`1

PU5
s`1

rϕpfs:s`1pxs, u
7
s, ws`1, u

5
s`1qqrρs:s`1pxs, dws`1q . (81b)

We define the family of reduced value functions trVsus“0,...,S by

rVS “ rj (82a)

rVs “ rBs`1:s
rVs`1 for s “ S ´ 1, . . . , 0 . (82b)

Then, the value functions Vs defined by (71) satisfy

Vs “ rVs ˝ θs , s “ 0, . . . , S . (83)

Proof See proof of Theorem 5 and apply Theorem 4.

5 The Case of Optimization with Noise Process

In this Section, we suppose the that, for any s “ 0, . . . , T ´1, the set Us is a separable complete metric
space. Optimization with noise process now becomes a special case of the setting in Sect. 2, as we will
show in §5.1. Therefore, we can apply the results obtained in Sect. 3 and in Sect. 4.

5.1 Optimization with Noise Process

Noise Process. Let pΩ,Aq be a measurable space. For t “ 0, . . . , T , the noise at time t is modeled as
a random variable Wt defined on Ω and taking values in Wt. Therefore, we suppose given a stochastic
process tWtut“0,...,T called noise process.

The following assumption will be made in the sequel.

Assumption 3 For any 1 ď s ď T , there exists a regular conditional distribution of the random variable

Ws knowing the random process W0:s´1, denoted by P
W0:s´1

Ws
pw0:s´1, dwsq.

Under Assumption 3, we can introduce the family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (84a)

defined by

ρs´1:sphs´1, dwsq “ P
W0:s´1

Ws

`
rhs´1sW0:s´1, dws

˘
, s “ 1, . . . , T . (84b)

Adapted Control Processes. Let t be given such that 0 ď t ď T ´ 1. We introduce

At:t “ tH, Ωu , At:t`1 “ σpWt`1q , . . . , , At:T´1 “ σpWt`1, . . . ,WT´1q . (85)

Let L
0pΩ,At:T´1,Ut:T´1q be the space of A-adapted control processes pUt, . . . ,UT´1q with values in

Ut:T´1, that is, such that

σpUsq Ă At:s , s “ t, . . . , T ´ 1 . (86)
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Family of Optimization Problems Over Adapted Control Processes. We suppose here that the measurable
space pΩ,Aq is equipped with a probability P, so that pΩ,A,Pq is a probability space. Following the
setting given in §2.2, we consider a measurable nonnegative numerical cost function j as in Equation (12).

We consider the following family of optimization problems, indexed by t “ 0, . . . , T ´1 and by ht P Ht,

qVtphtq “ inf
pUt:T´1qPL0pΩ,At:T´1,Ut:T´1q

E
“
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
W0:t “ rhts

W

0:t

‰
. (87)

Theorem 7 Let t P t0, . . . , T ´ 1u and ht P Ht be given. Problem (14) and Problem (87) coincide, that
is,

qVtphtq “ inf
pUt:T´1qPL0pΩ,At:T´1,Ut:T´1q

E

”
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
ˇ W0:t “ rhts

W

0:t

ı
(88a)

“ inf
γt:T´1PΓt:T´1

ż

HT

jph1
T qργt:T pht, dh

1
T q (88b)

“ Vtphtq , (88c)

where ρ
γ
t:T is given by Definition 1 with the family tρs´1:su1ďsďT of stochastic kernels defined in (84),

and where the value function tVtu is defined by (15).
In addition, any optimal history feedback γ‹ “ tγ‹

sus“t,...,T 1́ for Problem (14) yields an optimal
adapted control process pU‹

t , . . . ,U
‹
T´1q for Problem (87) by

pU‹
t , . . . ,U

‹
T´1q “

“
Φ
γ‹

t:T pht,Wt`1, . . . ,WT q
‰U
t`1:T

, (89a)

(where r¨sUt`1:T is defined in (2f)), or, equivalently, by

U‹
t “ γ‹

t phtq , (89b)

U‹
t`1 “ γ‹

t`1pht,U
‹
t ,Wt`1q , (89c)

...

U‹
T´1 “ γ‹

T´1pht,U
‹
t ,Wt`1, . . . ,U

‹
T´2,WT´1q . (89d)

Proof Let t P t0, . . . , T ´ 1u and ht P Ht be given. We show that Problem (87) and Problem (14) are in
one-to-one correspondence.

