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1 Introduction

Multistage stochastic optimization problems are, by essence, complex because their solutions are indexed
both by stages (time) and by uncertainties. Their large scale nature makes decomposition methods
appealing.

On the one hand, stochastic programming deals with an underlying random process taking a finite
number of values, called scenarios [9]. Solutions are indexed by a scenario tree, the size of which explodes
with the number of stages, hence generally few. However, to overcome this obstacle, stochastic program-
ming takes advantage of scenario decomposition methods (Progressive Hedging [8]). On the other hand,
stochastic control deals with a state model driven by a white noise, that is, the noise is made of a sequence
of independent random variables. Under such assumptions, stochastic dynamic programming is able to
handle many stages, as it offers reduction of the search for a solution among state feedbacks (instead of
functions of the past noise) [IL[6].

In a word, dynamic programming is good at handling multiple stages — but at the price of assuming
that noise are stagewise independent — whereas stochastic programming does not require such assump-
tion, but can only handle a few stages. Could we take advantage of both methods? Is there a way to
apply stochastic dynamic programming at a slow time scale — a scale at which noise would be statis-
tically independent — crossing over short time scale optimization problems where independence would
not hold? This question is one of the motivations of this paper.

We will provide a method to decompose multistage stochastic optimization problems by time blocks.
In Sect.[2] we present a mathematical framework that covers both stochastic programming and stochastic
dynamic programming. We formulate multistage stochastic optimization problems over a so-called history
space, with solutions being history feedbacks. We prove a general dynamic programming equation, with
value functions defined on the history space. In Sect. [3] we consider the question of reducing the history
using a compressed “state” variable. This reduction can be done by time blocks, that is, at stages that
are not necessarily all the original unit stages. We prove a reduced dynamic programming equation.
In Sect. d we apply the reduction method by time blocks to several classes of optimization problems,
especially two time-scales stochastic optimization problems and a novel class consisting of decision hazard
decision models. Finally, we consider the case of optimization with noise process; we show in Sect. Bl that
it is a special case of the setting in Sect.

2 Stochastic Dynamic Programming with History Feedbacks

Consider the time span {0,1,2...,T—1,T}, with horizon T € N*. At the end of the time interval [t—1, ¢[,
an uncertainty variable w; is produced. Then, at the beginning of the time interval [¢,¢ + 1[, a decision-
maker takes a decision u;, as follows

Wo > Uy W W1 > U > A W] W UT 1 W™ WT .

We present the mathematical formalism to handle such type of problems.

2.1 Histories, Feedbacks and Flows

We first define in §2.1.7] the basic and the composite spaces that we will need to formulate multistage
stochastic optimization problems. Then, in §2.1.2] we introduce a class of solutions called history feed-
backs; we also define flows.

2.1.1 Histories and History Spaces

For each time t = 0,1,2...,7T — 1, the decision u; takes its values in a measurable set U; equipped with
a o-field U;. For each time ¢t = 0,1,2...,T, the uncertainty w; takes its values in a measurable set W;
equipped with a o-field W;.

Fort =0,1,2...,T, we define the history space H; equipped with the history field H; by

t—1 t—1
He = Wo x [ [(Us x Wey1) and 3 = Wo® @(Us ® Wes1), £=0,1,2...,T, (1)
s=0 s=0



with the particular case Hy = Wq, Hy = Wy. A generic element h; € H; is called a history:
ht = (wOa (US, w8+1)510,---,t—1) = (wOa U, W1, U, W2, « vy Up—2, Wt—1, Ut—1, wt) € Ht . (23')

We introduce the notations

t

WT:tZHW57O<T<t<T (2b)
B

Ur:t:HUs;Ongthfl (2C)
1

H,. = 1_[ (Ug xWop1) =Up_g x Wy x - x Uy x W, , 1<r<t<T. (2d)
s=r—1

Let 0 <r < s <t <T.From a history h; € H;, we can extract the (r:s)-history uncertainty part
(MW, = (Wry ..y ws) = wps €W,y , 0<r<s<t, (2e)
the (r:s)-history control part (notice that the indices are special)
[he]Vs = (Up—1y oy ts—1) = Up—1:5-1 € Up_piso1, 1<r<s<t, (2f)
and the (r:s)-history subpart
[Pt]ris = (Up—1,Wps o Us—1, W) = hps EHpg, 1< T <5<t (2g)
so that we obtain, for 0 <r +1 < s <t

ht = ('UJ(), UQy W1y e v vy Up—1, Wy Upy Wy 1y vy Ut—2, Wi—1, Ut—1, ’LUt) = (h’fa hT+1:t) . (2h)

A Prtt:t

2.1.2 Feedbacks and Flows
Let r and ¢ be given such that 0 <r <t <T.

History Feedbacks. When 0 < r <t < T — 1, we define a (r:t)-history feedback as a sequence {7}
of measurable mappings

s=r,...,t

~s : Hy — Ug . (3)
We call I..; the set of (r:t)-history feedbacks.

Flows. When 0 < r <t < T, for a (r:t— 1)-history feedback v = {75}

flow D)., by T
Qf)::t : HT X WT+1:t - Ht (4&)
(hr; errl:t) = (hh’yr(hr)verrl;7r+1(hr;'Vr(hr)vaJrl)vaJrQ; ce 7ut717wt) ) (4b)
that is,
@::t(hr, w’l“+1:t) = (hh Upy Wr41, Up41, Wr42, - -+, Ut—1, wt) ) (4C)
with hs = (Ar, Up, Wpi1,y ..y Us—1,Ws) , T<8<E, (4d)
and us =vys(hs), T<s<t—1. (de)
When 0 <r =t <T, we put
&) H, ->H,, hy— h,. (4f)

With this convention, the expression @, makes sense when 0 < r < ¢ < T for a (r: ¢t — 1)-history
feedback v = {vs},_, ;1 € Iy—1 (when r = t, no (r:r — 1)-history feedback exists, but none is
needed).



The mapping @, gives the history at time ¢ as a function of the initial history h, at time r and of
the history feedbacks {vs},_, ,_; € I—1. An immediate consequence of this definition are the flow
properties:

éz;t+1(hrawr+1:t+1) = (éz;t(hrawr-}—l:t);'ﬁ (éz;t(hrawr-}—l:t));wtﬁ-l) 5 0 <r< t < T-1 5 (53)
éz;t(hrawr-k—l:t) = ¢Z+1;t((hra'Yr(hr)awr+1)awr+2:t) ) 0<r<t< T. (5b)

2.2 Optimization with Stochastic Kernels

In §2.2.7] given a history feedback and a sequence of stochastic kernels from partial histories to uncer-
tainties, we will build a new sequence of stochastic kernels, but from partial histories to sequences of
uncertainties. With this construction, we introduce a family of optimization problems with stochastic
kernels in §2.2.20 Then, in §2.2.3] we show how such problems can be solved by stochastic dynamic
programming.

In what follows, we say that a function is numerical if it takes its values in [—o0, +00] (also called
extended or extended real-valued function) [5].

2.2.1 Stochastic Kernels
Definition of stochastic kernels. Let (X,X) and (Y,Y) be two measurable spaces. A stochastic kernel
from (X, X) to (Y,Y) is a mapping p : X x Y — [0, 1] such that

— for any Y € Y, p(-,Y) is X-measurable;
— for any x € X, p(z,-) is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel (on Y knowing X) is also denoted as a mapping p :
X — A(Y) from the measurable space (X,X) towards the space A(Y) of probability measures over Y,
with the property that the function r € X — SY p(z,dy) is measurable for any Y € Y.

Building new stochastic kernels from history feedbacks and stochastic kernels.

Definition 1 Let r and ¢ be given such that 0 <r <t < T.

— When 0 <r <t<T, for
1. a (r:t — 1)-history feedback v = {vs},_, , 1 € Iru—1,
2. a family {p5*155}7‘+1<s<t of stochastic kernels

psflzs:Hsflﬁ’A(Ws); 5:T+1a-'-7t7 (6)

we define a stochastic kernel
P+ Hy — A(Hy) (7a)

by, for any ¢ : Hy — [0, +o0], measurable nonnegative numerical function

| etibisadbathe,ar) -
t

t
J @(éz;t(h”r7w7"+1:t)) 1_[ p571:5(¢:;571(hr7wTJrl:sfl)adws)- (7b)
W1t s=r+1

— When 0 <7 =t <T, we define

/)Z:r : HT - A(HT) ? pZT(h‘T’dh;) = 6}7/7‘ (dh;") . (7C)

1 We could also consider any ¢ : H; — R, measurable bounded function, or measurable and uniformly bounded below
function. However, for the sake of simplicity, we will deal in the sequel with measurable nonnegative numerical functions.



We detail Equation (D) in Appendix [Al The stochastic kernels p;., on Hy, given by (), are of the form
(b, dhy) = ply(he, dhydhy ) = On, (dh7) @ 04 (he, dhypyy) (8)

where, for each h, € H,, the probability distribution o, (h,,dh;.,;.,) only charges the histories visited
by the flow from r + 1 to t.

