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Abstract—When evaluating Homomorphic Encryption (HE)
schemes, only one set of input parameters is usually considered.
Evaluation reports HE scheme time execution and memory
consumption because these are the main challenges of HE.
PAnTHErS enables to evaluate HE schemes without executing
the scheme, hence with an affordable processing time. Results
are provided in terms of computational complexity and memory
cost. This allows to evaluate a scheme for numerous sets of
input parameters. In this paper, PAnTHErS is improved by a
calibration phase, and four HE schemes based on Ring-LWE are
analyzed and compared using the proposed tool.

Index Terms—Homomorphic Encryption, Security, Cloud
Computing

I. INTRODUCTION

Contrary to classical cryptosystems, Homomorphic Encryp-
tion (HE) allows to directly apply computation on ciphertext.
However, as HE schemes are many, electing one HE scheme
and its associated parameters for a given application remains
challenging. Indeed, since Gentry [1] designed the first Fully
HE (FHE) scheme in 2009, lots of HE and FHE schemes
have been created. Although the first scheme was based on
ideal lattices, the following ones relied on different hard-
ness assumptions (approximated-GCD, Learning With Error
(LWE), Ring-LWE and approximate-eigenvector). Since then,
several implementations of HE schemes have been made
available in open-source. Among them, HElib [2] and FV-
NFLlib implement Ring-LWE based schemes [3] and [4]
respectively. However, existing implementations exhibit a too
high execution time to support exploring all HE schemes then
selecting one for a given application.

HE schemes suffer from both an important complexity and
a high memory consumption. As a result, real applications
exploiting HE schemes are quite few. These two flaws are
being reduced over time thanks to new technologies and
development of new optimized schemes. Nevertheless, finding
the best HE scheme for a particular application remains
difficult. Evaluation requires the application to be run on
various sets of input parameters for every each tested scheme.
In this context, HE schemes exploration could help choosing
the most interesting scheme and configuration corresponding
to application requirements.

PAnTHErS (Prototyping and Analysis Tool for HE
Schemes) [5] allows HE experts to analyze HE schemes in

terms of computational complexity and memory cost without
executing the scheme itself. The tool is based on an analytic
evaluation of HE schemes allowing fast exploration. However,
PAnTHErS produces a theoretical complexity (number of
operations) and a theoretical memory cost which are not
related to a specific implementation.

In this work, we propose to extend PAnTHErS by in-
tegrating a calibration phase. This would allow to ensure
the theoretical results match to practical results which fit a
particular system and a given implementation. The proposed
approach is validated through implementing and analyzing
four HE schemes based on Ring-LWE ([4], [6], [7], [8]).
Then, schemes are evaluated on a synthetic HE application
with an arbitrary number of homomorphic multiplications and
additions.

This paper is organized as follows. Section II presents
PAnTHErS. Section III focuses on the calibration phase and
evaluates it against four HE schemes. Then, Section IV shows
evaluation results on a case study. Finally, Section V concludes
and presents future works.

II. PANTHERS PRESENTATION

PAnTHErS [5] is a tool implemented in Python. It provides
a modeling phase to decompose complex HE schemes into se-
ries of simpler mathematical functions. Each created function
is stored in a library for further reuse in other decompositions.
PAnTHErS models can be analyzed in terms of computational
complexity and memory cost with no need for executing the
HE scheme itself.

This section recaps modeling and analysis steps of PAn-
THErS. These steps are fully detailed in [5]. Moreover, usage
of PAnTHErS is also explained.

A. Modeling step

First, HE schemes to be analyzed, must be modeled into se-
ries of functions. PAnTHErS considers three kind of functions:
atomic, specific and HE basic.

An atomic function corresponds to one operation. Specific
and HE basic functions are series of atomic and/or specific
functions. Each HE scheme is composed of five functions: Key
Generation, Encryption, Addition, Multiplication and Decryp-
tion. These functions are modeled as HE basic functions.



Atomic and specific functions are stored in a library to favor
reuse, whichever other schemes which are based on the same
hardness. This approach speeds up the modeling step of new
HE schemes.

B. Analysis step

Each HE scheme is analyzed in terms of computational
complexity and memory cost. In PAnTHErS, complexity is
represented by a table containing the number of operations
performed for a given application scenario. The operations
being counted in PAnTHErS are: multiplication, addition,
division, subtraction, modulo, random and round.