– First, for any history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1, we define

pUt:T´1q P L
0pΩ,At:T´1,Ut:T´1q by

pUt, . . . ,UT´1q “
“
Φ
γ
t:T pht,Wt`1, . . . ,WT q

‰U
t`1:T

, (90)

where the flow Φ
γ
t:T has been defined in (4) and the history control part r¨sUt`1:T in (2f). By the

expression (84b) of ρs:s`1ph1
s, dws`1q and by Definition 1 of the stochastic kernel ργt:T , we obtain that

(see details for the expression of ργt:T in Appendix A)

E

”
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
ˇ W0:t “ rhts

W

ı
“ E

”
jpΦγ

t:T pht,Wt`1, . . . ,WT qq
ˇ̌
ˇ W0:t “ rhts

W

0:t

ı

“

ż

HT

jph1
T qργt:T pht, dh

1
T q . (by (129) in Appendix A)

As a consequence

inf
pUt:T´1qPL0pΩ,At:T´1,Ut:T´1q

E

”
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
ˇ W0:t “ rhts

W

0:t

ı

ď inf
γt:T´1PΓt:T´1

ż

HT

jph1
T qργt:T pht, dh

1
T q . (92)
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– Second, we define a pt :T ´ 1q-noise feedback as a sequence λ “ tλsus“t,...,T´1 of measurable mappings
(the mapping λt is constant)

λt P Ut , λs : Wt`1:s Ñ Us , t ` 1 ď s ď T ´ 1 .

We denote by Λt:T´1 the set of pt :T ´ 1q-noise feedbacks.
Let pUt, . . . ,UT´1q P L

0pΩ,At:T´1,Ut:T´1q. As each set Us is a separable complete metric space, for
s “ t, . . . , T ´ 1, we can invoke Doob Theorem (see [3, Chapter 1, p. 18]). Therefore, there exists a
pt :T ´ 1q-noise feedback λ “ tλsus“t,...,T´1 P Λt:T´1 such that

Ut “ λt , Us “ λspWt`1:sq , t ` 1 ď s ď T ´ 1 . (93)

Then, we define the history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1 by, for any history h1
r P Hr,

r “ t, . . . , T ´ 1:

γtph
1
tq “ λt ,

γt`1ph1
t`1q “ λt`1

´“
h1
t`1

‰W
t`1:t`1

¯
“ λt`1pw1

t`1q ,

...

γT´1ph1
T´1q “ λT´1

´“
h1
T´1

‰W
t`1:T´1

¯
“ λT´1pw1

t`1, ¨ ¨ ¨ , w1
T´1q .

By the expression (84b) of ρs:s`1ph1
s, dws`1q and by Definition 1 of the stochastic kernel ργt:T , we

obtain that (see Appendix A for details)
ż

HT

jph1
T qργt:T pht, dh

1
T q “ E

”
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
ˇ W0:t “ rhts

W

0:t

ı
. (94)

As a consequence

inf
γt:T´1PΓt:T´1

ż

HT

jph1
T qργt:T pht, dh

1
T q

ď inf
pUt,...,UT´1qPL0pΩ,At:T´1,Ut:T´1q

E

”
jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ̌
ˇ W0:t “ rhts

W

0:t

ı
. (95)

Gathering inequalities (92) and (95) leads to (88).
The relations (89) allowing to build an optimal adapted control process pU‹

t , . . . ,U
‹
T´1q for Prob-

lem (87) when starting from an optimal history feedback γ‹ “ tγ‹
sus“t,...,T 1́ for Problem (14) follow

easily. This ends the proof.

An immediate consequence of Theorem 7 and Theorem 1 is the following.

Corollary 4 The family
!
qVt

)
t“0,...,T

of functions in (87) satisfies the backward induction

qVT phT q “ jphT q , @hT P HT , (96a)

and, for t “ T ´ 1, . . . , 0,

qVtphtq “ inf
ut

ż

Wt`1

qVt`1

`
ht, ut, wt`1

˘
P
W0:t

Wt`1

`
rhts

W

0:t, dwt`1

˘
(96b)

“ inf
ut

E
“qVt`1

`
ht, ut,Wt`1

˘ ˇ̌
W0:t “ rhts

W

0:t

‰
, @ht P Ht . (96c)

5.2 Dynamic Programming with Unit Time Blocks

In the setting of optimization with noise process, we now consider the case where a state reduction exists
at each time t “ 0, . . . , T ´ 1.
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5.2.1 The Case of Final Cost Function

We first treat the case of a general criterion, as in §4.1.1.