Proposition 1 Following Definition [0, we can define a family {pl.;},<.<, of stochastic kernels. This
family has the flow property, that is, for s <t,

pz;t(hsadh,t) = JW ps:s+1(hsadws+1)pz+1:t((hsa'Ys(hs)aws-k—l)adh,t) . (9)
s+1

Proof Let s < t. For any ¢ : H; — [0, +00], we have that

JH (W Wy y1.)pdee (s, dIY) (10a)
t

t
:J W(@Z;t(hsvwerl:t)) 1_[ Ps'—1:s’ (dszzslfl(hs;werl:s/fl)vdws')
W10 §'=s+1

by the definition (7h) of the stochastic kernel p.,
:J (P(¢Z:t(hsaws+1:t))ps s+1 hsadws+1 H Ps'—1: s’ s 1(hs;ws+1:s’—1)adws’)
Wst1:e s'=s5+2

by the property (@) of the flow &7
=J ‘P(¢Z+1:t((h5a%(hs)aws+1),ws+2:t))
Wop1:e

Ps:s+1 hsadws+1 1_[ Ps'—1:s’ 5+1:5/_1((hsa’78(hs);ws+1)aws+2:s’—1)adws’)
s'=s4+2

by the flow property (BL)

:JW Ps:s+1 (hs;dwerl) J Sﬁ(gp;rl;t((hs;')/s(hs);ws+1)7ws+2:t))
s+1

Wsy2:t

t
1_[ Ps!—1:s’ (@Z+1:5/_1 ((h57 ’Ys(hs); ws+1)7 ws+2:s’71) 3 dws’)

s'=s4+2

by Fubini Theorem [5 p.137]
:J Ps:s+1 (hs;dwerl) J ((h/;')/s(h ) w/s+1)7h;+2;t)pZ+1;t((hs;7s(hs)vws+1)vdh;)
Wst1 Hi
by definition (Zh) of p], .,

:J]HI w((h;,%(h;),w’sﬂ),h’HM) J-W Ps:s+1 (hs,dws+1)/)3+1;t((hs,%(hs),wsﬂ),dh’t) (10b)
t s+1

by Fubini Theorem and by definition (Zh)) of p!,. As the two expressions ([Qa) and ([0D) are equal for
any ¢ : H; — [0, +o0], we deduce the flow property (@). This ends the proof.



2.2.2 Family of Optimization Problems with Stochastic Kernels

To build a family of optimization problems over the time span {0,...,T — 1}, we need two ingredients:

— a family {ps,lzs}lgng of stochastic kernels
Ps—1:s : Hs—1 > AWy), s=1,...,T, (11)
— a numerical function, playing the role of a cost to be minimized,
j:Hpy - [0,400], (12)
assumed to be nonnegativeﬁ and measurable with respect to the field Hrp.
We define, for any {vs},_; 14 € Itr,
V(k) = [ i) e, dhi) e < Hy (13)

We consider the family of optimization problems, indexed by ¢ = 0,...,7 — 1 and parameterized by
ht € Hti

inf | e e, dby). (14)
Hr

Ye:T—1€lT -1

For allt =0,...,T — 1, we define the minimum value of Problem (I4]) by

Vith) = inf fj(h&)pZTmt,dh'T) (152)
Hr

Ye:T—1€lT -1

inf V;V(ht) s Vht € Ht s (15]:))

Ye:T—1€l 11

and we also define

VT(hT) = j(hT) s VhT € HT . (15C)
The last notation is consistent with (I4) by the definition (7d) of the stochastic kernel pJ.,.. The

numerical function V; : H; — [0, +00] is called value function.

2.2.3 Resolution by Stochastic Dynamic Programming

Now, we show that the value functions in ([5) are Bellman functions, in that they are solution of the
Bellman or Dynamic Programming equation.
The following two assumptions will be made throughout the whole paper.

Assumption 1 (Measurable function) For allt = 0,...,T — 1 and for all nonnegative measurable
numerical function ¢ : Hyyq — [0, +00], the numerical function

hi — inf J (It ut, Wer1) et (e, dwig ) (16)
wele Jwy,
is measurabldd from (Hy, H,) to [0, +o0].
Assumption 2 (Measurable selection) For allt =0,...,T—1, there exists a measurable selectionE
that is, a measurable mapping
’7; : (Ht,g{t) — (Ut,ut) (173.)
such that
i (he) € arg minJ- Vir1(he, we, wir1) praesr (B, dweg) (17b)
ut€Uy Wt+1

where the numerical function Vi1 is given by (I3).

2 See Footnote [l When j(hr) = 400, this materializes joint constraints between uncertainties and controls.
3 This is a delicate issue, treated in [2].
4 See [2] and [7] for a precise definition of a measurable selection.



Bellman Operators. For t = 0,...,T, let LY (H;, };) be the space of nonnegative measurable numerical
functions over H;.

Definition 2 For ¢t =0,...,T — 1, we define the Bellman operator
Bigra : LY (Hyg1, Hopr) — LS (Hy, 36,) (18a)
such that, for all ¢ € IL?L (H¢t1, Hiy1) and for all hy € Hy,
(Bis1:49) (hy) = inf f O(he, ug, Wep1) prep41(he, dweyr) - (18b)
Wi

ut€Uy

Since ¢ € LY (Hy1, Hy41), we have that Biy1.¢¢ is a well defined nonnegative numerical function and, by
Assumption Il we know that B, 1.¢¢ is a measurable numerical function, hence belongs to LQL (Hy, Hy).

Bellman equation and optimal history feedbacks.
Theorem 1 The value functions in [{I3) satisfy the Bellman equation, or (Stochastic) Dynamic Pro-
gramming equation
Vrp=j, (19a)
Vi =Bii1.4Vig1 for t=T-1,...,0. (19b)

Moreover, a solution to any Problem (1) — that is, whatever the index t = 0,...,T — 1 and the
parameter hy € Hy — is any history feedback ~v* = {~¥} 1 defined by the collection of mappings v,

Notice that, although Problem (I4]) is parameterized by h: € H;, the optimal history feedback v* =

{vi}._, 4 is not.

.....

s=t,.

Proof From the definition (I3), we have for any {ys},_, 14 € [n:1,

VO (hy) = fH J () (e, Al
T

that only depends on {vs},_; 7,

= f j( /T) f Pr:t+1 (ht; dth)pZH:T ((ht, ’Yt(ht)v wt+1)adh/T)
Hr Wiy1
by the flow property (@) for stochastic kernels
= J- pra+1 (he, dwesr) f J(h)pl ((ht, Yt (he), wt+1)adh/T)
Wiga Hrp
by Fubini Theorem [5 p.137]
= f prat1 (hes dwes1) Vi (he, v (he), wisn)
Wit
by definition (I3) of V;1;
> J- prit+1 (he, dwesr) Vigr (he, ve(he), wegr)
Wiy

by definition (IH) of the value function Vi1, and as V;}; only depends on {vs},_,
that

7—1- We deduce

.....

Ut

Vi(he) = inff pra+1 (he, dwig1) Vigr (he, ue, wigr) (20a)
Wiyt

The inequality ([20a) above is in fact an equality, as seen by using any measurable history feedback
v ={vi}s_s 1y defined by the collection of functions v} in ().
This ends the proof.



3 State Reduction by Time Blocks

In this section, we consider the question of reducing the history using a compressed “state” variable.
Such a variable may be not available at any time ¢t € {0,..., T}, but at some specified instants. We have
to note that the history h; is itself a canonical state variable in our framework, the associated dynamics
being ht+1 = (h,t, Ut, le).

3.1 State Reduction on a Single Time Block
We first present the case where the reduction only occurs at two instants denoted by r and ¢:
0<r<t<T.
Let {ps—1:s}r+1<s<t be a family of stochastic kernels
Ps—1:s Hs—1 > A(Wy), s=r+1,...,¢. (21)
We define the Bellman operator across (t:r) by
By Li (Ht,j‘ft) - IL&(HT, 9{7«) , Ber = Big—10--0Brgir (22)
where the one time step operators By.s—1, for r + 1 < s < t have been defined in (I8]).
Definition 3 Let X, and X; be two state spaces, 6, and 6; be two measurable reduction mappings
0. :H, - X,., 0, : H; > X¢, (23)

and f..; be a measurable dynamics
fr:t . Xr X Hr+1:t - Xt . (24)

The triplet (0, 0:, fr.+) is called a state reduction across (r:t) if we have
ot((hh hrJrl:t)) = fr:t (er(hr)v hTJrl:t) ) Vht € Ht . (25)

The state reduction (6,6, f,.1) is said to be compatible with the family {ps—1.s}r+1<s<t Of stochastic
kernels defined in (2I)) if

— there exists a reduced stochastic kernel
ﬁr:r+1 . Xr - A(WT+1) 3 (26&)

such that the stochastic kernel p,.,.+1 can be factored as

pr:r+1(hr7 derrl) = ﬁTCT+1(9T(hT)7 derrl) ) Vh, € H, > (26b)
— for all s =r+2,...,t, there exists a reduced stochastic kernel
ﬁsflzs : XT X HT+1;571 e A(Ws) (26C)

such that the stochastic kernel ps;_1.s can be factored as

ps—l:s((hra hr+1:s—1);dws) = ﬁs—l:s((GT(hT)ahT+1:s—1)ade) ’ Vh‘s—l € Hs—l . (26d)

According to this definition, the triplet (6,6, fr+) is a state reduction across (r:t) if and only of the
diagram in Figure [l is commutative. In addition, it is compatible if and only of the diagram in Figure
is commutative.