Memory cost, also summed up in a table, is composed of
the characteristics of parameters. The table itemizes output
parameters as well as temporary variables. The characteris-
tics stored in PAnTHErS are: type (integer or polynomial),
dimensions (number of rows and columns) and degree (if the
parameter is a polynomial).

Analysis requires on two functions: one for complexity and
one for memory cost. Each atomic, specific and HE basic func-
tion is associated to its own two functions. Once the execution
of analysis function is completed, PAnTHErS returns: total
complexity and total, maximal and current memory cost. Since
these results are obtained at the function level, it is possible
to produce temporal traces for each metric.

Thanks to a method detailed in [5], PAnTHErS transforms
the complexity table into a total complexity: an integer cor-
responding to the number of multiplications performed on
integers during the HE scheme. Total memory cost covers
all parameters which have been created during HE scheme
analysis execution. Total memory is defined by an integer
value representing the number of stored 32-bit integers. Cur-
rent memory cost refers to parameters being stored in memory
at this exact moment. PAnTHErS also returns the maximal
memory cost achieved during the analysis execution.

C. Usage for HE schemes exploration

In order to use HE in an application, designers look for the
scheme that best fits the application requirements. Also, the
most interesting input parameters must be isolated. The exe-
cution of the application with various schemes and numerous
sets of input parameters results in important time and memory
costs. PAnTHErS alleviates the need for this costly step.

First, if the necessary models are not available in the library,
the designer provides descriptions of specific functions, then
descriptions of HE basic functions to model a HE scheme.
Once modeled a HE scheme, a set of input parameters can be
provided for the exploration process. Each input parameter is
associated to a range of values and a step. PAnTHErS returns
one analysis per input set. Results are returned in the form of
graphs showing the evolution of one parameter at a time.

Then, based on graphs and the application requirements, the
most favorable scheme and/or input parameters are designated.

III. PROPOSED CALIBRATION PHASE
PAnTHErS supports fast analysis of HE schemes by re-

turning their theoretical complexity and memory consumption.

On the other side, the evaluation of one HE scheme, through
PAnTHErS returns the evolution of both complexity and mem-
ory cost according to each input parameter. However, how a
scheme executes strongly depends on both its implementation
and the target architecture. For instance, a C implementation
and a Python implementation exhibit differences.

In this section, we propose a calibration phase included
in PAnTHErS in order to provide sound results regarding
a given implementation. Then, the calibration is applied for
the evaluation of four HE schemes based on Ring-LWE and
finally, it is evaluated.

A. Calibration method

The calibration method aims to transform theoretical com-
putational complexity and memory cost, that PAnTHErS re-
turns, into a practical case for a given implementation.

For each HE scheme, PAnTHErS gives an integer repre-
senting the complexity and an integer corresponding to the
memory cost. In this paper, we call CompPanthers (resp.
MemPanthers) the complexity (resp. memory cost) returned by
PAnTHErS. We propose to actually execute the HE scheme
in order to get its execution time in seconds for a practical
case (e.g. a Python implementation in this paper). Moreover,
we apply a memory profiler (Python module named mem-
ory profiler1 in this paper) on each HE scheme execution.
The module returns memory consumption of the program
in Mebibytes (MiB). Thus, in the following, complexity in
the practical case, named CompPractical, refers to Python
HE scheme execution time in seconds. Memory cost in the
practical case, named MemPractical, refers to Python HE
scheme memory cost calculated by memory profiler in MiB.

The calibration method associates CompPanthers with
CompPractical and MemPanthers with MemPractical. Thus, it
creates two points (CompPanthers, CompPractical) and (Mem-
Panthers, MemPractical). Each point enables to transform
a PAnTHErS analysis into a practical analysis. Indeed, for
complexity, thanks to the association of CompPanthers with
CompPractical, it is possible to find a factor y such as:

CompPanthers× y = CompPractical.

Factor named y allows then to convert any analysis of PAn-
THErS into practical analysis. The same reasoning is valid for
memory cost.