Proposition 5 Suppose that there exists a family tXtut“0,...,T of state spaces, with X0 “ W0, and a
family tft:t`1ut“0,...,T´1 of dynamics

ft:t`1 : Xt ˆ Ut ˆ Wt`1 Ñ Xt`1 . (97)

Suppose that the noise process tWtut“0,...,T is made of independent random variables (under the proba-
bility law P).

For a measurable nonnegative numerical cost function

rj : XT Ñ r0,`8s , (98)

we define the family
!
rVt

)
t“0,...,T

of functions by the backward induction

rVT pxT q “ rjpxT q , @xT P XT , (99a)

rVtpxtq “ inf
utPUt

E
“rVt`1

`
xt, ut,Wt`1

˘‰
, @xt P Xt , (99b)

for t “ T ´1, . . . , 0. Then, the value functions rVt are the solution of the following family of optimization
problems, indexed by t “ 0, . . . , T ´ 1 and by xt P Xt,

rVtpxtq “ inf
Ut:T´1PL0pΩ,At:T´1,Ut:T´1q

E
“rjpXT q

‰
, (100a)

where

Xs “ xt , Xs`1 “ fs:s`1

`
Xs,Us,Ws`1

˘
, @s “ t, . . . , T ´ 1 . (100b)

Proof We define a family tθtut“0,...,T of reduction mappings θt : Ht Ñ Xt as in (23) by induction. First,
as X0 “ W0 “ H0 by assumption, we put θ0 “ Id : H0 Ñ X0. Then, we use (42) to define the mappings
θ1, . . . , θT . As a consequence, the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q is a state reduction
across the consecutive time blocks rt, t ` 1st“0,...,T´1 of the time span.

Since the noise process tWtut“0,...,T is made of independent random variables (under P), the family
tρs´1:su1ďsďT of stochastic kernels defined in (84) is given by

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (101a)

hs´1 ÞÑ PWs
pdwsq . (101b)

As a consequence, we have by (26) that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q is com-
patible (see Definition 4) with the family tρt´1:tut“1,...,T of stochastic kernels in (101). In addition, the
reduced stochastic kernels in (26) coincide with the original stochastic kernels in (101).

Define the cost function j as

j “ rj ˝ θT .

Corollary 2 applies, so that the family tVtut“0,...,T of value functions defined for the family of optimization
problems (14) satisfies

Vt “ rVt ˝ θt , t “ 0, . . . , T . (102)

By means of Theorem 7, we deduce that

qVtphtq “ rVt ˝ θtphtq , (103)

for all t “ 0, . . . , T and for any ht P Ht. From the definition (87) of the family of functions qVt, we obtain

the expression (100) of functions rVt.

The expression of the optimal state feedbacks is given by the next corollary.
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Corollary 5 Suppose that, for t “ 0, . . . , T ´ 1, there exist measurable selections

rγ‹
t : pXt,Xtq Ñ pUt,Utq (104a)

such that
rγ‹
t pxtq P argmin

utPUt

E
“rVt`1

`
xt, ut,Wt`1

˘‰
, @xt P Xt , @t “ T ´ 1, . . . , 0 , (104b)

where the family trVtut“0,...,T of functions is given by (99). Then, the family of random variables tU‹
sus“t,...,T´1

defined by
U‹

s “ rγ‹
s ˝ X‹

s , s “ t, . . . , T ´ 1 , (105a)

where
X‹

s “ xt , X‹
s`1 “ fs:s`1

`
X‹

s,U
‹
s,Ws`1

˘
, @s “ t, . . . , T ´ 1 , (105b)

is a solution to Problem (100).

Proof The result directly follows from Corollary 2.

5.2.2 The Case of Time Additive Cost Functions

We make the same assumptions than in §4.1.2. We leave the proofs to the reader.

Proposition 6 Suppose that there exists a family tXtut“0,...,T of state spaces, with X0 “ W0, and a
family tft:t`1ut“0,...,T´1 of dynamics

ft:t`1 : Xt ˆ Ut ˆ Wt`1 Ñ Xt`1 . (106)

Suppose that the noise process tWtut“0,...,T is made of independent random variables (under the proba-
bility law P).