The following theorem is the key ingredient to formulate Dynamic Programming equations with a
reduced state.



1
H; x lHIr+1:t - d > Hy
0, I 0,
fr:t
Xr X Hr+1:t > Xt

Fig. 1 Commutative diagram in case of state reduction (0,60, fr:t)

—1:
Hr X Hr+l:s—l M A(WS)

Xr X IHI'r+1:s—1

Fig. 2 Commutative diagram in case of state reduction (0,0, fr.¢+) compatible with the family {ps—1:s}r+1<s<t

Bs.
LY (Hy, Hy) —2" LY (Hy, Hr)

0F 0

By.
L9 (X¢, X¢) —E5— LI (Xr, Xr)

Fig. 3 Commutative diagram for Bellman operators in case of state reduction (0,6, fr.t) compatible with the fam-
ily {ps—1:s}r+1<s<t

Theorem 2 Suppose that there exists a state reduction (0,0, fr.t) that is compatible with the fam-
ily {ps—1:s}r+1<s<t Of stochastic kernels (211) (see Definition[d). Then, there exists a reduced Bellman
operator across (t:7)

B : LG (X4, Xt) — LS (X, Xr) (27)
such that, for any measurable nonnegative numerical function @; : Xy — [0, 4+00], we have that
(gt:r()zt) o 97" = Bt:r(@t o et) . (28)

Denoting by 05 : L9 (X;, X;) — L& (Hy, H;) the operator such that
0F (G0 = B0, (20)
the relation ([28) rewrites:
9:: (Bt:rat) = By.r (93(@)) : (30)
Equivalently, Theorem [2] states that the diagram in Figure [ is commutative.

Proof Let @ : Xy — [0,+00] be a given measurable nonnegative numerical function, and let ¢; : Hy —
[0, +0] be

ot =Pt ol . (31)
Let ¢, : H, — [0,+o0] be the measurable nonnegative numerical function obtained by applying the
Bellman operator By, across (t:7) (see (22))) to the measurable nonnegative numerical function ¢;:

Pr = Bt:rsﬁt = BrJrl:r O:-+0 Bt:tflsﬁt . (32)



We will show that there exists a measurable nonnegative numerical function

& X, — [0, 4+ 0] (33)

such that
Or =@rob,.. (34)
First, we show by backward induction that, for all s € {r,...,t}, there exists a measurable nonnegative

numerical function B, such that ¢s(hs) = B4(0r(hr), hri1:5). Second, we prove that the function @, = 3,

satisfies (34]).
— For s = ¢, we have, by (BIl) and by (23]), that
(Pt(ht) =&y (et(ht)) =& (fr:t(er(hr)ahr+1:t)) )

so that the measurable nonnegative numerical function @, is given by @ o f,..
— Assume that, at s + 1, the result holds true, that is,

(P5+1(h5+1) = ¢s+1(9’r(h7‘)a hr+1:s+1) . (35)
Then,
ps(hs) = (Bs+1:8§05+1)(h5) ( by B2))
= inf J <P5+1((hs;Us;werl))ps:erl(hs;dwerl)
us€Us W1

by definition ([I8) of the Bellman operator

= inf J ¢S+1((9r(hr)7(hr+1:svu57ws+1)))ps:s+1(hs;dwerl)
W1

us€Ug

by induction assumption (B5)

= inf fw ¢s+1((er(h7‘)a(hr+1:saUsaws+1)))ﬁs:s+1((er(h7‘)ahr+1:s)adws+1)
s+1

us€Ug
by compatibility (26]) of the stochastic kernel
=, (er(hr); hr+1:s) )

where

Sps(xrahr-i-l:s) = lnf fw ¢5+1((‘T7‘) (hT+1:s;us;ws+1)))ﬁs:s+l(($T;h’r+1:s);dws+1) .
s+1

us€Ug

The result thus holds true at time s.
The induction implies that, at time r, the expression of ¢, (h,) is

‘Pr(hr) =, (or(hr)) )
since the term h, ;1. vanishes. Choosing ¢, = @, gives the expected result.

Corollary 1 Under the assumptions of Theorem[2, the expression of the reduced Bellman operator gm
in (27) is available: for all measurable nonnegative numerical function @, : Xy — [0,400] and for
all x, € X,., we have that

(gt:rat)(xr) = 1nf ﬁr:rJrl(zr;derrl) lnf ﬁr+1:r+2(zr7ur7wr+1;dwr+2)
uTEU.,- Wr+l ’IJ,.,«+1€U7-+1 W'r+2

inf f Szt(tht(‘TT’uTawT-‘-la"'aut—lawtaut—lawt))
up—1€UL 1 W,
Pt—1:4(Tpy Upy Wpg 1y ooy Up—o, w1, dwe) . (37)

Proof Equation [B7)) follows from the induction developed in the proof of Theorem

The optimal feedbacks yielded by @B7) are mappings s : X, x H,41. — Us, for s = r,...,t — 1.
These are no longer history feedbacks, by partially truncated history feedbacks where history h, has
been replaced by state z,..

10



3.2 State Reduction on Multiple Consecutive Time Blocks

Theorem 2] can easily be extended to the case of multiple consecutive time blocks [¢;,t;11],i=0,..., N—1
where
O<to<ty<---<itny<T. (38)
Let {ps—1:s}to+1<s<ty D€ a family of stochastic kernels
Ps—1:s :HsflﬂA(Ws), s=to+1,....tn . (39)

Definition 4 Let {X;},_, 5 be a family of state spaces, {0, },_,  be a family of measurable

reduction mappings 0y, : H;, — X;,, and {fti:ti+1} be a family of dynamics fi,.¢,,, @ Xy X

i=0,...,N—1 i
Bl s 10000 — Xy

The triplet ({X¢, },_o  n {0t }ico. N {ftiCti+l}i=01___7N,1) is called a state reduction across the con-
secutive time blocks [ti,ti11], i =0,...,N — 1 if every triplet (6y,,6¢,,,, ft.:+,.,) is a state reduction, for
i=0,...,N—1.

The state reduction triplet is said to be compatible with the family {ps—1.s}to+1<s<tny Of stochastic
kernels given in ([B9) if every triplet (6y,,6:,,,, ft;:t;,,) is compatible with the family {ps—1:s}¢;+1<s<t

fori=0,...,N—1.

i1

Theorem 3 Suppose that a state reduction ({X¢,};_o {0t ico . N o {ftatisn } exists across

i:O,...,N—l)
the consecutive time blocks [t;, tiv1], 1 =0,..., N—1, that is compatible with the family {ps—1:s}to+1<s<tn
of stochastic kernels given in (39).

Then, there exists a family of reduced Bellman operators across the consecutive (ti+1 :t;), i =
0,...,N —1,

Byt LY (X 1s Xiy) = LO(X, X) , i=0,...,N =1, (40)

i+19 i+l)

such that, for any function ,,, € LY (Xy,,,,Xt,,,), we have that

(Bti+1:ti§5ti+1) © eti = BtiJrl:ti ((Toltzurl Oeti+1) : (41)

Proof This is an immediate consequence of multiple applications of Theorem [2

4 Stochastic Dynamic Programming by Time Blocks

We apply the reduction by time blocks to several classes of optimization problems: dynamic programming
with unit time blocks in §4.1] two time-scales dynamic programming in §4.2} decision hazard decision
dynamic programming in §4.3

4.1 Dynamic Programming with Unit Time Blocks
We now consider the case where a state reduction exists at each time ¢t = 0,...,T — 1, with associated
dynamics. We recover the classical Dynamic Programming equations.

Following the setting in §2.21 we consider a family {p;—1.:}1<t<7 Of stochastic kernels as in (1)) and
a measurable nonnegative numerical cost function j as in (I2)).

4.1.1 The General Case of Unit Time Blocks
First, we treat the general criterion case. We assume the existence of a family of state spaces {X;},_,
and the existence of a family of mappings {0:},_, , with 6; : H; — X;. We suppose that there exists a

family of dynamics {fr.t+1},_g 71 With frep1 1 Xe x Uy x Wiyq — Xypq, such that

Or1 ((hes g, wig1)) = frear (0e(he),ue, weer) o V(e ug, wegr) € Hy x Up x Wiy (42)

The following Proposition is a direct application of Theorem [3

11



Proposition 2 Suppose that the triplet ({Xt}tzo,...,T7{9t}t:0,...,T7{ft¢t+1}t:0,...,T—1)’ which is a state
reduction across the consecutive time blocks [t,t + 1]¢—o,.. . 7—1 of the time span, is compatible with the
family {pi—1.4}1=1,...7 of stochastic kernels in (1)) (see Definition[4).

Suppose that there exists a measurable nonnegative numerical function

j: Xp — [0,+00] (43a)
such that the cost function j in (I3) can be factored as
j=jobr. (43b)
Define the family {‘N/t}tzo ..... - of functions by the backward induction
Vr(zr) = j(or) , Yor e Xr, (44a)
Vi(ay) = uile}[gt JWHI ‘7t+1(ft:tJrl(xtvutthJrl))ﬁt:tJrl(zt’ dwiy1) , Var e Xy, (44b)

fort=T-1,...,0.
Then, the family {Vt}tzo,...,T of value functions defined by the family of optimization problems (I3)
satisfies

Vi=V,00,, t=0,...,T. (45)

Proof The existence of the family {ng;t}t:O ,,,,, 7_1 of reduced Bellman operators, as well as the rela-
tion [@H), are a direct consequence of Theorem [3l The specific expression ([@4h) is induced by Corollary [II
in case of a unit time block.