In order to improve the proposed approach, two complexi-
ties (resp. memory costs) could be associated to two execution
times (resp. MiB) creating thus two points. With these points,
two factors y and z can be recovered to solve the following
system:{

CompPanthers1× y+ z = CompPractical1
CompPanthers2× y+ z = CompPractical2

(1)

Then, (y,z) are applied to any other analysis of PAn-
THErS complexity. Calibration method with two points could
give a better approximation of PAnTHErS values in a practical

1https://pypi.python.org/pypi/memory profiler



Figure 1: Comparison between execution time of FV scheme
(by varying log2(w)) and complexity calibrated with 1 to 3
points. Fixed parameters: log2(q) = 200, t = 2 and n = 211.

case than the calibration method with one point. We called a
p-calibration, a calibration with p points.

Figure 1 shows results of calibration method on FV scheme
[4]. In FV, operations manipulate polynomials of degree n and
are reduced modulo q. Parameter t is the modulus of plaintexts
and w is an integer base. Figure 1 illustrates execution time
while parameter w evolved and q, t and n are fixed. We varied
log2(w) from 2 to 64 with a step of 2. FV was executed for
each log2(w) to find the CompPractical values. The three
other curves illustrate calibrations of CompPanthers values
according to the number of associations (i.e. points).

The comparison of curves in Figure 1 shows that the curve
corresponding to a 3-calibration is closer to practical values.
The percentage of error between CompPractical and the three
CompPanthers as given by:

|CompPractical−CompPanthers|
CompPractical

×100. (2)

Maximal error for a 1-calibration goes to almost 70% while
it goes only to 12% for a 3-calibration. For a 2-calibration,
maximal error goes to 22%.

Migrating from p to the p-calibration method is likely
to decrease the error between practical and calibrated PAn-
THErS values. However, a point comes from executing at
least one time the HE scheme. This execution takes a time
denoted HEtime, expressed in seconds. If the calibration is
done with p points, HE scheme has to be executed at least
p times. Thus, it requires p×HEtime seconds before using
calibration method and obtaining results. Therefore, a tradeoff
must be done between execution time and percentage of error
to adjust PAnTHErS values in a practical case.

B. Calibration validation

Four schemes have been modeled and analyzed in PAn-
THErS to study the efficiency of the proposed calibration
phase. For that purpose, a practical Python implementation ex-
ecuted on an Intel(R) Core(TM) i5-4310M CPU 2.70 GHz ma-
chine has been considered. Moreover, we use a 2-calibration
as it seems to be an interesting tradeoff between execution
time and the percentage of error.

The four schemes named FV [4], YASHE [6], F-NTRU [7]
and SHIELD [8] are defined in the ring Rq = R/qR where

Table I: Parameters variation of each scheme for analyses.

Scheme Varied parameters Fixed parameters
Name Min Max Step log2(q) n w t

FV log2(q) 100 300 10 - 212 22 2
and log2(w) 2 42 2 100 212 - 2

YASHE t 2 60 1 100 212 22 -
SHIELD log2(q) 4 40 2 - 210 - -

F-NTRU log2(q) 4 40 2 - 210 22 -
log2(w) 1 16 1 20 210 - -

Table II: Times required for calibration phase versus execution
times of each parameter of each schemes.

Scheme Calibration time Execution time Speedup
FV 32.2” 7’25” 13.8

YASHE 2’46” 41’04” 14.8
SHIELD 58.3” 6’30” 6.7
F-NTRU 37” 2’27” 4.0

All 4’54” 57’26’ 11.7

R = Z[x]/(φd(x)), φd(x) is the irreducible dth cyclotomic
polynomial. Operations are made on polynomials of degree
n = φ(d). Plaintexts are reduced modulo t in FV and YASHE.
And, some words are decomposed in base w in FV, YASHE
and F-NTRU schemes.

The evaluation of calibration phase was made varying the
following parameters: q, w and t. Table I recaps the variation
of each parameter executed for PAnTHErS analyses. For the
2-calibration, we decide to associate PAnTHErS complexity
(resp. memory cost) with execution time (resp. MiB) at
the first and last value of each range. For instance, the 2-
calibration of q graph for FV scheme complexity have been
done taking PAnTHErS complexity and Python execution time
at log2(q) = 100 and log2(q) = 300. In addition, two more 2-
calibrations are produced for w and t for the same scheme. At
last, three 2-calibrations are necessary for FV and YASHE,
two 2-calibrations for F-NTRU and only one for SHIELD.
So, twelve HE scheme executions are required to composed
points for the six 2-calibrations.