We define the family
!
rVt

)
t“0,...,T

of functions by the backward induction

pVT pxT q “ KpxT q , @xT P XT , (107a)

and, for t “ T ´ 1, . . . , 0 and for all xt P Xt

pVtpxtq “ inf
utPUt

E
“
Ltpxt, ut,Wt`1q ` pVt`1

`
ft:t`1pxt, ut,Wt`1q

˘‰
. (107b)

Then, the value functions pVt are the solution of the following family of optimization problems, indexed
by t “ 0, . . . , T ´ 1 and by xt P Xt,

pVtpxtq “ inf
pUt,...,UT´1qPL0pΩ,At:T´1,Ut:T´1q

E

” T´1ÿ

s“t

Ls

`
Xs,Us,Ws`1

˘
` K

`
XT

˘ı
, (108a)

where
Xs “ xt , Xs`1 “ fs:s`1

`
Xs,Us,Ws`1

˘
, @s “ t, . . . , T ´ 1 . (108b)

Corollary 6 Suppose that, for t “ 0, . . . , T ´ 1, there exists measurable selections

pγ‹
t : pXt,Xtq Ñ pUt,Utq , (109a)

such that, for all xt P Xt,

pγ‹
t pxtq P argmin

utPUt

E
“
Ltpxt, ut,Wt`1q ` pVt`1

`
ft:t`1pxt, ut,Wt`1q

˘‰
. (109b)

where the family tpVtut“0,...,T , of functions is given by (107).
Then, the family of random variables tU‹

sus“t,...,T´1 defined by

U‹
s “ pγ‹

s ˝ X‹
s , s “ t, . . . , T ´ 1 , (110a)

where
X‹

s “ xt , X‹
s`1 “ fs:s`1

`
X‹

s,U
‹
s,Ws`1

˘
, @s “ t, . . . , T ´ 1 , (110b)

is a solution to Problem (108).
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5.3 Two Time-Scales Dynamic Programming

We adopt the notation of § 4.2. We suppose given a two time-scales noise process

Wp0,0q:pD`1,0q “
`
W0,0,W0,1, . . . ,W0,M ,W1,0, . . . ,WD,M ,WD`1,0

˘
. (111)

For any d P t0, 1, . . . , Du, we introduce the σ-fields

Ad,0 “ tH, Ωu , Ad,m “ σpWpd,1q:pd,mqq , m “ 1, . . . ,M . (112)

The proof of the following proposition is left to the reader.

Proposition 7 Suppose that there exists a family tXdud“0,...,D`1 of state spaces, with X0 “ W0,0, and
a family tfd:d`1ud“0,...,D of dynamics

fd:d`1 : Xd ˆ Hd:d`1 Ñ Xd`1 . (113)

Suppose that the slow scale subprocesses Wpd,1q:pd`1,0q “
`
Wd,1, ¨ ¨ ¨ ,Wd`1,0

˘
, d “ 0, . . . , D, are inde-

pendent (under the probability law P).
For a measurable nonnegative numerical cost function

rj : XD`1 Ñ r0,`8s , (114)

we define the family
!
rVd

)
d“0,...,D`1

of functions by the backward induction

rVD`1pxD`1q “ rjpxD`1q , @xD`1 P XD`1 , (115a)

rVdpxdq “ inf
Upd,0q:pd,MqPL0pΩ,Apd,0q:pd,Mq,Upd,0q:pd,Mqq

E

”
rVd`1

`
fd:d`1pxd,Ud,0,Wd,1, ¨ ¨ ¨ ,Ud,M ,Wd`1,0q

˘ı
,

@xd P Xd , (115b)

for d “ D, . . . , 0.
Then, the value functions rVd in (115) are the solution of the following family of optimization problems,

indexed by d “ 0, . . . , D and by xd P Xd,

rVdpxdq “ inf
Upd,0q:pD,MqPL0pΩ,Apd,0q:pD,Mq,Upd,0q:pD,Mqq

E
“rjpXD`1q

‰
, (116a)

where, for all d1 “ d, . . . , D,

Xd “ xd , Xd1`1 “ fd1:d1`1

`
Xd1 ,Ud1,0,Wd1,1, ¨ ¨ ¨ ,Ud1,M ,Wd1`1,0

˘
. (116b)