The expression of the optimal state feedbacks is given by the next Corollary.

Corollary 2 Suppose that, fort =0,...,T — 1, there exist measurable selections
Vi 0 (Xe, Xe) — (U, Ug) (46a)
such that, for all r; € Xy,
3 (1) € arg minf Vit (frtr1 (e, we, weg)) P (22, dwegr) | (46b)
ur€Uy Wt+1

where the family {f/t}tzo,___j of functions is given by ({4). Then, the family of history feedbacks
{7;}s:t,...,T—1 given by

vi=Fiobs, s=t,...,T—1 (47)

is a solution to any Problem (Ij)), that is, whatever the indext = 0,...,T —1 and the parameter h; € H;.

Proof The proof is an immediate consequence of Theorem [I] and Theorem
4.1.2 The Case of Time Additive Cost Functions

A time additive Stochastic Optimal Control problem is a particular form of the stochastic optimization
problem presented previously.
As in §LTT] we assume the existence of a family of state spaces {X¢},_ 7, the existence of a family
of mappings {Ht}t:07...,T, and the existence of a family of dynamics such that Equation ([42) is fulfilled.
We then assume that there exist measurable nonnegative instantaneous cost numerical functions,
fort=0,...,7—1,

L Xy x Up x Wiyq — [0, +00] , (48a)
and that there exists a measurable nonnegative final cost numerical function
K :Xp — [0, +0o0] (48b)
such that the cost function j in ([I2]) writes
T—1
j(hr) = 37 Le(0r(he), ur,wip1) + K (07 (hr)) - (48c)
t=0

12



Proposition 3 Suppose that the triplet ({X¢},_o 1.0t} 17 {fres1}im0 . 7_1), which is a state
reduction across the consecutive time blocks [t,t + 1]i—o,... 71 of the time span, is compatible with the

.....

.....

~

VT(:L'T) = K(:L'T) s VSCT € XT (49&)

and, fort =T —1,...,0 and for all x; € Xy,

Vi(zy) = melﬁ J- (Lt(wt,utawtﬂ) + ‘Z-ﬁ-l(ft:t-&—l(-rtautawt+1)))ﬁt:t+1(xtadwt+1) . (49Db)
WeELE JWy 4
Then, the family {Vi},_o 1 of value functions defined by the family of optimization problems (13)
satisfies
t—1 R
Vi(he) = ), Ls(0s(hs), us,wsi1) + Vi (0e(he)) , t=1,...,T, (50a)
s=0
Vo(ho) = Vo (6o(ho)) - (50Db)

Proof The proof is an immediate consequence of Theorem [2] of the specific form of the cost function j
and of the fact that the additive term ZZ;B L, (98 (hs), us, ws+1) only depends on h;.

Corollary 3 Suppose that, fort =0,...,T — 1, there exists measurable selections
s (X, X)) = (U, Uy) (51a)

such that, for all r; € Xy,

i (we) € argminJ- (Lt(‘rtautawt+1) + ‘7t+1(Ft(xt,Ut,wt+1)))ﬁt:t+1($t, dwit1) (51b)
Wiyt

ut€Uy

given by T T
V=700, s=t,...,T—1 (52)

is a solution to any Problem (Ij)), that is, whatever the indext = 0,...,T —1 and the parameter h; € H;.

4.2 Two Time-Scales Dynamic Programming

Let (D, M) e N*?. We put
T={0,...,D} x{0,...,M}u {(D+1,0)}. (53)

We can think of the index d € {0,...,D + 1} as an index of days (slow scale), and m € {0,..., M} as an
index of minutes (fast scale).

At the end of every minute m — 1 of every day d, that is, at the end of the time interval [(d, m —
1), (d, m)), 0 <d<Dandl < m < M, an uncertainty variable wg,,, becomes available. Then, at
the beginning of the minute m, a decision-maker takes a decision uq . Moreover, at the beginning of
every day d, an uncertainty variable wg o is produced, followed by a decision uq,9. The interplay between
uncertainties and decision is thus as follows

w0,0 NS> u010 NS> wO,l NS> u011 NAAS e e
> Wo,M—1 YW U, M —1 > Wo, M > U M > W0 > U YV WLt

- NAS> wD,]\/I \/\I\/)UD7M NS> 7~UD+1,0 .

We present the mathematical formalism to handle such type of problems.
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We consider the set T equipped with the lexicographical order

0,0)<(0,1)<---<(@d,M)<(d+1,0)<---<(D,M—-1)<(D,M) < (D+1,0). (54a)
This set is in one to one correspondence with the time span {0,...,T}, where
T=(D+1)x(M+1)+1 (54Db)

by the lexicographic mapping T

7:{0,..., T} > T (54c)
t—7(t) = (d,m). (54d)

By abuse of notation, we will simply denote by (d,m) € T the element of {0, ..., T} given by 771(d,m) =
dx (M+1)+m

T s (d,m)=7""(d,m)e{0,...,T}. (54e)

For all (d,m) € {0,...,D} x {0, ..., M}, the decision ugq, ., takes its values in a measurable set Ug
equipped with a o-field Ug .. For all (d,m) € {0,..., D} x{0,..., M}u{(D+1,0)}, the uncertainty wq,m,
takes its values in a measurable set Wy ,,, equipped with a o-field Wy ,.

History spaces. With the identification (54¢), for all (d,m) € T, we define the history space Hg m)
equipped with the history field H (g ) as in (D). For all d € {0,...,D + 1}, we define the slow scale
history hq element of the slow scale history space Hy equipped with the slow scale history field Hy as

in (@) by:
hg = h(d,O) eHy = H(d,O) y Hq = g{(d,O) . (55&)

For all d € {0,..., D}, we define the slow scale partial history space Hy.q+1 equipped with the slow scale
partial history field Hq.q11 as in @d) by:

Ha.a+1 = Hg,1):(d+1,0) = Ugo X Wa 1 x - x Ugpr—1 X Waar X Ug e x Waya0, (55b)
Ha:a+1 = Hia1):(a+1,00 = Ua,o ® Wi 1 @ - @ Uavr—1 @ Wa v @ U s @ Wat10 - (55¢)

Stoch(gsgtic kernels. Because of the jump from one day to the next, we introduce two families of stochastic
kerneld?:

— a family {p(daM)=(d+170)}o<d<D of stochastic kernels accross consecutive slow scale steps

p.n):(d+1,0) P Hegary = AWat10), d=0,...,D, (56a)
— a family {P(d,m—l)z(d,m)}0<d<D L<m< M of stochastic kernels within consecutive slow scale steps

P(d,m—1):(d,m) * H(d,m—l) - A(Wd,m) , d=0,....,D, m=1,...,M. (56b)

History feedbacks. Following the notation in §2.1.2] a history feedback at index (d,m) € T is a measurable
mapping
Vam)  Higm) = Ugam) - (57)

For (d,m) < (d',m’), we denote by I'(4m):(a,m) the set of ((d,m):(d’, m’))-history feedbacks.

5 These families are defined over the time span {0,...,T} = T by the identification (54e]) in such a way that the notation
is consistent with the notation (IT)).
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Slow scale value functions. We suppose given a nonnegative numerical function
j : HD+1 d [0, +OO] s (58)

assumed to be measurable with respect to the field Hp,1 associated to Hp.1.
For d = 0,...,D, we build the new stochastic kernels p?d,o):(D+1,0)(hd’dh,[)+1) : Hyg — A(Hpyq)
thanks to Definition [Tl and we are then to define the slow scale value functions

_ . . / v /
Vd(hd) = ’YEF(EE:I}D,M) JHD+1 ](hD+1)p(d,0);(D+1,0)(hdﬂ th+1) ’ Vhg € Hg s (59)
and Vpyq1 = 3.
Bellman operators. For d =0, ..., D, we define a family of slow scale Bellman operators across (d + 1:d)

Bd+1:d : Lg(Hd+1a%d+1) - Lg_(Hd; g{d) ) d= 0) LR D ) (603.)

by, for any measurable function ¢ : Hy11 — [0, +00],

(3d+1:d<ﬁ)(hd)= inf J P(d,o);(d,1)(hd,dwd,1)---
Wa 1

u4,0€Uq,0
inf J- P(d,M—1:(d, M) (hds Ud,0, Wa, 15+ Wa, m—1,dwa, ar)
wa,M—1€U0a, -1 Jw, o,
inf J @ (hds Ud,0, Wa,1, "+ 3 Ud, M—1, W, M > Ud, M, Wd+1,0)
ug, MEU4, M Wart.0

P(d,M):(d+1,0) (Pds Ud,0, Wa, 15+ -+ Wa,ar, dWay1,0) - (60b)

Proposition 4 The family {Vi}a—o,... p+1 of slow scale value functions [59) satisfies

.....