Considering parameters of Table I, times required to ensure
2-calibration for each scheme are exposed in Table II. The
third column shows the total execution time of the consid-
ered HE schemes when exploration is done through actual
execution. Results show that the proposed approach allows to
calibrate PAnTHErS while analysis speedup is still significant.
It is worth noting that speedup increases with larger sets of
parameters, meaning that this approach is highly scalable.

We evaluated the calibration method on each HE basic
and on each whole HE scheme. Some of HE basic functions
have an execution time (resp. memory cost) below 0.1 second
(resp. MiB). As these orders of magnitude are tiny, they are
negligible. Thus, results of these HE basic functions were not
included into general results of this paper.

Figures 2a and 2b illustrate the evolution of practical values
next to calibrated PAnTHErS values. In graphs of Figure 2,
PAnTHErS values are close to practical values: their evolution
are equivalent.

Figure 3 gives box plots created with mean percentages of



(a) Total F-NTRU and SHIELD complexity results (with q parameter).

(b) Total FV and YASHE memory cost results (with w parameter).

Figure 2: Evolution of practical values and calibrated PAn-
THErS values.

Figure 3: Box plots showing the dispersion of percentages of
mean error.

error. These percentages are the ones found after analyzing
each HE basic functions of the four schemes. We took only
HE basic functions with an order of magnitude bigger than 1.
For computational complexity and memory cost, three quarters
of the percentages of mean error are under 9%.

Table III gives percentages of error for HE schemes. Mean
percentage for complexity are under 5.6% expect for F-
NTRU. These means signify a difference of maximal 1 second
between CompPractical and CompPanthers. On Figure 2a,
difference between CompPractical FNTRU and CompPanthers
calibrated FNTRU goes up to 55.7% according to Table III.
Differences between the two curves are less than 3 seconds.

The p-calibration phase enables to transform the theoretical
analyses of PAnTHErS into practical results: complexity (resp.
memory cost) of PAnTHErS is changed in seconds (resp. MiB)
thanks to Python executions for our study. A p-calibration
associates p PAnTHErS results with p practical-case results
found by executing a HE scheme. An important p implies
more significant pre-calculations. We took p = 2 to evaluate
the calibration phase with four HE scheme based on Ring-
LWE. The majority of percentages of error are under 20% for

Table III: Mean and maximal percentages of error for each
HE scheme and parameter.

Scheme Complexity Memory cost
Mean Max. Mean Max.

FV 3.9% 16.5% 3.2% 14.3%
YASHE 5.6% 39.5% 3.7% 11.7%
SHIELD 3.5% 11.7% 6.4% 17.2%
F-NTRU 24.6% 55.7% 6.9% 20.1%

complexity and under 15% for memory consumption. Theoret-
ical PAnTHErS results and practical-case results follow similar
trends. Next section focus on apply PAnTHErS and evaluate
calibration phase on a case.

IV. CASE STUDY

In order to demonstrate the interest of the proposed tool,
we consider in this section a synthetic application. Using
PAnTHErS, the aim is to find the best HE scheme among
FV, YASHE and F-NTRU for the application and the best
configuration of the HE scheme chosen targeting a Python on
an Intel(R) Core(TM) i5-4310M CPU.

The application was created with an arbitrary number of HE
basic functions. Multiplicative depth is the number of homo-
morphic multiplications which can be executed in succession.
In literature, existing and practical applications using HE have
a multiplicative depth between 8 and 12 ([9], [10]). We wanted
that our application has a similar depth. Consequently, we
create an application with a depth of 10. The application
begins with a key generation and then, three encryptions are
performed. Messages m1, m2 and m3 are encrypted into c1, c2
and c3. The application then does the following calculations:

c3
1c2

2c2
3ST (S+ c3)(S+ c2 + c3) (3)

with S = c1T + c1 + c2 and T = c1c2 + c3. Finally, the calcu-
lation result is decrypted.

The application was analyzed by PAnTHErS with FV,
YASHE and F-NTRU. Results of PAnTHErS lead to determin-
ing the best HE scheme for the application. Simultaneously, we
executed each Python implementation for the sake of verifying
the efficiency of both PAnTHErS and the calibrated phase.