5.4 Decision Hazard Decision Dynamic Programming

We adopt the notation of § 4.3. We suppose given a noise process

W0:S “
`
W7

0,W
5
1, . . . ,W

5
S

˘
. (117)

For any s P t0, 1, . . . , S ´ 1u, we introduce the σ-fields

As “ tH, Ωu , As1 “ σpW5
s`1:s1 q , s1 “ s ` 1, . . . , S . (118)

The proof of the following proposition is left to the reader.
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Proposition 8 Suppose that there exists a family tXsus“0,...,S of state spaces, with X0 “ W
7
0, and a

family tfs:s`1us“0,...,S´1 of dynamics

fs:s`1 : Xs ˆ U
7
s ˆ W

5
s`1 ˆ U

5
s`1 Ñ Xs`1 . (119)

Suppose that the noise process
 
W5

s

(
s“0,...,S

is made of independent random variables (under the proba-

bility law P).
For a measurable nonnegative numerical cost function

rj : XS Ñ r0,`8s , (120)

we define the family of functions
!
rVs

)
s“0,...,S

by the backward induction

rVSpxSq “ rjpxSq , @xS P XS , (121a)

rVspxsq “ inf
u

7
sPU7

s

E

”
inf

u5
s`1

PU5
s`1

rVs`1

´
fs1:s1`1

`
xs, u

7
s,W

5
s`1, u

5
s`1

˘¯ı
(121b)

@xs P Xs , @s “ S ´ 1, . . . , 0 . (121c)

Then, the value functions rVs in (121) are the solution of the following family of optimization problems,
indexed by s “ 0, . . . , S ´ 1 and by xs P Xs,

rVspxsq “ inf
U

7
s:S´1

PL0pΩ,As:S´1,U
7
s:S´1

q
inf

U5
s`1:S

PL0pΩ,As`1:S,U
5
s`1:S

q
E
“rjpXSq

‰
, (122a)

where
Xs1 “ xs , Xs1`1 “ fs1:s1`1

`
Xs1 ,U7

s1 ,W
5
s1`1,U

5
s1`1

˘
, @s1 “ s, . . . , S ´ 1 . (122b)

6 Conclusion

As said in the Introduction Sect. 1, the large scale nature of multistage stochastic optimization problems
makes decomposition methods appealing. We have provided a method to decompose multistage stochastic
optimization problems by time blocks.

In the case of optimization with noise process, we do not require noise independence within the time
blocks. This opens the possibility to apply stochastic dynamic programming between the extremities of
the time blocks — at a slow time scale for which noise would be statistically independent — and to apply
stochastic programming within the time blocks. Therefore, our time block decomposition paves the way
for mixing and reconciliating stochastic dynamic programming and stochastic programming methods.

Such an approach is part of a larger research program, where we aim at mixing various decomposition-
coordination methods in multistage stochastic optimization, be they spatial, temporal or by scenarios [4].

A Construction of the stochastic kernels ρ
γ
r:t

We detail here the construction of the stochastic kernels ργr:t in (7a) when 0 ď r ă t ď T . We assume that the pWsqs“0,...,T

are measurable spaces and we denote by pWsqs“0,...,T the associated σ-fields.

1. In the first step, we build a family of stochastic kernels pνγr,s:s`1
qs“r,¨¨¨ ,t´1 using composition and then we follow [5,

p.138] (see also [2, Proposition 7.28]) to define a stochastic kernel product µγr:t`1
“

Ât´1

s“r ν
γ
r,s:s`1

. More precisely, let

r and t be fixed (such that 0 ď r ă t ď T ). First, for s “ r, we simply define νγr,r:r`1
“ ρr:r`1. Second, for each s such

that 0 ď r ă s ă t, we define a new stochastic kernel νγr,s:s`1
by the composition νγr,s:s`1

“ ρs:s`1 ˝ Φγ
r:s :

Hr ˆ Wr`1:s Hs ∆pWs`1q .
Φ
γ
r:s

ν
γ
r,s:s`1

ρs:s`1

(123)
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Now, proceeding as in [5, p.138], we construct a stochastic kernel