Vbri =17, (61a)
Vi=Bit1.4Vgr1, ford=D,...,0. (61b)

Proof With the identification (54€), a general two-time scales stochastic dynamic optimization problem
as (09) takes the usual form (I4]). Since we have

Bati1:a = B(a+1,0):(a,0) = B(d+1,0):(d,01) © B(a,my:(a,p-1) © - - - © B 1):(d,0) »

we can apply Theorem [ repeatedly, which leads to the result.

p+1 be a family of state spaces,

.....

.....

Oq: Hg — Xg, (62a)
and {fa.a+1}4—o  p be a family of dynamics such that
Jaza+1 1 Xg X Ha:ar1 — Xgpa - (62b)

The triplet ({Xq},_,
if foralld =0,...,D

Oat1((ha,ha:av1)) = faar1(0a(ha)s ha:av1) o V(ha, haas1) € Haga - (62c)

D) is said to be a slow scale state reduction

...............

The slow scale state reduction ({Xa}y_o  py1»{0a}ao,. pi1s {fazas1}a—o,. p) is said to be compat-

ible with the two families {p(daM):(d+170)}0<d<D and {P(d,m—l):(d,m)}0<d<D L<m<ns Of stochastic kernels
defined in (G6a)—(B6D) if for any d = 0,..., D, we have that
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— there exists a reduced stochastic kernel
D(d,M):(d+1,0) * Xa X H(q,0):(a,00) = AWar10) ,
such that the stochastic kernel p(g,ar):(4+1,0) in (BGa) can be factored as
P, (d+1,0)(ha,nr AWat1,0) = Pa,aryd+1,0) (0a(ha)s hia,0):d,m)s dWat1,0)
Vha,n € Hg,ary
— for each m =1,..., M , there exists a reduced stochastic kernel
P(dm—1)s(dm) * Xd X Hg,0):(a,m—-1) = A(Wa,m)
such that the stochastic kernel p(q,,,—1):(a,m) in (B6D) can be factored as

P(d,m—1):(d,m) (hd,mflv dwd,m) = ﬁ(d,m—l):(d,m) (od(hd); h(d,O):(d,m—l)v dwd,m) )
Vham—1 € H(d,mfl) .

Theorem 4 Assume that there exists a slow scale state reduction
({Xa}ao p ) and that there exists a reduced criterion

...............

J:Xpy1— [0, 4],
such that the cost function j in (B8) can be factored as

j=job0ps.

(63a)

(63b)

(63c)

(63d)

(64a)

(64b)

Using the reduced stochastic kernels of Definition [3, we define a family of slow scale reduced Bellman

operators across (d + 1:d)
Batiia: L (Xas1, Xas1) — LY (Xa, Xg) , d=0,...,D,

by, for any measurable function @ : Xg41 — [0, +00],

(Bis1aP)(xa) =  inf J P(d,0):(d,1) (T, dwa,1) - - .
Wa,1

uq,0€Uq,0
inf J P(d,M—~1):(d, M) (Td, Ud,0, Wa,1, -+, Wa,M—1,dWa,nr)
wa,M—1€U0a, -1 Jw, o,
inf J Sﬁ(fd:dﬂ(xd,ud,o,wd,l, T aUd,Mflawd,Mvud,Mvderl,O))
ug, MEU4, M Wat10

P(d,M):(d+1,0) (Td, U0, Wa, 1, Wa, M, dWar1,0) -
We define the family of reduced value functions {f/d}d:07,,,7p+1 by
‘7D+1 = .75
‘7d :gd+1;d‘7d+1 5 fO’f’d: D,...,O .
Then, the family {Va}a—o

D+1 of slow scale value functions (59) satisfies

.....

Vy=V4004, d=0,...,D .

(65a)

(65b)

(66a)
(66D)

(66¢)

Proof The triplet ({Xa},_o  pi1:10d}a—o .. pi1stfaaritq_o . p) is a state reduction accross the time

blocks [(d,0), (d+1,0)], which is compatible with the family {p(d»o)i(d+170)}o<d<D

of stochastic kernels.

Hence, we can apply Theorem[B] which leads to the expressions ([66d). The expression (60) of the reduced

Bellman operators is a consequence of Corollary [}
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4.3 Decision Hazard Decision Dynamic Programming

We consider stochastic optimization problems where, during the time interval between two time steps,
the decision-maker takes two decisions. As outlined at the beginning of Sect. 2] at the end of the time
interval [s — 1, s[, an uncertainty variable w” is produced, and then, at the beginning of the time inter-
val [s,s + 1[, the decision-maker takes a head decision uf. What is new is that, at the end of the time
interval [s, s + 1[, when an uncertainty variable w'; 41 is produced, the decision-maker has the possibility

to make a tail decision u’ +1- This latter decision u’ +1 can be thought as a recourse variable for a two

stage stochastic optimization problem that would take place inside the time interval [s, s+ 1[. We call wg
the uncertainty happening right before the first decision. This gives the following sequence of events:

wgwugwwiwugwugwwgw W\»wlg_lwwubs_lwwuﬁs_lwwwlgwwubs,
Let S € N*. For each time s = 0,1,2...,5 — 1, the head decision ug takes values in a measurable

set Uf, equipped with a o-field Uf. For each time s = 1,2...,S, the tail decision uz takes values in
measurable set U’, equipped with a o-field U’. For each time s = 1,2...,5, the uncertainty w’ takes its
values in a measurable set WZ, equipped with a o-field WZ For time s = 0, the uncertainty wg takes its

values in a measurable set Wg, equipped with a o-field Wg.

Decision Hazard Decision history spaces and fields. We define,
for s =0,1,2...,5, the head history space

s—1
HY = Wg X 1_[ ([Uﬁs/ x WP, ., x UZ,H) , (67a)
s'=0
for s =0,1,2...,S, the head history field
s—1
=W ® W oW, e, , (67b)
s'=0
for s =1,2...,5, the tail history space
H, =H |, xU? | x W, (67¢)
for s =1,2...,5, the tail history field
9{2 = g{i—l ® uus—l ® WZ : (67d)

Decision Hazard Decision history feedbacks. For all s = 0,...,5 — 1, a head history feedback at time s is
a measurable mapping

7% s (L 56) — (UL W) - (68a)
We call Fsti the set of head history feedbacks at time s. In addition, for 0 < s < S — 1, we define
rfe=Trfx...xrk. (68D)
For all s =1,2...,5, a tail history feedback at time s is a measurable mapping
s (H2,90) — (0,10) (65¢)
We call Fsb the set of tail history feedbacks at time s. In addition, for 1 < s < S, we define
g =I"x--xT%. (68d)
Decision Hazard Decision stochastic kernels. For s = 1,2...,S, we define a DHD stochastic kernel
between time s — 1 and s as a measurable mapping
ps—rs: (HE_ 35 )) = AW, s=1,...,S. (69)

Let {ps—1.s}1<s<s be a family of DHD stochastic kernels.
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Decision Hazard Decision value functions. We consider a nonnegative numerical function
j: HY — [0, +o0] , (70)

supposed to be measurable with respect to the o-field U{g in (670).
We define DHD wvalue functions by, for all s =0,...,5,

V) = win [0 (b ang) | i e B ()
YHEely 517 el .5 JHY
where pzzugyb has to be understood as p.. ¢ as in (Za) with
3(1) = 250 , Vg < BE (720)
Yo (hy) = (viwhz/mﬁ/ (hz/,vm';))) , Vs =s+1,...,8—1, ¥h) el (72b)
vs(his) = 15(h) . Vhis € Hy . (72¢)

Theorem 5 For s =0,...,5 — 1, we define the DHD Bellman operator

Bayris s LS (HE, 38, ) — LY (HE, 3¢%) (73a)

such that, for all ¢ € LY, (IHI‘i

" LK) and for all hY € HE,

(Berl:sSﬁ) (hﬁs) = inf J \ inf @(hﬁsa Uga wz—ﬁ-la UZ-H)ps:erl(hga de;-H) . (73b)
W

Bt b b
useUs JW | uly €U,

Then the value functions (71) satisfy

Vs =17, (73C)
Vi = BasraVar1 ¥s = 0,5 — 1. (73d)

Proof We will show that the proof follows from Theorem [l Indeed, we will now show that the setting
in §4.3is a particular kind of two time scales problem as seen in §4.21 For this purpose, we introduce a
spurious uncertainty variable wg taking values in a singleton set W# = {Eg}, equipped with the trivial

o-field {5, W¥}, for each time s = 1,2...,S. Now, we obtain the following sequence of events:

which coincides with a two time scales problem:

we,0 = fwg U0 = ug w1 = wli W U] = uli >

slow time cycle

wi,0 = w? W U0 = uji e N fw; W U] = UI; N>

slow time cycle

b b
Co W10 = w,jjS’—l W US_10 = uﬁS—l W WG] = Wg YW US_1] = Ug W WS, 0 = wﬁs .