Input parameters must be chosen in order to ensure the
accuracy of algorithm results. In other words, input parameters
must ensure that the HE scheme can do its ten successive
homomorphic multiplications. Equations given in [4], [6] and
[7] enable to calculate the depth according to the input
parameters. [8] does not present the whole depth calculation.
Thus, SHIELD was not tested on the application.

First, we analyzed the application by varying parameter q.
For FV and YASHE, we took log2(q) ∈ {300,305, ...,350}
and fixed w = 22, t = 2 and n = 212. For F-NTRU, we took
log2(q) ∈ {90,95, ...,140} and fixed w = 2 and n = 210.

As in Section III, we used a 2-calibration by associating
PAnTHErS complexity (resp. memory cost) to Python execu-
tion time (resp. MiB) at the first and the last value of log2(q)
range. The analysis of parameter q for the 3 schemes requires
about 120 minutes while it would take around 540 minutes for



Figure 4: Calibrated complexity evolution of FV, F-NTRU and
YASHE in function of log2(q). Fixed parameters: w= 22, t = 2
and n = 212.

Figure 5: Calibrated memory cost evolution of FV and YASHE
in function of log2(w). Fixed parameters: log2(q) = 300, t = 2
and n = 212.

executing each HE scheme with each log2(q). A 3-calibration
would imply an analysis of 149 minutes.

Figure 4 shows calibrated complexity evolution of the ap-
plication with each scheme. Results for memory cost are very
close from the ones for complexity. F-NTRU curve is higher
and increases faster than FV and YASHE curves. This first
analysis enables us to remove F-NTRU and resume analyses
only with FV and YASHE. Before validating our choice to
continue only with FV and YASHE, we verified the quality
of our results. The maximal percentage of error went only
to 6.5%. PAnTHErS with its 2-calibration was efficient and
allowed us to make a good choice. The usage of a 3-calibration
implies a maximal percentage of error of 3.9%.

For next analysis, we varied log2(w) ∈ {2,4, ...,22} for
YASHE and log2(w) went to 44 for FV. Indeed, a log2(w)> 22
with log2(q) = 300 implies a depth inferior to 10 for YASHE.
For FV, depth stays at 10 until log2(w) = 44. Evolution of
complexity in function of log2(w) shows that FV is the most
interesting because it always has a complexity inferior to the
one of YASHE. However, Figure 5 shows that for w > 28,
YASHE consumes less memory than FV. If there are memory
constraints in application requirements, then YASHE seems to
be the best choice. Here, FV is the most interesting according
to complexity results.

The last analysis focused on variation of t ∈ {2,3, ...,9}
for FV scheme. As in Section III, t does not has an impact on
computational complexity and memory cost of the application.

Python execution of all sets of parameter leads to same re-
sults as PAnTHErS predicted. PAnTHErS analyses showed FV
scheme was the best candidate for the application. An appro-
priate configuration is to take a small q. Indeed, computational
complexity increases when q grows. Moreover, an important
w reduces memory cost and complexity. From log2(w) = 28,
evolution of complexity and memory cost stagnate (see Figure
5). In addition, depth decreases when w increases. Thus, the
value 228 for w is a reasonable choice. Any t is convenient as
long as it does not reduce the depth. Thus, t = 2 is suitable for
FV configuration. As w= 228 and t = 2, we found the smallest
q which implies a depth of 10. Thus, log2(q) = 281. Finally,
n depends on q. If log2(q) = 281, then n must have 212 as a
value to ensure 80-bit security [11].

V. CONCLUSION AND FUTURE WORK

Prior to this work, PAnTHErS supported theoretical eval-
uation of HE schemes in terms of computational complexity
and memory consumption. This paper describes a p-calibration
phase that changes these theoretical values into practical values
matching a given system and a given implementation. The p-
calibration method was evaluated on four schemes based on
Ring-LWE and an application. Higher value of p is, the more
considerable pre-calculations are, and better PAnTHErS cali-
brated results are.

This open exciting perspective for future work, such as
analyze practical applications with various HE schemes based
on different hardness assumption. These analyses could target
different systems and/or implementations. Based on these
analyses, HE schemes and its applications could be executed
in the best conditions i.e. choosing the environment that favors
the fastest execution time.
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