µ
γ
r:t : Hr Ñ ∆pWr`1:tq ,

obtained as a product of the stochastic kernels pνγr,s:s`1
qs“r,...,t´1. The construction if as follows: for a fixed hr P Hr

and a fixed sequence of measurable sets Br`1:t P Wr`1:t, we put

µ
γ
r:tphr , Br`1:tq “

ż

Br`1

¨ ¨ ¨

ż

Bs`1

¨ ¨ ¨
´ ż

Bt

ν
γ
r,t´1:tphr , wr`1:t´1,dwtq

¯

¨ ¨ ¨ νγr,s:s`1
phr , wr`1:s, dws`1q ¨ ¨ ¨ νγr,r:r`1

phr, dwr`1q . (124)

2. The second step is to define the stochastic kernel ργr:t : Hr Ñ ∆pHtq from the stochastic kernel µγr:t using transport
with the flow Φ

γ
r:t : Hr ˆ Wr`1:t Ñ Ht. More precisely, for any measurable nonnegative function ϕ : Ht Ñ r0,`8s, we

define the integral with respect to the stochastic kernel ργr:t as the integral of the function ϕ ˝ Φγ
r:t with respect to the

kernel µγr:t:

ż

Ht

ϕph1
tqργr:tphr ,dh

1

tq “

ż

Wr`1:t

ϕ
´
Φ
γ
r:tphr, wr`1:tq

¯
µ
γ
r:tphr, dwr`1:tq . (125)

L0

`
pHt,Htq Q ϕ

@
ϕ , ρ

γ
r:t

D
P L0

`
pHr,Hrq

L0
`

´
Hr ˆ Wr`1:t,Hr b Wr`1:t

¯
Q ψ “ ϕ ˝ Φγ

r:t

@
ψ , µ

γ
r:t

D
.

ρ
γ
r:t

µ
γ
r:t

“

This ends the construction.

B Specialization to the noise case

We turn now to the special case where, for any s “ 0, . . . , T ´ 1, the stochastic kernel ρs:s`1 is the regular conditional

distribution P
W0:s
Ws`1

of the random variable Ws`1 knowing the random process W0:s, that is,

ρs:s`1phs,dws`1q “ P
W0:s
Ws`1

`
rhssW0:s, dws`1

˘
. (126)

For any s such that 0 ď r ă s ă t and Bs`1 P Ws`1, we have that

ν
γ
r,s:s`1

`
phr , wr`1:sq, Bs`1

˘
“ ρs:s`1

`
Φγ
r:sphr, wr`1:sq, Bs`1

˘
(by (123))

“ P
W0:s
Ws`1

`“
Φγ
r:sphr , wr`1:sq

‰
W

0:s
, Bs`1

˘
, ( by (126))

which, using Equations (2e) and (4b), gives

“ P
W0:s
Ws`1

`
prhrsW0:r , wr`1:sq, Bs`1

˘
. (127)

We observe that the stochastic kernel νγr,s:s`1
does not depend on the history feedback γ. As a consequence, the

stochastic kernel µγr:t : Hr Ñ ∆pWr`1:tq obtained by product in (124), does not depend on the history feedback γ either,
and can be expressed using the regular conditional distribution of Wr`1:t knowing the random process W0:r . By (127)
and (124), for a fixed sequence Br`1:t P BpWr`1:tq of Borel sets, we have

µ
γ
r:tphr , Br`1:tq “ P

W0:r
Wr`1:t

`
rhrsW0:r , Br`1:t

˘
. (128)

Now, for any measurable nonnegative function ϕ : Ht Ñ r0,`8s, the integral with respect to the stochastic kernel ργr:t
is defined by (125) as the integral of the function ϕ ˝ Φγ

r:t´1
with respect to the kernel µγr:t. Using Equation (128), this

gives

ż

Ht

ϕph1
tqργr:tphr, dh

1

tq “

ż

Wr`1:t

ϕ
´
Φ
γ
r:tphr , wr`1:tq

¯
µ
γ
r:tphr ,dwr`1:tq

“

ż

Wr`1:t

ϕ
´
Φ
γ
r:tphr , wr`1:tq

¯
P
W0:r
Wr`1:t

`
rhrsW0:r ,dwr`1:t

˘
.

“ E

”
ϕ
`
Φ
γ
r:tphr,Wr`1:tq

˘ ˇ̌
ˇ W0:r “ rhrsW0:r

ı
. (129)
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