slow time cycle
We introduce the sets
Wao =W, for de{0,...,S},
W1 =W, for de{0,...,5—1},
Ugo = U, for de{0,...,5—1},
Ugq =12, for de{0,...,58 —1}.
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As a consequence, we observe that the two time scales history spaces in §4.2] are in one to one
correspondence with the Decision Hazard Decision history spaces and fields in (67al)—([67d) as follows:

ford=0,1,2...,5,

d—1
Hd,O = Wﬁo X 1_[ ([Ud’,O X Wd’+1,1 X Ud’-}—l,l X Wd’+1,0) (743.)
d’'=0
d—1
=Wh x [] (Uh x Wy x Uy x WE,_,) (74b)
d’=0

d—1
= Wi x [ (U} x Wy x UYy,) = HE (74c¢)
d'=0

ford=0,1,2...,85,

d—1
Haio=WH® X (U @W) Uy, WY, ), (74d)
d’=0

ford=0,1,2...,8 -1,

d—1
HdJ = Wg X 1_[ (Ud/,O X Wd/JrLl X Ud/+1,1 X Wd/+170) X Ud70 X Wd+171 (746)
d’'=0

d—1

=Wﬁ0 X H ([Ugl/ x W2, x U, xWﬁd,H) XUEXWEIH (74f)
d'=0
d—1

= W; x H (ng X Wiy x Ul i) % [ng X Wopy = H s (74g)
d'=0

ford=0,1,2...,8—1,

d—1
Har = W@ Q) (W, @ Wy, @ Wy @Wh ) QUL QWY (74h)
d&'=0

For any element h of Hg o or Hy,; we call [h]ﬁ the element of Hﬁd or HZI corresponding to h with all the
spurious uncertainties removed. By a slight abuse of notation, the criterion j in ({0 (Decision Hazard

Decision setting) corresponds to j o [ . ]ti in the two time scales setting in §4.21 The feedbacks in the two
time scales setting in §4.2] are in one to one correspondence with the same elements (T2) in the Decision
Hazard Decision setting, namely

“Yd,o:ﬁ’go[']ﬁ, 7d,1=75+10[']ﬁ- (75)

Now we define two famillies of stochastic kernels
— a family { P(d,o):(d,l)}o <g<p Of stochastic kernels within two consecutive slow scale indexes
P(a,0):(d,1) * Hao = AWa 1), (76a)
hao = paasio] ] - (76D)
— a family { P(d,1);(d+1,0)}0 <d<D-1 of stochastic kernels accross two consecutive slow scale indexes

P(d,1):(d+1,0) : Haa — A(Wai10) , (77a)
hay — 5@‘;“(') ; (77b)
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where we recall that Wg, 10 = Wgﬂ = {EZH .

With these notations, we can apply Theorem [ to obtain equation (Z3L), where only one integral
appears because of the Dirac stochastic kernels in (77)). Indeed, for any measurable function ¢ : Hy41,0 —
[0, +00], we have that

uq,0€Uq,0

(Bas1.a¢) (hapo) = inf J p(d,O):(d,1)<hd,Oadwd,1)
Wa1

inf J @ (R0, Ud,0, Wd,1,Ud, 15 Wd+1,0) P(d,1):(d+1,0) (hd,o, hd:d+1,dwcz+1,o) :
ua,1€0a,1 Wa+1,0

Now, if there exists @ : Hgﬂ — [0, +00] such that ¢ = go [ : ]ti, we obtain that

(Bas1:a¢)(hapo) = inf J- P(d,o);(d,1)<hd,o,dwd,1) inf @([hd,o]ﬁ;Ud,O;wd,laUd,l)
1

ud,0€U0a,0 Jyy, uq,1€Uq,1

J P(d,1):(d+1,0) (hd,o, ha.da+1, dwd+1,0)
Wati1,0

uq,06Uq,0 uq,1€Uq,1

= inf J- P(d,0):(d,1) (hd,o, dwd,l) inf @([hd,o]ﬁ, Ud,0, W, 15 Ud,1)
Wa,1
by the Dirac probability in (7))
= 3nfu J P(d,0):(d,1) (hﬁdadwz-ﬁ-l) b infb @(hﬁdaugaw?ﬁ-lauz-}—l)
ul €Uy WZJA ud+1EUd+1
This ends the proof.

Definition 6 (Decision Hazard Decision compatible state reduction) Let {X,} ,_, ¢ bea fam-
ily of state spaces, {0s},_, ¢ be family of measurable reduction mappings such that

0, : Hf — X, , (78a)

and {fss+1}5_0. . g_1 be a family of dynamics such that

.....

Fost1: Xg x Ul x Woypy x U2 — Xgp1 (78b)

The triplet ( {Xstaco...5:10s}—0
s=0,...,5—1, we have that

571) is said to be a DHD state reduction if, for all

,,,,,,,,,,

95+1((h57u§7ws+17uz+1)) = fs:erl(os(hs);uivwerl;uI;Jrl) )

V(hsauﬁsaws-i-lauZJrl) € Hﬁs X Ui x WS+1 x UI;Jrl . (78C)

The DHD state reduction is said to be compatible with the family {ps.s+1}to<s<s—1 of DHD stochastic
kernels in (69)) if there exists a family {ps.s+1}o<s<s—1 of reduced DHD stochastic kernels

ﬁs:erl : Xs d A(Werl) y (79&)
such that, for each s = 0,...,5 — 1, the stochastic kernel p;.s11 in ([G3) can be factored as
psist1(h, dwgs1) = Pass1 (0s(hE), dwsir) , VAE e HE . (79b)

Theorem 6 Assume that there exists a slow scale state reduction
({Xs}yo s_1) and that there exists a reduced criterion

,,,,,,,,,,,,,,,

7:Xg — [0, +0], (80a)
such that the cost function j in (70) can be factored as

j=jobg. (80b)
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We define a family of DHD reduced Bellman operators across (s + 1:s)

Bs+1:s : L(.);_(Xs-i—laxs-ﬁ-l) - L?‘_(Xé, xa) y §= 1a SRR S—1 ) (813')

by, for any measurable function @ : X511 — [0, +00],

(gerl:SSZ)(SCS) = inf J inf @(fs:erl(zs,Ui,ws+1,UZ+1))ﬁS:S+1(zS;dws+1) . (81b)
Weyr v

it b b
us€Us 21160244

We define the family of reduced value functions {178}5:0,___75 by

Vs=7j (82a)
V, = B~s+1:s‘7s+1 fors=8—-1,...,0. (82b)

Then, the value functions Vy defined by (71) satisfy

V,=V,00,, s=0,...,5. (83)

Proof See proof of Theorem [B] and apply Theorem @l

5 The Case of Optimization with Noise Process

In this Section, we suppose the that, for any s = 0,...,T—1, the set Uy is a separable complete metric
space. Optimization with noise process now becomes a special case of the setting in Sect. 2 as we will
show in §5.11 Therefore, we can apply the results obtained in Sect. [} and in Sect.

5.1 Optimization with Noise Process

Noise Process. Let ({2, A) be a measurable space. For ¢t = 0,...,T, the noise at time ¢ is modeled as
a random variable W, defined on {2 and taking values in W,. Therefore, we suppose given a stochastic
process {Wy},_ 1 called noise process.

The following assumption will be made in the sequel.

Assumption 3 For any 1 < s < T, there exists a reqular conditional distribution of the random variable
W, knowing the random process Wo.,_1, denoted by Pg:‘“l(w&s,l,dws).

Under Assumption B} we can introduce the family {ps_1.s}, <s<7 Of stochastic kernels
Ps—1:s :Hs—l HA(WS) , 8= 1,...,T, (843.)

defined by
ps—tis(hs—1,dws) = Py ([hoo1]ire_y,dwy) . s=1,...,T. (84D)

Adapted Control Processes. Let t be given such that 0 <t < T — 1. We introduce
At ={D, 2}, Aper1 =0(Wes1), ooy, Apro1 =0(Wigr,...,Wr_q). (85)

Let L°(£2, Ay.r—1,Up7—1) be the space of A-adapted control processes (Uy,...,Ur_1) with values in
Ug.r_1, that is, such that

o(Uy) c Ay, s=t,...,T—1. (86)
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Family of Optimization Problems Over Adapted Control Processes. We suppose here that the measurable
space (§2,A) is equipped with a probability P, so that (2, A,P) is a probability space. Following the
setting given in §2.2] we consider a measurable nonnegative numerical cost function j as in Equation (I2)).

We consider the following family of optimization problems, indexed by ¢t = 0,...,7—1 and by h; € Hy,

Vi(he) inf E[j(he, Us, Wigt, ..., Ur_1, Wr) | Wo = [he]in] - (87)

(Upr—1)el0(2,Ae.r—1,Us.7—1)

Theorem 7 Lett € {0,...,T — 1} and hy € H; be given. Problem (Ij]) and Problem ({87) coincide, that

18,
Vi(hy) = inf Elj(h, Uy, Wist,..., Ur_1, W ’W‘th 88
t(he) (Ut:Tfl)eLO(fIZI,lAt;Tfl,Ut:Tfl) [J( ¢, U, Wi 7—1, Wr) 0t = t]o_t] (88a)
= it [ s dby) (85b)
yer—1€ler—1 Jy L '
=Vi(hy) , (88¢)

where p/.p is given by Definition [ with the family {ps—1.s},<,<p of stochastic kernels defined in (84),
and where the value function {V;} is defined by (I3).

In addition, any optimal history feedback v* = {vi}._,
adapted control process (Uy, ..., Us_,) for Problem (87) by

7 for Problem (IJ) yields an optimal

U

(U7,...,Up_y) = [9]p(he, Wis1,. .. ’WT)]t+1:T , (89a)
(where [~]P+1:T is defined in (2])), or, equivalently, by
Uy = () (89D)
U:—Fl = 7;+1(ht7 U:7Wt+1) 9 (89C)
Uy =7p1(he, UL, Wegn, .., U, W) (89d)

Proof Let t € {0,...,T — 1} and h; € H; be given. We show that Problem (87) and Problem (4] are in

one-to-one correspondence.

— First, for any history feedback .71 = {'Ys}s:t,...,T—l € I't.7_1, we define
(Upr—1) € LO(2, Ap.r—1, Upr—1) by

U

(Uta .. 'aUT—l) = [é;ﬁy:T(htaWt-&-la .. aWT)]tJrl:T )

(90)
where the flow @], has been defined in (@) and the history control part [-]Y,;.,- in @f). By the

expression ([&4D) of ps.s11(h}, dws11) and by Definition [l of the stochastic kernel p]. 1., we obtain that
(see details for the expression of p], in Appendix [A))

E[j(he, Up, Wi, o Ur 1, Wr) | Wou = [0]7] = B[(@00(he, Wi, ... W) | Wou = [l

= J J(hp)plp(he, dhy) (by (I29) in Appendix [Al)
Hr
As a consequence
inf E[’h,U,W o Ur 1, W ‘W4=hW]
(Utzrfl)eLU(!IQI,lAt:T,l,Ut:T,l) J(he, Uy t4+1 T—1 T) 0:t = [Pt]on

< inf f (R (he, dRYy) . (92)
Hr

Ye:T—1€lT -1
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— Second, we define a (t:T — 1)-noise feedback as a sequence A = {As},_, ,_, of measurable mappings
(the mapping A; is constant)

AtE.[Utv As:WtJrl:s"USv t+1<s<T-1.

We denote by A;.r—1 the set of (¢:T — 1)-noise feedbacks.

Let (Uy,...,Up_1) e L°(92, Ap.7—1,Upr_1). As each set Uy is a separable complete metric space, for
s=t,...,T — 1, we can invoke Doob Theorem (see [3, Chapter 1, p. 18]). Therefore, there exists a
(t:T — 1)-noise feedback X\ = {As},_, _; € Apr—1 such that

.....

Ut=)\ta US=)\S(W,§+1:5), t+1<s<T-1. (93)

Then, we define the history feedback ve.r—1 = {7s}._,
r=t,...,T—1:

71 € I'.r—1 by, for any history h.. € H,,

.....

’Yt(h;) = )‘t )
W

%+1(h2+1) = At41 ([h;+1]t+1:t+1) = )‘t+1(w£+1) )

W
Yr-1(hp_1) = Ar—1 ([h,T—1]t+1:T_1) = )\Tfl(w;:ﬂ, S W)

By the expression (84D) of ps.s4+1(hl, dwsy1) and by Definition [ of the stochastic kernel p],., we
obtain that (see Appendix [A] for details)

J J(Wp)plp(he, dhp) = E[j(ht,Ut,WtH, o, Uro, Wr) | Wy, = [ht]th:I . (94)
Hr

As a consequence

it [ e an)
Hr

Ye:T—1€l 71

< inf ]E['h,U,W o Up W W.=hW]. 95
(Ut7~~~1UT—1)G]L(l)?gvAt:T—l1Ut:T—1) J( K K t+1 =t T) 0:t [ t]O.t ( )
Gathering inequalities (@2)) and ([@3]) leads to (88]).

The relations (89) allowing to build an optimal adapted control process (Uy,...,Uy_;) for Prob-
lem (87) when starting from an optimal history feedback v* = {y¥} 7y for Problem ([I4) follow
easily. This ends the proof.

s=t,...,

An immediate consequence of Theorem [7] and Theorem [ is the following.

Corollary 4 The family {Xv/t} of functions in (87) satisfies the backward induction
t T

ERRER)

~

Vr(hr) = j(hr) , Vhr € Hr , (96a)

and, fort =T —1,...,0,

‘v/t(ht) = inff ‘v/t+1(ht7ut, wt+1)]P)wS;:1 ([ht]XYt,dwm) (96b)
Yt JWe
= l'LI}tf E[‘Z+1(ht,ut,wt+1) | Wy = [ht]g\yt] s Vhy € Hy . (96C)

5.2 Dynamic Programming with Unit Time Blocks

In the setting of optimization with noise process, we now consider the case where a state reduction exists
at each time t =0,...,7 — 1.
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5.2.1 The Case of Final Cost Function

We first treat the case of a general criterion, as in §4.1.01

Proposition 5 Suppose that there exists a family {X;},_, r of state spaces, with Xo = Wy, and a
family {fre41},_o . p_q of dynamics

.....

Froor1 1 Xy x Up x Weyr — Xgq1 . (97)

Suppose that the noise process {Wy},_,
bility law P).
For a measurable nonnegative numerical cost function

7 is made of independent random variables (under the proba-

.....

j:Xg — [0, +0] , (98)

we define the family {\7,5} . of functions by the backward induction
t=0

.....

Vr(zr) = j(zr), VoreXr, (99a)
‘Z(.’L‘t) = HEI{T E[‘Z+1(.’L‘t,ut,wt+1)] s VZEt € Xt s (99b)
ureUys

fort =T —1,...,0. Then, the value functions ‘7,5 are the solution of the following family of optimization
problems, indexed byt =0,...,T —1 and by x; € Xy,

~ ~

Vi = inf Elj1(X 100
i (1) ST T [/(X7)] , (100a)

where

Xo =2, Xos1 = fost1(Xs, Us, Wey1), Vs=t,...,T—1. (100b)

Proof We define a family {0:},_,  of reduction mappings 6; : H; — X; as in (23) by induction. First,
as Xg = Wy = Hy by assumption, we put 6y = Iz : Hy — Xo. Then, we use [@2) to define the mappings
01,...,07. As a consequence, the triplet ({Xt}tzo,...,T , {9t}t:0,___7T ; {ft:t+1}t:07m,T_1) is a state reduction
across the consecutive time blocks [¢,t + 1];—¢,... r—1 of the time span.

Since the noise process {Wt}tzo,...,T is made of independent random variables (under ), the family
{ps—l:s}lgng of stochastic kernels defined in (&4l) is given by

Ps—1:s * Hs—1 — A(WS) , s=1,...,T, (101&)
he_r > Py, (duws) . (101b)

As a consequence, we have by ([20) that the triplet ({X¢},_o 7, {0}, 1> {ft:4+1}10,. 7_1) 15 com-
patible (see Definition [)) with the family {p;—1.t}+=1,... 7 of stochastic kernels in (I0I). In addition, the
reduced stochastic kernels in (28] coincide with the original stochastic kernels in (I0T]).

Define the cost function j as N
Jj=jobr.

Corollary 2 applies, so that the family {V;},_,
problems (4] satisfies

7 of value functions defined for the family of optimization

.....

Vi=Vio6,, t=0,....T. (102)
By means of Theorem [7, we deduce that

Vihe) = Vi o 0i(he) , (103)

forallt =0,...,T and for any h; € H;. From the definition (87) of the family of functions ‘v/t, we obtain
the expression ([I00) of functions V;.

The expression of the optimal state feedbacks is given by the next corollary.
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Corollary 5 Suppose that, fort =0,...,T — 1, there exist measurable selections
Vi 0 (X, Xp) = (Us, Uy) (104a)

such that N
Vi(ae) € argminE[‘/}+1($t,ut,Wt+1)] , Vo eXy, Vi=T-1,...,0, (104b)

ur€Uy

where the family {\N/t}tzo,___j of functions is given by (99). Then, the family of random variables {U%}s—y, . -1
defined by
U:=7l0X:, s=t,...

S

T -1, (105a)
where

Xi=a, X5, = fs:sH(X;,Ug,WsH) , Vs=t,...,T—1, (105b)
is a solution to Problem (I00).
Proof The result directly follows from Corollary

5.2.2 The Case of Time Additive Cost Functions

We make the same assumptions than in §4£.1.2] We leave the proofs to the reader.

Proposition 6 Suppose that there exists a family {X¢},_,
family {fee41},o . p_q of dynamics

ft:tJrl :Xt X Ut X Wt+1 s Xt+1 . (106)

r of state spaces, with Xo = Wy, and a

.....

.....

Suppose that the noise process {Wt}tzo,...,T is made of independent random variables (under the proba-
bility law P).
We define the family {‘Z} . of functions by the backward induction
t

.....

Vr(er) = K(v7) , Var € Xr (107a)
and, fort =T —1,...,0 and for all x; € X;

‘A/t(xt) = inf E[Li(z¢,us, Weg1) + Vit (festr1 (e, ue, W) ] - (107b)

ur€Uy

Then, the value functions XA/t are the solution of the following family of optimization problems, indexed
byt=0,...,T—1 and by z; € Xy,

T—1
Vilee) = Uy, UH)eL%I(lrfz,AtT,l,mt;pl)E[ ~ Lo(Xs, Us, W) + K(XT)] ’ (1082)
where
Xo=z, Xos1 = fost1(Xs, Us, Wey1) , Vs=t,...,T—1. (108b)
Corollary 6 Suppose that, fort =0,...,T — 1, there exists measurable selections
A (X, X)) — (Up, Ue) (109a)
such that, for all r; € X4,
A7 (x¢) € argmin E[ Ly (e, ug, Weg1) + Vi (Frer1 (ze, us, Wer))] - (109b)

u€Uq

.....

Then, the family of random variables {U%}s—y . r—1 defined by
U,=70X:, s=t,....,T—1, (110a)

where

Xi=w, X5 = fast1(X5, U, Wein), Vs=t,...,T—1, (110b)
is a solution to Problem (108).
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5.3 Two Time-Scales Dynamic Programming
We adopt the notation of § 21 We suppose given a two time-scales noise process
W (0,0):(0+1,0) = (Wo,0, Wo,1,-... Woar, Wi, ..., Wpa, Wpy10) - (111)
For any d € {0,1,..., D}, we introduce the o-fields
Ao ={D, 92}, Aam =0(W(a1)(am) s m=1,...,M. (112)
The proof of the following proposition is left to the reader.

Proposition 7 Suppose that there exists a family {Xaq},_,
a family {fd:d+1}d:07“.,D of dynamics

p41 of state spaces, with Xo = Wy o, and

.....

Ja:d+1 1 Xg X Ha:a41 — Xgpq - (113)

Suppose that the slow scale subprocesses W (g 1).(a+1,0) = (Wd,1, e ,Wd+110), d=0,...,D, are inde-
pendent (under the probability law P).
For a measurable nonnegative numerical cost function

7 : Xp1 — [Oﬂ +OO] ) (114)
we define the family {\N/d}d o Dot of functions by the backward induction
=0,...,D+
Vpsi(zps1) = j(@p+1) , Yops1 € Xpa (115a)

Va(za) = nf

i
U (q,0):(a,m)ELC (2,4 (4,0:(d, M) U(d,0):(a,0))
E[Vd+1(fd:d+1($d;Ud,OaWd,la e aUd,ZVI;Wd+1,O))] )
v:L'd S Xd s (115b)
ford=D,...,0.

Then, the value functions Vi in (I13) are the solution of the following family of optimization problems,
indexed by d =0,...,D and by x4 € Xq,

~ ~

Va(za) = inf E[j(X , 116a
d( d) Ud,0):(p,M)ELO (2, A (a,0):(D,m)U(d,0):(D, M)) []( D+1)] ( )

where, for alld =d,..., D,

Xa =124, Xay1= forat1(Xa,Uao, War 1, Uar i, Warg10) - (116b)

5.4 Decision Hazard Decision Dynamic Programming
We adopt the notation of § L3l We suppose given a noise process
Wo.s = (WhH Wi, ..., W%) . (117)
For any s € {0,1,...,S — 1}, we introduce the o-fields
As=1{D, 2}, Av =c(W' 1), § =s+1,...,5. (118)

The proof of the following proposition is left to the reader.
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Proposition 8 Suppose that there exists a family {Xs},_, ¢ of state spaces, with Xo = Wﬁo, and a
family {fS;SJrl}S:OW,S_l of dynamics

fost1 i Xg x UE x W2 x U2 — Xgp1 (119)

Suppose that the noise process {WZ}FO g s made of independent random variables (under the proba-
bility law P).

For a measurable nonnegative numerical cost function
7:Xs = [0,+o0] , (120)

we define the family of functions {‘75} < by the backward induction

$=U,..0y

Vs(zs) = j(ws), YoseXs, (121a)

‘75(1'5) = inf E[ inf ‘N/erl (fs/:s/+1($57uﬁ,wb,+1, Ub,+1)):| (121b)
wlet? Lub el s s s

VeseXy, Vs=5—-1,...,0. (121c)

Then, the value functions ‘75 in {IZ1) are the solution of the following family of optimization problems,
indexed by s =0,...,5 —1 and by x5 € X,

~ ~

Vi(zs) = inf inf E[j(Xs)] . (122a)
U o eL0(02,A0s 1,0 ) Ul g6LO(2, At 15,00, 1 6)

where
Xg =25, Xgs1= fowi1(Xe, UL W2, UL ), Vs =s,...,8 1. (122b)

s’

6 Conclusion

As said in the Introduction Sect.[I] the large scale nature of multistage stochastic optimization problems
makes decomposition methods appealing. We have provided a method to decompose multistage stochastic
optimization problems by time blocks.

In the case of optimization with noise process, we do not require noise independence within the time
blocks. This opens the possibility to apply stochastic dynamic programming between the extremities of
the time blocks — at a slow time scale for which noise would be statistically independent — and to apply
stochastic programming within the time blocks. Therefore, our time block decomposition paves the way
for mixing and reconciliating stochastic dynamic programming and stochastic programming methods.

Such an approach is part of a larger research program, where we aim at mixing various decomposition-
coordination methods in multistage stochastic optimization, be they spatial, temporal or by scenarios [4].

A Construction of the stochastic kernels p].,

We detail here the construction of the stochastic kernels p::t in (Za) when 0 < r <t < T. We assume that the (Ws)s—o,....7
are measurable spaces and we denote by (Ws)s—o,...,r the associated o-fields.

1. In the first step, we build a family of stochastic kernels (v )s=r,...,t—1 using composition and then we follow [5]

r,s:s+1
p.138] (see also [2, Proposition 7.28]) to define a stochastic kernel product ), = (o VY sl
r and t be fixed (such that 0 < r <t < T). First, for s = r, we simply define VZT:TJrl = pr:r+1. Second, for each s such
v

rs:s+1 Dy the composition V1:Y,s:s+l = psis+10Ds

More precisely, let
that 0 < r < s < t, we define a new stochastic kernel v

v
V'r,s:s+1

@Z;s Ps:s+1

H, x W’r+1:s H

AWsr1) - (123)
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Now, proceeding as in [Bl p.138], we construct a stochastic kernel

/J':;t :Hy — A(Wr+lzt) 5

obtained as a product of the stochastic kernels (V;’S:SJrl)S:T’“wt_L The construction if as follows: for a fixed h, € H,

and a fixed sequence of measurable sets Bry1.t € Wy41.¢, we put

J (J Vo (w1, du)
Bsy1 By

- -VZS:S+1(hr,wT+1;S, dws41) -+ V':/,'r:r+1(h7‘7 dwr41) . (124)

M::t(th B7‘+1:t) = f
Byy1

2. The second step is to define the stochastic kernel p;yjt : H,, — A(Hg) from the stochastic kernel :“Z:t using transport
with the flow @7, : Hy, x Wy41:+ — H¢. More precisely, for any measurable nonnegative function ¢ : Hy — [0, +00], we
define the integral with respect to the stochastic kernel p;’:t as the integral of the function ¢ o ¢Z:t with respect to the
kernel p) ,:

’
J.]HI (hy)py.s(hr,dhy) = fW @(gplt(hhwr-%—l:t))l‘::t(hhdwr-%—l:t) . (125)
t r1it
oy,
Lg(Htﬂ g{t) 3¢ % <§0 5 p::t> € L(«)F(HT‘, HT)

T

¥ ‘

Ho:

Lg_ (Hr X Wr+1:t7 Hr ®W'r+l:t) e Q/) =®o ds;y;t ;t) <¢ ’:U‘Z:t> .
This ends the construction.
B Specialization to the noise case
We turn now to the special case where, for any s = 0,...,7 — 1, the stochastic kernel ps.s+1 is the regular conditional
distribution Pwo’fl of the random variable W41 knowing the random process Wy.;, that is,

Wo.s W
ps;s+1(hs,dws+1) = ]P)VvS+1 ([hS]O:sydws-H) . (126)

For any s such that 0 <7 < s <t and Bs11 € Ws41, we have that

V;/,S;s+1((hrvwr+118)v BS+1) = Ps:s+1 (¢Z:s(hrvwr+118)v Bs+1) (by M)
Wo.s w
= ]P)W(SJ‘+1 ([élis(h7‘7w7‘+lis)]0:s7 Bs+1) s ( by 26 )

which, using Equations ) and (@h]), gives

= P%gfl (([hT]XYrv Wrilis), Bs+1) . (127)

We observe that the stochastic kernel V;’ s:s+1 does not depend on the history feedback 7. As a consequence, the

stochastic kernel M::t : Hy — A(W,41:¢) obtained by product in (I24)), does not depend on the history feedback v either,
and can be expressed using the regular conditional distribution of W, 1.+ knowing the random process Wo.,.. By (27
and ([I24), for a fixed sequence Br41:t € B(Wy41.¢) of Borel sets, we have

pigy (hey Bri1it) = vavo;T ([hr]z})&;}mBr+1:t) . (128)

r+1:t
Now, for any measurable nonnegative function ¢ : Hy — [0, +00], the integral with respect to the stochastic kernel p.,

is defined by ([Z5) as the integral of the function ¢ o &, ;| with respect to the kernel u.,. Using Equation (I28), this
gives

’
J @(h;)P:;t(hhdht) = J ‘P(éjzt(hqwwT+12t))H‘Z:t(hT7dw?“-%—lit)
Hy Wi t1:¢

Wo.r w
- jw (@70 (s wr1:0) JPWOT ([ duwr i)

= E[(@].,(hr, Wis10)) | Wour = (011, ] (129)
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